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Polymer composites have found applications in diverse areas, ranging from the
manufacturing of portable electronic devices to the fabrication of bioactive agent
carriers. This article reports the preparation of composite films consisting of sodium
alginate (SA) and lithium silver oxide (LAO) nanoparticles. The films are generated by
solution casting; whereas the nanoparticles are fabricated by using the hydrothermal
method. The effects of the nanoparticles on the morphological, thermal, and dielectric
properties of the films are examined by using Fourier transform infrared (FTIR)
spectroscopy, X-ray diffraction (XRD) analysis, differential scanning calorimetry (DSC),
thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Electrical
measurements are also performed to determine the dielectric constant (ε′), dielectric loss
(ε″), AC conductivity (σac), electrical moduli (M′ and M″), and impedance (Z’ and Z″). The
composite films are shown to be crystalline in nature, with nanoparticles having a diameter
of 30–45 nm effectively disseminated in the polymer matrix. They also display good
dielectric properties. Our results suggest that the films warrant further exploration for
possible use in microelectronic applications.
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INTRODUCTION

Polymer composites have found applications in a large variety of areas, ranging from the generation
of portable electronic devices and high-speed integrated circuits (Deshmukh et al., 2017; Zhang et al.,
2002) to the development of drug delivery systems (Lai et al., 2018; Lopez-Lugo et al., 2021; Rajesh
et al., 2021). This is partially attributed to good processability and high structural flexibility of
polymer composites (Chen et al., 2015; Choudhary and Sengwa, 2017; Dang et al., 2012; Xu et al.,
2017). Since the turn of the last century, many researchers have investigated the dielectric properties
of various polymer composites (Kavitha et al., 2017; Maharramov et al., 2018), and have found that
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such properties are affected by the chemical composition,
crystallinity, and morphological features of the composites
(Sunilkumar et al., 2014). Proper optimization of the
properties of the polymer and the inorganic fillers is,
therefore, required for the attainment of polymer composites
with maximal performance (Balazs et al., 2006; Deshmukh et al.,
2017).

As far as the selection of inorganic fillers is concerned, metal
oxides and metal nanoparticles (NPs) (including silver NPs,
copper NPs, copper oxide, aluminium oxide, lithium
aluminium oxide, iron oxide, barium titanium oxide, and
titanium oxide) have been brought forward because they
enable the generation of polymer composites with high
electrical conductivity (Afzal et al., 2008; Chen et al., 2015;
Choudhary and Sengwa, 2017; Dang et al., 2012; Deshmukh
et al., 2017; Huang et al., 2009; Li et al., 2009; Li, et al., 2017; Luo
et al., 2014; Nelson et al., 2002; Xu et al., 2017; Yang et al., 2015;
Zhang et al., 2016; Zhang et al., 2002). The electrical properties of
the composites are determined not only by the size and
morphology of the NPs (Masoud et al., 2013) but also by the
interactions between NPs and the polymer matrix (Deshmukh
et al., 2017; Yang et al., 2015). Because of the latter, various
strategies (including surface modification (Riggs et al., 2015;
Zhang et al., 2016) and ultrasonication of the NPs (Xu et al.,
2017) have been adopted to enhance dispersion of the NPs in the
polymer matrix.

Apart from the inorganic fillers, the polymer moiety plays an
important role in determining the ultimate properties of the
composites generated. One of the most extensively studied
polymers is sodium alginate (SA), which is a naturally
occurring anionic polysaccharide derived from brown
seaweeds (Lai et al., 2016; Reddy et al., 2020; Sreekanth Reddy
et al., 2021). Besides its use in composite fabrication (Bibi et al.,

2020; Kloster et al., 2020; Leonardi et al., 2021), SA has been
widely exploited for biomedical and electrical applications due to
its low cost, high biodegradability and negligible toxicity (Lai
et al., 2020a; Lai et al., 2020b; Praveena et al., 2014; Rachocki et al.,
2011). By taking advantage of these favourable properties of SA,
in this study we have fabricated a series of biodegradable
composite films. The films are made by using solution casting,
and are incorporated with lithium silver oxide (LAO) NPs.
Because of the NPs used in this study are synthesized by using
the hydrothermal process, not only can the NPs be attained at low
cost but more precise control over the particle size can be
achieved (Ji et al., 2019; Ji et al., 2020). To the best of our
knowledge, this is one of the first studies reporting the
hydrothermal synthesis of LAO NPs and the use of LAO NPs
for the preparation of SA-based composite films with good
dielectric properties.

