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ABSTRACT
Energy-efficient manufacturing is critical as the industrial sector accounts for a substantial portion 
of global energy consumption. This research aims to address an energy-efficient scheduling 
problem of production and shipping for minimizing both makespan and energy consumption. It 
contributes to an integrated energy-efficient production and shipping system, which is separately 
studied in most existing research. The production stage allocates jobs onto unrelated parallel 
machines that can be shut off and adjust their cutting speed to save energy. The shipping stage 
aims to allocate jobs to vehicles of various sizes with varied unit energy consumption. The problem 
is modelled as a mixed-integer quadratic program. Considering its complexity, a memetic algo-
rithm (MA) is proposed to incorporate a knowledge-driven local search strategy considering the 
balance between exploration and exploitation. Two dominance rules are derived from the char-
acteristics of the specific problem and embedded into the proposed MA to enhance its perfor-
mance. Experimental results demonstrate that the proposed MA outperforms two other 
population-based algorithms, genetic algorithm and traditional MA, in terms of performance and 
computing time. This research practically contributes to improving productivity and energy 
efficiency for the production-shipping supply chain of make-to-order products.
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1. Introduction

With the rapid development of industrialization and 
urbanization, energy demand significantly increases 
in these years. Energy consumption has increased by 
300% in the last 50 years (Park et al. 2009). A recent 
report from the International Energy Agency antici-
pated that the global energy need by 2040 would rise 
by 37% (Che et al. 2017). Excessive energy consump-
tion, especially non-renewable resources (e.g. coal, 
gas and oil), incurs many environmental issues, such 
as air pollution and global climate change. Based on 
the statistical data, nearly 47% of Germany’s total 
national electricity is consumed by industrial sectors 
(Dai et al. 2013). Thus, industrial sectors are primarily 
responsible for energy savings and reducing environ-
mental impacts (Liu et al. 2020; Zeng et al. 2018).

Industrial sectors have adopted many strategies to 
approach energy-saving targets, e.g. using low- 
energy machines or vehicles. From the operational 
management perspective, energy-efficient schedul-
ing could serve as an effective and powerful method 

for energy savings without extra investment in equip-
ment or technologies. Energy-efficient scheduling 
aims to optimally allocate limited resources to the 
given tasks considering the energy savings goal in 
addition to other traditional machine scheduling 
goals, such as minimization of makespan or opera-
tional cost. Recently, many efforts have been devoted 
to energy-efficient scheduling problems in the litera-
ture (Gahm et al. 2016; Mouzon and Yildirim 2008).

Power-down and speed-scaling mechanisms are 
widely used for energy-efficient scheduling in the 
literature. The earliest research on the power-down 
mechanism was investigated by Mouzon, Yildirim, 
and Twomey (2007), who turned off the non- 
bottleneck machines during their idle time to reduce 
energy consumption. Their illustrated example 
showed that a machine stays idle on average 16% of 
an 8-hour shift. Using the power-down mechanism 
can save at least 13% of energy. Yao et al. (1995) 
first introduced the speed-scaling mechanism when 
scheduling jobs in computer operating systems. Their 
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model balanced the minimization of completion time 
of jobs and energy consumption, considering that the 
faster a processor runs, the more electricity it takes 
per unit of work.

Besides considering scheduling within manufactur-
ing shop floors, the authors jointly consider down-
stream shipping scheduling for make-to-order 
business models. By doing so, customized products 
can be directly delivered from manufacturing compa-
nies to customers, leading to (near) zero finished 
product inventory (Chen, Huang, and Wang 2019; 
Leung and Chen 2013). The research on integrated 
production and shipping at the detailed scheduling 
level is relatively recent (Chen et al. 2015; Chen 2010). 
Most of these studies attempt to optimize detailed 
production and shipping scheduling by considering 
delivery costs, customer service and makespan. 
However, limited efforts have been devoted to 
energy-efficient scheduling of integrated production 
and shipping.

This research considers an integrated system and 
investigates an energy-efficient production and ship-
ping scheduling (EPSS) problem. The production part 
is comprised of unrelated parallel machines using 
power-down and speed-scaling mechanisms. The 
shipping part consists of heterogeneous vehicles 
which are associated with different sizes and energy 
consumption rates. The objective is to minimize the 
total cost of makespan and energy consumption. To 
the best of the authors’ knowledge, this research is 
among the first to consider EPSS with power-down 
and speed-scaling mechanisms.

The contribution is threefold. First, the research is 
the pioneer to study EPSS considering power-down 
and speed-scaling mechanisms. A new mixed-integer 
quadratic model is developed for an integrated pro-
duction and shipping system to minimize both 
energy consumption and makespan. To some extent, 
the research practically contributes to energy and 
lead time reduction for the supply chain of make-to- 
order products. Second, an MA is proposed to incor-
porate a newly designed knowledge-driven local 
search strategy, which efficiently solves the complex 
problem. Third, two problem-specific dominance 
rules are derived from the characteristics of the spe-
cific problem. The performance of the proposed MA is 
further enhanced after incorporating a rule-based 
dominance adjustment, which is different from other 
evolutionary algorithms. This research benefits 

increasing productivity while reducing energy con-
sumption for the production-shipping supply chain 
of make-to-order products.

The reminders are organized as follows. Section 2 is 
a literature review of relevant research to show the 
research gap explicitly. Section 3 formulates and mod-
els the problem and derives the properties of the EPSS 
problem. Section 4 presents the details of the pro-
posed MA. Section 5 conducts a series of experimen-
tal experiments and analyses the results. Section 6 
concludes the research and suggests possible future 
directions.

2. Literature review

Energy-efficient scheduling has attracted increasing 
attention from manufacturing companies due to ris-
ing energy prices and growing environmental con-
cerns (Rager, Gahm, and Denz 2015; Zeng et al. 
2018). To the best of the authors’ knowledge, the 
pioneer study on energy-related production schedul-
ing was conducted by Subai, Baptiste, and Niel (2006). 
Since then, more and more research has been done 
on energy-efficient scheduling in various manufactur-
ing environments, i.e. single/parallel machine and 
flow shop.

The first study on energy-efficient scheduling of 
a single machine was conducted by Mouzon and 
Yildirim (2008). They considered two objectives, i.e. 
total energy consumption and total tardiness, to mini-
mize. They proposed a meta-heuristic to generate 
multiple Pareto solutions, from which the analytical 
hierarchy process method was used to select the best 
alternative. Fang et al. (2016) studied a single machine 
to minimize the total electricity cost, considering the 
policy of time-of-use (TOU) electricity tariffs. The uni-
form-speed and speed-scalable cases were consid-
ered and addressed by approximation algorithms. 
Mouzon, Yildirim, and Twomey (2007) were among 
the first to investigate the power-down mechanism 
that machines could be turned off instead of keeping 
running during idle time. Shrouf et al. (2014) further 
considered the power-down mechanism with fluctu-
ating energy prices. They generated near-optimal 
solutions by a genetic algorithm (GA) and optimal 
analytical solutions for a single machine, respectively. 
Che et al. (2017) adopted the power-down mechan-
ism to schedule a single machine to minimize tardi-
ness and energy consumption. To address the bi- 

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1247



objective scheduling problem, an ε-constraint 
method incorporated with local search was presented 
to successfully find the exact Pareto front. Rubaiee 
and Yildirim (2019) attempted to schedule a single 
machine scheduling with pre-emption under the TOU 
mechanism to minimize energy consumption and 
total completion time. Ant colony optimization with 
a dominance ranking procedure was adapted to 
address the problem.

