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A B S T R A C T

In order to develop a fluorometric aptamer-based biosensor for ultrasensitive and selective detection of phoxim, a
modified magnetic beads-systematic evolution of ligands by exponential enrichment (MB-SELEX) method was
used in this study to select phoxim aptamer. An aptamer (APT3) that bonded to phoxim with high affinity was
obtained after 15 rounds of selection, which had dissociation constant (Kd) of 0.93 � 0.25 μM. A fluorometric
aptasensor was then developed and enhanced the sensitivity and selectivity of phoxim detection based on APT3,
multi-complementary strands (CS) and gold nanoparticles (AuNPs). This method had a good linear range of
0.05–5 μM, and detection limit was as low as 29.69 nM for phoxim. In addition, the aptasensing specifically
captured phoxim in a variety of pesticides and real samples. The herein results proved that the method can be
applied in practical detection.
1. Introduction

Phoxim is a widely used organophosphorus insecticide that is suitable
for a variety of Lepidoptera pests with high lethality [1]. Currently,
phoxim is widely used for pest control in crops, however, it can enter the
human body through inhalation, ingestion and percutaneous absorption
[2–4]. Long-term accumulation of phoxim will lead to diseases, cancer
and even poisonous death, affecting the next generation, and posing a
threat to human health and environment [5,6].

The current methods for determination of phoxim include high per-
formance liquid chromatography (HPLC), gas chromatography/mass
spectrum (GC/MS), thin-layer chromatography (TLC), liquid
chromatography-tandem mass spectrometry (LC/MS) and so on [7].
These methods take a long time and high cost, and usually require
complex sample pretreatment, expensive instruments and professional
operators, so it is difficult to apply in field detection. The reported sensors
for phoxim detection are mainly based on polymer materials and en-
zymes. Molecularly imprinted sensor based on polymer materials has
high sensitivity, but it has low specificity and accuracy to the target [8,9].
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Enzyme inhibition method and enzyme-linked immunosorbent assay
(ELISA) have fast reaction speed and high specificity [10,11], but prep-
aration of enzyme is complex, easy to inactivate, differences between
batches, and sensitive to environmental factors such as pH, temperature
and UV irradiation, which affect the accuracy of the sensor [12]. Func-
tional nucleic acids play an important role in molecular detection
[13–15].

Aptamers, also known as artificial antibodies, are short single-
stranded DNA or RNA molecules obtained by systematic evolution of
ligands by enrichment (SELEX) [16–19]. Compared with traditional an-
tibodies, aptamers have advantages, such as simple preparation, good
stability, easy labeling, strong specificity and high affinity [20,21]. At
present, aptamers have been widely used in the detection of cells, viruses,
proteins, sugars, metals and pesticides [22,23]. The fluorescence sensor
has the advantages, such as high sensitivity, fast reaction speed, conve-
nient operation and so on [24–26]. In recent years, reports on pesticide
aptamer sensors have gradually increased [27,28]. For example, Hong
and Cooter [29] obtained an aptamer of fipronil (Kd ¼ 48 � 8 nM) and
constructed a fluorescent aptasensor with a detection limit of 105 nM in
arch 2022
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river water. Liu et al. [30] selected an aptamer of carbaryl with Kd ¼
0.364 � 0.055 μM by ssDNA library immobilized SELEX method, and
constructed a fluorescent aptasensor with high sensitivity, and the limit
of detection (LOD) was as low as 15.23 nM.

The traditional fluorescence aptasensor with competitive binding
aptamer between target and complementary strand (CS) have charac-
teristics of having single binding site and low molecular weight because
of their small molecular targets, and the binding with aptamer is easy to
be disturbed by steric hindrance and environmental factors. It is also
difficult to fully combine with the aptamer, which greatly affects the
accuracy of the sensor. How to construct a fluorescent aptasensor which
can capture small molecular targets stably and sensitively is a research
hotspot in recent years. Bahreyni et al. [31] designed a multiple com-
plementary strands fluorescence sensor that could detect acetamiprid as
low as 2.8 nM. The advantage of this sensor is that the target and aptamer
are incubated preferentially in solution, which can reduce the influence
of other sequences and environmental factors on it, allowing the target to
be fully captured by the aptamer [32]. Secondly, because AuNPs can
strongly quench fluorescence through nanometal surface energy transfer
(NSET), the background signal of the sensor is weakened and sensitivity
of the sensor is improved [33,34].