EXPERIMENTAL

Synthesis of LAO NPs
LAO NPs were generated from Li(NO3) and Ag(NO3) by using
the low-temperature hydrothermal technique. 0.527 g of Li(NO3)
and 1.2986 g of Ag(NO3) were dissolved in 10 ml of distilled
water under constant magnetic stirring for 3 h. The pH of the
solution was adjusted to 12 by adding an NaOH solution
dropwise. After that, the solution was placed in a Teflon-lined
steel autoclave and heated in an oven at 140°C for 10 h. After
cooling to room temperature, the autoclave was opened under
normal atmosphere. The solution was centrifuged at 10,000 rpm
for 10 min. The residue obtained was washed with acetone and
distilled water several times, and dried at 60°C for 2 h to obtain
LAO NPs.

Synthesis of SA-LAO Composite Films
Five gram of SA was dissolved in 90 ml of distilled water and
stirred at ambient conditions for 48 h. 0.1 g of LAO NPs was
dispersed in 10 ml of distilled water and added into the SA
solution. Upon sonication for 30 min, the solution was stirred
for additional 6 h. Afterwards, the solution was poured into a
petri dish and air-dried at ambient conditions. The film obtained
was designed as SA2 and stored in a desiccator until required for
analysis. The same procedure was adopted to generate films
containing different amounts (4, 8, 16 wt% of SA) of LAO
NPs. The generated films were designated as SA4, SA8, and
SA16, respectively.

Structural and Physical Characterization
X-ray diffraction (XRD) analysis of the films was carried out
using an X-ray diffractometer (Bruker AXS D8; Rigaku
Corporation, Japan, Tokyo) outfitted with Cu-Kα radiation (λ
� 1.5406 A). The accelerating voltage and current were 40 kV and
40 mA, respectively. These films were scanned in the 2θ range of
10–60° at a scanning speed of 2°/min. Thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC) were
performed by using a simultaneous thermal analyser (STA)
(Q600; TA Instruments, New Castle, Delaware,
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United Kingdom) to study the thermal properties of the
composite films in the temperature range of 30–600°C at a
heating rate of 10°/min under nitrogen atmosphere. Fourier
transform infrared (FTIR) spectra of the samples embedded in
KBr pellets were recorded using a FTIR spectrophotometer
(Impact 410; Nicolet Analytical Instruments, Milwaukee, WI,
United States). The morphological features and elemental
composition of the samples, upon gold sputtering, were
examined by scanning electron microscopy (SEM) equipped
with energy-dispersive spectroscopy (EDS) (ULTRA 55; Carl
Zeiss, Oberkochen, Germany). The electrical properties of the
films were analysed by using a computer controlled impedance
analyser (LCR HiTester3532-50; Hioki Corporation, Nagano,
Japan) over the frequency range from 100 Hz to 5 MHz and
over the temperature from 40°C to 100°C.

RESULTS AND DISCUSSIONS

Structural Properties of the Films
The XRD diffractogram of the SA film shows a broad peak at 2θ �
13.32° (Figure 1A), indicating the presence of an amorphous
structure. The interplanar spacing is estimated to be 6.63 Å by
using the equation nλ � 2d sinθ (where λ is the wavelength, d
is the interplanar spacing, and θ is the diffraction angle of
the corresponding peak) (Ionita et al., 2013; Rhim and Kim,
2000). Figure 1B shows the diffraction pattern of LAO NPs.
The sharp reflection peak at 2θ � 25.61°, along with other
diffraction peaks matched with JCPDS (36–1070), reveal the
pure tetragonal structure of the NPs. The lattice parameters
for the tetragonal structure are calculated using the following
equation (Eq. 1):