Another stream of energy-efficient scheduling 
research focused on the parallel machine environ-
ment. The speed-scaling mechanism that the dynami-
cally adjusted processing speed of machines was 
often used in these works. Generally, a higher cutting 
speed will lead to less processing time but more 
energy consumption. Fang and Lin (2013) studied 
how to schedule jobs to parallel processors and adjust 
the computing speed of processors to optimize the 
weighted tardiness and energy consumption. They 
proposed a particle swarm optimization algorithm 
with a new encoding operator to generate approxi-
mate solutions. Wang, Wang, and Lin (2017) investi-
gated how to assign jobs to parallel machines and 
determine machines’ cutting speed to minimize the 
makespan of jobs considering the bound of electricity 
load. Shioura et al. (2018) considered a speed-scaling 
mechanism in an immediate start scheduling problem 
that jobs must be exactly started at their release time. 
The cost functions included the quality of service as 
well as the cost of running. Single and parallel 
machine cases were both analysed. Wu and Che 
(2019) considered the environment of unrelated par-
allel machines with a speed-scaling mechanism. They 
proposed an effective memetic differential evolution 
algorithm with an adaptive learning strategy-driven 
local search to minimize both makespan and energy 
consumption.

The energy-efficient flow shop scheduling research 
has been gradually emerging recently (Ding, Song, 
and Wu 2016). Mansouri, Aktas, and Besikci (2016) 
adopted the speed-scale mechanism in a two- 
machine permutation flow shop. Considering the 
conflict of makespan and energy consumption, they 
built a bi-objective mixed-integer programming (MIP) 
model and developed a constructive heuristic to 
address the problem in a reasonable time. Lu et al. 
(2017) considered energy consumption, sequence- 
related setup time and belt transportation time in 
a permutation flow shop. A backtracking search 

algorithm was presented to search Pareto front sche-
duling solutions. Zheng et al. (2020) studied a two- 
stage permutation flow shop considering the block-
ing constraint, the TOU and speeding scaling 
machines. They developed a MIP model, which was 
addressed by an ant colony optimisation algorithm. 
Öztop et al. (2020) focused on a multi-stage permuta-
tion flow shop with similar settings, i.e. speeding 
scaling machines. They developed three heuristics to 
obtain the Pareto schedule considering both energy 
conservation and production efficiency. Yüksel et al. 
(2020) adopted a speed-scale mechanism to minimize 
energy consumption and tardiness for a permutation 
flow shop with no-wait characteristics. They proposed 
three multi-objective heuristics based on the artificial 
bee colony algorithm (ABC) and GA.

This research is somewhat related to the energy- 
efficient scheduling of a hybrid flow shop (HFS). Luo 
et al. (2013) incorporated the consideration of electric 
power consumption with TOU prices into traditional 
HFS scheduling. Ant colony optimization was adopted 
due to the complexity of the problem. Yan et al. 
(2016) studied an integrated optimization of cutting 
parameters and scheduling in an HFS. Several 
machine states, such as warm-up, standby setup, 
tool change and machining, were considered for cut-
ting parameters optimization. A GA was used to mini-
mize makespan and energy consumption 
simultaneously. Lei, Gao, and Zheng (2017) adopted 
a speed-scale mechanism to schedule an HFS to mini-
mize total tardiness and energy consumption. They 
adopted a teaching-learning-based algorithm to cap-
ture the characteristics of human learning. Li et al. 
(2018) considered an HFS with the setup energy con-
sideration and proposed a multi-objective heuristic 
with an adaptive neighbourhood operator based on 
the problem structure. Through adopting the power- 
down mechanism, the energy-efficient scheduling 
problem of HFS with unrelated parallel machines 
was studied (Meng et al. 2019). They built five MIP- 
based models, which were addressed by an improved 
GA. Wang et al. (2020) considered both TOU and 
power-down mechanisms to schedule an HFS. The 
system consists of two stages, in which stage 1 has 
parallel, and stage 2 has batch machines. They pro-
posed an augmented ε-constraint method for small- 
scale problems, a constructive heuristic for medium- 
scale problems, and an ant colony optimization algo-
rithm for large-scale problems. Gong et al. (2020a) 
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studied energy reduction in scheduling a flexible flow 
shop considering both worker flexibility and machine 
flexibility, in which the worker costs are incorporated 
into the makespan and energy-related indicators. 
They proposed a hybrid evolutionary algorithm with 
newly designed operators and neighbourhood 
search. Zhang et al. (2021) investigated TOU in a two- 
stage hybrid flow shop that the first stage has speed- 
scaling parallel machines and the second stage has 
unrelated parallel machines.

Besides, there are a few studies on energy-efficient 
scheduling in other environments, such as job shop 
(May et al. 2015; Mokhtari and Hasani 2017; Zhang, 
Wang, and Liu 2017), distributed manufacturing 
(Gong et al. 2020b), dynamic scheduling (Wang et al. 
2018; Nouiri, Bekrar, and Trentesaux 2020) and batch-
ing scheduling (Liu 2014), which are not detailed in 
this paper.

A review paper by Gao et al. (2020) indicates that 
processing product, machine idle, machine setup and 
on/off, and product or component transportation are 
considered most in energy demand. To achieve 
energy-efficient production, more than 30% of 
reviewed literature consider idle energy reduction, 
more than 30% consider processing energy reduction 
and more than 20% consider setup energy reduction. 
This is in line with the data in the review paper of 
Gahm et al. (2016), which reports that most of the 
research focuses on machine idle, machine on, 
machine off in non-processing energy demand and 
machine-related in processing energy demand. Thus, 
the authors attempt to reduce machine idle energy 
consumption through the power-down mechanism. 
Considering that the power-down mechanism may 
not be practical for some machines, the proposed 
mixed solution incorporates the speed-scale 
mechanism.

It is observed from Table 1 that most of the 
energy-efficient scheduling related research 
focuses on production environments, i.e. single 
(S), parallel (P) or flow shop-related (F) shop 
floor. Most research also adopts a single energy 
mechanism, such as either power-down (On/Off), 
speed-scaling (Speed) or TOU mechanisms. Most 
research considers multi-objective, such as total 
energy consumption and production-related cost, 
i.e. makespan, total completion time or total tardi-
ness. The research gap is identified. First, this 

paper considers a two-stage system of production 
and shipping. The first stage consists of unrelated 
parallel machines with power-down and speed- 
scaling mechanisms, and the second stage con-
siders heterogeneous vehicles with distinct sizes 
and energy consumption rates. Most of the 
research related to energy-efficient scheduling 
focus on the manufacturing domain. There is lim-
ited energy-efficient scheduling research consider-
ing both production and shipping. Only a few 
papers (Nouiri, Bekrar, and Trentesaux 2020; 
Zhang et al. 2021) are somewhat related, but the 
shipping scheduling problems they considered are 
within the production shop floor rather than out-
side shipping like ours. To the best of the authors’ 
knowledge, it is the first attempt at energy- 
efficient scheduling of integrated production and 
shipping considering power-down and speed- 
scaling mechanisms. Second, the authors propose 
a new memetic algorithm with a novel knowl-
edge-driven local search and two dominance 
rules derived from the characteristics of the pro-
posed EPSS.

3. Problem formulation, modelling and 
properties

This section first mathematically formulates the 
energy-efficient production and shipping scheduling 
problem, then presents its mathematical model and 
finally derives the properties of the problem.