In this study, we used magnetic beads-SELEX (MB-SELEX) technique
to select aptamer for phoxim, and quantitative polymerase chain reaction
(Q-PCR) amplification curve-melting curve analysis (AC-MCA) was used
to monitor the selection process. Following, a fluorescent aptasensor with
multi-complementary strands structure using AuNPs as quenching agent
was fabricated, and the sensor was used to capture phoxim in real sam-
ples. The sensor retains the original structure of the aptamer and has the
advantages of stable structure, low background signal and good repeat-
ability, so it is more suitable for the detection of small molecular targets.

2. Materials and methods

2.1. Materials and instruments

Phoxim and other pesticides were purchased from Tanmo Quality of
science and technology Co., Ltd. (Changzhou, China). Streptavidin
coated magnetic beads were purchased from Beaver Biosciences Inc.
(Suzhou, China). Emulsion PCR (ePCR) microdroplet generation oil and
3.5 KD dialysis membrane were purchased from Anhui Aptamy
Biotechnology Co., Ltd. (Hefei, China). Nano gold colloid was purchased
from Jiangsu XFNANO Materials Tech. Co., Ltd. (Nanjing, China). Taq
PCR Master Mix and Taq Q-PCR mix was purchased from Vazyme
Biotechnology Co., Ltd. (Nanjing, China). DPBS solution consisted of the
following components: NaCl 136.89 mM, KCl 2.67 mM, Na2HPO4 8.10
mM, KH2PO4 1.47 mM. In this experiment, all the oligonucleotides were
synthesized and HPLC-purified by Sangon Biotechnology. (Shanghai,
China). The sequence information is shown in Table 1.

PCR experiment reaction was carried in T-100 thermal cycler. (Bio-
rad, USA). Q-PCR experiment was carried out in Light Cycler®96 in-
strument. (Roche, Switzerland). A Hitachi F-7100 fluorescence
Table 1
All oligonucleotide sequences in the screening process and sensors.

Name Sequence (5'to30)

Initial library TCCAGCACTCCACGCATAACN(40)GTTA
LibF TCCAGCACTCCACGCATAAC
LibR TTCACCGTCGCACGCATAAC
Lib-biotin GTTATGCGTGGAGTGCTGGA-Biotin
Lib-polyA AAAAAAAAAAAAAAAAAAAAAAAAA/i
Lib-FAM FAM-TCCAGCACTCCACGCATAAC
APT3 TCCAGCACTCCACGCATAACGGCAGGA
APT3s CTCAGTCGCTCACTCCACGCATAACGGC
CS1 TCGCTCACACCCCGCATAACACCACTCA
CS2-SH GTTATGCGGGGTGTGAGCGA-SH
CS3-FAM FAM-TCGCTCACACCCCGCATAAC
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spectrometer (Hitachi, Japan) was used to record the fluorescence in-
tensity, with an excited slit and emission slit of 5.0 nm.
2.2. Selection procedure

In brief, the selection of phoxim by MB-SELEX included library hy-
bridization, immobilization, elution, amplification and purification. The
selection process is shown in Scheme 1a. The entire selection process was
quantified by Q-PCR, and was monitored by AC-MAC method.

The initial library was injected at 1 OD, and the Lib-biotin was added
at the molar ratio of 1:2. Themixture was placed in the PCR instrument at
95 �C for 1 min, 59 �C for 60 min, and 25 �C for 10 min. The cooling rate
between 59 �C and 25 �C was 0.1 �C/s. The concentration was measured
by trace ultraviolet OD instrument and recorded as C1. Magnetic beads
and hybridization library were incubated in the shaker for 50 min. The
supernatant was then separated on the magnetic separation rack, and the
concentration of ssDNA in the solution was measured by trace ultraviolet
OD instrument, which was recorded as C2. Subsequently, 100 μMphoxim
was added and incubated with the beads for 50 min, and the eluent with
affinity for phoxim was obtained and recorded as E. The phoxim in the
eluate was removed by a dialysis device. The input amount of the library
in subsequent rounds was kept at 0.15 nmol. The amounts of Lib-biotin
and magnetic beads were reduced to 0.3 nmol and 100 μL, respec-
tively. The target concentration for each round is shown in Table 2. In
order to improve the specificity of selection, the counter selection was
added from 11th round, and concentration of counter selection pesticides
increased gradually. The counter selection solution included omethoate,
parathion, chlorpyrifos, dichlorvos and methyl parathion.

