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Abstract: The asset-liability management problem with cash flow under an uncertain exit time has been
investigated in this article, which is based on the fundamental framework of the mean-variance model in
the multi-period version. The liability and random cash flow will affect asset optimization, while the
investor may be forced to withdraw from investments with a random probability at each period in our model.
The closed-form expressions for the mean-variance optimal portfolio selection and its corresponding effi-
cient frontier are obtained by employing the mean-field formulation and dynamic programming approach.
Moreover, some numerical examples are provided to illustrate the validity and accuracy of the theoretical
results.
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1 Introduction

With an explosive development of the economy in the recent 50 years, it is becomingmore common that lots
of private assets have been invested in the financial market. After a series of financial crises, the signifi-
cance of handling private assets has been attached considerably. Mean-variance formulation is a famous
tool that aims at balancing the risk and return of the investment. Owing to the seminal work of Markowitz
[1], the mean-variance model has provided a fundamental basis for designing the optimal strategy balan-
cing the contradiction between return and risk. Hundreds of applications and extensions have been devel-
oped over the past decade. For instance, Merton [2] derived the analytical expression of the mean-variance
efficient frontier in a single-period setting. Li and Ng [3] developed the mean-variance model from the
single period to the dynamic discrete-time version and derived the analytical solution by using the embed-
ding method to overcome the difficulty of non-separability. Zhou and Li [4] used the same technique and
further introduced the stochastic linear quadratic control as a general framework to solve the continuous-
time mean-variance portfolio selection problem. Li et al. [5] developed it with the no-shorting constraint.
Moreover, some recent approaches [6,7] based on enhanced index tracking are employed to deal with
portfolio optimization.

There is no doubt that the embedding method is indeed a classic way to solve the problems with the
nonseparable property. We also need to admit that this method is liable to lead to complicated calculation
and inefficiency during the derivation of the optimal portfolio selection if the problem has other constraints,
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such as uncertain exit time, asset-liability management, and serial correlated returns or risk control over
bankruptcy. Typically, we will prefer another method called mean-field formulation to the embedding
scheme, where a long list of notations should be established, and an auxiliary problem should be assumed.

The mean-field formulation is a simple but powerful tool to derive the optimal strategy of a multi-period
mean-variance portfolio selection problem. By using thismethod, whichwas first introduced by Cui et al. [8],
we can resolve the mean-variance problem with many other additional constraints and derive the optimal
strategy in a simpler and more direct manner. Yi et al. [9] used the mean-field method to study the mean-
variance model under the uncertain exit time condition but did not consider the cash flow and liability. Cui
et al. [10] extend it to the asset-liability management, but none of them considered the situation of random
cash flow or investigated the closed-form of computational formulas for a series of coefficients.

Yao et al. [11] studied the mean-variance model with a given level of expected terminal surplus. Li and
Xie [12] studied the optimal investment with stochastic income under the uncertain exit time. They derived
the analytical optimal strategy and explicit expression of the efficient frontier by using the Lagrangemethod
and traditional dynamic programming with the additional conditions of endogenous liabilities if the inves-
tors exit the market randomly. Wu and Li [13] investigated the multi-period mean-variance model with
different market states and stochastic cash flows. A reinforcement learning framework is employed to
investigate the continuous-time mean-variance portfolio selection [14]. Ni et al. [15] derived equilibrium
solutions of multi-period mean-variance and established a general theory to characterize the open-loop
equilibrium control problem. However, all of the literature did not consider the correlation among cash
flow, asset, and liability, which should be taken into account in the real world because the random cash
flow would be affected by the return rate of companies. For example, the government will provide funding
to companies in terms of their past performance. Furthermore, since the analytical solution of the mean-
variance model contains the correlation coefficient, the optimal strategy will be changed due to different
return rates among the asset, cash flow, and liability. Moreover, the uncorrelated case can be regarded as a
special case of the correlated one, of which the correlation coefficient is zero. We extended the special case
to the general case.

