
1. Introduction
Global climate change has far-reaching impacts on human societies and environment, such as more frequent 
extreme weathers, rising sea levels, and reductions in agricultural production (Diaz & Moore,  2017; Manoli 
et al., 2016; Xiao, Zhao, et al., 2021; Xiao, Zhou, et al., 2021). According to the World Bank, in 2019, CO2 emis-
sions in China exceeded 10,200 Mt, which constituted 27.9% of total emissions in the world (World Bank, 2015). 
As the largest CO2 emitter of the world, China’s efforts in reducing emissions play a critical role in mitigating 
global climate change and its negative impacts (Guan et al., 2021). China highlighted its emission peak and neu-
trality resolutions at the Climate Ambition Summit and aimed to peak CO2 emissions before 2030 and achieved 
carbon neutrality before 2060 (Xiao, Zhao, et al., 2021; Xiao, Zhou, et al., 2021). One reason for the increasing 
CO2 emissions of China can be the rapid economic development since the reform and opening up in 1978. After 
that, an increasing amount of global investment capital inflow to China, which become one of the key factors 
for Chinese economic growth. According to the United Nations Conference on Trade and Development’s report 
on Investment Trends and Policies Monitors, China has become the world’s largest recipient of foreign direct 
investment (FDI) since 2014 and surpassed the United States for the first time since 2003 (United Nations, 2015). 
However, with the rapid economic growth benefited from FDI, China's environmental change problem has be-
come increasingly concerning (Pan et al., 2017; Wu et al., 2018). Therefore, as China continues to attract global 
investment, exploring the impacts caused by FDI, an important driving factor for economic growth, on CO2 
emissions will be of great significance to mitigate global climate change.

The “Pollution Haven” and “Pollution Halo” are two contradictory hypotheses that are used to explain the im-
pacts of FDI on the environment. “Pollution Haven” hypothesis believes that due to the close correlation between 
a country’s per capita income and environmental stringency, openness is also a good opportunity for developed 
countries to migrate high-carbon industries to other countries (usually, developing countries, such as China), and 
therefore lead to more serious pollution in developing areas (Mody et al., 1995). On the contrary, the “Pollution 
Halo” theory suggests that the foreign capitals bring advanced technology to the host country, making related 
production processes cleaner, and further improve environmental quality (Zarsky, 1999). The empirical findings 
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of FDI on emission reduction differ significantly by area and time even from the same perspective; and even 
within the same country or the same period, the findings can differ at each level. For example, findings from 
Lee and Yu (2012), Liu, Hao, and Gao (2017), and Nasir et al. (2019) support the “Pollution Haven” hypothesis, 
while some studies argue that multinationals engaging in FDI can contribute to a reduction in local CO2 emissions 
by bringing advanced technologies to the host countries (Xu et al., 2019; Zhu et al., 2016). Indeed, there is no 
consensus on whether the direct impact of FDI on CO2 emissions is in line with the “Pollution Haven” hypothesis 
or the “Pollution Halo” hypothesis (Xie et al., 2020). In general, previous studies are generally in favor of the 
“Pollution Haven” hypothesis, or “Pollution Halo,” or neither of them. However, whether these two hypotheses 
can exist simultaneously in a country is still unknown, which sets barriers for better understand the role of FDI in 
mitigating the CO2 emissions of China.

Apart from the controversial impacts of FDI on CO2 emissions, the existing studies are mainly conducted the em-
pirical studies of FDI on emissions by treating the research economy independently (Sung et al., 2018). However, 
previous studies have suggested that there is frequent trade across China’s regions and the foreign investment 
in local areas can be associated with the neighboring areas by labor, energy, technology, and capital flows (Xie 
et al., 2020; Zhang et al., 2018). Few studies explored the spatial spillover effects of FDI on CO2 emissions across 
Chinese provinces. Ignoring the spatial correlation of FDI and CO2 emissions would lead to a biased estimation 
of the impact of FDI on CO2 emissions, which is not beneficial for promoting collaborative emission reduction.

To fill these two gaps, this study first explores the spatial spillover effects of FDI on shaping the emission patterns 
of Chinese provinces from 2004 to 2015 based on spatial econometric methods. Then, the partial differential 
equations (P.D.E.) decomposition is applied to yield the local effects, spatial spillover effects, and total effects 
of variables. The decomposition results not only highlight the spatial externalities of FDI on CO2 emissions 
across Chinese provinces but provide a new perspective to explain potential coexistence of “Pollution Haven” and 
“Pollution Halo” hypothesis. Many pollutants may be associated with FDI, and different industries’ production 
activities generate different pollutants. Our proposed research framework can be applicable to study the local 
and spatial spillover effects of FDI on other pollutants. Also, our results provide a basis for other countries with 
increasing trade and investment flows to promote interactive policy making across regions to reduce emissions.

2. Literature Review and Related Hypotheses
2.1. Literature Review

The empirical literature focusing on the relationship between FDI and CO2 emissions can be grouped into two 
classes: micro-level studies and macro-level studies. The former usually utilize industrial-level or firm-level panel 
data, and the latter often use time-series data. Based on the empirical findings of FDI on emissions, some support 
“Pollution Haven” theory, while others support “Pollution Halo,” and the rest indicates that the role of FDI in 
CO2 emissions is still unclear.

At the macro level (country level), there are studies that in favor “Pollution Haven” hypothesis, or “Pollution 
Halo,” or neither of them. Using multivariable time series analysis methods, such as Autoregressive Distributed 
Lagged (ARDL) analysis, Vector Error Correction Model (VECM)-cointegration method, and Granger causal-
ity test, the “Pollution Haven” hypothesis was verified in many developed countries (Hoffmann et  al.,  2005, 
Jorgenson, 2009; Xing & Kolstad, 2002), BRIC countries (Brazil, Russia, India, and China; Pao & Tsai, 2011; 
Zakarya et al., 2015), Middle East (Al-Mulali & Sab, 2012), the Gulf Cooperation Council countries (Al-Mulali 
& Tang, 2013), Malaysia (Lau et al., 2014), Turkey (Seker et al., 2015), Ghana (Solarin et al., 2017), South and 
Southeast Asian (Behera & Dash, 2017), France (Shahbaz et al., 2018), and China (Zhang & Zhang, 2018). In 
contrast, there are researches outlined negative relationships between FDI and CO2 emissions in many countries, 
such as ASEAN five countries (Chandran et al., 2013; Zhu et al., 2016), Vietnam (Tang & Tan, 2015), China 
(Zhang & Zhou, 2016), Tunisia and Morocco (Hakimi & Hamdi, 2016), and several developing and developed 
countries (Amri, 2016). Besides, there is study that neither supports the “Pollution Haven” theory nor the “Pol-
lution Halo” theory. Using cointegration theory and Granger causality test, Zhang (2011) found that the environ-
mental influence of FDI is limited in China.

At the micro level (industrial or firm-level), researchers focus on the environmental effects of FDI within a 
country using panel data. Some researchers' opinions coincide with the “Pollution Haven” theory, attributing 
FDI inflows as one of the driving factors of carbon transformation. Using city-level panel data, Lan et al. (2012) 
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established fixed and random effects panel data models, and find that CO2 emissions is positively related to FDI 
in low human capital cities. Ren et al. (2014) estimated the impacts of FDI and other openness factors on CO2 
emissions through two-step GMM, and the result suggested that large FDI inflows had made the environment 
worse in China. Zhou et al. (2018) confirmed that FDI played a negative role in environmental quality in China. 
Besides China, positive relationships between FDI and air pollutions were also evidenced in Mexico (Waldkirch 
& Gopinath, 2004) and South Korea (Chung, 2014). On the contrary, a considerable number of scholars hold 
optimistic attitudes toward FDI and regarded it as environmental-friendly, which coincided with the “Pollution 
Halo” theory. Zheng et  al.  (2010) found that FDI reduced air pollutions using panel OLS model. Zhang and 
Zhou (2016) applied the STIRPAT model, and evidenced that FDI was an important contributor in CO2 emission 
reduction in China. Jiang et al. (2018) analyzed the cross-border renewable energy intensity convergence in China 
and believed that more FDI inflows led to lower CO2 emissions because of technology transfer and knowledge 
spillovers. Different from those above results which have clear conclusions, there is an empirical study finding 
that FDI's role is unclear. Liu et al. (2018) extended FDI’s impact from CO2 emissions to a wide range of envi-
ronmental pollution, and revealed that FDI inflows had distinct effects on different pollutants, and it was hard to 
say the exact influence of FDI on the environment.