1
d2

� (h2 + k2)
a2

+ l2

c2
(1)

where a and c are lattice parameters of the corresponding lattice, (hkl)
are miller indices of the lattice planes. The lattice parameters (a �
9.253 and c � 3.753) are determined based on the d-spacing and
miller indices of the maximum intensity peak (101) and the
subsequent peak (310). These values are consistent with the values
(a � 9.248, c � 3.750) reported in the JCPDS card no. 36–1070. The
crystallite size (D) of the LAONPs can be deduced using the Scherer’s
equation (Eq. 2) (Bouazizi et al., 2014; Siddiqui et al., 2018):

D � kλ/βcosθ (2)

where k � 0.9 is a constant and β is the full width at half-maximum
corresponding to the Braggs angle of diffraction θ. Based on the
most intense diffraction peak (101), the average crystal size is
calculated to be around 31 nm. The XRD diffractograms of the
composite films containing different amounts of NPs are shown in
Figure 1C. The diffraction peaks from LAO NPs are found in the
diffraction patterns of all of the film samples. This implies that the
structure of the NPs remains unchanged, and that the films are
crystalline in nature (Afzal et al., 2008; Ionita et al., 2013; Sengwa
and Choudhary, 2016). When the amount of LAO NPs in a film
increases, the peak at 2θ � 13.32° shows a decrease in intensity but
an increase in broadness.

To examine the specific molecular interactions between the SA
matrix and the NPs, FTIR spectroscopy is adopted (Figure 2).
The spectrum of the SA film displays a broad peak at 3394 cm−1.
This peak is assigned to the stretching vibrations of the OH group
(Ionita et al., 2013; Sheela et al., 2016). The peak at 2812 cm−1 is
due to the symmetric stretching vibrations of the C-H group;
whereas peaks at 1603 and 1388 cm−1 are attributed to the

FIGURE 1 | XRD diffractograms of (A) the SA film, (B) LAO NPs, and (C) the composite films.
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asymmetric stretching vibrations of the carboxyl group (Liu et al.,
2014; Shameem et al., 2018). The peaks at 1111 and 1064 cm−1

belong to the stretching vibrations of the C-C group (Li et al.,
2011; Russo et al., 2010; Sartori et al., 1997). The peaks at 985, 908,
and 838 cm−1 are due to the existence of guluronic and
mannuronic acid units. In the FTIR spectrum of LAO NPs,
three prominent peaks are found at 3452, 1603, and
1382 cm−1. These peaks are assigned to the stretching,
bending, and deformation vibrations of the OH group,
respectively. Their existence is due to the moisture absorbed in
the NPs. The peaks at 472, 442, 407, and 346 cm−1 are assigned to
the metal-oxygen bond in LAO. These peaks are found in the
FTIR spectra of the composite films. In addition, in comparison
with those in the spectrum of the SA films, the peaks
corresponding to the hydroxyl and carboxyl groups slightly
shift towards the lower wavelength side in the spectra of the
composite films (Table 1). The shift of the peak corresponding to
the hydroxyl group is caused by hydrogen bonding interactions
between SA and LAO (Srivastava et al., 2012); whereas that of the
peak corresponding to the carboxyl group is due to the
symmetrical carboxylate bonding of SA to the LAO NP
surface (Unal et al., 2010; Srivastava et al., 2012). The
incorporation of LAO into the SA film also leads to a decrease

in the intensity of stretching vibrations of the OH group,
suggesting that the NPs are dispersed in the SA matrix
(Elizabeth et al., 2004; Suhas et al., 2013).

