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Abstract: Manganese (Mn) is an essential element acting as a co-factor of superoxide dismutase, and
it is potentially beneficial for cardiometabolic health by reducing oxidative stress. Although some
studies have examined the relationship between Mn and metabolic syndrome (MetS), no systematic
review and meta-analysis has been presented to summarize the evidence. Therefore, the present
review examined the association between dietary and environmental Mn exposure, and MetS risk.
A total of nine cross-sectional studies and three case-control studies were included, which assessed
Mn from diet, serum, urine, and whole blood. The association of the highest Mn level from diet
(three studies, odds ratio (OR): 0.83, 95% confidence interval (C.I.) = 0.57, 1.21), serum (two studies,
OR: 0.87, 95% C.I. = 0.66, 1.14), urine (two studies, OR: 0.84, 95% C.I. = 0.59, 1.19), and whole blood
(two studies, OR: 0.92, 95% C.I. = 0.53, 1.60) were insignificant, but some included studies have
suggested a non-linear relationship of urinary and blood Mn with MetS, and higher dietary Mn
may associate with a lower MetS risk in some of the included studies. While more evidence from
prospective cohorts is needed, future studies should use novel statistical approaches to evaluate
relative contribution of Mn on MetS risk along with other inter-related exposures.

Keywords: manganese; micronutrient; metal exposure; metabolic syndrome; meta-analysis

1. Introduction

Metabolic syndrome (MetS) is defined as a cluster of metabolic alterations that con-
tributes to a higher risk of cardiovascular disease (CVD), type 2 diabetes (T2D), and
all-cause mortality [1,2]. According to data from the 2011–2016 National Health and Nutri-
tion Examination Survey (NHANES), more than a third of adults in the United States (U.S.)
have MetS, and the rate can be as high as 48.6% among those aged at least 60 years [3].

In recent years, an increasing number of researchers have been investigating how
manganese (Mn) is potentially beneficial for cardiometabolic health. Mn is an essential
element that acts as a co-factor of superoxide dismutase, an enzyme responsible for the
degradation of reactive oxygen species (ROS) [4]. Evidence from in vitro and animal stud-
ies has demonstrated that Mn supplementation could downregulate ROS generation [5],
prevent endothelial dysfunction [6], and reduce the levels of serum inflammatory biomark-
ers [7]. However, excessive exposure to Mn from polluted air and water may lead to
impaired cognitive development and Parkinson’s disease (PD), especially among workers
and general populations residing near factories [4,8]. Although the mechanisms linking
Mn overexposure and PD are still under investigation, a combination of mitochondrial dys-
function and oxidative stress, protein misfolding and trafficking, and neuroinflammation,
may play major roles in Mn neurotoxicity [9]. Mn can be obtained from water, nuts, grains,
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fruits, green vegetables, and caffeinated drinks [10]. Mn exposure can also be reflected
from its level from blood and urine. The half-life of blood Mn is 10 to 42 days, but that for
urinary Mn is less than 30 h, indicating a more recent exposure than blood Mn [11].

Despite the increasing attention to the relationship between Mn, from various sources,
and cardiometabolic health, the research evidence has not been summarized and quantified
in a systematic manner. To address the knowledge gap as mentioned above, we have
conducted a systematic review and meta-analysis to reveal the association between Mn
exposure from diet and environment, and the risk of MetS.

2. Materials and Methods
2.1. Data Sources and Searches

As already registered in PROSPERO (CRD42021289335), we followed a standardized
protocol to conduct this systematic review and meta-analysis on 5 December 2021, in
accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [12] and Cochrane Handbook [13]. Two reviewers (Wong M.M.H. and
Lo K.) independently conducted literature search of Embase 1910 to Present, Ovid Emcare
1995 to 2021 Week 48, and Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-
Review & Other Non-Indexed Citations 1946 to 3 December 2021. Detailed keywords for
the search are outlined in the Supporting Information. Search terms included a combination
of synonyms of manganese (Mn) and “metabolic syndrome” [14–16] (Metabolic Syndrome
OR MetS OR Syndrome X OR Insulin Resistance Syndrome OR Dysmetabolic Syndrome
OR Reaven Syndrome OR Metabolic Cardiovascular Syndrome OR Cardiometabolic Syn-
drome) as adapted from relevant review articles [14–17]. All articles with English abstracts
were assessed.