In this paper, we employed the mean-field formulation [8–10] to study the general case of correlation in
which the financial parameters are correlated at every period. On the basis of the aforementioned mean-
field formulation, we have added some additional conditions such as random cash flow and liability to
improve the accuracy of the investment strategy. During each time period, the cash flow and risky invest-
ment returns are random variables, while the risk-free investment return is deterministic. Furthermore, we
have derived the analytical solutions of the mean-variance model which is lacked by using the embedding
method [3,11–13]. Employing the embedding method, the classical model mentioned earlier has certain
limitations since they need to define a deterministic expectation of surplus, which is a single-objective
optimization problem. Besides, the numerical solution needs some algorithms to compute the corre-
sponding best auxiliary parameter or Lagrangian parameter, which will bring the inaccuracy and com-
plexity in simulation. However, the mean-field formulation is more clear and powerful, which offers an ana-
lytical solution scheme in solving the nonseparable problems as the principle of optimality no longer
applies. When both cash flow and mean-field formulation are presented in the same model, we shed light
on the explicit solutions of the optimal portfolio under mean-variance criteria. In this paper, we are not only
concerned about the return rate but also concerned with the volatility in the objective function in terms of a
multi-objective optimization problem. We study the portfolio selection problem by adopting the mean field,
and consider the cash flow, liability, etc. base on the mean variance model. Compared with the numerical
solution, the analytical solution we derived in this paper is more efficient and applicable when the afore-
mentioned additional conditions are added to our model.

The rest of the paper is structured as follows. We construct a mean-variance portfolio selection problem
with cash flow and define the meaning of some symbols in Section 2. In Section 3, the considered model is
equivalently transferred into a linear quadratic optimal stochastic control problem in the mean-field type.
Then, we identify the optimal portfolio strategy with closed-form expressions by adopting the dynamic
programming approach in Section 4. Some numerical examples are provided in Section 5 to illustrate
the accuracy and efficiency of the optimal strategy. Finally, the conclusion and future work are given
in Section 6.
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2 Multi period mean-variance portfolio selection model

We assume the financial market has one liability, one risk-free asset, and n kinds of risky assets within
a time horizon T . Let nt represent the deterministic return of the risk-free asset, [ ]= … ′m m mm , , ,t t t

n
t

1 2 be
the vector of n kinds of risky investment return rate, and yt be the rate of liability at period t. In addition,
the investor joins the financial market at the beginning of time period 0 and is proposed to quit the invest-
ment at time T . Let w0 denote the wealth at the beginning, while l0 denotes the initial liability. Every
investor can reallocate his/her portfolio selection to maximize the expected return as well as minimize
the risk from the start of every time period between 0 and T .

In different time periods t, the random variable yt and the random vector [ ]= … ′m mm , ,t t
n

t
1 are assumed

to be statistically independent and are defined from the probability space ( )� PΩ, , . The first two moments
are recognized as the only information about yt and mt. We further define that the covariance matrix
is positive definite, i.e.,
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Let ( ) ( )= … ′ = − … − ′D D D m n m n, , , ,t t t
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1 1 represent the vector of the risky return rate minus the risk-

free return rate. According to the aforementioned assumptions, we get
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where I denotes the ×n n identity matrix, and 0 and 1 denote the n-dimensional all-zero and all-one
vectors respectively, which signify that
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Therefore, [ ] [ ] [ ]< ′ ′ <
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1 . To express the equation more concisely, we define the following

notations:
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At the beginning of every period t, investors’ wealth and liabilities are denoted by wt and Qt, respectively.
Therefore, the surplus is denoted by −w Qt t. If vt

i is the money invested in the ith risky investment
for = …i n1, 2, , at period t, then − ∑

=

w vt i
n

t
i

1 is the money put into the risk-free investment. In this paper,
we suppose the liability is exogenous. In other words, the investor’s strategies cannot affect the liability
because of its uncontrollability. Let ( )= … … …

− −
−

� σ D D D c c c y y y, , , , , , , , , , ,t t t t0 1 1 0 1 1 0 1 1 represent all the infor-
mation at the initial moment of t period for = … −t T1, 2, , 1, and �0 represent the unimportant σ-algebra
over Ω. Thus, [ ∣ ]⋅� �0 is equal to the unconditional expectation [ ]⋅� . In this paper, all allowable portfolio
selection is limited to be �t-adapted Markov controls, i.e., ( )= … ′ ∈ �v v v v, , ,t t t t

n
t

1 2 . Therefore, Dt and vt are
independent and ( )=� σ w Q,t t t .
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The investor plans to optimize the portfolio selection during the whole time period. However, the in-
vestment might be forced to be changed or abandoned at an uncertain time τ before T because of some
accidents or unexpected events such as sudden resignation, serious illness, and colossal consumption.
The probability mass function of the exogenous random variable κ is { }= =p κ t˜ Prt . Thus, the investor will
quit the financial market eventually at time { }∧ =T κ T κmin , . We have
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where >λ 0 represents the risk aversion, and
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Then, we can rewrite the aforementioned model as follows:
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Since the smoothing property is no longer valid on the variance term, we cannot decompose the non-
separable problem into a stage wise backward recursion formulation, which can be tackled with traditional
dynamic programming method. We solve it by employing the mean-field method.