Thermal Properties of the Films
TGA is adopted in this study to determine the thermal stability
and weight loss behaviour of the film samples (Figure 3). In the
TGA curves of the films, a multi-step thermal degradation
process is observed. The temperature at which weight loss
occurs abruptly is considered to be the degradation
temperature (Sheela et al., 2016). The SA film exhibits a
weight loss step (∼15%) between 30 and 100°C due to the
dehydration of the sample (Bekin et al., 2014; Shameem et al.,
2018). Another weight loss step (∼35%) is observed between 175
and 245°C. This is caused by the decomposition of the SA
backbone (Xiao et al., 2002; Tripathi and Mishra, 2012). Upon
the incorporation of the NPs, the degradation temperature and
hence the thermal stability of the SA film increase. The
decomposition temperature of the composite films lies in the
temperature range from 204–208°C. In addition, no significant
weight drop is observed above 450°C. The percentage of weight
loss experienced by the composite films is 30% lower than that of
the SA film, with the residual mass of the composite films
reaching 40–50% at 600°C.

To investigate the melting process of the film samples, DSC is
used (Figure 4). Two endothermic peaks are found in the curve of
the SA film. The endothermic peak at 60°C is caused by the
evaporation of the absorbed moisture in the film (Smitha et al.,
2005; Agrawal et al., 2019). The endothermic peak at 180°C
corresponds to the melting temperature (Tm) of the SA film
(Agrawal et al., 2019). In the curves of the composite films, the Tm

value increases with the LAO content of the film. Comparing with
the Tm of the SA film, that of the composite films is much higher.
This, along with the results of TGA as discussed above, reveals

FIGURE 2 | FTIR spectra of (A) the SA film, (B) LAO NPs, and (C) the composite films.

TABLE 1 | The position of the peaks corresponding to the hydroxyl and carboxyl
groups in the FTIR spectra of the film samples.

Film Wavenumber (cm−1)

Hydroxyl group Carboxyl group

SA 3409 1605
SA2 3389 1596
SA4 3384 1589
SA8 3379 1581
SA16 3371 1573
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that incorporation of LAO NPs into the SA matrix enhances the
thermal stability of the SA film, with the enhancing effect not only
relying on the NP content but also on the interactions between
the NPs and the polymer matrix (Raghavendra et al., 2013;
Deshmukh et al., 2017).

Morphological and Compositional Features
of the Films
The morphological features of the LAO NPs and the film samples
are examined by using SEM (Figure 5). The SEM micrograph of
the SA film shows that the surface of the film is homogeneous
(Figure 5A). This is consistent with the observation previously
reported by Suhas et al. (2014) and Ionita et al. (2013). In the SEM
micrograph of LAO NPs, the sample shows a homogeneous
structure with uniform size distribution, with the average
diameter of the NPs being 30–45 nm (Figure 5B). Upon the
incorporation of the NPs into the SA matrix, an increase in the

surface roughness of the SA film is observed, though no phase
separation is noted (Figures 5C–F). The degree of surface
roughness is positively related to the concentration of LAO
NPs in the film sample. The chemical composition of the films
is analysed by using EDS (Figures 6A–F). Major elements
corresponding to SA and LAO NPs are detected in all of the
composite films, with the intensity of the signal corresponding to
silver being positively related to the NP content. Based on the
results presented above, LAO NPs are dispersed homogeneously
in the SA matrix. Strong interfacial interactions are anticipated to
play a role in enhancing the dielectric performance of our SA-
LAO composite films.

Changes of the Dielectric Constant and
Dielectric Loss with Frequency and
Temperature
Dielectric properties play an important role in determining
energy storage capacity and molecular mobility in composite
films (Bekin et al., 2014; Abdel-Baset et al., 2016; El-Ghamaz et al.,
2016). The dielectric constant (ε*) is a complex value, with ε′
denoting the real part and ε" denoting the imaginary part (Eq. 3):

εp � ε′ − iε″ (3)

The real part of the dielectric constant refers to energy storage
in a material, and can be determined using the following equation
(Eq. 4) (Chandrakala et al., 2013; El-Ghamaz et al., 2016):

ε′ � Cpd/ε0A (4)

where Cp is the parallel capacitance, d is the thickness of the
circular film, A is the cross-sectional area of the film, εo is the
permittivity of free space. The dielectric loss ε" refers to energy loss
in a material and can be calculated using the following equation (Eq.
5) (Chandrakala et al., 2013; El-Ghamaz et al., 2016).