3.1. Problem formulation

Consider an integrated system comprised of produc-
tion and shipping. The production stage has a set M 
of unrelated machines. Machines can be shut off at 
idle time but requiring extra reset energy to restart. 
Each machine i 2 M can run at a different speed 
mode v 2 V . Usually, higher cutting speed contri-
butes to better machining productivity while it 
requires higher energy consumption. Denote uv as 
processing speed factor for different processing 
speeds of machines. There are a set N of jobs arriv-
ing at the system at its release time rj, j 2 N. The 
processing time of job j is given as tj. Thus, the 
actual time used for processing job j at speed 
mode v is equal to tj

�
uv

.
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There are a set H of heterogeneous vehicles for 
shipping jobs to customers. Each job cannot be 
delivered to its customer in a separate vehicle. 
Once a vehicle is assigned to a job, it cannot be 
released until the delivery is finished. The round 
shipping time of job j is denoted as t0 j. Each 
vehicle has its capacity, Qh, h 2 H. Each job has 
its size qj. The capacity constraint qj � Qh satisfies 
if vehicle h is used to deliver job j. This assump-
tion fits make-to-order production, especially for 
one-of-a-kind production (OKP), such as die and 
mould. OKP products are delivered in dedicated 
vehicles to customers so that the capacity con-
straint should be satisfied. Usually, the parameter 
qj can be size or weight that dominates the capa-
city constraint of shipping. It prefers size for ship-
ping large-size products, weight for heavy 
products. For OKP products, manufacturing starts 
only after a customer order is received. Thus, 
order fulfilment is lead time-sensitive and needs 
an integrated optimization of production and 
shipping scheduling.

Three types of production energy consumption are 
commonly considered: process energy, reset energy 
and standby energy (Dai et al. 2013; Zhang, Wang, 
and Liu 2017). The shipping energy is considered due 
to the fuel consumption of vehicles for shipping. In 
detail, the types of energy consumption to be mini-
mized are listed as follows.

● The process energy Ep accounts for the total 
energy consumed during the cutting process, 
such as the energy consumed in the spindle 

drive unit. The process energy consumed per 
unit time for machine i at speed mode v is 
denoted as ep

iv .
● The reset energy Er is consumed when machines 

switch from off-state back to work-state. The 
reset energy consumed per unit time for 
machine i is er

i . The reset time each time for 
machine i is denoted as tr

i .
● The standby energy refers to the energy con-

sumed by machines on-state when they are not 
working, for instance, waiting for the next job. 
The standby energy consumed per unit time for 
machine i is denoted as es

i .
● The shipping energy E0 is considered due to the 

fuel consumption of vehicles during shipping. 
The fuel consumption depends on vehicle fea-
tures as well as shipping time. The shipping 
energy consumed per unit time for vehicle h is 
denoted as e0h.

In addition to energy consumption, the objective is 
also to minimize makespan. Minimizing makespan is 
widely adopted in many scheduling literatures, which 
equals maximizing machine/vehicle utilization 
(Pinedo 2012). Specifically, the makespan is defined 
as the duration between the production’s starting 
time and the shipping’s completion 
time C0max¼ max

1�j�n
ðC0 jÞ � min

1�j�n
ðrjÞ.

Therefore, the studied problem is to find an inte-
grated production and shipping schedule to minimize 
the total cost of makespan and energy consumption. 
The studied problem is named the energy-efficient 
production and shipping scheduling (EPSS) problem. 

Figure 1. Schematic diagram of the energy-efficient scheduling scheme.
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Specifically, the integrated schedule contains two 
parts: the production schedule and the shipping sche-
dule. The production schedule determines the alloca-
tion and sequencing of a set of jobs onto the 
machines, simultaneously making the machine state 
decisions, i.e. speed mode for processing jobs and on- 
off for idle time. The shipping schedule determines 
which vehicle is used to deliver the jobs to customers 
in what sequence. Note that routing-related decisions 
are not considered in this problem. Inner transporta-
tion is not considered because its transportation time 
is usually much shorter than that of outside shipping.

As shown in Figure 1, take job 2 for example. Two 
machine state decisions should be made. First, 
machine on or off decisions will incur different energy 
consumptions. For example, if the machine keeps on 
at the idle time, it consumes Es on standby in Figure 1 
(a), while the energy consumption is Er on the setup in 
Figure 1(b). Second, machine speed will also lead to 
different energy consumptions as well as completion 
time of jobs. For example, faster speed leads to earlier 
completion but larger energy consumption in 
Figure 1 (b) than in Figure 1(a).

Some basic assumptions for scheduling problems 
are also considered: 1) Setup of different types of jobs 
is not considered. 2) Each machine is turned on at 
time 0. 3) Each machine can process only one job at 
a time. 4) Pre-emption of jobs is not permitted. 5) 
Each job can be processed on only one machine at 
a time. 6) Each job is available for shipping once its 
production is completed.

3.2. Mathematical modelling

Before introducing the mathematical model for the 
EPSS problem, the used notation is defined as follows. 

Sets
M Set of unrelated machines, i 2 M
N Set of jobs, j; k 2 N
V Set of processing speed modes, v 2 V
H Set of vehicles, h 2 H
Parameters
rj Release time of job j, j 2 N
tj Processing time of job j, j 2 N
t0 j Shipping time of job j from manufacturer to customer
uv Processing speed factors for different processing speeds, 

v 2 V
tr

i Reset time for machine i per time
ep

iv Processing energy consumed per unit time for machine i 
at speed mode v

er
i Reset energy consumed per unit time for machine i

es
i Standby energy consumed per unit time for machine i

Ep Processing energy consumption

(Continued)

Sets
M Set of unrelated machines, i 2 M
N Set of jobs, j; k 2 N
V Set of processing speed modes, v 2 V
H Set of vehicles, h 2 H
Parameters
rj Release time of job j, j 2 N
tj Processing time of job j, j 2 N
t0 j Shipping time of job j from manufacturer to customer
uv Processing speed factors for different processing speeds, 

v 2 V
tr

i Reset time for machine i per time
ep

iv Processing energy consumed per unit time for machine i 
at speed mode v

er
i Reset energy consumed per unit time for machine i

es
i Standby energy consumed per unit time for machine i

Ep Processing energy consumption
Er Reset energy consumption
Es Standby energy consumption
B A very large number
qj Size of job j
Qh Capacity of vehicle h
e0h Shipping energy consumed per unit time for vehicle h
E0 Shipping energy consumption
Decision 

variables
Cj Completion time of job j in production
χijk 1 if job j immediately precedes job k on machine i, and 0 

otherwise
ηijv 1 if job j is processed on machine i at speed v, and 0 

otherwise
θij 1 if machine i is reset before processing job j, and 0 

otherwise
C0 j Completion time of job j for shipping
C0max The makespan
Uhjk 1 if job j is immediately dispatched before job k on vehicle 

h, and 0 otherwise
Whj 1 if job j is assigned on vehicle h, and 0 otherwise

The bi-objective, i.e. makespan and energy con-
sumption, are incorporated into a weighted single- 
objective. Thus, the objective of minimizing the total 
cost of makespan and energy consumption can be 
formulated as 

CME¼αC0max þ β Ep þ Er þ Es þ E0
� �

(1) 

where α and β are the cost coefficients of makespan 
and energy consumption.

A weighted single-objective method is adopted 
instead of the bi-objective optimization considering 
several aspects. First, the cost coefficients are obtain-
able, such as from historical data or expert experi-
ences. Second, it is straightforward and convenient 
for shopfloor managers to find a solution with mini-
mum total cost rather than searching from a large 
amount of non-dominated Pareto solutions. Third, 
the cost coefficients could also be regarded as the 
weights of makespan and energy consumption, 
which can be used as a control tool by shopfloor 
managers according to realistic situations or 
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a normalization role for the different dimensional 
criteria. The weighted single-objective method is 
also widely used in many existing scheduling studies, 
such as Chen and Vairaktarakis (2005), Fang and Lin 
(2013), Gawiejnowicz and Suwalski (2014).