3 Mean-field formulation

First, we construct the mean-field type of model (3). According to the independence between Dt and vt, yt
and Qt, the dynamic equations of the expectation of the wealth and liability can be represented as follows:
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with = … −t T0, 1, , 1.
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Combining the dynamic equations in (3) and (4), we have
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Therefore, we can equivalently reformulate problem (3) into a linear quadratic optimal problem in the mean-
field type.
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Thus, we are able to solve it by the dynamic programming method since it is separable.

4 The optimal strategy

With the notations given in (1), the seven parameters of the sequence { }βt , { }ηt , { }ξt , { }ζt , { }ψt , { }δt , and { }Δt
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with boundary conditions defined as follows:

= = = = = = =β p η p ξ p ζ p ψ p δ, , , , , 0, Δ 0.T T T T T T T T T T T T

The solution scheme adopted in this paper involves two steps. The first step is to construct the cost-to-
go functional and derive the backward recursion. The second step is to prove that it still holds at each
period according to mathematical induction. Thus, the optimal portfolio strategy can be obtained in the
following theorem.

Theorem 1. Assume that the return rates among asset, liability, and cash flow are correlated. Thus, we have
the optimal portfolio selection of problem (6) as follows:
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The expected value of optimal wealth can be derived as follows:
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If the additional condition of liability is not considered in our case, the original model (6) would be
degenerated to the one mentioned by Yao et al. [11], which will be introduced in the following corollary.

Remark 1. Assume that an investor participates in the initial investment under uncertain exit time without
liability. Thus, the degenerated problem is equivalently reformulated as the followingmean-variancemodel.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

{ [( [ ]) ] [ ]}

( [ ])

[ ]

[ ]

∑ − −

− =

( )

− ( )

=

� � �

� �

�

�

p w w λ w

v v
w

w w

0

min ,

s.t. ,
satisfies dynamic equation 4 ,

satisfies dynamic equation 5 .

t

T

t t t t

t t

t

t t

1

2

(7)

The optimal strategies of problem 7 are represented as follows:

[ ] ( [ ]) [ ] [ ]

[ ] [ ] [ ]

− = − − ′

= ⋅

−

′

∗ ∗ −

∗ +

+

−

� � � �

� � �

v v n w w D D D

v
wζ

β Z
D D D

,

2
1

1
.

t t t t t t t t

t
t

t t
t t t

1

1

1

1

Thus, we get the optimal expected level of wealth

[ ] ∏ ∑ ∏= + ⋅

−

=

−

=

−

+

+ ℓ= +

−

ℓ
� w w s w ζ

β
Z

Z
s

2 1
.t

k

t

k
j

t
j

j

j

j j

t

0
0

1

0

1
1

1 1

1

The optimal strategy of the model in Corollary 1 can be obtained according to Theorem 1, which is
consistent with the results derived by Yao et al. [11]. Therefore, the accuracy of the solution derived in this
paper has been verified. In comparison, Zhu et al. [16] analyzed the Lagrangian problem via the embedding
method and were unable to obtain an analytical form of the optimal objective value function. Thus, they
invoked a prime-dual iterative algorithm to identify the optimal Lagrangian multiplier vector. Moreover,
compared with the classical embedding method, which needs a Bellman equation and the Lagrangian
multiplier, the mean-field formulation has been employed in this paper, which avoids the complicated
computation. In the following section, a few numerical examples from real-world applications are given to
demonstrate the efficiency of the obtained optimal strategy.