ε″ � ε′ tanδ (5)

where tanδ is the tangent loss. The dielectric behaviour of a
composite film is the result of different polarization mechanisms

FIGURE 3 | TGA curves of (A) the SA film and (B) the composite films.

FIGURE 4 | DSC thermograms of different film samples.
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(including dipolar polarization, ionic polarization, and interfacial
polarization) adopted by the films under an alternating electric
field (Choudhary and Sengwa, 2017; Deshmukh et al., 2017).

The dielectric properties of our alginate-based composite films
are studied as a function of frequency, ranging from
100 Hz—5 MHz (Figure 7). The ε′ and ε″ values of the films
are found to decrease with an increase in frequency, with a
constant value being attained when the frequency reaches
100 kHz or above. This observation can be explained by
Koop’s theory (Koops, 1951), which states that a
polycrystalline material consists of grains and grain
boundaries, with the former being less resistive than the latter.
When a material is subjected to an alternating electric field,
charge carriers tend to accumulate at the grain boundary
interfaces, resulting in the formation of dipoles. The
reinforcement of charge carriers results in Maxwell Wagner
interfacial or space charge polarization (Yager, 1936; Koops,
1951; Chandrakala et al., 2013; El-Ghamaz et al., 2016). For
this, when the frequency is low, more charges in the composite
film are trapped at the interfaces because of the high resistive
nature of the grain boundaries. This leads to space charge

polarization, causing the ε′ and ε″ values to be high. When
the frequency increases, charge carriers less likely accumulate at
the interfaces. This leads to a decrease in the ε′ and ε″ values. Such
a mechanism is termed anomalous dielectric dispersion (Wahab
et al., 1997; Reddy et al., 2010; Praveena et al., 2014; Abbas et al.,
2015).

Compared to the composite films, the SA film possesses a
lower ε′ value (Figure 7A). Furthermore, in composite films, the
ε′ value increases with the concentration of LAO NPs present.
This is attributed to interfacial polarization, in which more
charge carriers are trapped at the interfaces because more free
charges are available at the interfaces upon doping. Similar to
the case of ε′, the ε″ value decreases as the frequency
increases. This is because when the frequency is low,
electric dipoles have more time to orient themselves in the
field direction, leading to a high ε″ value. Because of this,
incorporation of LAO NPs into the film increase the ε″ value
when the frequency is low (100 Hz) but suppresses the ε″
value when the frequency is high (5 MHz). This phenomenon
is desired for embedded passive applications (Sui et al., 2009;
Deshmukh et al., 2017).

FIGURE 5 | SEM images of (A) the SA film, (B) LAO NPs, and different composite films: (C) SA2, (D) SA4, (E) SA8, and (F) SA16. The scale bar in (A), (C), (D) and
(F) is 10 µm. The scale bar in (B) and (E) is 50 nm.
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The temperature dependence of the ε′ and ε" values of
different films at 100 Hz is evaluated from room temperature
to 100°C (Figure 8). As the temperature increases, ε′ increases.
This is because an increase in temperature not only makes electric
dipoles more effective in orientating themselves in the field
direction (Schildknecht and Finch, 1974; Hanafy, 2008;

Masoud et al., 2013; Abdel-Baset et al., 2016) but can also
result in thermal activation of the charge carriers to lead to an
increase in polarization (Sengwa and Choudhary, 2016). In
addition, as the specific volume of the polymer increases, a
small amount of the crystalline phase gets dissolved and
changes into an amorphous phase, resulting in a higher ε′

FIGURE 6 | EDS spectra of (A) the SA film, (B) LAO NPs, and different composite films: (C) SA2, (D) SA4, (E) SA8, and (F) SA16.