The above evidence does provide us with a valuable basis for further research on the relationship between FDI 
and CO2 emissions. Nevertheless, there are limitations of them: (1) the controversial roles of FDI in emission 
reduction presented by existing studies make the role of FDI in mitigating the CO2 emissions of China unclear. 
Whether these two hypotheses can exist simultaneously in a country is still unknown; (2) as reviewed, most of the 
existing studies primarily conducted the empirical studies of FDI on emissions by treating the country, industry, 
or firms independently, and very few studies have pay attention to the spatial feature (Chuai et al., 2012; Huang 
et al., 2009; Wang & Teng, 2013). To fill these two gaps, we examined the possibility of co-existence of “Pol-
lution Halo” and “Pollution Haven” in China. Also, the spatial spillover effects of FDI on shaping the emission 
patterns across Chinese provinces using spatial econometric tools were investigated (Anselin, 2013; LeSage & 
Pace, 2010).

2.2. Literature Review and Research Hypotheses

Hypothesis 1. FDI has significant impacts on CO2 emissions in both local regions and neighboring regions, but 
the directions of effects are opposite.

As reviewed in Section 2.1, the role of FDI in emission reduction is debatable. Both positive and negative rela-
tionships between FDI and CO2 emissions are empirically evidenced. Regarding the controversy toward FDI’s 
impact on environment, we intuitively assume that the opposite roles of FDI can be found at different spatial 
levels, that is, the local effect and spatial spillover effect of FDI are both significant but opposite in sign.

Hypothesis 2. At the nationwide level, FDI reduces CO2 emissions.

As reviewed in Section 2.1, at the macro level, both positive and negative impacts of FDI are found in the lit-
erature. Therefore, without loss of generality, we assume that FDI for the whole country will help reduce CO2 
emissions. It should be noted that this hypothesis is not a statistical null hypothesis, but just a value-neutral 
hypothesis. We do not have any expectations for the impact of FDI’s in total effect. In the model, the (statistical) 
null hypothesis for the coefficient of FDI is that “FDI does not affect CO2 emissions.” If the coefficient of FDI is 
significantly negative in the empirical results, FDI is considered to reduce emissions; if it is significantly positive, 
FDI is considered to increase emissions.

3. Methodology and Data
3.1. Variables and Data

Provincial panel data of China from 2004 to 2015 is used for empirical analysis. The variables description and 
data sources are listed in Table 1. The dependent variable is the CO2 emissions in 30 provinces of China from 
2004 to 2015, as is constructed by Shan et al. (2018). This dataset excludes Taiwan, Hong Kong, Macao, and 
Tibet due to the lack of CO2 emissions data.
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The main independent variable of interest is Foreign direct investment (FDI). As reviewed in Section 2.1, the role 
of FDI in emission reduction is still unclear, and thus we proposed two related hypotheses regarding the impact(s) 
of FDI on CO2 emissions (see Section 2.2). We expect that the undecided empirical results of FDI in existing 
literature can be further evidenced and better interpreted from a spatial econometric perspective in this study. The 
FDI data utilized in this paper is from the National Bureau of Statistics of China (NBSC).

Motivated by the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) 
model which serves as the benchmark regression framework (see Section 3.2.1), the following control variables 
are included: Population (P), Export and Import (TRADE), Economic growth (GDP) and its quadratic term, 
Renewable Energy Intensity (REI), Energy Structure (ES), Share of services sector (SV), Share of industry 
sector (IND), R&D expenditure (R&D), and Human Capital (HC). It is evidenced in the existing literature that 

Variables Definition Unit Data sources Related studies

Total CO2 emissions Energy-related (17 fossil fuels 
in 47 sectors) and process-
related emissions (cement 
production) CO2 emissions

Mt Shan et al. (2018)

Foreign direct investment 
(FDI)

Total investment of foreign-
invested enterprises

Million US dollars NBSC Jiang et al. (2018) and Shahzad 
et al. (2020)

Population (P) Population at the end of year 10,000 people NBSC Wang et al. (2012), Zhang and 
Lin (2012), Zhang and Zhou (2016), 

Bhattacharya et al. (2017), Liu 
et al. (2018), Yang et al. (2018), 

Vélez-Henao et al. (2019), and Miao 
et al. (2019)

Trade openness (Trade) The sum of imports and 
exports within given 

regions

Thousand US dollars General Administration of 
Customs, China

Zhang et al. (2018), Doğan et al. (2019), 
Ahmad and Khattak (2020), and 

Shahzad et al. (2020)

Economic level (GDP) and its 
square value

GDP per capita RMB NBSC Grossman and Krueger (1991), Holtz-
Eakin and Selden (1995), Cole 

et al. (1997), Cole (2003), Liu, Xiao, 
et al. (2017), Jiang et al. (2018), 

Doğan et al. (2019), Neagu (2019), 
Arminen and Menegaki (2019), and 

Ahmad and Khattak (2020)

Renewable energy intensity 
(REI)

Renewable energy use divided 
by GDP

kg/RMB Calculated using data from 
China Energy Statistical 

Yearbook and NBSC

Bhattacharya et al. (2017), Neagu 
and Teodoru (2019), and Shahzad 

et al. (2020)

Energy structure (ES) The share of coal consumption 
in total energy 
consumption

% Calculated using data from 
China Energy Statistical 

Yearbook

Liu, Xiao, et al. (2017), Wu 
et al. (2018), Zheng et al. (2019)

Share of services sector (SV) The share of the service sector 
value added in GDP

% Calculated using data from 
NBSC

Liu, Xiao, et al. (2017), Jiang 
et al. (2018), Wang et al. (2019), Ma 

and Cai (2019)

Share of industry sector (IND) The share of the industry 
sector value added in GDP

% Calculated using data from 
NBSC

Poon et al. (2006), He (2009, 2010), Lu 
et al. (2017), Du et al. (2018), Zhang 

et al. (2018)

R&D expenditure (RD) R&D expenditure for 
industrial enterprises above 

designated size

10 thousand RMB NBSC Fernández et al. (2018), Churchill 
et al. (2019), Petrović and 

Lobanov (2020), and Ahmad and 
Khattak (2020)

Human capital (HC) Human capital level per capita 
of each province

Yuan and Zhao (2020) Liu, Xiao, et al. (2017), Bano 
et al. (2018), Yao et al. (2020, 2021)

Table 1 
Descriptions of the Variables
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the chosen variables play important roles in affecting emission reduction, and thus should be considered as 
control variables.

Population (P). In both the benchmark STIRPAT model (Dietz & Rosa, 1997) and the extended STIRPAT model 
(York et al., 2002), population size is one of the driving factors for environmental pollution. Besides, it has been 
evidenced in empirical studies (Miao et al., 2019; Wang et al., 2012; Zhang & Lin, 2012) that population size is 
positively correlated with air pollution.

Trade openness (TRADE). According to Doğan et al. (2019), trade openness increases the demand for eco-friend-
ly products with higher quality and enables new technology transfer to countries. Due to the new technology 
transfers, CO2 emissions can be reduced. Lots of studies evidenced similar results (Ahmad & Khattak, 2020; 
Shahzad et al., 2020; Zhang et al., 2018).

Economic growth (GDP) and Its quadratic term. In this paper, we use per capita gross domestic product (GDP) 
as a measure of economic growth. These terms are included in the independent variables to examine the environ-
mental Kuznets curve (EKC) hypothesis (Grossman & Krueger, 1991; Selden & Song, 1994). See Holtz-Eakin 
and Selden (1995), Neagu (2019), and Arminen and Menegaki (2019) for more related empirical studies.

Renewable energy intensity (REI). It has been found that renewable energy utilization has an essential impact on 
air pollutions (Bhattacharya et al., 2017; Neagu & Teodoru, 2019; Shahzad et al., 2020). In this sense, the renew-
able energy intensity indicator in this paper is calculated by renewable energy consumption divided by GDP. Even 
energy consumption is related to CO2 emissions by construction, however, directly using energy consumption as 
a molecular to compute energy intensity could have adverse consequences for econometric estimation in related 
contexts (Burnett et al., 2013; Itkonen, 2012; Jaforullah & King, 2017). Therefore, to avoid misleading econo-
metric specifications, we use renewable energy consumption instead. The data of renewable energy consumption 
is from the China Energy Statistical Yearbook, and the data of GDP is from NBSC.

Energy structure (ES). Energy consumption structure is one of the driving forces for CO2 emissions (Liu, Xiao, 
et al., 2017; Wu et al., 2016; Zheng et al., 2019). In this paper, energy structure is calculated based on the share 
of coal consumption in total energy consumption. Referring to Liu, Xiao, et al. (2017), energy consumption is 
made up of coal, coke, crude oil, petrol, kerosene, diesel, fuel oil, and natural gas; all of these energy products are 
converted into standard coal according to their conversion coefficients (0.7476, 0.9714, 1.4286, 1.4714, 1.4714, 
1.4571, 1.4286, 13) given by Song and Guan (2015).

Share of service sector (SV). The role of the service sector in emission reduction is still ambiguous (Jiang 
et al., 2018; Ma & Cai, 2019; Wang et al., 2019). Liu, Xiao, et al. (2017) find a positive relationship between the 
proportion of tertiary industry and energy consumption in China, thereby leading to a positive linkage between 
the share of service sector and environmental pollutions.