Finally, the EPSS problem is modelled as 

MinCME (2) 

Subject to

Ep ¼
X

i2M

X

j2N

X

v2V

ep
iv

tj

uv
ηijv; i 2 M; j 2 N (3) 

Er ¼
P

i2M

P

j2N
er

i tr
i θij; i 2 M; j 2 N (4) 

Es ¼
X

i2M

X

k2N

es
i Ck �

X

v2V

tk

uv
ηikv �

X

j2N[f0g

Cjχijk

0

@

1

A 1 � θikð Þ; j�k; i

2 M; j 2 N [ f0g; k 2 N

(5) 

X

i2M

X

v2V

ηijv¼1; j 2 N (6) 

X

k2N[f0g

χijk ¼
X

v2V

ηijv; j�k; i 2 M; j 2 N [ f0g (7) 

X

j2N[f0g

χijk¼
X

v2V

ηikv; j�k; i 2 M; k 2 N (8) 

Ck � Cj � Bðχijk � 1Þ �
X

v2V

tk

uv
ηikv þ tr

i θik; j�k; i

2 M; j 2 N [ f0g; k 2 N (9) 

Cj �
X

v2V

tj

uv
ηijv � tr

i θij � rj; i 2 M; j 2 N (10) 

X

v2V

ηi0v ¼ 1; i 2 M (11) 

E0 ¼
X

h2H

X

j2N

e0ht0kWhj; h 2 H; j 2 N (12) 

X

h2H

Whj¼1; j 2 N (13) 

X

k2N[f0g

Uhjk ¼ Whj; j�k; h 2 H; j 2 N [ f0g (14) 

X

j2N[f0g

Uhjk¼Whk; j�k; h 2 H; k 2 N (15) 

C0k � C0 j � BðUhjk � 1Þ � t0k; j�k; h 2 H; j
2 N [ f0g; k 2 N (16) 

C0 j � Whjt0j � Cj; h 2 H; j 2 N (17) 

Qh � BðWhj � 1Þ � qj; h 2 H; j 2 N (18) 

Wh0 ¼ 1; h 2 H (19) 

C0max � C0 j; j 2 N (20) 

χijk 2 0; 1f g; j�k; i 2 M; j 2 N [ f0g; k 2 N (21) 

ηijv 2 0; 1f g; i 2 M; j 2 N (22) 

θij 2 0; 1f g; i 2 M; j 2 N (23) 

Uhjk 2 0; 1f g; j�k; h 2 H; j 2 N [ f0g; k 2 N (24) 

Whj 2 0; 1f g; h 2 H; j 2 N (25) 

Note that an additional dummy job is defined 
indexed by 0 for modelling. The dummy job is placed 
on each machine and vehicle with zero processing 
time and shipping time.

Constraints (3)–(10) belong to the production part. 
Constraints (3)–(5) define the process energy, reset 
energy and standby energy consumptions, respec-
tively. Constraint (6) enforces that each job can be 
assigned to only one machine with one-speed mode. 
Constraints (7) and (8) ensure that for a job j, there 
should be exactly one job before it and one after it on 
the same machine. Constraint (9) requires that job k 
should complete after its preceding job j plus its 
processing time and reset time if needed. This con-
straint is used to avoid the overlap of jobs on the 
same machine. Constraint (10) defines that produc-
tion cannot start until the job is released. Constraint 
(11) defines a dummy job processed at the first and 
last place of all jobs assigned to a machine.

Constraints (12)–(20) belong to the shipping part. 
Constraint (12) defines shipping energy consumption. 
Constraint (13) ensures that each job can be assigned 
to only one vehicle for shipping. Constraints (14) and 
(15) ensure that for a job j, there should be exactly one 
job before it and one after it on the same vehicle. 
Constraint (16) enforces that job k should finish after 
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its preceding job j on the same vehicle plus its ship-
ping time. Constraint (17) imposes that a job cannot 
be shipped until its production is finished. Constraint 
(18) imposes that each job cannot exceed the size of 
its assigned vehicle. Constraint (19) similarly defines 
a dummy job shipped at the first and last place of all 
jobs assigned to a vehicle. Constraint (20) imposes 
that the makespan should be greater than the com-
pletion time of all jobs. Constraints (21)–(25) define all 
the binary decision variables.

The proposed model is a mixed-integer model with 
quadratic terms in the constraints, called a mixed- 
integer quadratic program (MIQP). In the model, the 
objective is not convex and contains binary variables 
and linear variables. According to ILOG CPLEX 12.9.0 
(IBM 2019) handbook, CPLEX cannot solve the pro-
posed model because it cannot satisfy the prescribed 
conditions on the objective function. In order to 
address the MIQP model, a memetic algorithm is 
proposed in Section 4. Before introducing this algo-
rithm, the authors analyze the problem complexity 
and propose two important dominance rules, which 
will be used in algorithm design.

3.3. Problem complexity

The EPSS problem proves to be an NP-hard problem. 

Theorem 1. The EPSS problem is NP-hard in the strong 
sense.

Proof. Only consider the production scheduling part 
without energy-state decisions. The problem is trea-
ted as a parallel machine scheduling problem of mini-
mizing the makespan, i.e. PjMjjjCmax, which is still an 
NP-Hard problem in the strong sense (Pinedo 2012). 
In addition to the energy-state decisions and the 
shipping scheduling integration, the EPSS problem is 
an NP-Hard problem in a strong sense.

3.4. Dominance rules

Then, two optimal properties are established as dom-
inance rules for the latter proposed MA to remove the 
inferior solutions during the evolution of the pro-
posed MA. Let Ci½j� 1� denote the completion time of 
the job immediately preceding job j on machine i.

Property 1. If rj � Ci½j� 1�, thus θij=0 for job j on 
machine i, j 2 N. 

Proof. Because job j is released before the completion 
of job ½j � 1�, the job j is available for processing at 
any time when the machine i is available. Because the 
unit reset energy consumption er

i is larger than the 
unit standby energy consumption es

i , thus the 
machine is inclined to prefer standby mode.

Property 2. If es
i ðrj � Ci½j� 1�Þ � er

i tr
i , thus θij=0 for job 

j on machine i, j 2 N. 

Proof. If the standby energy consumption es
i ðrj �

Ci½j� 1�Þ is no more than the reset energy consumption 

er
i tr

i , the machine i is inclined to prefer standby mode 
considering the makespan is not affected on the mat-
ter the machine is standby or reset.

4. A memetic algorithm

As mentioned above, the EPSS problem is an NP-Hard 
problem. Most of the complex scheduling problems 
in the literature were addressed by meta-heuristics, 
considering the combinatorial complexity and com-
puting time requirement (Gao et al. 2019a, 2019b, 
2020). In this section, an MA is proposed to search 
for high quality heuristically but not necessarily opti-
mal solutions within acceptable computing time. MA 
performs exceptionally well in terms of exploration 
and exploitation by combining the evolutionary 
search and the problem-specific local search (Deng 
and Wang 2017). In recent years, MAs have been 
successfully used for addressing the complex optimi-
zation problems, for example, graph colouring pro-
blem (Lü and Hao 2010), flow shop scheduling 
problems (Wang and Wang 2015), vehicle routing 
problems(Cattaruzza et al. 2014; Nalepa and Blocho 
2016), integrated production and transportation sche-
duling problems (Guo et al. 2017).

More specifically, the proposed MA employs the 
population-based search framework of GA and incor-
porates a new knowledge-driven local search strat-
egy. Thus, the proposed MA has remarkable 
exploration ability inherited from the global search 
of GA and excellent exploitation ability from the local 
search strategy. The proposed MA also incorporates 
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the dominance rules proposed in Section 3.4, which 
fully utilize the special characteristics of the consid-
ered problem. The computational experiments have 
demonstrated the performance of incorporating 
knowledge-driven local search strategy and domi-
nance rules in Section 5.3.