5 Numerical example

According to the data given in the study by Elton et al. [17], we investigate a portfolio selection consisting of
S&P 500 (SP), the index of emerging market (EM), and small stock (MS) of the U.S. market. Moreover, we
consider uncertain exit time and cash flow in the model. Table 1 presents three different assets, a liability,
and a random cash flow, and it also presents the expected values, variances, and the correlation coefficients
among them. The annual risk free return rate is set as 5% ( =n 1.05t ). Here, we ignore the case of uncorrela-
tion between Dt and ct, i.e., the return rates and cash flow are correlated.
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Thus, for every period t, we have the following matrices:

[ ]
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )
⎛

⎝
⎜

⎞

⎠
⎟

[ ]
⎛

⎝
⎜

⎞

⎠
⎟= = ′ =� �D D D D

0.09
0.11
0.12

, Cov
0.0342 0.0355 0.0351
0.0355 0.0900 0.0540
0.0351 0.0540 0.0576

,
0.0423 0.0454 0.0459
0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

.t t t t

The correlation coefficient between cash flow and ith asset is defined as ( )=ρ ρ ρ ρ, ,1 2 3 , while the coefficient
between liability and ith asset is defined as ( )=   ρ ρ ρ ρ, ,1 2 3 , according to the definition we have

( )

( ) ( )
=ρ c D

c D
Cov ,

Var Var
i

t t
i

t t
i

and

( )

( ) ( )
=ρ

y D

y D

Cov ,

Var Var
.i

t t
i

t t
i

In addition, we define the correlation of the cash flow and liability ρ4 as follows:

( )

( ) ( )
=ρ

c y
c y

Cov ,
Var Var

.t t

t t
4

Then, we have

[ ] [ ] [ ] ( ) ( )= +� � �c D c D ρ c DVar Var ,t t
i

t t
i

i t t
i

[ ] [ ] [ ] ( ) ( )= + � � �y D y D ρ y DVar Var ,t t
i

t t
i

i t t
i

[ ] [ ] [ ] ( ) ( )= + � � �c y c y ρ c yVar Var ,t t t t t t4

[ ] [ ] ( )= +� �c c cVar ,t t t
2 2

[ ] [ ] ( )= +� �y y yVar .t t t
2 2

Assume that ( ) ( )= = −ρ ρ ρ ρ, , 0.3, 0.5, 0.21 2 3 , ( ) ( )= = −  ρ ρ ρ ρ, , 0.2, 0.4, 0.31 2 3 and =ρ 0.14 . Then,

⎜ ⎟⎜ ⎟
⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝

( ) ( )

( ) ( )
⎞

⎠

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
=

′

=

−

−

≻

D
c

D c D
c D c

Cov
Cov Cov ,

Cov , Var

0.0342 0.0355 0.0351 0.0092
0.0355 0.0900 0.0540 0.0300
0.0351 0.0540 0.0576 0.0120
0.0092 0.0300 0.0120 0.0400

0.t
t

t t t

t t t

Substituting the data in the equations, we have [ ] ( )= ′� c D 0.0898, 0.1510, 0.1440t t . Moreover, we define
the following notations to make the solution more concise,

Table 1: Data for assets and cash flow

SP EM MS Cashflow Liability

Expected return 14% 16% 17% 1 10%
Standard deviation 18.5% 30% 24% 20% 20%
Correlation coefficient
SP 1 0.64 0.79 ρ1 ρ1
EM 0.64 1 0.75 ρ2 ρ2
MS 0.79 0.75 1 ρ3 ρ3

Cashflow ρ1 ρ2 ρ3 1 ρ4

Liability ρ1 ρ2 ρ3 ρ4 1
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[ ] [ ]
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

[ ] [ ]
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

[ ] [ ]
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= ′ = −

= ′ =

−

= ′ =

−

−

−

−

� �

� �

� �

T D D D

T D D c D

T D D y D

1.0589
0.1196

1.1033
,

0.3490
0.4493
1.6365

,

1.0411
0.1754
0.8209

.

t t t

t t t t

t t t t

1
1

2
1

3
1

͠
= = =

Z Z Z0.2145, 0.2144, 0.2507,t t t

= = =Z Z Z0.0241, ˘ 0.0218, ¨ 0.0488.t t t

Example 1. An example with the terminal exit time
The probability mass function κ is defined as follows:

( ) ( )=α α α α α, , , , 0, 0, 0, 0, 1 ,1 2 3 4 5

for =t 1, 2, 3, 4, 5. By applying the result of Theorem 1, the optimal portfolio selection of this numerical
example can be obtained as follows:

( )

( )

( )

( )

( )

= − − +

= − − +

= − − +

= − − +

= − − +

∗

∗

∗

∗

∗

v w T T Q
v w T T Q
v w T T Q
v w T T Q
v w T T Q

1.02 3.0477 1.2053 ,
1.02 3.2001 1.1503 ,
1.02 3.3601 1.0979 ,
1.02 3.5281 1.0478 ,
1.02 3.7045 1.0000 .