Share of industry sector (IND). Industrial activities are one of the most important sources of air pollution in 
China (Du et al., 2018; He, 2009, 2010). The greater the proportion of the industrial sector in economic develop-
ment, the higher the energy consumption, which in turn generates more pollution (Liu, Xiao, et al., 2017; Poon 
et al., 2006; Zhang et al., 2018).

R&D expenditure (RD). There are several studies in different countries over varying periods indicating that inno-
vation plays a crucial role in the reducing CO2 emissions (Churchill et al., 2019; Fernández et al., 2018; Petrović 
& Lobanov, 2020).

Human capital (HC). Educational level (human capital) is one of the important technical factors that can reduce 
emissions. Citizens with a higher level of education prefer the protection of the environment and try harder to 
save energy. They are more likely to apply this concept in their daily lives to reduce established energy con-
sumption (Liu, Xiao, et al., 2017). Apart from the micro level, the role of human capital in emission reduction 
is also evidenced from a macro level (Bano et al., 2018; Yao et al., 2020, 2021). In this paper, we use the per 
capita human capital level of each province to measure human capital, with its data calculated by Yuan and 
Zhao (2020).

All nominal variables have been adjusted to remove the effects of inflation using CPI and PPI data from NBSC. 
The descriptive statistics for variables after taking logarithm are reported in Table A1.
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Figure 1 displays the spatial distribution of CO2 emissions and FDI inflow in the starting and ending years of our 
research. It can be seen from the coloring map that the amount of CO2 emissions and FDI have significant spatial 
differences and agglomeration. For CO2 emissions, most provinces in China had increased a lot from 2004 to 
2015. The eastern China emitted much more than other areas in 2004, while 12 years later central and northeast 
regions contributed considerably higher emissions. For FDI, a “staircase” distribution is outlined: eastern China 
attracted the maximum FDI, followed by the central and western regions. During the sample period, the central 
region used more foreign capitals and developed relatively fast, whereas the staircase shape did not change. The 
above intuitive findings help to grasp the spatial distribution characteristics of the explained variables and varia-
bles of interest in this paper, and provide a basis for our economic modeling.

3.2. The Models

There are three steps of the modeling procedure. First, traditional OLS regressions are used to examine the overall 
effects of variables. In this step, the regression is based on the extended Stochastic Impacts by Regression on 
Population, Affluence, and Technology (STIRPAT) model, which will be introduced in Section 3.2.1. Second, 
based on the STIRPAT results, we establish spatial econometric models for further investigating the spatial ef-
fects of variables. Three alternative spatial econometric models are introduced in Section 3.2.2.1, with the model 
selection procedure given in Section 3.2.2.2. Third, because the coefficients of spatial models cannot reflect the 
marginal effects of variables (LeSage & Pace, 2010), this paper further adopts the P.D.E. approach to decompose 
the local, spatial spillover, and total effects for each independent variable. The P.D.E. method is introduced in 
Section 3.2.3.

3.2.1. The Extended STIRPAT Model

The first step of the modeling process is to analyze the overall contributions of various driving forces via a 
traditional panel data regression model. In environmental studies, the Stochastic Impacts by Regression on 
Population, Affluence, and Technology (STIRPAT) model developed by Dietz and Rosa (1997) provides a 
theoretical basis for related research and is thus very widely used in environmental issues such as Zhang 
and Zhou (2016), Yang et al. (2018), and Vélez-Henao et al. (2019). The basic STIRPAT for cross-sectional 
setting is:

𝐼𝐼𝑖𝑖 = 𝑎𝑎𝑎𝑎
𝑏𝑏

𝑖𝑖
𝐴𝐴

𝑐𝑐

𝑖𝑖
𝑇𝑇

𝑑𝑑

𝑖𝑖
𝑒𝑒𝑖𝑖 (1)

where i stands for the ith region (or provincial area, in this study); I, P, A, and T represent environmental impact, 
population, affluence, and technology, respectively; 𝐴𝐴 𝐴𝐴𝑖𝑖 is the error term.

For panel data, Equation 1 can be extended into:

𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎
𝑏𝑏

𝑖𝑖𝑖𝑖
𝐴𝐴

𝑐𝑐

𝑖𝑖𝑖𝑖
𝑇𝑇

𝑑𝑑

𝑖𝑖𝑖𝑖
𝑒𝑒𝑖𝑖𝑖𝑖 (2)

where t represents time (year, in this study); a is a constant term; b, c, and, d represent coefficients that determine 
the effects of P, A, and T, respectively; and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the error term.

The parameters a, b, c, and d can be estimated via OLS in a linear form by taking logarithms toward Equation 2, 
that is:

ln𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏(ln𝑃𝑃𝑖𝑖𝑖𝑖) + 𝑐𝑐(ln𝐴𝐴𝑖𝑖𝑖𝑖) + 𝑑𝑑(ln𝑇𝑇𝑖𝑖𝑖𝑖) + 𝑒𝑒𝑖𝑖𝑖𝑖. (3)

Equation 3 is the benchmark traditional regression used in the first step of our empirical analysis. The best way 
to understand this model is that it should be regarded as a framework indicating three dimensions contributing to 
environmental factors, and therefore one can incorporate more variables to refine the three dimensions represent-
ed by the letters P, A, and T in Equation 3 (York et al., 2002).

Based on York et al. (2002), Equation 3 can be extended into Equation 4 by including more independent variables 
shown in Table 1, as follows:
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ln��2�� = � + �(ln���) + �1(ln�����) + �2(ln����) + �3(ln�����) + �4(ln�����)2

+ �1(ln�����) + �2(ln����) + �3(ln���) + �4(ln�����) + �5(ln����) + �6(ln����) + 
��. 
(4)

For dimension I, the environmental effect is defined as total CO2 emissions of 30 provincial regions in China 
(Taiwan, Hong Kong, Macao, and Tibet are excluded due to the lack of data in these areas). The reasons for var-
iable selection and related studies are introduced in Section 3.1.

Figure 1. Spatial distribution of CO2 emissions and foreign direct investment (FDI) in China.
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3.2.2. The Spatial Econometric Methods

3.2.2.1. The Spatial Models

Based on the benchmark STIRPAT model, this paper further utilizes spatial econometric models to illustrate the 
local and spatial spillover effects of the independent variables. In literature, there are specifications for spatial 
panel models: the Spatial Autoregressive Model (SAR), the Spatial Error Model (SEM) and the Spatial Durbin 
Model (SDM), corresponding to different spatial interactions (Elhorst, 2014).

The first alternative model in this paper is SAR, which focuses on the modeling of the spatial lag of dependent 
variables. The panel SAR is expressed as:

𝑌𝑌𝑡𝑡 = 𝜌𝜌𝜌𝜌 𝑌𝑌𝑡𝑡 +𝑋𝑋𝑡𝑡𝛽𝛽 + 𝛼𝛼𝛼𝛼𝑁𝑁 + 𝜇𝜇 + 𝜂𝜂𝑡𝑡𝛼𝛼𝑁𝑁 + 𝜀𝜀𝑡𝑡 (5)

��� =

⎧

⎪

⎨

⎪

⎩

1, �� ���� � ��� �������

0, ��ℎ������
 (6)

where the subscript 𝐴𝐴 𝐴𝐴 represents time, N denotes the total number of regions, 𝐴𝐴 𝐘𝐘𝑡𝑡 is an 𝐴𝐴 𝐴𝐴 × 1 vector of the depend-
ent variable, and 𝐴𝐴 𝐗𝐗𝑡𝑡 is an 𝐴𝐴 𝐴𝐴 ×𝐾𝐾 matrix of independent variables given by the STIRPAT model in Equation 4. 
The error term 𝐴𝐴 𝐴𝐴𝑡𝑡 is an 𝐴𝐴 𝐴𝐴 × 1 vector where every element 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖(0, 𝜎𝜎2) . 𝐴𝐴 𝐴𝐴 is a 𝐴𝐴 𝐴𝐴 × 1 coefficients vector. 𝐴𝐴 𝐴𝐴 
stands for the spatial autoregressive coefficient indicating the spatial lag interaction. 𝐴𝐴 𝐥𝐥𝑁𝑁 means an 𝐴𝐴 𝐴𝐴 × 1 vector 
with each entry equals to one. The 𝐴𝐴 𝐴𝐴 × 1 vector μ and the scalar 𝐴𝐴 𝐴𝐴𝑡𝑡 stand for spatial fixed effects and time fixed 
effects respectively. 𝐴𝐴 𝐴𝐴 is the intercept term. 𝐴𝐴 𝐖𝐖 is an 𝐴𝐴 𝐴𝐴 ×𝐴𝐴 row-standardized spatial weight matrix that each 
element is defined as Equation 6 (In this paper, independent variables such as FDI, industrial structure, human 
capital, energy structure, and R&D are more affected by political and economic factors rather than physical geo-
graphic factors. Therefore, the 0–1 spatial weight matrix that involves administrative divisions is more applicable 
to this study). 𝐴𝐴 𝐖𝐖𝐖𝐖𝑡𝑡 stands for the spatial lag of the dependent variable, that is, the endogenous interaction among 
dependent variables.