4.1. The procedure of MA

The flowchart of the proposed MA is illustrated in 
Figure 2. First, the energy-efficient production sche-
duling decisions are encoded for generating an initial 
population. Each chromosome is decoded into 
a production schedule. Then, a greedy heuristic is 
proposed to generate a shipping schedule when the 
production completion time of each job is known. At 
each generation, crossover, mutation, knowledge- 
driven local search and dominance rule-based adjust-
ment are conducted in sequence to generate new 
chromosomes. The performance of a chromosome is 
evaluated by the fitness value using the decoding 
operator. The selection operator then generates the 
new population at the next generation.

The MA has several key parameters, namely popu-
lation size (Psize), mutation probability (Pm) and cross-
over probability (Pc). The initial population is 
randomly generated according to the given popula-
tion size. Population size is kept constant during evo-
lution. The MA will not stop until the stop condition is 
satisfied. The stop condition used in MA is the max-
imum generation (Mgen). The MA search is also 
stopped to avoid an ineffective search if no improve-
ment can be achieved in a certain number of succes-
sive generations named search depth (Sdep).

4.2. Encoding representation and decoding

The energy-efficient production scheduling needs to 
make the following decisions: 1) Partition jobs for 
machines, 2) Sequence the assigned jobs for each 
machine, 3) Determine the standby/reset states of 
machines for processing each job, 4) Determine the 
speed modes of machines for processing each job. 
A representation scheme is proposed for encoding 
these decisions into a chromosome. The chromosome 
is a 3 × ðnþm � 1Þ matrix for a m-machine and n-job 
problem. The first row consists of job permutations and 
partitioning symbols, i.e. asterisk. In the list, integers 
represent all possible jobs sequence, and asterisks 
denote the partition of jobs to machines. The second 
row designates the standby/reset states of the machine 
before processing the job in the same column. Without 
loss of generality, integer 1 represents standby state, 
while 2 represents reset state. The third row consists of 
different integers that stand for the speed modes when 
processing the jobs in the same column. Consider an 
example with nine jobs and three machines. 
A chromosome is represented in Figure 3.

The decoding operator can convert a chromosome 
into a feasible schedule, which is described in Figure 4.

4.3. Evaluation and selection

The quality of a chromosome is evaluated by its fitness 
value. As the EPSS problem is for minimization, the 
fitness of each chromosome is defined as the reciprocal 
of the objective function value. Thus, a better chromo-
some owns a larger fitness. Note that the objective 
function value is obtained, considering the production 
schedule decoded by the decoding operator in 
Section 4.2 and the shipping schedule obtained in 
Section 4.6.

Figure 2. Flowchart of the proposed MA.
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After obtaining the fitness values of all chromo-
somes, the selection operator is used to generate 
a new population. The goal of the selection operator 
is to ensure that chromosomes with higher quality 

will have a larger probability of being selected into 
the mating pool. In the MA, unbiased tournament 
selection is employed, taking advantage of a small- 
time complexity (Yu and Gen 2010).

1 2 2 1 2 1 * 2 1

Machine 1 Machine 2 Machine 3

* 1

3 2 5 7 4 8 * 6 9* 1

3 2 1 1 2 3 * 2 3* 1

Figure 3. Chromosome representation.

Figure 4. Pseudocode for decoding.
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To implement the unbiased tournament selection, 
some permutations regarding the indexes of chromo-
somes are randomly generated. The number of per-
mutations equals the tournament size. In each 
tournament, the chromosome with the best fitness 
value is selected to generate a new population com-
prise good-quality chromosomes.

For instance, in Figure 5, suppose there is 
a population of five chromosomes with the fitness 
values {1.0, 2.2, 3.1, 4.5, 5.6}. If the tournament size is 
given as three, then three permutations of the five 
chromosomes are randomly generated, such as {1, 2, 
3, 4, 5}, {4, 1, 5, 2, 3} and {3, 5, 2, 4, 1}. The chromosome 

with the smallest fitness value (minimization problem) is 
selected as the winner for each tournament. After five 
times selection, a new population {1, 1, 2, 2, 1} is formed.

4.4. Crossover

Crossover aims to reserve the good gene segments of 
parents to create a new child/offspring. The essential 
issue of the crossover operator is how to make use of 
gene information of parents as much as possible to 
create a high-quality child. The sub-schedule preser-
vation crossover operator is adopted in the proposed 
MA. A single child is created by two parents using the 
crossover operator through inheriting the partition-
ing structure and a sub-schedule from one parent and 
deriving the remaining job sequence from another 
parent. The basic procedure is given below.

Step 1: Reserve the asterisk positions from one 
parent.

Step 2: Randomly inherit a sub-schedule from the 
same parent.

Step 3: Complete the child with the remaining jobs 
with the same sequence from another parent.

Consider the example of two parents in Figure 6. 
The partitioning structure is inherited from the first 
parent to the child. The sub-schedule in the third 
machine of the first parent is reserved. The remaining 

Figure 5. Unbiased tournament selection.

Figure 6. Crossover operator.
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jobs, i.e. job 3, 2, 5, 7, 4, 1 and 6, are inserted to 
complete the child following the sequence of these 
jobs at the second parent.

4.5. Hybrid mutation

It is noted that the proposed crossover operator could 
alter the job partition and job sequence of chromo-
somes. However, variations of standby/reset states 
and speed modes of machines are minimal. To 
enhance variability and diversity of chromosomes, 
a hybrid mutation operator is proposed.

The hybrid mutation operator combines three 
mutation operators considering characteristics of 
three rows of the chromosome. The first mutation 
operator is the swapping mutation that randomly 

selects two positions and swaps the genes of the 
two columns of a chromosome. The randomly 
swapped genes can be a job or asterisk. The swapping 
mutation, taking advantage of the characteristics of 
the first row of the proposed encoding operator, can 
incur meaningful gene mutations. The swapping 
mutation can alter the job sequence if two jobs at 
the same machine are selected. Job partition and job 
sequence can be altered if two jobs at different 
machines are selected. Asterisk positions can be 
altered if a job and an asterisk are selected.

The second one is the bit-flip mutation designed 
for changing the standby/reset state. The bit-flip 
mutation randomly selects a position and makes the 
bit-flip change of the gene at the second row, i.e. 1 to 
2, or 2 to 1 (Yu and Gen 2010).

Figure 7. Hybrid mutation operator.
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Finally, the third mutation operator is a variant of 
bit-flip mutation revised for changing the speed 
modes of machines. It similarly selects a random posi-
tion and changes the current speed mode to the 
other two modes with the same probability for the 
third row. For instance, the randomly selected gene is 
speed mode 1, which can be changed to speed mode 
2 or speed mode 3 with equal probability. The basic 
procedure is described as follows.

Step 1: Employ the swapping mutation that ran-
domly selects two positions and then swaps the 
genes of the two columns of a chromosome.

Step 2: Employ the bit-flip mutation that randomly 
selects a position at the second row of the chromo-
some and makes the bit-flip change to the gene of the 
position.

Step 3: Employ the revised bit-flip mutation that 
randomly selects a position at the third row of the 
chromosome and makes the flip change to the gene 
of the position.

Consider a chromosome for the mutation in 
Figure 7. First, two randomly selected columns, i.e. 
the green columns, are exchanged by swapping muta-
tion. Then, a randomly selected gene at the second 
row, i.e. the yellow one, is changed from the reset state 

to the standby state. Finally, the speed mode is chan-
ged from 1 to 3 by making a flip change to the ran-
domly selected gene at the third row, i.e. the blue one.