The eluent was enriched by ePCR, which maintained the diversity of
the library and avoided amplification preference. 1 mL Taq PCRmix, 100
μL Lib-FAM (10 μM) and 100 μL Lib-polyA (10 μM) were added to the
eluent and made up to 2 mL with ddH2O and mixed for 2 min. The ePCR
mixture was mixed with 8 mL ePCR microdroplet generation oil and
shaken for 10 min to form a uniform white emulsion. The emulsion was
packed into 96 tubes and put into the PCR instrument. The procedure was
as follows: 95 �C for 3 min, followed by 23 cycles of 95 �C for 30 s, 60 �C
for 30 s, 72 �C for 60 s and extended at 72 �C for 4 min. The enriched
emulsion was concentrated to 100 μL by n-butanol.

The ssDNA library was prepared and recovered by urea-
polyacrylamide gel electrophoresis (PAGE). 7 M urea-PAGE was
composed of the following components: 3.78 g urea, 1.8 mL 40% Acryl/
Bis solution, 1.8 mL 5 � TBE, 2.25 mL ddH2O, 50 μL 10% APS, and 10 μL
TEMED. The enriched library was mixed with 2 � loading buffer at the
ratio of 1:1.5, and then 95 �C for 10 min, followed by freezing for 2 min.
Electrophoresis was carried out at 350 V for 30 min, and then the fluo-
rescence band was cut and moved to a centrifuge tube. 1 mL DPBS was
added and heated at 95 �C for 10 min to transfer ssDNA into the solution.
The ssDNA was purified using purification kit as the ssDNA pool for next
round of selection.

In this experiment, Q-PCR was used to monitor the selection process.
Q-PCR system was set as follows: 10 μL Q-PCR mix, 6.8 μL ddH2O, 1.2 μL
TGCGTGCGACGGTGAA

Sp18/TTCACCGTCGCACGCATAAC

AGAGTAGTGATGAGTGGTGTTATGCGGGGTGTGGTTATGCGTGCGACGGTGAA
AGGAAGAGTAGTGATGAGTGGTGTTATGCGGGGTGTGAGCGA
TCACTACTCTTCCTGCCGTTATGCGTGGAGTGAGCGACTGAG



Scheme 1. (a) Schematic illustration of MB-SELEX process. (b) Illustration of fluorescent aptasensor with multiple complementary strands. In the absence of phoxim,
CS2-AuNPs was bound to CS3-FAM and fluorescence signal was quenched. In the presence of phoxim, free CS3-FAM released fluorescence signal.

Table 2
The input amount of each substance in the selection process.

Selection
round

Pool
(nmol)

LibF1-
biotin
(nmol)

Magic
beads
(μL)

Phoxim
(μM)

Negative
pesticides
(μM)

1 1.3 2.6 800 100 –

2 0.15 0.3 100 100 –

3 0.15 0.3 100 100 –

4 0.15 0.3 100 50 –

5 0.15 0.3 100 50 –

6 0.15 0.3 100 50 –

7 0.15 0.3 100 25 –

8 0.15 0.3 100 25 –

9 0.15 0.3 100 25 –

10 0.15 0.3 100 10 –

11 0.15 0.3 100 10 5
12 0.15 0.3 100 10 10
13 0.15 0.3 100 10 20
14 0.15 0.3 100 10 40
15 0.15 0.3 100 10 50
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template, 1 μL LibF, and 1 μL LibR. The Cq value accurately quantified the
concentration of ssDNA solution. Amplification Curve and Melting
Curves Analysis (AC-MCA) were reflect the diversity in the library. When
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both curves remained stable, the selection was completed.
After 15 rounds of selection, AC-MCA double curve remained stable