The second alternative model in this paper is SEM, which can be written as:

𝒀𝒀 𝑡𝑡 = 𝑿𝑿 𝑡𝑡𝜷𝜷 + 𝛼𝛼𝒍𝒍𝑁𝑁 + 𝝁𝝁 + 𝜂𝜂𝑡𝑡𝒍𝒍𝑁𝑁 + 𝒖𝒖𝑡𝑡 (7.1)

𝒖𝒖𝑡𝑡 = 𝜆𝜆𝑾𝑾 𝒖𝒖𝑡𝑡 + 𝜺𝜺𝑡𝑡 (7.2)

The SEM is based on such a modeling principle: besides independent variables, the dependent variable is also 
related to factors that are not included in the model (unobservable or unmeasurable factors), and those missing 
variables are spatially auto-correlated. As is put in Equations 7.1 and 7.2, 𝐴𝐴 𝐴𝐴 represents the spatial autocorrelation 
coefficient, which indicates the interaction effects over error terms. 𝐴𝐴 𝐖𝐖𝒖𝒖𝒕𝒕 stands for the spatial lag of the error 
term. The error terms of Equation 7.2 𝐴𝐴 𝐴𝐴𝑡𝑡 is an 𝐴𝐴 𝐴𝐴 × 1 vector where every entry 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖(0, 𝜎𝜎2) . The rest of the 
notations share the same meaning with SAR.

The third alternative model SDM includes both the spatial lag of the dependent variable (endogenous interaction 
effect) and independent or explanatory variables (exogenous interaction effect), and it can be expressed as:

𝒀𝒀 𝑡𝑡 = 𝜌𝜌𝑾𝑾 𝒀𝒀 𝑡𝑡 +𝑿𝑿 𝑡𝑡𝜷𝜷 +𝑊𝑊𝑿𝑿 𝑡𝑡𝜽𝜽 + 𝛼𝛼𝒍𝒍𝑁𝑁 + 𝝁𝝁 + 𝜂𝜂𝑡𝑡𝒍𝒍𝑁𝑁 + 𝜺𝜺𝑡𝑡 (8)

where the parameter 𝐴𝐴 𝐴𝐴 is a 𝐴𝐴 𝐴𝐴 × 1 vector indicating the impact of peripheral independent variables on the local 
dependent variable. 𝐴𝐴 𝐖𝐖𝐖𝐖𝑡𝑡 stands for the spatial lag of the independent variables, or the exogenous interactions 
among independent variables. The rest of the notations share the same meaning with SAR and SEM.

3.2.2.2. The Model Selection Procedure

According to Elhorst (2014), there are four steps for spatial model specification, that is, to make choices: (1) 
among different types (s) of fixed effects (spatial, time, or two-way); (2) between spatial models and non-spatial 
models; (3) between random effect and fixed effect; and (4) among different type(s) of spatial interaction effects 
(spatial lag, spatial error, or both).
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Based on the model selection procedure proposed by Elhorst (2014), this paper starts with the non-spatial OLS 
panel data regression. Then, the Likelihood Ratio (LR) tests are conducted to investigate which fixed-effect mod-
el fits the given data better (Baltagi, 2008). Based on that result, the robust Lagrange Multiplier (LM) tests are 
used to determine if the non-spatial model should be extended to a spatial econometric model (Elhorst, 2010). If 
the results of the LM tests suggest that the model should include spatial interaction(s), we then start from an SDM 
and use two Wald tests and two LR tests with null hypotheses (𝐴𝐴 𝐴𝐴0 ∶ 𝜃𝜃 = 0 ) and (𝐴𝐴 𝐴𝐴0 ∶ 𝜃𝜃 + 𝜌𝜌𝜌𝜌 = 0 ) to determine 
if the baseline SDM can be simplified to SAR or SEM (Burridge, 1981). For the choice between fixed effect and 
random effect, a Hausman test can be used (Lee & Yu, 2012). The above procedure can be summarized in two 
flow charts (see Figures 2 and 3) corresponding to the model specifications of non-spatial models and spatial 
models, respectively.

3.2.3. P.D.E. Decomposition for Local and Spatial Spillover Effects

Following Section 3.2.2, if SDM is eventually selected to be the best-fit model, one has to adopt the P.D.E. ap-
proach for further investigating the local (direct), spatial spillover (indirect), and total effects for the following 
two reasons.

First, different from traditional panel data models, the coefficients of SDM cannot represent the marginal effects 
of independent variables because both the spatial lags of dependent and independent variables coexist in the same 
model. For further investigating the marginal effects of each variable, it is necessary to adopt the P.D.E. approach 
(LeSage & Pace, 2010).

Second, the spatial econometric models can only offer either partial (the impacts of host or adjacent regions) or 
global (the impacts in terms of the whole country) results, but cannot provide both partial and overall impacts 
simultaneously. In this sense, P.D. E. decomposition can be applied to yield local effects, spatial spillover effects, 
as well as total effects at the same time.

According to LeSage and Pace (2010), Equation 8 can be rearranged as:

𝑌𝑌𝑡𝑡 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌 )
−1
(𝛽𝛽𝛽𝛽𝑡𝑡 +𝜌𝜌𝛽𝛽𝑡𝑡𝜃𝜃) + (𝐼𝐼 − 𝜌𝜌𝜌𝜌 )

−1
𝜀𝜀
∗

𝑡𝑡
 (9)

𝐴𝐴 𝐴𝐴
∗

𝑡𝑡
 is the new error term including fixed effects and 𝐴𝐴 𝐴𝐴𝑡𝑡 in Equation 8. Deriving the k-th explanatory variable simul-

taneously on both the left and right sides of Equation 9, we have:

Figure 2. Model selection between traditional OLS and spatial models.

Figure 3. Model specification procedures among spatial panel models.
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(10)

The mean value of main diagonal elements in the right-hand matrix of Equation  9 is defined as the “local 
effect,” or “direct effect,” indicating the marginal effect of the k-th independent variable on the dependent 
variable within a region, which indicates to what extent local regions are influenced; the mean value of all the 
other elements is defined as “spatial spillover effect,” or “indirect effect,” reflecting the marginal effect of the 
k-th independent variable on the dependent variable in adjacent regions. The mean value of all elements of 
the matrix is defined as “total effect,” which is equal to the sum of “local effect” and “spatial spillover effect” 
numerically.

All empirical processes in this paper can be done by using Matlab (Version R2017b), and the commands can be 
obtained from the package of LeSage (https://www.spatial-econometrics.com/) and Elhorst (https://spatial-pan-
els.com/software/). The main code can be achieved by the script written by the authors of this paper.

4. Empirical Results
4.1. The Regression Models Results

Table 2displays the results of the traditional panel data regressions (the STIRPAT models) under different fixed 
effects settings, which provides a basic sketch of how FDI and other control variables affect CO2 emissions with-
out considering spatial effects. There are many consistent conclusions in the four regression results: population, 
energy structure, share of service sector, and share of industry sector are significantly positively correlated with 
CO2 emissions; while R&D and human capital are significantly beneficial to emission reduction. The only varia-
ble that is significant but differs in sign among all alternative models is FDI. In pooled regression (Model 2-1) and 
time fixed-effect model (Model 2-3), FDI is negatively correlated with CO2 emissions; while in spatial fixed-ef-
fect model (Model 2-2) and two-way fixed-effects model (Model 2-4), the sign of FDI is positive. In previous 
studies, some stated that FDI does provide cleaner productions (Jiang et al., 2018; Zhang & Zhou, 2016), some 
others found that FDI cannot reduce CO2 emissions (Ren et al., 2014; Zhang & Zhang, 2018; Zhou et al., 2018), 
whereas several studies insisted that the role of FDI was unclear (Liu et al., 2018; Zhang, 2011). Our results also 
show the complexity of the role of FDI in emission reduction based on the traditional panel data regressions, and 
implies the need for further investigation. In this sense, if the complicated results on FDI can be integrated by 
using spatial methods, it will help navigate the complexity of the role of FDI in reducing emissions.