FIGURE 7 | The frequency dependence of the (A) dielectric constant and (B) dielectric loss of different films at room temperature.
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value (Rao et al., 2000; Awadhia et al., 2006). Compared to the SA
film, our composite films have a higher ε′ value. This observation
is consistent with previous studies in which an increase in ε′ has
been noted upon the incorporation of metal oxides into a polymer
(Prabu and Selvasekarapandian, 2012; Abdel-Baset et al., 2016;
Sengwa and Choudhary, 2016; Choudhary and Sengwa, 2017).
The high ε′ value of our composite films is contributed by the
even dispersion of LAO NPs in the SA matrix and by the high εʹ
value of LAO NPs. Similar to the case of ε′, the value of dielectric
loss increases with temperature in all of the tested films. A peak
corresponding to phase transition is found at around 90°C. This
phase transition is indeed the glass transition experienced by
the films.

Changes of ACConductivity with Frequency
and Temperature
AC conductivity (σac) of a film is calculated by using Eq. 6, where
ω is the angular frequency. Meanwhile, it is affected by
temperature. This effect is governed by the Arrhenius relation
(Abdel-Baset et al., 2016; Sengwa and Choudhary, 2016), which
can be determined by using Eq. 7, where σo is the pre-exponential
factor, Ea is the activation energy, k is the Boltzmann constant, T
is the absolute temperature.

σac � ε0ε″ω (6)

σac � σ
−Ea
kT
0 (7)

The temperature dependence of σac of our films is shown in
Figure 9. Based on the result, σac increases with temperature in all
films tested. This is explained by the fact that an increase in
temperature enhances the movement of inter-chain and intra-
chain charge carriers (Baskaran et al., 2006; El-Ghamaz et al.,
2016; Sheela et al., 2016; Sherman et al., 1983), resulting in an
increase in AC conductivity. Furthermore, σac of the SA film
decreases upon the incorporation of LAONPs. This is because the
film becomes more crystalline in nature when LAO is added.
Polymer chains have lower flexibility in the crystalline state. This

reduces AC conductivity (Correa et al., 2017; Mathew et al., 2015;
Ratner & Shriver, 1988). The sudden drop in σac at 100°C is
possibly due to experimental error, which is resulted from the fact
that 100°C is the temperature limit of the measurement system.
Besides temperature, the frequency of the electric field is a factor
affecting σac of our films (Figure 10). The frequency-dependent
increase in σac is resulted from the hopping of charge carriers and
from the fact that electric dipoles oscillate with a higher velocity as
the frequency increases. A similar observation has been made by
other studies on polymer composites including the polyvinyl
chloride/silica composite film (Abdel-Baset et al., 2016) and the
poly(vinylidene chloride-co-acrylonitrile)/poly(methyl
methacrylate) blend membrane (Mathew et al., 2015).

Arrhenius plots for different films are shown in Figure 11. The
slope of the plots is used to determine the activation energy (Ea).
Compared to that of the SA film, the Ea of the composite films is
lower. This is due to the tunnelling phenomenon in the composite

FIGURE 8 | The temperature dependence of the (A) dielectric constant and (B) dielectric loss of different films at 100 Hz.

FIGURE 9 | The temperature dependence of AC conductivity of different
films at 100 Hz.
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films (El-Ghamaz et al., 2016). The Ea of all the films tested is
found to be less than 1eV. This order of magnitude is consistent
with the observation made in other polymer composites in the
literature. For example, the Ea of the composite consisting of
LiClO4 NPs, sodium alginate and poly(vinyl alcohol) is in the
range of 0.41–0.38 eV (Sheela et al., 2016); whereas that of the
sodium lithium sulphide (NaLiS) composite generated from
sodium alginate and NaLiS NPs is found to be around
0.31–0.75 eV (Shameem et al., 2018). The Ea, ε′ and σac of
different films are summarized in Table 2.