4.6. A greedy heuristic for shipping scheduling

Regarding the complexity of the EPSS problem, the 
shipping scheduling is separately investigated, which 
is described as PjHjjr0 j; qj � QhjαC0max þ βE0 using the 
three-field notation (Pinedo 2012). Shipping schedul-
ing is to allocate n jobs onto b vehicles to minimize 
the total cost of makespan and energy consumption. 
A constraint is imposed that the release time of each 
job is equal to its completion time of production, i.e. 
r0 j ¼ Cj. Another constraint is that the job size should 
be no larger than the size of the allocated vehicle, 
i.e. qj � Qh.

Given the framework of the proposed MA, the 
shipping scheduling is embedded in each evolution-
ary generation of the MA. Computing time of gener-
ating the shipping schedule has a considerable effect 
on the efficiency of the whole MA. Considering the 
complexity of downstream shipping scheduling pro-
blem, optimal exact algorithms are unaffordable due 
to the exponential growth of computing time. Thus, 

Figure 8. Pseudocode for heuristic H.
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an approximation algorithm named greedy heuristic 
H is devised to obtain the shipping schedule in 
Figure 8 efficiently.

Heuristic H sorts jobs in the non-decreasing 
sequence of r0 j, j 2 N. According to the sequence, 
jobs are assigned one by one to the exact machine 
with the least objective value. Let Sh denote 
a sequence of jobs assigned on vehicle h. Denote 
CðShÞ as the completion time of the shipping sche-
dule πh, h 2 H.

4.7. Knowledge-driven local search

Usually, GA is good at global search but easily 
stuck in local optimum (Yu and Gen 2010). 
A knowledge-driven local search is proposed and 
embedded into GA to enhance exploitation ability 
and avoid premature convergence.

The knowledge-driven local search employs 
simulated annealing (SA) as the local search frame-
work, which has successfully addressed extensive 
optimization problems (Goh, Kendall, and Sabar 
2017; Yuan et al. 2019). Based on SA, the MA 
could avoid trapping into the local optimum by 
accepting worse solutions in small probability dur-
ing iterations.

Besides, a new knowledge-driven neighbour 
generation operator is developed to generate 
a high-quality neighbourhood. The knowledge- 
driven neighbour generation operator uses the 
existing knowledge using good dispatching rules 
for the variants of the EPSS problem. The proposed 
neighbour generation operator is different from 
many traditional neighbour generation operators 
in SAs, such as SWAP, taking no account of the 
specific characteristics of the target problem.

The knowledge-driven neighbour generation 
operator comprises three dispatching rules: 
Johnson’s rule, first-come-first-served (FCFS) and 
large-size job first (LSJF). As a variant of the EPSS 
problem, Johnson’s rule can optimally solve the 
two-stage flow shop scheduling problem (Ruiz 
and Maroto 2005). FCFC means that the earlier 
a job is released, the earlier the job is assigned. 
Consider that the jobs arrive at the production 
part with different release time. It is well known 
that FCFC works well for many scheduling pro-
blems to minimize the makespan, especially for 
situations with large intervals of release time. 

Finally, LSJF means that the larger the job size 
is, the earlier the job is assigned. Small jobs can 
be shipped by either large or small vehicles. In 
contrast, large jobs can only be shipped by large 
vehicles due to the size constraint. It is more 
likely that large jobs have higher priority than 
small jobs to be assigned. The hybrid features of 
the EPSS problem lead the authors to design 
a new neighbour generation operator based on 
the three dispatching rules, i.e. Johnson’s rule, 
FCFS and LSJF.

At each generation of the proposed MA, a local 
search is performed on the second-best chromo-
some of the current population to generate 
a new neighbouring chromosome. The procedure 
of the knowledge-driven local search is described 
as follows.

Step 1: Choose the second-best chromosome 
Y of the current population. Randomly select one 
machine of the chromosome. Randomly employ 
one of the three dispatching rules with equal 
probability to re-sequence the jobs on the 
selected machine.

Step 2: Employ the bit-flip mutation and the 
revised bit-flip mutation to change the standby/ 
reset machine mode and the machine speed 
mode, respectively. Then, a new neighbouring 
chromosome namely Yx is generated.

Step 3: Adopt a decoding operator to evaluate the 
fitness value fðYxÞ of the new neighbouring 
chromosome.

Step 4: Accept the neighbouring chromosome Yx 

to replace the original chromosome Y using the fol-
lowing condition. This step enables local search to 
avoid trapping into a local optimum through accept-
ing non-locally optimal chromosomes at an adaptive 
probability.

● If the fðYÞ � fðYxÞ � 0, replace the original chro-
mosome Y with the new chromosome Yx .

● If the f ðYÞ � f ðYxÞ< 0, replace the original chro-
mosome Y with the new chromosome Yx at the 

adaptive probability, i.e. exp f Yð Þ� f Yxð Þ

Tx

� �
. In parti-

cular, generate a random number, e.g. rand, 

0 < rand < 1. If exp f Yð Þ� f Yxð Þ

Tx

� �
>rand, accept new 

chromosome Yx , otherwise preserve the original 
chromosome Y .
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Step 5: Update the temperature Tx . The tempera-
ture at generation x-th, Tx is updated by the geo-
metric cooling scheme Tx ¼ ζTx� 1, where ζ is the 
prescribed cooling speed factor.

4.8. Dominance rule-based adjustment

After using the crossover, the hybrid mutation and 
the knowledge-driven local search, the population at 
each generation is updated by the following adjust-
ment based on the dominance rules in Section 4.2.

Step 1: Check jobs of each chromosome one by 
one whether Property 1 is satisfied. If yes, set the 
machine standby, otherwise do nothing.

Step 2: Check jobs of each chromosome one by 
one whether Property 2 is satisfied. If yes, set the 
machine standby, otherwise do nothing.

The chromosome adjustment is embedded into 
the chromosome evaluation step not to take much 
computing time. The latter experimental results also 
show that the rule-based dominance adjustment 
does not increase the computing time of the whole 
MA. In many cases, however, it can narrow the inef-
fective search space, resulting in a decrease in the 
computing time of the MA.

5. Computational experiments and results

This section conducts a series of computational experi-
ments to evaluate the performance of the proposed 
MA using randomly generated instances. First, the key 
parameters of the MA are tuned. Then, the MA is 
compared with two other population-based algo-
rithms. Finally, the energy-saving effect of the pro-
posed energy-efficient scheduling approach is 
identified.

5.1. Experiment settings

There are few related works on the EPSS problem 
whose benchmark instances are available now. The 
values of parameters in the proposed model are 
varied to generate testing instances in this article. 
The parameter settings such as the number of jobs/ 
speed, processing time and energy consumption are 
similar to the previous energy-efficient scheduling 
research (Mansouri, Aktas, and Besikci 2016; Wu and 
Che 2019).

In detail, different numbers of jobs, i.e. jNj = 25, 50, 
75, 100, 150, 300, are considered. The processing time 
and shipping time of jobs, namely tj and t0 j, are ran-
domly generated according to the uniform distribu-
tion [1, 99] minutes. The processing energy per unit 
time for machine i, denoted as ep

i , is randomly gener-
ated according to the uniform distribution [30, 70] 
kilowatts. The standby energy per unit time es is set 
as 10 kilowatts. The reset energy per unit time er

i is set 
as 20 kilowatts and let er

i � es. The reset time tr
i is 

randomly generated according to the uniform distri-
bution [1, 25] minutes. The processing speed mode uv 

is set as 0.75, 1, 1.25. For each speed mode, set the 

processing energy parameter ep
iv¼ep

i � ðuvÞ
2.