Based on the results of statistical tests in Table 2, two conclusions regarding model specification can be drawn. 
First, the two-way fixed-effects model (Model 2-4) outperforms the one-way fixed-effect models and the pooled 
model. According to the results of LR tests, the null hypotheses for “no spatial fixed effect” and “no time fixed 
effect” are rejected at 0.01 level and 0.05 level, respectively, which implies that both spatial and time fixed effects 
should be included in our model. That is, Model 2–4 outperforms others in terms of fixed-effect settings. Moreo-
ver, one additional piece of evidence for this conclusion is that the log-likelihood value of Model 2–4 is the largest 
among all alternative models. Second, the traditional non-spatial (the STIRPAT) model should be extended to a 
spatial panel data model. Given the answer to the first question, under the two-way fixed effects setting (Model 
2–4), the robust LM tests for the spatial lag and the spatial error reject the null hypotheses at the significance level 

https://www.spatial-econometrics.com/
https://spatial-panels.com/software/
https://spatial-panels.com/software/
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of 0.05 and 0.01, respectively. These results indicate that the model should be extended into a spatial model by 
incorporating both spatial lag and spatial error.

Based on the model selection procedure in Figure 3, this paper examines whether SDM can be simplified to SAR 
or SEM via LR tests and Wald tests. The SDM estimation and related testing results are listed in Table 3.

The results of SDM under spatial fixed effect, time fixed effect, two-way fixed effects, and random effect are 
reported in Table 3, together with related testing results. According to those results, the two-way fixed effects 

Variables

Model 2-1 Model 2-2 Model 2-3 Model 2-4

Pooled OLS OLS with spatial fixed effect OLS with time fixed effect
OLS with spatial and 

time fixed effects

ln(P) 0.6776*** 1.4636*** 0.6829*** 1.0904***

(18.4216) (5.5555) (16.1984) (3.6151)

ln(TRADE) 0.1431*** −0.0156 0.1505*** −0.0335

(5.1696) (−0.4576) (5.0099) (−0.9212)

ln(GDP) 0.2478 1.4224*** −0.0226 1.0648*

(0.3705) (2.8837) (−0.0318) (1.8995)

[ln(GDP)]2 0.0185 −0.0448* 0.0344 −0.0339

(0.5562) (−1.8371) (0.9900) (−1.4562)

ln(REI) −0.0244 0.0082 −0.0323 0.0150

(−0.5939) (0.3613) (−0.7844) (0.6766)

ln(ES) 1.1244*** 0.8992*** 1.1400*** 0.9050***

(21.3516) (13.9165) (21.9044) (13.5897)

ln(SV) 0.6549*** 1.2657*** 0.5176** 1.5084***

(2.8596) (4.6273) (2.1302) (5.2779)

ln(IND) 0.8604*** 1.2083*** 0.7683*** 1.4691***

(4.4242) (4.4410) (3.6026) (5.0667)

ln(RD) −0.2640*** −0.0730* −0.2592*** −0.1054**

(−5.3256) (−1.6950) (−5.1293) (−2.2498)

ln(HC) −1.6560** −2.0440** −1.7000** −2.8094***

(−2.1222) (−2.2617) (−2.0057) (−2.6231)

ln(FDI) −0.1250*** 0.1221*** −0.1415*** 0.1278***

(−4.2868) (3.6610) (−4.6763) (3.6634)

Intercept −3.4016

(−1.0199)

R2 0.8944 0.8432 0.8831 0.4760

Adjusted R2 0.8911 0.8387 0.8789 0.4610

FE R2 0.9728 0.8977 0.9746

Sigma 0.0749 0.0192 0.0724 0.0180

Log-likelihood −38.2134 206.0751 −32.5633 218.3234

LR-test joint significance spatial fixed effects 501.7734 ***

LR-test joint significance time-period fixed effects 24.4965 **

Robust LM test no spatial lag under two-ways fixed effects 5.4628 **

Robust LM test no spatial error under two-ways fixed effects 7.0578 ***

Note. T values are in parentheses. *Statistical significance at 10% level; **Statistical significance at 5% level; ***Statistical significance at 1% level.

Table 2 
Empirical Results of Traditional Panel Data Models
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Variables

Model 3-1 Model 3-2 Model 3-3 Model 3-4

Spatial Durbin Model (SDM) with 
spatial fixed effect

SDM with time fixed 
effect

SDM with spatial and time 
fixed effects

SDM with 
random effect

ln(P) 0.5586 0.5352*** 0.7274** 0.5839***

(1.4811) (10.9956) (1.9749) (7.8137)

ln(TRADE) 0.0029 0.2015*** −0.0175 0.0243

(0.084) (6.3264) (−0.4776) (0.7240)

ln(GDP) 1.0429* −1.1817 1.4079** 0.3083

(1.7193) (−1.5993) (2.3988) (0.5912)

[ln(GDP)]2 −0.0337 0.0796** −0.0501* 0.0056

(−1.1959) (2.2086) (−1.8097) (0.2197)

ln(REI) 0.0063 −0.0213 −0.0008 0.0063

(0.3063) (−0.5858) (−0.0419) (0.2743)

ln(ES) 0.8792*** 1.0451*** 0.8670*** 0.8687***

(13.7793) (19.1050) (13.9641) (13.5839)

ln(SV) 1.2966*** 0.3195 1.3360*** 0.9859***

(4.7662) (1.2841) (4.8953) (3.6960)

ln(IND) 1.1851*** 0.5323** 1.1337*** 1.0509***

(4.1691) (2.3215) (3.9415) (4.1636)

ln(RD) −0.0907** −0.2254*** −0.0917** −0.1037**

(−2.1494) (−4.7299) (−2.0434) (−2.3996)

ln(HC) −0.6399 −0.2245 −0.6645 −0.1225

(−0.562) (−0.2707) (−0.5817) (−0.1093)

ln(FDI) 0.1279*** −0.0224 0.1360*** 0.1308***

(3.8451) (−0.6020) (4.0996) (4.0243)

W*ln(P) 3.1296*** −0.2284* 2.6340*** 0.1253

(5.3256) (−1.8164) (4.0728) (0.7320)

W*ln(TRADE) −0.1025* 0.1055 −0.2130** −0.1419**

(−1.7192) (1.3215) (−2.5150) (−2.4745)

W*ln(GDP) 3.4885*** −1.1170 4.2539*** −0.2405

(3.4241) (−0.8420) (3.7765) (−0.4275)

W*[ln(GDP)]2 −0.1563*** 0.0391 −0.2063*** 0.0213

(−3.2673) (0.6205) (−3.8326) (0.7686)

W*ln(REI) −0.0929** 0.0229 −0.1078** −0.0774

(−2.1453) (0.2830) (−2.4542) (−1.6108)

W*ln(ES) 0.3103** 0.4169** 0.5110*** 0.1492

(2.0066) (2.4926) (3.2475) (0.9850)

W*ln(SV) 0.6065 0.2812 1.4504** 0.2847

(1.1206) (0.4527) (2.1804) (0.5706)

W*ln(IND) −0.0611 0.9103 0.4782 0.1449

(−0.0982) (1.3678) (0.6365) (0.3012)

W*ln(RD) −0.0171 −0.1548 −0.0118 0.0744

(−0.2045) (−1.3375) (−0.0935) (0.8447)

Table 3 
Estimation and Tests Results of Spatial Durbin Panel Models
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SDM (Model 3-3) is the best-fitting model for our data, which can be justified and interpreted from the following 
two aspects.

First, given the setting of two-way fixed effects, the SDM cannot be simplified into SAR or SEM. Both LR tests 
and Wald tests suggest a rejection of H0 for “no spatial lag” and “no spatial error,” meaning that the spatial lags 
and spatial error do exist, and thus a reduction from SDM to a simpler model, such as SAR (which only incorpo-
rates spatial lags) or SEM (which only incorporates spatial errors), can loss illustrative meaning.

Second, the fixed-effects model outperforms the random effect model and one-way (only spatial or time) fixed-ef-
fect models in our study. The Hausman test result significantly rejects the null hypothesis at 0.01 level, which 
indicates that the fixed-effects model is better than the random effects model. Also, the two-way fixed-effects 
models yield greater R2 and log-likelihood value than the random effect and one-way fixed-effect models, which 
provides in-sample hints that the two-way fixed-effects models fit the data better than other alternative models.

The two-way fixed effects SDM (Model 3-3) is eventually selected to be the best-fitting model means that: (1) 
each period and each area in our data set has its own feature, and thus one has to control both of these effects 
in order to investigate the spatial mechanism; (2) both direct and indirect channels work for the mechanism be-
tween carbon emission and its driven factors, and thus one must take the spatial lag of independent variables into 
consideration.