and the selection was completed. The library was sent to Sangon
Biotechnology (Shanghai, China) for high-throughput sequencing. The
results of high-throughput sequencing were shown in Table S1 (Support
information). The results showed that the library obtained by screening
was highly enriched, and only the first 15 of the more than 50000 se-
quences accounted for 12.76%. The secondary structure of the first 15
sequences were analyzed by M-Fold software and affinity of different
sequences for phoxim was determined by following the hybridization,
immobilization and elution steps in SELEX. 15 sequences of 0.15 nmol
were fixed on magnetic beads and 100 μM phoxim was added for elution
to obtain E1-E15. Each eluent was repeated in 3 groups, among which E3
had the highest number of moles, which was named APT3.

2.3. Design of multi-complementary strands fluorescent aptasensor

APT3s was obtained by cutting and modifying APT3 to maintain the
stem-loop structure and mismatch structure with recognition function.
Complementary chains CS1, CS2-SH, and CS3-FAM were synthesized.
Complementary chains were added to bind ssDNA in the solution after
the aptamer were bound to phoxim, and the binding process is shown in
Scheme 1b. Small molecular targets had characteristics, such as low
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molecular weight, simple structure and single binding site, so the binding
with aptamers was easily affected by steric hindrance and other factors
[35]. By introducing multiple complementary strands into the sensor,
their effect on the fluorescence signal due to insufficient binding of small
molecules to the aptamer was reduced.

The extinction coefficient of AuNPs was higher than organic
quenching groups, and G base exerted a quenching effect on fluorescence
groups. Therefore, AuNPs modification on the G-rich CS2-SH sequence
could achieve the best quenching effect. In order to activate the sulfhy-
dryl groups, 15 μM CS2-SH was mixed with 1 M TECP solution for 30
min. To fabricate a sensitive aptasensor, the concentration ratio between
AuNPs and CS2-SH was optimized. Firstly, 100 μM of activated CS2-SH
was incubated with different concentration of AuNPs (50 μM–600 μM),
respectively. As shown in Fig. S1 (Supporting information), the fluores-
cence intensity of CS3-FAM decreases along with the increase of its
quenching strand. When the ratio increased to 3.5:1, the fluorescence
intensity of FAM was almost quenched to minimum. Thus, the concen-
tration ratio of 3.5:1 (AuNPs/CS2) was selected for further experiments.
The activated CS2-SHwas incubated with AuNPs (<10 nm) at the ratio of
3.5:1 for 48 h, and the CS2 was diluted to the final concentration of 0.5
μM to obtain CS2-AuNPs. Different concentrations of phoxim (0.01–60
μM) were incubated with 0.5 μM APT3s for 1 h to sufficient mixing. 0.5
μM CS1 was added and combined with APT3s, which did not bind to
phoxim, and stabilized the APT3s-phoxim structure. Addition of CS2-
AuNPs (0.5 μM) and complementary to CS1 was bound to CS1, which
did not bound to aptamer and stabilized the APT3s-phoxim and CS1-
APT3s structures. Finally, the CS3-FAM (0.5 μM) complementary to
CS2 was added and combined with free CS2-AuNPs. The higher target
concentration bound to the more aptamers resulted in the more free CS3-
FAM and higher fluorescent signal. Conversely, the lower target con-
centration bound to the fewer the aptamers leaded to the more CS3-FAM
bound to CS2-AuNPs, and the fluorescence signal was quenched. The
fluorescence spectra were obtained by Hitachi F-7100 under excitation of
495 nm and an emission range from 507 to 600 nm. Each set of data
measured contained five repetitive samples.

To verify the selectivity and usefulness of the sensor, the performance
of the sensor was tested in other pesticides and real samples, respectively.
The aptasensor was applied in the detection of a variety of pesticides,
including 1-naphthol, omethoate, chlorothalonil, carbaryl, simazine, and
paraquat. The structure of the pesticides were shown in Fig. S2 (Support
information).