0 0 1 2 0

1 1 1 2 1

2 2 1 2 2

3 3 1 2 3

4 4 1 2 4

Under the certain exit time, we derive the final optimal surplus as follows, ( )− =� w Q 3.38975 5 and
( )− =w QVar 0.61355 5 , respectively.

Example 2. An example without liability under uncertain exit time
Consider the example as corollary. Here, we ignore the information of liability, i.e., ignore the last line

and last column of Table 1 and do not fix the terminal expectation but balance the variance and expectation
by the trade-off parameter.

Assume that an investor plans a five-period investment with an initial wealth =w 10 and that the trade-
off parameter =w 1, but he may exit the market at any time t ( =t 1, 2, 3, 4, 5).

To investigate the impact of uncertain exit time on the optimal policy and efficient frontier clearly,

we choose four different probability mass functions at the exit time κ, ( )( ) ( ) ( ) ( ) ( ) ( )
=α α α α α α, , , , ,i i i i i i

1 2 3 4 5
( )=i 1, 2, 3, 4 , as follows:

( )( )
=α 0.1, 0.15, 0.2, 0.25, 0.3 ,1

( )( )
=α 0, 0.1, 0.1, 0.3, 0.5 ,2

( )( )
=α 0, 0, 0.1, 0.2, 0.7 ,3

( )( )
=α 0, 0, 0, 0, 1 ,4

where ( )α 4 represents that the investor must exit the market at the terminal time.
Then, the optimal expected wealth level

[ ] ( [ ] [ ] [ ] [ ] [ ] )( ) ( ) ( ) ( ) ( ) ( )
= =� � � � � �w w w w w iw , , , , , 1, 2, 3, 4,i i i i i i

1 2 3 4 5

which are given by

[ ] ( )

[ ] ( )

( )

( )

=

=

�

�

w
w

1.2675, 1.5210, 1.7659, 2.0055, 2.2423 ,
1.3006, 1.5723, 1.8304, 2.0756, 2.3159 ,

1

2
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[ ] ( )

[ ] ( )

( )

( )

=

=

�

�

w
w

1.3220, 1.6125, 1.8781, 2.1304, 2.3735 ,
1.3451, 1.6557, 1.9392, 2.2017, 2.4483 .

3

4

Therefore, the optimal strategy is specified as follows:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

* = − + * = − +

* = − + * = − +

* = − + * = − +

* = − + * = − +

* = − + * = − +

v w T v w T
v w T v w T

v w T v w T
v w T v w T
v w T v w T

1.05 2.0635 , 1.05 2.2182 ,
1.05 2.2175 , 1.05 2.3291 ,

1.05 2.3841 , 1.05 2.4879 ,
1.05 2.5596 , 1.05 2.6384 ,
1.05 2.7423 , 1.05 2.8159 ,

0
1

0 1 0
2

0 1

1
1

1 1 1
2

1 1

2
1

2 1 2
2

2 1

3
1

3 1 3
2

3 1

4
1

4 1 4
2

4 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

* = − + * = − +

* = − + * = − +

* = − + * = − +

* = − + * = − +

* = − + * = − +

v w T v w T
v w T v w T
v w T v w T
v w T v w T
v w T v w T

1.05 2.3182 , 1.05 2.4256 ,
1.05 2.4341 , 1.05 2.5468 ,
1.05 2.5558 , 1.05 2.6742 ,
1.05 2.7103 , 1.05 2.8079 ,
1.05 2.8735 , 1.05 2.9483 ,

0
3

0 1 0
4

0 1

1
3

1 1 1
4

1 1

2
3

2 1 2
4

2 1

3
3

3 1 3
4

3 1

4
3

4 1 4
4

4 1

whereT1 is the same as Example 1. The optimal variances under the best strategy can be derived as follows:

( ) ( [ ] [ ] [ ] [ ] [ ] )( ) ( ) ( ) ( ) ( ) ( )
= =w w w w w iwVar Var , Var , Var , Var , Var , 1, 2, 3, 4i i i i i i

1 2 3 4 5

which are given as follows:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( )

=

=

=

=

w
w
w
w

Var 0.1731, 0.2824, 0.3489, 0.3860, 0.4026 ,
Var 0.2299, 0.3555, 0.4260, 0.4554, 0.4626 ,
Var 0.2710, 0.4190, 0.4882, 0.5146, 0.5140 ,
Var 0.3188, 0.4930, 0.5744, 0.5978, 0.5860 .