Compared with the traditional OLS regression (see Table 2), there are many new findings in the resulting two 
way-fixed effect SDM. First, the signs of population, energy structure, the share of service sector, and the share of 
industry sector are significantly positive; and RandD is significantly negative in sign. These results are consistent 
with Model 2–4. Second, the signs of the spatial lags of population, energy structure, and share of service sector 
are significantly positive; and the sign of the spatial lag of human capital is significantly negative. Third, the signs 
of ln(GDP) and W*ln(GDP) are significantly positive, while the signs of the squared value of GDP and its spatial 
lags are significantly negative (In Table 3, only when the spatial fixed effect is included in the model [Model 3-1 
and Model 3-3], the spatial lag term of GDP is positively significant, while its squared term is negatively signifi-
cant. Meanwhile, in the models without spatial fixed effects [Model 3-2 and Model 3–4], the Log-likelihood values 

Table 3 
Continued

Variables

Model 3-1 Model 3-2 Model 3-3 Model 3-4

Spatial Durbin Model (SDM) with 
spatial fixed effect

SDM with time fixed 
effect

SDM with spatial and time 
fixed effects

SDM with 
random effect

W*ln(HC) −0.0349 4.6080** −3.2921* −0.2104

(−0.0242) (2.4606) (−1.7466) (−0.1421)

W*ln(FDI) −0.3475*** −0.1183 −0.3499*** −0.1454**

(−3.9042) (−1.3574) (−3.6309) (−2.008)

Intercept 12.5020 −41.4702***

(1.6460) (−4.9069)

Rho −0.1596** −0.0842* −0.1846** −0.1276*

(−1.9742) (−1.6690) (−2.0223) (−1.8641)

R2 0.9778 0.9222 0.9801 0.9718

Sigma 0.0152 0.0533 0.0136 0.0193

Log-likelihood 242.1074 15.7873 261.8158 143.6834

Wald test for no spatial lags 97.2746***

LR test for no spatial lags 86.9805***

Wald test for no spatial errors 95.3727***

LR test for no spatial errors 84.4997***

Hausman test (where random effects is preferred in H0) 51.8313***

Note. T values are in parentheses. *Statistical significance at 10% level; **Statistical significance at 5% level; ***Statistical significance at 1% level.
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are much smaller than that of the models with spatial fixed effects [Model 3-1 and Model 3-3], meaning that the 
models without spatial fixed effects may not be appropriately specified. In other word, only when we run a “cor-
rect” model [the model with spatial fixed effect], can the EKC hypothesis be supported from the spatial perspec-
tive). Last but not least, ln(FDI) is significantly positive, while its spatial lags W*ln(FDI) is significantly negative.

Even though the above findings lay the foundation and offer important inspiration for the study, they may only 
provide a basic picture for the story. According to LeSage and Pace (2010), the coefficients of SDM can neither 
represent the marginal effects of independent variables nor can they yield the total effects. Therefore, one needs 
to further refer to the P.D.E. decomposition results for better understanding the roles of each driven factor in 
emission reduction in terms of their local effects, spatial spillover effects, and total effects.

4.2. The P.D.E. Decomposition Results

The direct (local) and indirect (spillover) effects are decomposed using P.D.E. Equation 10 and these results are 
shown in Table 4. FDI has significant impacts on CO2 emissions in both local regions and neighboring regions, 
but the directions of effects are opposite (Table 4). The local effect of FDI is positive, while its spatial spillover 
effect is negative (Table 4). This result provides support for Hypothesis 1, and has important economic mean-
ings: (1) from the local perspective, the positive direct effect means FDI increases emissions in host areas, which 
coincided with the “Pollution Haven” theory; (2) from the spatial spillover perspective, the negative indirect 
effect indicates that FDI will provide positive environmental externalities to neighboring areas and promote 
cleaner production, which is consistent with the “Pollution Halo” theory. The opposite signs in local and spatial 
spillover effects of FDI reconcile the controversy in existing research from a spatial perspective, which could be 
an increment of this paper. Based on the existing studies of FDI and CO2 emissions, there could be some possible 
explanations (Pollution-Intensive Industry Transfer, Technology spillovers, and Industrial Agglomeration Ef-
fects) for the empirical results of the opposite local and spatial spillover effects for FDI, which will be discussed 
in Section 5. At the national level, the total effect of FDI is significantly negative, suggesting FDI can reduce 
emissions (Table 4). This result indicates that the spatial spillover effect dominates the local effect, and thus FDI 
reduces CO2 emissions when considering the economy in each region as a whole. In this sense, our result does 
generally evidence the “Pollution Halo” theory for the whole country.

Table 4 also shows the signs of GDP and its squared value are in line with the environmental Kuznets curve 
(EKC) hypothesis. The EKC hypothesis implies an inverse U-shape curve between pollutions and per capita GDP 
(Grossman & Krueger, 1991; Selden & Song, 1995). In this study, the sign of ln(GDP) is significantly positive 
in local, spatial spillover, and total effects, while its quadratic term is significantly negative (Table 4). There are 
economic interpretations for these results: (1) the positive coefficients of ln(GDP) means that economic develop-

Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.7003* 1.9281 2.3979*** 3.8854 3.0982*** 5.8774

ln(TRADE) −0.0124 −0.3529 −0.1994** −2.4915 −0.2117** −2.2737

ln(GDP) 1.3590** 2.4346 3.8117*** 3.6713 5.1707*** 5.1352

[ln(GDP)]2 −0.0476* −1.7888 −0.1868*** −3.7694 −0.2344*** −4.6347

ln(REI) 0.0013 0.0667 −0.0998** −2.4341 −0.0985** −2.1055

ln(ES) 0.8540*** 13.5579 0.4119*** 3.0470 1.266*** 9.4021

ln(SV) 1.3136*** 4.8265 1.2835** 2.0403 2.5971*** 3.8108

ln(IND) 1.1320*** 3.9577 0.4032 0.5763 1.5352** 1.9818

ln(RD) −0.0921** −2.1376 −0.0066 −0.0542 −0.0986 −0.7378

ln(HC) −0.5793 −0.5064 −3.0669* −1.6603 −3.6461** −2.0263

ln(FDI) 0.1423*** 4.2764 −0.3413*** −3.8932 −0.199** −2.0982

Note. *Statistical significance at 10% level; ** Statistical significance at 5% level; ***Statistical significance at 1% level.

Table 4 
Decompositions of the Local, Spatial Spillover, and Total Effects for All Variables



Earth’s Future

LIN ET AL.

10.1029/2021EF002331

15 of 23

ment is positively correlated with CO2 emissions for both local and neighboring areas; and (2) the negative signs 
of the quadratic term indicate that the marginal effect of economic growth on CO2 emission is diminishing. In 
this sense, our result provides evidence for the EKC hypothesis of China at both local and spatial spillover levels.

The determinants that increase emission include the share in coal consumption, population, and tertiary industrial 
structures in both local and adjacent areas. These results are consistent with some existing studies. To be specific, 
a larger share in coal consumption increases emissions in both local and adjacent regions, which is consistent 
with the empirical evidence of Liu, Xiao, et al. (2017), Wu et al. (2018), and Zheng et al. (2019). Agglomeration 
of the population can lead to higher emissions, which is consistent with many existing studies on population 
economics and regional economics (Bhattacharya et al., 2017; Vélez-Henao et al., 2019; Yang et al., 2018). For 
the positive local and spatial spillover effects of the development of service industry, they coincide with Lin and 
Zhang (2017), Liu, Xiao, et al. (2017), and Jiang et al. (2018). It can be interpreted that the efficiency of fuel 
consumption in China varies by region, and in most central and western regions, the fuel consumption in service 
sector is inefficient and therefore lead to high emissions (Lin & Zhang, 2017).

The factors that contribute to mitigating emission are the utilization of renewable energy in adjacent regions, 
trade openness in adjacent regions, human capital in adjacent areas, technological innovation in local regions, the 
share of secondary industry in local regions. For renewable energy intensity, it is an important factor for emission 
reduction in adjacent areas but has little impact on the FDI destination area, which is consistent with the existing 
evidence (Bhattacharya et al., 2017; Neagu & Teodoru, 2019; Shahzad et al., 2020) from a spatial perspective. 
In terms of trade openness, it can reduce emissions via spatial spillover channels, which is in line with Zhang 
et al. (2018), Doğan et al. (2019), and Shahzad et al. (2020). Also, human capital is one of the important factors 
that can reduce emissions via spatial spillover channels. Bano et al. (2018) and Yao et al. (2020) have outlined 
a positive relationship between education and emission reduction. It can be interpreted that citizens with a high 
level of education often want the protection of the environment and they try harder to save energy, and they are 
therefore more likely to apply this concept in their daily lives to reduce established energy consumption (Liu, 
Xiao, et al., 2017). For technological innovation, it has an important local effect for cleaner production, as many 
existing studies have found out (Ahmad & Khattak, 2020; Churchill et al., 2019; Petrović & Lobanov, 2020). As 
for the development of secondary industry, its positive local effect is consistent with some studies, such as Liu, 
Xiao, et al. (2017), Du et al. (2018), and Zhang et al. (2018).

Tables A2–A7 are used to demonstrate that the main results of this paper (that is, the conclusions drawn to the hypoth-
eses proposed in Section 2.2) are robust to the reduction of variables expanded in the T dimension in the STIRPAT 
model. The results from Tables A2–A7 show that both local and spatial impacts of FDI on emissions have survived 
all robustness checks: in each Table, the local effect of FDI is significantly positive, while its spatial spillover effect 
and total effect are significantly negative, which means that Hypothesis 1 and Hypothesis 2 hold in these situations.