Electrical Moduli of the Films
The reciprocal of complex permittivity is termed an electrical
modulus. It is used to study space charge dielectric relaxation, the
contribution of the electrode polarization effect, and the electrical
conduction mechanism (Chandrakala et al., 2012; Chatterjee
et al., 2015; Choudhary and Sengwa, 2017). The complex form
of an electrical modulus is given by M* � M’ + iM", where M′ is
the real part andM″ is the imaginary part of the modulus.M′ and
M″ can be determined by using the following equations (Eq. 8
and Eq. 9):

M′ � ε′
ε′2 + ε″2

(8)

M″ � ε″
ε′2 + ε″2

(9)

The frequency dependence of M′ and M″ of different films is
shown in Figure 12. The value of M′ is comparatively low at a
lower frequency (Figure 12A). This is due to the suppression of
interfacial polarization and to the short-range mobility of charge
carriers (Chatterjee et al., 2015). When the frequency increases,
M′ increases. This indicates the presence of the electrode
polarization effect at a higher frequency. In the case of M″,
the magnitude shows an increasing trend with the frequency
(Figure 12B), with the suppression of electrode polarization
being one major mechanism explaining the low value of M″ at

a lower frequency (Choudhary and Sengwa, 2012; Sengwa and
Choudhary, 2016). Furthermore, two different types of relaxation
curves are found in our results. One is the complete relaxation
curve shown by the SA film at 100 kHz. The other one is the
partial relaxation curves shown by the composite films. The latter
type of relaxation curves is related to interfacial polarization. In
fact, electrical relaxation in polymer composites is affected by
both the NPs and the polymer matrix. The phase transition of the
polymer matrix (α relaxation) and the faster relaxation (β, c) in
the local segmental motion of the polymer chain contribute to the
dielectric properties observed.

The plot of M″ as a function of M′ is drawn to analyse the
mechanism of electrical conductivity and dielectric relaxation.
The plot is made in the frequency range of 100 Hz–5 MHz
(Figure 12C). A complete relaxation peak is found in the plot
for the SA film. For the composite films, the plots show partial
relaxation peaks at lower M′ and M″ values and small peaks at
higher M′ and M″ values. Because the centre of the imagined
semi-circle in all the plots is below the M′ axis, non-Debye
relaxation occurs in all films tested. In the temperature range
of 40–70°C, the plot for the SA film shows a complete relaxation
peak; however, when the temperature increases beyond 70°C,
partial relaxation is noted in the plot (Figure 13). Only partial
relaxation is found in the plots for our composite films. Grain
contribution is expected to play a more significant role than the
contribution of grain boundaries during conduction (Yager, 1936;
El-Sayed et al., 2013; Selmi et al., 2017). Because the centre of the
relaxation peaks lies below the M′ axis, non-Debye relaxation
occurs in the composite films. LAO NPs in the composite films
form a network with the polymer matrix through hydrogen
bonding. The network increases the atomic packing density
and hence the relaxation frequency (Chandrakala et al., 2012).

Impedance Analysis of the Films
Impedance analysis can help understand the conduction
behaviour of a composite and the interaction between the
polymer and the particles incorporated inside. Impedance (Z*)
is a complex number, with Z′ and Z″ being the real part and the
imaginary part, respectively (Eq. 10).

Zp � Z′ + iZ″ (10)

The frequency dependence of Z′ and Z″ of different films
at room temperature is shown in Figure 14. Our composite
films show a decrease in Z′ and Z″ when the frequency
increases. The high values of Z′ and Z″ at a lower frequency
indicate the grain boundary contribution to the conduction
process. When the frequency increases, the values of the
impedance parameters decrease. This is due to a decline in
space charge polarization, resulting in an increase in
conductivity.

As far as the determination of the total electrical conduction
behaviour exhibited by a material is concerned, both the grains
and grain boundaries play a role. Information about the nature of
the charge carriers is provided by a Nyquist plot, which is a plot of
Z″ as a function of Z′ (Choudhary and Sengwa, 2015; Sheela et al.,
2016; Correa et al., 2017). The Nyquist plot for different films at

FIGURE 10 | The frequency dependence of AC conductivity of different
films at room temperature.
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room temperature comprises two semi-circular arcs
(Figure 14C). This indicates the semiconducting nature of the
composite films. The semi-circle formed is equivalent to a parallel
combination of bulk resistance (Rb) and bulk capacitance (Cb). Rb
is contributed by the migration of charge carriers whereas Cb is

caused by the immobility of the polymer chains. Based on the
intersection point of a semi-circular arc and the Z′ axis, Rb is
determined from the Nyquist plot. Our results reveal that Rb
decreases when the amount of LAO NPs incorporated into the
film increases.