Besides, to test the various bottleneck situations of 
the integrated system, different machine-vehicle com-
binations, i.e. (|M|,|H|) are considered as (2, 4), (4, 4) and 
(8, 4). The size of jobs qj and vehicle capacity Qh are 
randomly generated according to the uniform distribu-
tion [2, 5]. Then four different sizes of jobs and vehicles 
are considered based on practical experience. It simu-
lates major size correlations of job and vehicle with the 
ten size combinations, i.e. [2, 2], [2, 3], [2, 4], [2,5], [3,3], 
[3,4], [3, 5], [4, 4], [4, 5], [5, 5]. At least one vehicle is larger 
than the largest job in each instance so that the instance 
is solvable. The shipping energy per unit time e0h asso-
ciated with the capacity of the vehicle is set as 20� Qh. 
Besides, jobs arrive at different release times, which are 
randomly generated according to the uniform distribu-
tion [0, 800].

Table 2. MA parameters and their levels in the orthogonal 
method.

Factors

Factor levels

1 2 3

Psize 50 100 200
Pc 0.5 0.7 0.9
Pm 0.1 0.3 0.5

Table 3. Orthogonal array and results.

Run No.

Factor levels

CMEPsize Pc Pm

1 1 1 1 5328.8
2 1 2 2 5322.9
3 1 3 3 5316.5
4 2 1 2 5318.4
5 2 2 3 5312.7
6 2 3 1 5326.4
7 3 1 3 5305.4
8 3 2 1 5324.3
9 3 3 2 5313.8

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1261



The experiments are run on a Lenovo PC Tianyi 
510Pro with Intel i7-9700 CPU 3.0 GHz and 16 GB 
RAM. The experiments are implemented by 
MATLAB R2014b. Each instance is run three 
times in all experiments to obtain its mean objec-
tive value used for evaluation.

5.2. Parameters tuning

It is well known that the parameters of MAs have 
a dramatic impact on their performance. In this 
section, the key parameters, i.e. population size 
(Psize), mutation probability (Pm) and crossover 
probability (Pc) are tuned by experiments. The 
stop condition, i.e. maximum generation, Mgen is 
set as 1000. To avoid an ineffective search, the 
search is stopped if no improvement can be 
found in the successive 50 generations. Besides, 
in the local search, the initial temperature T0 is 
set as 1000, and the cooling speed factor ζ was 
set as 0.99.

The three key parameters are determined by the 
orthogonal method of design-of-experiment (DOE). 
Each parameter is treated as a factor, and three levels 
are considered for each factor in Table 2. An orthogo-
nal array L9(33) is selected. All instances generated in 
Section 5.1 are considered. For each row in Table 3, 
each CME is calculated by averaging the objective 
values of all instances.

First of all, the normal distribution test and Bartlett’s 
test are conducted. The results illustrate that the sam-
ples are normally and independently distributed with 
a common variance for each treatment.

Then, the main effect plot of the MA parameters is 
given in Figure 9. It is observed that the effect of Psize 
and Pm on CME are more significant than Pc. The CME 

drops with the increase of Psize and Pm, indicating the 
optimal setting of Psize and Pm at the endpoint. 
Besides, Pc has a slight impact on CME. Thus, the 
parameters of MA are set as follows: population size 
Psize = 200, mutation probability Pm = 0.5 and cross-
over probability Pc = 0.5 for the subsequent 
experiments.

5.3. Algorithm comparison and analysis

It is well known that MA is a population-based meta-
heuristic. To evaluate the performance of the pro-
posed MA, two famous population-based 
algorithms, i.e. GA and MA, are adapted according to 
the studied problem following the experimental 
design rules in the relevant research by (Guo et al. 
2017). Besides, the authors justify the effectiveness of 
the proposed knowledge-driven local search and 
dominance rule-based adjustment here. Thus, four 
algorithms for comparisons are 1) the adapted GA 
by Yu and Gen (2010) (GA); 2) the adapted MA devel-
oped by Moscato and Cotta (2003) (AMA); 3) the 

Figure 9. Main effect plot of the MA parameters.
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proposed MA with the knowledge-driven local search 
(MA_L); 4) the proposed MA with both knowledge- 
driven local search and dominance rule-based adjust-
ment (MA_L_D).

Besides, tight lower bounds for the studied EPSS 
problems are difficult to obtain considering the 
weighted bi-objectives of makespan and energy con-
sumption as well as multiple complex decisions. The 
authors went through the energy-efficient scheduling 
publications considering bi-objectives of makespan 
and energy consumption. Most of these papers did 
not consider lower bound comparisons; for example, 
Wang et al. (2020), Wu and Che (2019), and Zhang 
et al. (2021) conducted algorithm comparisons to 
evaluate the performance of their proposed algo-
rithms instead.

In the GA and AMA, the parameters, i.e. population 
size, mutation probability, crossover probability and 
maximum generation, are identical to those of MA_L 
and MA_L_D. Small-scale instances, i.e. |N| =25, 50, 75 
as well as large-scale instances, i.e. |N| =100, 150, 300 
are considered. The results are given in Table 4. The 
columns ‘CME’ and ‘Time’ show the objective and the 
computing time (seconds), respectively. The details of 
each instance are listed in the table. The row ‘average’ 
shows the average value of all instances.

It is observed that the average CME values of the 
proposed MA_L_D and MA_L are noticeably better 
than those of the AMA and the GA, especially for large 
instances. It is reasonable that the AMA obtains a better 
average CME value than the GA due to the existence of 
the local search. The MA_L obtains an even better 

average CME value than the AMA. This verifies the per-
formance of the proposed knowledge-driven local 
search. Furthermore, the MA_L_D obtains the best aver-
age CME value, demonstrating the effectiveness of the 
embedded dominance rule-based adjustment.

In detail, the bold values represent the best CME of 
the four algorithms for each instance. The MA_L_D 
obtains most of the best CME values of the instances 
compared to the other three algorithms. Although 
the MA_L_D has not dominated in all instances, it is 
highly competitive in terms of the average value and 
performance in most cases.

Besides, the average computing time of the 
MA_L_D is less than those of the other three algo-
rithms. It is majorly attributed to the problem-specific 
dominance rules that shrink the unmeaningful search 
space for more effective and high-quality searches.

5.4. Energy reduction evaluation and analysis

The proposed energy-efficient scheduling approach 
incorporated energy consumption minimization into 
makespan minimization of the traditional scheduling. 
In this section, the effect of energy reduction is 

Table 4. Algorithms comparison.

|N| (|M|,|H|)

GA AMA MA_L MA_L_D

CME Time (s) CME Time (s) CME Time (s) CME Time (s)

25 (2, 4) 1848.4 14.9 1840.5 15.5 1847.7 10.7 1846.9 2.8
(4, 4) 1683.0 15.7 1682.0 15.1 1672.9 14.4 1671.7 7.0
(8, 4) 1574.5 12.0 1577.5 17.8 1578.0 14.4 1573.2 7.5

50 (2, 4) 3423.3 20.0 3421.4 20.1 3419.0 17.5 3418.8 3.8
(4, 4) 3028.2 24.6 3034.7 24.7 3011.8 23.0 2986.9 12.3
(8, 4) 2819.3 28.0 2807.0 28.2 2786.2 24.9 2767.9 21.7

75 (2, 4) 4668.7 26.3 4658.7 30.1 4645.6 23.9 4638.0 5.5
(4, 4) 4127.6 34.5 4129.1 34.6 4097.5 25.8 4059.3 16.3
(8, 4) 3840.9 38.6 3826.3 39.2 3788.3 33.3 3792.5 28.0