5. Discussion
This section discusses the potential mechanisms through which FDI affects CO2 emissions in China. FDI will 
have a variety of impacts on the host economy and economies adjacent to it. The three main mechanisms are 
explained below.

5.1. Pollution-Intensive Industry Transfer

Pollution-Intensive Industry Transfer mechanism refers to the situation in which pollution-intensive FDI is more 
likely to be transferred from developed countries to developing countries. Many multinational corporations 
choose to locate their pollution-intensive industry or production stage in developing countries, such as China, 
due to high standards for cleaner production and stringent regulation in terms of environmental protection in their 
home country (Fu et al., 2021). In general, the existing literature documents a positive correlation between FDI 
and pollution across countries (Fu et al., 2021; Khan & Ozturk, 2020; Zhao et al., 2020). In addition, different 
regions in China are associated with different environmental regulation enforcements, which attract multination-
als with more CO2 emissions self-select into regions with weaker enforcements and softer punishments which 
includes new entries into these areas and transfers from other areas to these areas (An et al., 2021). This could 
explain the positive correlation between a region’s FDI and its CO2 emissions we find, that is, pollution heaven.
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The position of China in the Global Value Chain could intensify the hypothesis of Pollution Haven we find. This 
is consistent with Hua et al. (2020) and Duan et al. (2021). Multinationals globally allocate their resources across 
countries, and they may invest in China to produce or assemble the components. These production-intensive-ori-
ented FDI are mainly pollution-intensive, compared with more innovation-intensive tasks.

5.2. Technology Spillover

The technology spillover mechanism refers to the situation in which multinationals bring better technology to the 
local economy. This corresponds to the Pollution Halo hypothesis, which argues that foreign capital brings more 
advanced and cleaner technology to host countries and further improves the environment. Related discussions can 
be found in Ning et al. (2016), Wang et al. (2016), Luo et al. (2021) and Chen et al. (2022). An extensive body of 
research assesses the impact of competition from globalization on the productivity and organization of domestic 
firms, emphasizing the market reallocation or spillover effects of actual foreign competition. The pioneering work 
by Aitken and Harrison (1999) and Javorcik (2004), evaluates the effect of FDI on domestic firm productivity 
through productivity spillover. Specifically, Javorcik (2004) and many other papers show that multinational pro-
duction generates positive spillovers via backward production linkage. Wang and Wang (2015) focus on China 
and they find that FDI can improve output, employment, and income in the local economy.

Our results also support that FDI could create greener production associated with more advanced technology, for 
regions that are closer to FDI destination regions. In other words, the technology spillovers of FDI contribute to 
emission reductions in FDI destinations and periphery areas.

5.3. Industrial Agglomeration Effects

Agglomeration mechanism refers to the situation in which multinational production emerges in clusters. Spe-
cifically, multinationals tend to locate themselves closer to other multinationals or domestic firms in the same 
or related industries to obtain better access to lower transport costs between input suppliers and final good pro-
ducers, labor and capital-good market externalities, and technology diffusion, as is analyzed in detail in Head 
et al. (1999), Bobonis and Shatz (2007), and Alfaro and Chen (2014). The clustering of multinationals intensifies 
the production as well as CO2 emissions in each region. On the one hand, active FDI tends to create huge demands 
of construction and transportation (Yang et al., 2021), which creates considerable emissions in the host area (the 
positive direct effect). On the other hand, the agglomeration of industries in a region will reduce the number 
of branches of industries (especially non-polluting enterprises) in non-agglomeration areas and thus promote 
cleaner production (the negative indirect effect). Regarding the agglomeration effects, one can refer to He and 
Mao (2020) and Pang et al. (2021) for further discussions.

The above three mechanisms could explain the different effects of FDI on CO2 emissions. Pollution-Intensive 
Industry Transfer mechanism and Industrial Agglomeration Effects enhance the positive local effect, and Tech-
nology spillovers and Industrial Agglomeration Effect lead to a negative spatial spillover effect. The synthesized 
scheme makes our spatial empirical results reasonable: FDI can increase local CO2 emissions (positive direct 
effect) and reduce CO2 emissions in neighboring regions (negative indirect effect) simultaneously.

6. Conclusions, Implications, and Future Study
6.1. Conclusions

This paper aims to explore the role of FDI in emission reduction from a spatial perspective. Using the extended 
STIRPAT model and the spatial economic methods, this paper investigated the main drivers of CO2 emissions in 
China over the period 2004–2015. Based on regression results, the PDE decomposition was utilized to investigate 
the local (direct) effects, spatial spillover (indirect) effects, and total effects of variables. The main findings are as 
follows: (1) the local effect of FDI is positive, indicating that more FDI in the host region will lead to an increase 
in CO2 emissions in this area; (2) the spatial spillover effect of FDI is negative, suggesting that FDI will provide 
positive environmental externalities to adjacent regions and promote cleaner production; (3) in terms of the whole 
country, FDI can reduce CO2 emissions; (4) the EKC hypothesis is supported from the local, spatial, and country 
levels; (5) a larger share in coal consumption can increase emissions in both local and adjacent regions.
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Three mechanisms are proposed to explain the empirical findings of FDI. (1) Pollution-Intensive Industry Trans-
fer: Multinational corporations from developed countries choose to locate their pollution-intensive industry or 
production stage in China, which increases CO2 emissions in the FDI destination. (2) Technology Spillover: Mul-
tinationals bring better technology and generate positive spillover to domestic firms. The technology spillovers 
of FDI contribute to emission reductions in FDI destinations and periphery areas. (3) Industrial Agglomeration 
Effects: The clustering of multinationals intensifies the production as well as CO2 emissions in each region but 
reduces the emissions in the whole country.

6.2. Policy Implications

Since China became the world’s largest carbon dioxide emitter in 2006, its efforts to address climate change have 
received widespread attention. As China has pledged to achieve carbon peak by 2035 and carbon neutrality by 
2060, the findings of this paper can contribute to achieving these goals of China effectively by considering the 
“trade-environment” linkage, thereby providing implications for solving the problem of global climate change.

First, environmental capacity should be considered by host counties when attracting foreign investments, which 
may offer a reversal mechanism for investor screening, thereby lowering the investment threshold for environ-
mentally friendly multinational companies and leading to a much cleaner production globally. FDI has both 
significant local and spatial spillover effects and therefore policymakers should consider the environmental ca-
pacity of not only the target area but also the periphery regions. FDI deteriorates the local environment but brings 
technology spillover simultaneously; as such, it is better to guide foreign investments to areas with high environ-
mental capacity. Thus, from a provincial perspective, it is suggested to introduce more FDI into areas where the 
environment is relatively strong (and the surrounding is relatively weaker) because those “high capacity” areas 
can “afford” negative environmental impact and simultaneously enjoy advanced technology. Meanwhile, from 
a nationwide perspective, the environmental capacity is supposed to be considered as a whole, so as to make it 
difficult for the entry of pollution producing enterprises, which can be seen as a global screening mechanism. 
Consequently, in the long run, they may be “compelled” to embrace a cleaner production.

Second, considering the fact that increasing greenhouse gases and climate warming are global issues, our findings 
imply the responsibility of foreign investors like China when being a foreign direct investor in other countries. In 
this sense, from the perspectives of global responsibility and the future of our earth, both local and spatial spill-
over effects of FDI are supposed to be taken into consideration of foreign investors. Specifically, as the initiator, 
advocate, and one of the most important participants of the “Belt and Road” Initiative, China is supposed to pay 
attention to environmental effects when investing in other countries. China is now playing the role of an important 
host country and rapidly developing home country simultaneously and can provide many experiences for emerg-
ing economies. If the CO2 emissions in host countries are taken into consideration, it will contribute essentially 
to the “Green Economy” and global sustainable development.

Third, for the positive local effect, more efforts are supposed to be made to alleviate this impact, thereby con-
tributing to the sustainable development of both the local economy as well as the whole earth. As FDI directly 
increases the CO2 emissions in the local areas, the structure of FDI in China should be optimized in the long 
run. The government (especially local governments) can issue a variety of policies to promote clean technology 
research and development, such as reducing the tax burden of high-tech enterprises, encouraging investment in 
research and development and their equipment, encouraging the transformation of scientific and technological 
achievements. This policy implication may be especially applicable to some traditional energy-oriented regions.

6.3. Future Study

There are some limitations of this paper, which can be left for future empirical study.

First, in this paper, we do not analyze the effect of disaggregated industry-level FDI on CO2 emissions. The emis-
sion patterns and production technology of different industries are heterogeneous. The future work could focus on 
how FDI of different industries affects CO2 emissions. We could replicate our analysis using more disaggregated 
industry level or firm level FDI data to better evaluate their respective effect on emissions. Specific FDI policy 
recommendations can be provided with this result.