The Nyquist plots for different films at various temperatures
are shown in Figure 15. In the plot for the SA film, a couple of
semi-circular arcs are observed. The presence of these arcs is
due to grain contribution at lower frequencies and grain
boundary contribution at higher frequencies. Two well-
defined regions (viz., a semi-circular arc and an inclined
peak) are found in the plots for the composite films. The
high-frequency semi-circular arc represents the charge
transfer process resulted from grain contribution; whereas
the inclined peak represents the development of charges
caused by polarization at the polymer interface. The

FIGURE 11 | Arrhenius plots for different films.

TABLE 2 | The Ea, ε’ and σac of the film samples.

SA SA2 SA4 SA8 SA16

ε′ at RT 34.04 68.64 82.09 85.27 88.34
ε′ at 90°C 2,192 2,441 2,883 3,050 3,173
σac at RT (10−7 S/cm) 14.941 7.224 6.637 15.542 8.881
σac at 95°C (10−7 S/cm) 7.770 4.640 2.054 2.595 3.431
Ea (eV) 0.817 0.430 0.410 0.420 0.460

Abbreviation: RT, room temperature.
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broadness of the high-frequency semi-circular arc decreases
when the temperature is elevated. This indicates the
homogeneous nature of the films (Dias et al., 1996;

Agrawal et al., 2019). The slope of the inclined peak is
almost constant at different temperatures in all composite
films tested, suggesting that no electrochemical reactions

FIGURE 12 | The frequency-dependence of (A)M′ and (B)M″ of different films at room temperature. (C) A plot ofM″ as a function ofM′ for different films at room
temperature.

FIGURE 13 | Plots of M″ as a function of M′ for the (A) SA film and the composite films [(B) SA2, (C) SA4, (D) SA8, and (E) SA16] at different temperatures.
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occur during conductivity measurements (Qian et al., 2002;
Agrawal et al., 2019). In addition, Rb decreases with an increase in
temperature in all films tested. Because the centre of the imagined

semi-circular arc in the plots at different temperatures is below
the Z′ axis, this confirms the occurrence of non-Debye relaxation
in our composite films.

FIGURE 14 | (A) A plot of Z′ as a function of frequency for different films at room temperature. (B) A plot of Z″ as a function of frequency for different films at room
temperature. (C) An Nyquist plot for different films at room temperature.

FIGURE 15 | Nyquist plots for the (A) SA film and the composite films [(B) SA2, (C) SA4, (D) SA8, and (E) SA16] at different temperatures.
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CONCLUSION

Polymer composites have been widely exploited over the years for
use in different areas, ranging from the manufacturing of portable
electronic devices to the fabrication of bioactive agent carriers. In
this study, we have employed the method of ultrasound-assisted
solution casting to generate composite films from SA and LAO
NPs, with the NPs being fabricated by using the low-temperature
hydrothermal method. Based on our results, various properties
(including the degree of crystallinity and the thermal stability) of
the SA film are enhanced upon the incorporation of the NPs. In
addition, the presence of the NPs leads to an increase in the
frequency-dependant ε′ and ε" values at room temperature, and a
decrease in σac. Not only do the electrical modulus spectra and
Nyquist plots show that our composite films exhibit
semiconducting nature and non-Debye relaxation, but they
also reveal the effect of electrode polarization on electrical
conduction in the films. All these demonstrate the good
dielectric performance of our composite films. Along with
the high biodegradability of SA as reported in the literature

(Huq et al., 2012; Deepa et al., 2016; Salama et al., 2018), our
films have high potential to become good candidates for possible
microelectronic applications in the future.
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