In order to validate and evaluate the accuracy as well as practical
application of the constructed fluorescent aptasensor, the actual samples,
which were collected from Xiangjiang River, were tested. The water
samples were filtered with 0.22 μm microfiltration membrane to remove
the solid impurities and suspension. A certain amount of phoxim stan-
dard solution was spiked into each river water sample with the final
phoxim concentration 0.5 μM, 1.0 μM and 2.0 μM respectively. Then the
concentration of phoxim was detected using this sensor.

3. Results and discussion

3.1. Selection of aptamers for phoxim

In this work, MB-SELEX was used to obtain phoxim aptamer, which
was based on target-triggered release of ssDNA from the complex of
ssDNA-capture oligonucleotide. It had the advantages of simple opera-
tion and short cycle, and was suitable for aptamer selection of small
molecular targets. After 10 rounds of positive selection and 5 rounds of
negative selection, nucleic acid sequences with affinity for phoxim were
obtained. The addition of negative selection in the selection process
reduced the effect of target analogues on selection and improved the
specificity of selection. With progress of selection, the target concentra-
tion gradually decreased and the target analogue concentration was
gradually increased, and the affinity of the library was also gradually
increased.
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The samples were purified and sent to Shanghai Sangon Biotech-
nology for high-throughput sequencing at the end of the selection. Ac-
cording to these results, the first 15 of more than 20000 sequences
accounted for 15.76% of the total nucleic acid amount. The first 15 se-
quences were synthesized, and 0.15 nmol was immobilized on 100 μL
magnetic beads, respectively, followed by elution with 100 μM phoxim.
The elution amount is shown in Fig. 1. The third aptamer was synthesized
and its secondary structure was predicted and named APT3. The stem-
loop and mismatch structure were retained, sheared and modified to
make its structure more stable, named APT3s.

3.2. Quantification and monitoring

During the selection process, we quantified the ssDNA solution and
monitored their selection process by Q-PCR. Prior to selection, the library
was diluted to 10 nM, 1n M, 0.1 nM, 0.1 nM, 0.01 nM, and 0.001 nM,
respectively. Each concentration was repeated for 3 groups and the Q-
PCR reaction was carried out, as shown in Fig. 2a. The linear fit was also
performed for the number of cycles and logarithm of molecules amount
to obtain the equation Cq ¼ � 3:3687� logNþ 36:62, N was the amount
of ssDNA as shown in Fig. 2b. The library and eluent obtained by selec-
tion was accurately quantified by the linear equation. The libraries from
each round of selection were carried on Q-PCR and obtained two sets of
curves.: amplification curve and melting curve. The combination strategy
proposed by Luo et al. [36] was proved to be a general and effective
method for monitoring the selection process. In amplification curve
(Fig. 2c), there was decreased in fluorescence in the first several rounds
of SELEX. The explanation for this phenomenon is that the initial library
contained a large number of random and non-specific ssDNA. The
extension stage was limited by primers and dNTP in the later stage of PC,
and oligonucleotide sequences mismatched and formed unstable
hetero-duplex, resulting in decreased fluorescence. With progress of
SELEX, the decreased fluorescence gradually disappeared, which also
represented the decreased library diversity. In melting curve analysis
(Fig. 2d) and melting peak at 82–87 �C increased gradually, and the
melting peak at 70–72 �C also decreased gradually, which represented
the gradual increase of homology in the library. After the 13th round of
selection, the diversity of the library decreased gradually. The library
diversity tended to be stable in the 14th and 15th rounds, so it was
chosen to end the selection after the 15th round.

3.3. Construction of multi-complementary strands fluorescent aptasensor

As a small molecular target, phoxim was characterized with low
molecular weight, simple structure and single binding site. The fluores-
cence aptasensor which destroyed the fluorescein-quenchant agent
double strands by the target was susceptible to steric hindrance, incu-
bation time and other environmental factors. In this sensor, the target
was sufficiently mixed with the aptamer to form a stable target-aptamer
structure. After addition of each complementary strands, it was bound to
free sequence and stabilized the target-aptamer or dsDNA structure in the
solution. The fluorescence sensor with multi-complementary strands
structure can be widely used in small molecular targets.