1

2

3

4

Thus,we have

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= =

= =

= =

= =

∧ ∧

∧ ∧

∧ ∧

∧ ∧

�

�

�

�

w w
w w
w w
w w

1.8821, Var 0.3467,
2.1209, Var 0.4461,
2.2753, Var 0.5115,
2.4483, Var 0.5860.

κ
κ

κ
κ

κ
κ

κ
κ

κ
κ

κ
κ

κ
κ

κ
κ

5
1

5
1

5
2

5
2

5
3

5
3

5
4

5
4

Figure 1: Efficient frontiers with different probability mass functions of exit time.
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Figure 1 depicts the efficient frontier with different probability mass function of the exit time. We can
see that the one exits at the terminal time gets the most expected wealth return at the same risk level
compared with others. It is also indicated that if the investment is more stable, the investors can obtain
higher expected returns at the same level of the risk, which is consistent with the real life.

Example 3. An example under uncertain exit time with liability
The probability mass function of an exit time κ is defined as follows:

( ) ( )=D D D D D, , , , 0.10, 0.15, 0.2, 0.25, 0.3 .1 2 3 4 5

Thus, the optimal expected value of assets in different time periods is given by

[ ] ( )=� w 4.3710, 5.7834, 7.2450, 8.7621, 10.3403 .

Suppose the initial wealth of the investor =w 30 , initial liability =Q 10 , and risk aversion parameter =λ 1,
we can derive the optimal portfolio selection after substituting the number to the aforementioned equations
in Theorem 1:

( )

( )

( )

( )

( )

= − − − +

= − − − +

= − − − +

= − − − +

= − − − +

∗

∗

∗

∗

∗

v w T T T Q
v w T T T Q
v w T T T Q
v w T T T Q
v w T T T Q

1.05 4.9032 0.1595 ,
1.05 6.1660 0.2377 ,
1.05 7.4853 0.3458 ,
1.05 8.8694 0.5373 ,
1.05 10.3209 1.0000 .

0 0 1 2 3 0

1 1 1 2 3 1

2 2 1 2 3 2

3 3 1 2 3 3

4 4 1 2 3 4

Furthermore, the final value of mean and variance under the optimal strategy are ( )( )
=

∧
� w 8.0462κ

κ5

and ( )( )
=

∧
wVar 0.3901κ

κ5 , respectively.

Following Example 2, we choose four different probability mass functions at the exit time κ,
( )( ) ( ) ( ) ( ) ( ) ( )

=α α α α α α, , , ,i i i i i i
1 2 3 4 5 , ( )=i 1, 2, 3, 4 , as follows:

( )

( )

( )

( )

( )

( )

( )

( )

=

=

=

=

α
α
α
α

0.1, 0.15, 0.2, 0.25, 0.3 ,
0, 0.1, 0.1, 0.3, 0.5 ,
0, 0, 0.1, 0.2, 0.7 ,
0, 0, 0, 0, 1 .

1

2

3

4

Figure 2: Efficient frontiers with different exit time.
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Figure 2 is the efficient frontier of M–V model with liability and random cashflow under uncertain exit
time. It can be seen that as the expectation go up, the more stable the investment, the less risk it takes,
which has the same conclusion as Figure 1. Actually, Example 2 is a special case of Example 3, where
we degenerate the term of liabilities to zero.

6 Conclusion

The focus of the paper is placed on investigating the optimal strategy of multi-period mean-variance model
with cash flow, and liability under uncertain exit time. It is a nonseparable dynamic programming problem
that cannot be solved by the traditional method. In this paper, we transform the original model into a mean-
field type and apply a dynamic programming approach and matrix theory to derive the optimal strategy
explicitly. Our methods are shown to be much more efficient and accurate compared with other methods in
the literature. For further research, we will try to employ the mean-field method to derive the mean-variance
model with various additional conditions such as regime switching, bankruptcy constraints, and time
inconsistency.
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Appendix

The Proof of Theorem 1

Proof. Given an information set �t, it is easy to know it has the following cost-to-go functional

( [ ] [ ] [ ] [ ]) [ ( [ ] [ ] [ ] [ ])∣ ]

( [ ]) [ ]

− − = − −

+ − − − − −

+ + + + + + +
� � � � � � � � �

� �

�J w w w Q Q Q J Q Q Q w w w

p w Q w Q p λ w Q

, , , min , , ,

.

t t t t t t t
v

t t t t t t t t

t t t t t t t t

1 1 1 1 1 1 1

2
t

From time +t 1, we have the following cost-to-go functional:

( [ ]) ( [ ])( [ ]) ( [ ]) [ ]

[ ] [ ]

= − − − − + − +

− + +

+
+

+ +
+

+ + + +
+

+ +
+

+

+
+ + + +

� � � � �

� �

J β w w η w w Q Q ξ Q Q λψ Q

λζ w δ Q

2

Δ .
t t t t t t t t t t t t t t

t t t t t

1 1 1 1
2

1 1 1 1 1 1 1 1
2

1 1

1 1 1 1
2

1
(8)

Next, we will prove that the aforementioned formulation (7) still hold at time t according to mathematical
induction. For the given σ-algebra at period t, we have

( [ ] [ ] [ ] [ ])

[ ( [ ] [ ] [ ] [ ])∣ ] ( [ ]) [ ]

[ ( [ ]) ( [ ])( [ ]) [ ] ( [ ])

[ ] [ ] ∣ ] ( [ ]) [ ]

[ [ ( [ ]) ( [ ]) ( [ ]) [ ] ( [ ])] ( [ ]) [ ]

( [ ])] [ ( [ ]) ( [ ]) [ ]] [ ( [ ])
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( [ ] [ ]) ∣ ] ( [ ]) [ ]
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( [ ] [ ] [ ]) [ ] [ ]( [ ] [ ] [ ]) [ ] ( [ ]) [ ]( [ ])]
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+
+

+
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+
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+

+ +

+ +

+ +

+

+

+
+

+
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+
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� � � � � �

� � � �

� � � � � � � �

� � � � �

� � � �

� � � � � �

� � � �

� � � � � �

� � � � � � � � � � � �

� � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � �

�

�

�

J w w w Q Q Q
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With the boundary condition given as

( [ ] [ ] [ ] [ ]) {( [ ]) [ ]}− − = − − − − −� � � � � �J Q Q Q w w w p w Q w Q λ w Q, , , ,T T T T T T T T T T T T T T
2

the optimal strategies at time t can be derived from the above equation concerned with [ ]− �v vt t and [ ]� vt ,
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⎟
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v D D D D g c D c D
λζ
β

D

η
β

y D y D Q

,

2

.

t t t t t t t t t t t t t t t t

t t t t t t t t t
t

t
t

t

t
t t t t t

1
1 1

1 1

1 1

1

1

1
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Substituting the optimal strategies back to (7), we get

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

( [ ] [ ] [ ] [ ])

( ) ( [ ]) ( [( ) ] [ ] ) [ ]( [ ])( [ ])

( [ ] [ ] ) [ ] [ ]( [ ]) [ ] [ ] [ ] [ ]

( [ ] [ ]) ( ) ( [ ]) ( [ ])

( [ ])( [ ]) ( [ ] [ ] [ ]) [ ]

⎛

⎝

[ ] [ ] [ ] [ ] ( [ ] [ ] [ ]) [ ]⎞

⎠

( [ ] [ ] [ ]) ⎛

⎝

[ ] [ ] [ ] [ ] ( [ ] [ ] [ ]) [ ]⎞

⎠

( [ ]) [ ]

( [( ) ] [ ] ) ( ) ( )( [ ]) ( [ ] )( [ ])

( [ ] )( [ ])( [ ]) ( [ ] [ ] ) [ ] [ ] [ ]

[ ] [ ] ( [ ] [ ]) ( [ ] [ ] [ ]) [ ]

⎛

⎝
⎜

⎛

⎝

[ ] ⎞

⎠

⎛

⎝

[ ] ⎞

⎠

⎞

⎠
⎟

⎛

⎝

⎜

⎜

[ ] ( [ ] ) [ ] ⎞

⎠

⎟

⎟
[ ]

⎛

⎝
[ ]

( [ ]) ⎞

⎠
[ ] ( [ ]) [ ]

͠

( )