Earth’s Future

LIN ET AL.

10.1029/2021EF002331

18 of 23

Second, in this paper, we mainly focus on the short-run effect. However, the effect of FDI on CO2 emissions may 
take time to work and change over time. Therefore, the future studies may focus on how the effect of FDI on CO2 
emissions in the long run and how the spillover effects and correlations change over time. To further investigate 
the dynamic relationships among FDI, CO2 emissions and other economic variables, time series analysis methods 
can be used, such as ARDL, BEKK, and GRACH-Copula approaches.

Third, in this paper, the regression model is based on three dimensions: Population (P), Affluence (A), and Tech-
nology (T). These three dimensions are treated equally in the regression. Nevertheless, in reality, the contribu-
tions of them may not be exactly the same. Thus, it would be interesting and of practical meaning to investigate: 
(1) what are the differences in the importance of the three dimensions in generating environmental pollution; and 
(2) how the relative propositions change over time. To address these issues, future study may utilize the max-lin-
ear competing factor model (see Cui & Zhang, 2018) and the max-linear regression model (see Cui et al., 2021).

Appendix:  

Variables Obs Mean Std. Dev. Min Max

ln(CO2) 360 5.3633 0.8291 1.7579 7.3485

ln(P) 360 8.1633 0.7514 6.2897 9.2918

ln(TRADE) 360 17.088 1.6439 13.1026 20.9711

ln(GDP) 360 10.1743 0.6643 8.3311 11.5727

[ln(GDP)]2 360 103.9571 13.4671 69.4072 133.9264

ln(REI) 360 −2.9790 0.3613 −5.4308 1.1765

ln(ES) 360 −0.1750 0.1775 −0.8329 0.5159

ln(SV) 360 −0.8993 0.1735 −1.2622 −0.2275

ln(IND) 360 −0.5269 0.1962 −1.6226 −0.5269

ln(RD) 360 4.1745 0.6528 1.5698 5.3700

ln(HC) 360 0.2301 0.0416 0.1260 0.3670

ln(FDI) 360 10.4623 1.4254 6.5511 13.5698

Table A1 
Descriptive Statistics of Variables

Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.6245* 1.6657 2.4521*** 3.9080 3.0766*** 5.6625

ln(TRADE) −0.0075 −0.2191 −0.1603** −2.1435 −0.1677* −1.8842

ln(GDP) 1.1674** 1.9679 3.2669*** 3.1955 4.4344*** 4.6793

[ln(GDP)]2 −0.0388 −1.3763 −0.1600*** −3.2781 −0.1988*** −4.1760

ln(REI) 0.0013 0.0653 −0.1046** −2.5241 −0.1033** −2.2119

ln(ES) 0.8709*** 14.5477 0.4254*** 3.0391 1.2963*** 9.3038

ln(SV) 1.3181*** 5.0357 1.0755* 1.7525 2.3936*** 3.6296

ln(IND) 1.1520*** 4.2050 0.2854 0.4082 1.4374* 1.8439

ln(RD) −0.0907** −2.0394 −0.0047 −0.0403 −0.0954 −0.7321

ln(FDI) 0.1303*** 3.9151 −0.4003*** −4.5173 −0.2700*** −2.8653

Note. * Statistical significance at 10% level; ** Statistical significance at 5% level; *** Statistical significance at 1% level.

Table A2 
Decompositions of the Local, Spatial Spillover, and Total Effects (Exclude Human Capital)
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Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.7320** 2.0225 2.4665*** 3.9497 3.1985*** 5.8785

ln(TRADE) −0.0290 −0.8750 −0.1936*** −2.8023 −0.2226*** −2.7191

ln(GDP) 1.3331** 2.3526 2.7353*** 2.8772 4.0684*** 4.6346

[ln(GDP)]2 −0.0441 −1.6172 −0.1317*** −2.8541 −0.1758*** −3.8446

ln(REI) 0.0045 0.2250 −0.1038** −2.4358 −0.0993** −2.0511

ln(ES) 0.8460*** 13.7080 0.4468*** 3.1967 1.2927*** 9.2496

ln(SV) 1.2852*** 4.7555 1.2272** 2.0559 2.5124*** 3.8027

ln(IND) 1.1054*** 3.9476 0.5291 0.8240 1.6345** 2.2110

ln(FDI) 0.1558*** 5.4355 −0.3828*** −4.5525 −0.2270*** −2.5866

Note. *Statistical significance at 10% level; **Statistical significance at 5% level; ***Statistical significance at 1% level.

Table A3 
Decompositions of the Local, Spatial Spillover, and Total Effects (Exclude Human Capital and R&D)

Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.4393 1.2642 2.2258*** 3.4039 2.6651*** 4.9368

ln(TRADE) 0.0265 0.8460 −0.1475** −2.5659 −0.1210* −1.7761

ln(GDP) 1.6242*** 2.7627 3.5253*** 3.6783 5.1495*** 5.7114

[ln(GDP)]2 −0.0513* −1.8228 −0.1807*** −3.8856 −0.2320*** −4.9774

ln(REI) 0.0005 0.0228 −0.0846* −1.8965 −0.0841 −1.6333

ln(ES) 0.8206*** 13.0624 0.5098*** 3.6053 1.3305*** 9.1209

ln(SV) 0.3659*** 2.6470 1.0696*** 3.4971 1.4355*** 4.0921

ln(FDI) 0.1428*** 4.8011 −0.4206*** −4.7494 −0.2778*** −2.9934

Note. *Statistical significance at 10% level; **Statistical significance at 5% level; ***Statistical significance at 1% level.

Table A4 
Decompositions of the Local, Spatial Spillover, and Total Effects (Exclude Human Capital, R&D, and Share of Industry 
Sector)

Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.3983 1.0808 1.8921*** 2.7311 2.2904*** 4.0304

ln(TRADE) 0.0401 1.2706 −0.1410** −2.2020 −0.1008 −1.3245

ln(GDP) 1.4968** 2.5492 2.5795*** 2.6627 4.0764*** 4.5924

[ln(GDP)]2 −0.0528* −1.8664 −0.1530*** −3.1830 −0.2057*** −4.3199

ln(REI) 0.0039 0.1833 −0.0868* −1.8440 −0.0829 −1.4819

ln(ES) 0.8302*** 12.8103 0.5082*** 3.5062 1.3385*** 9.1094

ln(FDI) 0.1473*** 4.9751 −0.3666*** −4.0281 −0.2193** −2.3116

Note. * Statistical significance at 10% level; ** Statistical significance at 5% level; ***Statistical significance at 1% level.

Table A5 
Decompositions of the Local, Spatial Spillover, and Total Effects (Exclude Human Capital, R&D, Share of Industry Sector, 
and Share of Services Sector)
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Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.6346 1.5667 −0.3633 −0.4185 0.2713 0.3398

ln(TRADE) −0.0369 −0.9389 −0.2747*** −3.0985 −0.3116*** −2.9051

ln(GDP) 3.5077*** 4.8480 3.1214** 2.3734 6.6290*** 4.8863

[ln(GDP)]2 −0.1433*** −4.0764 −0.2103*** −3.0844 −0.3536*** −4.8307

ln(REI) 0.0273 1.0341 −0.1169* −1.6549 −0.0897 −1.0861

ln(FDI) 0.1006*** 2.6804 −0.6164*** −4.5479 −0.5158*** −3.4765

Note. * Statistical significance at 10% level; ** Statistical significance at 5% level; *** Statistical significance at 1% level.

Table A6 
Decompositions of the Local, Spatial Spillover, and Total Effects (Exclude Human Capital, R&D, Share of Industry Sector, 
Share of Services Sector, and Energy Structure)

Local effects Spatial spillover effects Total effects

Variables Coefficient t-value Coefficient t-value Coefficient t-value

ln(P) 0.3293 0.8996 1.9917*** 2.9267 2.3210*** 4.2521

ln(TRADE) 0.0393 1.2753 −0.1375** −2.1703 −0.0981 −1.3184

ln(GDP) 1.3631** 2.3160 2.5158** 2.5404 3.8789*** 4.2925

[ln(GDP)]2 −0.0473* −1.6632 −0.1491*** −2.9971 −0.1964*** −3.9774

ln(ES) 0.8429*** 13.8615 0.4689*** 3.2682 1.3118*** 8.7114

ln(FDI) 0.1513*** 5.1443 −0.3526*** −3.7824 −0.2013** −2.0605

Note. *Statistical significance at 10% level; **Statistical significance at 5% level; *** Statistical significance at 1% level.

Table A7 
Decompositions of the Local, Spatial Spillover, and Total Effects (Exclude Human Capital, R&D, Share of Industry Sector, 
Share of Services Sector, and Renewable Energy Intensity)
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