According to results from the study, it was found that the G base in the
sequence had obvious quenching effect on the FAM group. The fluores-
cence intensity of the modified FAM group on the G-rich ssDNA was
significantly lower than that of the base-balanced FAM-ssDNA. In this
work, according to characteristics of aptamers and CSs, the CS2 sequence
contained 50% G bases, of which four G bases were adjacent. Therefore,
the CS2 was decided to carry sulfhydryl group and AuNPs, so that the
fluorescein on CS3 was doubly quenched by the AuNPs and G bases. The
extinction coefficient of AuNPs was much higher than that of organic
quenching agents [37]. The background signal for the fluorescence
sensor was reduced and the sensitivity of the sensor was improved.

In the absence of the phoxim, the aptamer was fully mixed with CS1
in the solution, and CS2-AuNPs was mixed with CS3-FAM and the



Fig. 1. The elution amount of ssDNA from 0.15 nmol different aptamer candidates incubated with 100 μM phoxim for 1 h.

Fig. 2. (a) Q-PCR curves of libraries with different concentrations (10 nM, 1 nM, 0.1 nM, 0.01 nM, and 0.001 nM). (b) The linear correlation between the cycles and
logarithm of molecular amount. (c) Amplification curve and (d) melting curve for 15 rounds of selection.
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fluorescence was quenched (Fig. 3, blue curve). In the presence of
phoxim, the aptamer-target and CS1-CS2-AuNPs stable structure were
respectively formed in the solution, and the CS3-FAM was dissociated,
and the fluorescence signal was released (Fig. 3, red curve). The higher
the concentration of phoxim was, the freer was CS3-FAM in solution, and
stronger was the fluorescence signal.
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3.4. Analytical performance of aptasensor

Phoximwas diluted to different concentrations (0.01–60 μM), and the
fluorescence spectrum is shown in Fig. 4a. The fluorescence intensity in
the aptasensor increased with increased target concentration, and the
target of each concentration had good dispersion in the diagram. Fig. 4b
shows fluorescence intensity scatter diagram of phoxim with different



Fig. 3. Fluorescence intensity with or without phoxim in the sensor. In the absence of phoxim, the fluorescence signal was quenched (blue line). In the presence of
phoxim, the fluorescence signal was released (red line).

Fig. 4. (a) Fluorescence spectra of sensor in detecting different concentrations of phoxim (0.2–60 μM). (b) Scatter diagram of fluorescence intensity with different
concentrations of phoxim. (c) The linear correlation between fluorescence intensity and phoxim concentration at 0.05–5 μM, R2 ¼ 0.996. (d) The specificity of
aptasensor for phoxim comparing with its analogues. In the presence of phoxim, the sensor showed high fluorescence intensity.
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concentrations. Kd was 0.93 � 0.25 μM by nonlinear fitting according to
the formula F� F0 ¼ Fmax�X

KdþX , where F0 was the fluorescence intensity
without phoxim and X was the concentration of phoxim.

As shown in Fig. 4c, the aptasensor showed good linear relationship
between the fluorescence intensity and concentration of phoxim in the
range of 0.05–5 μM, and the linear equation was F ¼ 1576:53� logCþ
4269:63 (R2 ¼ 0.996). According to the formula LOD ¼ 3�SB

S , the LOD
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was 29.69 nM, where SB was the standard deviation of 12 independent
blank samples and S was sensitivity. The detection results of 12 inde-
pendent blank samples were shown in Fig. S3 (Supporting information),
and the fluorescence spectrum curves almost coincide. The results
showed that this sensor has good stability and repeatability.

The reported sensors were mainly based on polymer materials and
enzymes, as shown in Table 3. The sensors based on polymer materials
had low specificity and accuracy, and it was difficult to capture targets



Table 3
Phoxim detection in different manuscripts.