100 (2, 4) 6449.9 39.0 6452.8 35.1 6442.8 33.0 6440.9 6.6
(4, 4) 5507.6 44.5 5495.7 44.2 5494.5 39.8 5468.0 23.2
(8, 4) 5004.6 48.8 4978.1 49.3 4932.3 41.8 4910.1 47.4

150 (2, 4) 10293.6 62.5 10295.0 58.8 10283.1 56.9 10272.4 12.1
(4, 4) 8991.0 64.7 9018.4 65.0 8923.2 55.7 8904.0 33.2
(8, 4) 8265.7 68.7 8264.9 69.1 8210.4 59.7 8221.1 65.1

300 (2, 4) 20676.0 124.0 20695.2 124.4 20671.3 110.7 20648.9 19.2
(4, 4) 17911.1 125.9 17881.2 124.7 17964.9 109.1 17773.9 54.5
(8, 4) 16,339.8 127.3 16306.1 126.6 16218.0 111.8 16184.4 143.5

Average 7025.2 51.1 7020.3 51.2 6999.3 44.8 6976.6 28.3

Table 5. ANOVA for different problem sizes.
|N| f0 P-value

25 80.12 0.000
50 69.81 0.000
75 73.89 0.000
100 53.77 0.000
150 59.25 0.000
300 101.08 0.000
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assessed by comparing energy-efficient scheduling, 
specifically, using both power-down and speed- 
scaling mechanisms, only power-down mechanism 
and only speed-scaling mechanism to traditional 
scheduling (no energy optimization).

Firstly, a single-factor analysis of variance (ANOVA) 
experiment is conducted to verify whether energy- 
efficient scheduling considers energy optimization sig-
nificantly impacting energy reduction. Two different 
levels of the single factor, i.e. energy-efficient scheduling 

Table 6. Energy savings by energy-efficient scheduling with different mechanisms.

|N|

Traditional scheduling 
(Energy consumption)

Energy-efficient scheduling 
(Energy consumption/Energy savings)

No energy optimization Power-down Speed-scaling Both

25 2835.9 2478.1/12.6% 2384.3/16.0% 2308.7/18.6%
50 5352.1 4952.3/7.5% 4654.1/13.0% 4630.3/13.5%
75 8065.1 7511.9/6.9% 7021.8/12.9% 7011.6/13.1%
100 10774.6 10221.8/5.1% 9503.7/11.8% 9500.4/11.8%
150 16164.5 15445.8/4.5% 14422.7/10.8% 14402.7/10.9%
300 21297.4 20602.9/3.3% 18963.0/11% 18947.5/11%
Average energy savings 6.7% 12.6% 13.2%

Figure 10. Pareto frontier with different weight combinations: (a) Problem jNj = 50, (b) Problem jNj = 100 and (c) Problem jNj = 150.
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with energy optimization (using both power-down and 
speed-scaling mechanisms) and traditional scheduling 
with no energy optimization, are considered. For doing 
so, the weight combinations of energy consumption 
and makespan are set as (0.5, 0.5) and (0, 1) for energy- 
efficient scheduling with energy optimization and tradi-
tional scheduling with no energy optimization, respec-
tively. Although setting different weight combinations, 
i.e. (0.1, 0.9), (0.2, 0.8), will generate different specific 
energy consumption values. Similar findings are suc-
cessfully obtained, which are not repeatedly listed 
here. For each problem size, 50 instances are randomly 
generated, and their mean value is used.

Table 5 shows the results of the problems, jNj = 25, 
50, 75, 100, 150 and 300, respectively (with jMj= 4, jHj
= 4). It is observed that the P-values of all problems are 
far less than 0.05, indicating that energy-efficient sche-
duling has a significant impact on energy reduction.

Specifically, it is observed in Table 6 that compared 
to traditional scheduling, energy consumptions by 
energy-efficient scheduling using power-down 
mechanism only, the speed-scaling mechanism only 
and the two mechanisms both are averagely reduced 
by 6.7%, 12.6% and 13.2%, respectively. This indicates 
that using both power-down and speed-scaling 
mechanisms is better than using only one of the two 
mechanisms.

Secondly, the effect of the weight combination is 
investigated. Weight combinations ranging from (0, 1) 
to (1, 0) with 0.1 increment are considered. For length 
and clarity, Figure 10 shows the obtained Pareto fron-
tier of problem jNj = 50, problem jNj = 100 and 
problem jNj = 150. Note that the Pareto frontier is 
incomplete due to the approximate search of the 
weighted objective method.

It is easily found the conflicted relationship between 
makespan and energy consumption. Energy can be 
saved at the expense of a longer makespan. Take 
problem jNj = 150 for example. The energy consump-
tion sharply drops as energy weight increases from 0 at 
first. Nearly 6% energy consumption saving is obtained, 
incurring almost no makespan deterioration when 
energy weight varies from 0 to 0.1. However, as the 
energy weight increases to some extent, for example, 
from 0.6 to 1, makespan increases more quickly than 
energy consumption reduces. A similar tendency is 
found for the other problems that energy consumption 
quickly reduces when taking energy-saving optimiza-
tion into account, for example, energy weight increases 

from 0 to 0.1. Then, makespan increases sharply if the 
increase of energy weight continues (such as after 0.8). 
Thus, determining an appropriate weight combination 
is highly useful for successfully applying the proposed 
energy-efficient scheduling approach.

Besides, it is observed that the Pareto frontier 
shapes of the three problems differ from each other. 
This indicates that the trade-off between makespan 
and energy consumption is varied from different pro-
blems. A similar finding can be found in the research 
(Mansouri, Aktas, and Besikci 2016), which was 
explained using the shadow price of the respective 
objectives. The finding provides an excellent way to 
identify the impact of modifying weight combinations 
by checking the shadow prices of Pareto front sche-
dules in terms of makespan and energy consumption.

6. Conclusions

This research investigates an integrated production 
and shipping scheduling problem with energy- 
efficient considerations. Two effective energy- 
saving mechanisms, power-down and speed- 
scaling mechanisms, are considered simulta-
neously. The problem is modelled as a mixed- 
integer quadratic program, and a GA-based MA 
incorporating a knowledge-driven local search 
strategy is proposed to address the problem. 
Besides, two dominance rules are derived accord-
ing to the problem characteristics embedded in 
the MA to enhance its search capability. 
Experimental results also demonstrate that the pro-
posed MA performs better than two other popula-
tion-based algorithms, i.e. GA and the traditional 
MA, in terms of performance and computing time.

The proposed energy-efficient scheduling approach 
incorporates energy optimization into makespan- 
oriented scheduling of the integrated production and 
shipping system in a weighted bi-objective way. The 
experimental results show that 13.2% of energy con-
sumption can be averagely saved after considering 
energy-efficient optimization. It is found that energy- 
saving can be fairly obtained, incurring almost no make-
span deterioration when energy weight is set from 0 to 
0.1. The effect of various weight combinations is evalu-
ated on respective energy consumption and makespan, 
suggesting how to leverage weight combinations of 
makespan and energy consumption in practical applica-
tion. The findings indicate that the proposed energy- 
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efficient approach can benefit sustainable production 
for the whole production-shipping supply chain of 
make-to-order products. By leveraging the two objec-
tives of optimization, increasing productivity and redu-
cing energy consumption can be balanced.

This work can be further extended from the follow-
ing aspects. First, considering the uncertainties in pro-
duction and shipping, the stochastic version of the 
proposed model can be studied. Second, to fit more 
situations, the proposed model can be extended con-
sidering other energy-saving mechanisms, such as the 
time of use mechanism. Third, it can be studied how 
weight combination can be self-adaptive regarding 
different situations. Fourth, the shipping scheduling 
part can be realistically extended by including vehicle 
routing and 3D container packing decisions.
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