− −

= − + − − − −

+ − + − − − +

+ + − − − ′ −

+ − − − −

− ′ − ′ − ′ − ′ − ′

× ′ − ′ − − − −

+ − − − − −

= − + − − + − ′ −

− − − − + − − −

+ + − − +

− + −

−

− + − + −

+

+ − + −

−

+

− − +

−

−

+ − − − − −

+ + +

+ + + + +

+ +
+ + +

−

+ +

+

+

+

+

+

−
+

+

+

+

+ + + + +

−

+ + + +

+
+

+
+

+

+

+

+

+

+

+

+

+

+
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� � � � � �

� � � � � � � � �

� � � �

� �� � � � �

� � � � � � � �

� � � � � � � � � � �

� �

� � � � �

� � � � � � � �

� � � � � � � �

� �

� � �

�

�
�

� � �

J w w w Q Q Q
β s w w β c c η s y w w Q Q

ξ y y Q ξ y Q Q λζ s w λζ c λψ y Q

δ y Q β s Z w w η β B Q Q

η s Z w w Q Q η y c y c Q

β c D c D
λζ
β

D
η
β

y D y D Q

D D D D c D c D
λζ
β

D
η
β

y D y D Q

p w Q w Q p λ w Q
β c c β s Z w w ξ y η β B Q Q

η s y s Z w w Q Q ξ y y Q λζ s w λζ c

λψ y Q δ y Q η y c y c Q

β c
λζ
β

Z Z
Z

c
λζ
β

Z Z Z Z

η
c y Z Z Z Z Z y

Z
Z Q

η
β

Z y
Z y

Z
Q p w Q w Q p λ w Q

, , ,
2

Δ

2 2

2

2

1
2

2 Δ

2 1
2

2

2
1

¨

˘
1

.

t t t t t t t

t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t

t t t t t t t t t t t t t

t t t t t
t

t
t

t

t
t t t t t

t t t t t t t t
t

t
t

t

t
t t t t t

t t t t t t t t

t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t

t t
t

t
t

t

t
t

t

t
t t t t

t

t
λζ
β t t t t t t t

t
t t

t

t
t t

t t

t
t t t t t t t t t

1
2 2

1
2 2

1

1
2 2 2

1
2 2

1 1 1

1
2

1 1
2 2

1
2

1
1 2

1 1

1
1

1

1

1

1 1

1

1

1
2

1
2 2

1
2 2

1
2

1
2

1
1 2

1 1
2 2 2

1 1

1 1
2

1 1

1
1

1

2
1

1

2

1
2

1
2

1

2
2

2 2

t

t

1

1

Thus,

( [ ] [ ] [ ] [ ]) ( [ ]) ( [ ])( [ ]) ( [ ])

[ ] [ ] [ ]

− − = − − − − + −

− + + +

� � � � � � � �

� � �

J w w w Q Q Q β w w η w w Q Q ξ Q Q
λζ w λψ Q δ Q

, , , 2
Δ .

t t t t t t t t t t t t t t t t t t

t t t t t t t

2 2

2

Substituting [ ]∗� vt to the dynamic equation in 4 yields that

⎜ ⎟[ ] [ ] ⎛

⎝

[ ] [ ] ⎞

⎠

[ ]= + + − − +

−

− + +
+

+

+

 � � � � �w n w c
λζ
β

Z y Z Z
Z

Z Z c
2 1

.t t t t
t

t
t t t

t

t
t t t1

1

1

Therefore, there holds
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⎛

⎝
⎜

⎛

⎝
⎜ [ ] [ ]

⎞

⎠
⎟ [ ]

⎞

⎠
⎟∏ ∑ ∏= + + − − +

−

− + +

=

−

=

−

+

+ = +

−

 � � � �w w s c
λζ
β

Z y Z
Z

Z
Z Z c s

2 1
.t

k

t

k
j

t

j
j

j
j j j

j

j
j j j

l j

t
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0

1

0

1
1

1 1

1

Typically, it is trivial that the optimal value of 6 is equal to J0. Thus,

⎟

( ) ( [ ] [ ] [ ] [ ]) [ ]

⎛

⎝
⎜

⎛

⎝
⎜

⎛

⎝
⎜ [ ]

[ ] ) [ ]⎞

⎠

⎞

⎠
⎟

∑ ∑

∑ ∏ ∑

∏

= − − +

= − + + + + + +

− − +

−

− + +

= =

= =

−

=

−

+

+

= +

−
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�

� �

p w J w w w Q Q Q p λ w

λζ w λψ Q δ Q p λ w s c
λζ
β

Z y Z
Z

Z
Z Z c s

Var , , ,

Δ
2

1
.

t

T

t t
t

T

t t

t

T

t
k

t

k
j

t

j
j

j

j j j
j

j
j j j

l j

t

l

1
0 0 0 0 0 0 0

1

0 0 0 0 0 0
2

0
1

0
0

1

0

1
1

1

1

1

Then, the proof of Theorem 1 is complete. □
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