Materials Type Linear
range

LOD

Acetylcholinasterase–AuNPs–silk
fibroin composite [38]

Electrochemical
sensor

5–200 nM 2 nM

Fluorescent carbon dots-AgNPs [39] Colorimetric
sensor

0.1–100
μM

0.04
μM

Poly(3-methylthiophene)/nitrogen
doped graphene [40]

Electrochemical
sensor

0.02–0.2
μM
0.2–20 μM

6.4 nM

Calix [4]arene-modified Si surface
[41]

Visual sensor Not
reported

1 μM

High-luminescence perovskite
quantum dots [42]

Fluorescence
sensor

5–100 ng/
mL

1.45
ng/mL

Gold nanoelectrode ensembles [43] Electrochemical
sensor

59–12000
μM

4.8 μM

Reduced graphene oxide-gold
nanocomposite [44]

Electrochemical
sensor

0.01–10
μM

3 nM

Ethylene glycol maleic rosinate
acrylate [45]

Electrochemical
sensor

0.8–140
μM

20 nM

4-(diethoxyphosphorothioylamino)
butanoic acid/FPIA [46]

Fluorescence
sensor

5.9–89.8
ng/mL

3.27
ng/mL

This work Fluorescence
aptasensor

0.05–5 μM 29.69
nM
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accurately. Enzyme-based sensors had some disadvantages, such as
complex preparation, high cost and poor repeatability, which affected the
accuracy of the sensor. Compared with other reported sensors for phoxim
detection, the aptasensor, as a fluorescence sensor, not only had the
advantages of simple preparation and low cost, but also had high sensi-
tivity, good linearity.
3.5. Selectivity of aptasensor

In order to test the specificity of the sensor, the sensor was applied for
detection of analogues, such as simazine, paraquat, chlorothalonil, 1-
naphthol, carbaryl, and omethoate. As shown in Fig. 4d, the fluores-
cence intensity of phoxim was much higher than that of analogues. F0
was the fluorescence intensity in the blank solution, and concentration of
pesticides was10 μM. Using the sensor to detect the mixture of phoxim
and other pesticides, the fluorescence intensity obtained was similar to
phoxim solution. The results herein demonstrated that the sensor had
good specificity for phoxim.
3.6. Detection of phoxim in real samples

To verify the practical application value of the aptasensor, real sam-
ples were detected through the spiked recovery method. The sensor was
used to detect three concentrations in Hunan Xiangjiang River and the
results are listed in Table 4. The recovery of phoxim in the different so-
lutions for each sample lay in the range of 95–110%, and all the relative
standard deviations (RSD) did not exceed 3.0%. According to the latest
“Effluent standards of pollutants for pesticides industry” in China, the
emission limit of phoxim was 0.5 mg/L. Therefore, this sensor can meet
the detection requirements and LOD was two orders of magnitude higher
Table 4
Determination of phoxim in real samples.

Sample Added Phoxim
(μM)

Total Found
(μM)

Recovery
(%)

RSD (n ¼ 3,
%)

Xiangjiang
River

0.5 0.537 107.4 2.3

Xiangjiang
River

1.0 0.951 95.1 1.3

Xiangjiang
River

2.0 1.986 99.3 1.8
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than the limit. These results show that this aptasensor can detect phoxim
accurately and can be applied in practical detection.

4. Conclusion

In summary, phoxim aptamer with Kd of 0.93 � 0.25 μM was in this
study successfully obtained by MB-SELEX technique, Q-PCR quantitative
method and AC-MAC monitoring method. This method was generally
suitable for aptamer selection of small molecules such as heavy metals
and pesticides. Then, using the obtained aptamer, the fluorescent apta-
sensor applying multi-complementary strands structure and AuNPs (as
quenching agent) was constructed. The extinction coefficient of AuNPs
was much higher than that of organic quenching agents, and was able to
reduce the background signal of the sensor. The full combination of
target and aptamer in solution could reduce the influence of steric hin-
drance and environmental factors on the sensor. The addition of multiple
complementary strands stabilized the existing aptamer-target complex
and dsDNA structure in the solution, and further improved the stability of
the sensor. The introduction of independent fluorescent and quenching
chains could avoid the potential effects on the aptamer structure due to
modification groups. Therefore, the multi-complementary strands struc-
ture effectively improved the stability and sensitivity of the aptasensor.
The results herein showed that the linear range of the sensor for phoxim
was 0.05–5 μM (R2 ¼ 0.996), and LOD was 29.69 nM. In the detection of
real samples of Hunan Xiangjiang River, it was proved that the aptamer
has promising application prospect.
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