2.2. Study Selection

Studies were included if they (1) were observational studies with a cross-sectional,
prospective, or retrospective design; (2) examined manganese exposure from diet or en-
vironment; (3) defined metabolic syndrome with criteria or guidelines; (4) examined the
association between manganese exposure and metabolic syndrome; and (5) enrolled hu-
man participants. We excluded studies if they (1) were literature reviews, clinical trials,
editorials, or abstracts from conference proceedings; or (2) did not have an abstract or full
text in English.

2.3. Data Extraction and Quality Assessment

Data extraction was conducted independently by two investigators (Wong M.M.H.
and Lo K.), and discrepancies were resolved through consensus. The following informa-
tion was extracted from all eligible studies: the country where the study was conducted,
study design, age and number of participants, gender ratio, and references used to define
metabolic syndrome, by using a standard data extraction form created in Microsoft Excel.
The exposures and outcomes of the present review included Mn exposure and MetS status.
The effect measures, such as odds ratio (OR) or relative risk (RR), their 95% confidence
interval (95% C.I.) and standard errors (SE) were extracted from the articles. Results without
adequate information for conducting meta-analysis were described in a narrative fashion.

The methodological quality of the included studies was assessed by the Newcastle–
Ottawa Scale (NOS) for observational studies, which is recommended by the Cochrane
Collaboration [18]. The checklist assessed the possibility of bias in the selection, compara-
bility, and outcomes of each study. The ratings of each item ranged from 0 to 2, with a total
of 10 (9 for case-control studies). The total score for each included study was computed.

2.4. Data Synthesis and Analysis

The fully adjusted effect estimates for the highest versus the lowest category of expo-
sure (Mn exposure from diet, urine, serum, or whole blood) and their associations with
MetS were extracted from each included study. Random effects models using the inversed
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variance approach were used to pool the estimates from individual studies because of the
varying population and criteria used to define outcomes. The results were summarized
using forest plots. I2 was used to assess the heterogeneity, with an I2 between 50% and
90% possibly representing substantial heterogeneity [13]. To demonstrate the consistency
of findings across studies, we also omitted one analysis at a time to observe how the
magnitude of association and heterogeneity varied. If an included study had sex-stratified
analysis, we extracted the effect estimates from each sex for meta-analysis. Meta-analyses
and forest plots were performed by Review Manager 5.2.

3. Results
3.1. Characteristics of Included Studies

Figure 1 shows the selection process for the studies included in the review. A total of
49,414 participants from 12 studies (6 conducted in China, 3 in U.S., 2 in Korea, and 1 in Iran)
were included. Nine of the included studies were cross-sectional, three were case-control
studies, and all were published between 2013 and 2021. One study was prospective cohort
in study design, but the authors only analyzed the association between Mn and MetS
using baseline data, and therefore the paper was regarded as cross-sectional study [19].
NCEP ATP III was the most popular diagnostic criteria for MetS (six studies), followed
by AHA/NHLBI Scientific Statement (three studies). The methodological quality of the
studies ranged from 6 to 8 out of 9 (out of 10 for cross-sectional studies). The characteristics
and outcome definitions of the included studies are described in the Table 1.
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Table 1. Description of the included studies.

Authors, Year Country Study Name Study Design Sample Size Mean Age Type of
Mn Exposure Definition of MetS % of Male Quality Assessment

Scores a

Bulka 2019 [20] U.S. U.S. NHANES
2011–2014 CS 1088 ≥20 Whole blood

2009 Joint Scientific
Statement of IDF,

AHA/NHLBI,
WFH, IASO

52.7 8

Choi 2013 [21] Korea The Korea NHANES
2007–2008 CS 5136 ≥19 Diet NCEP ATP III 40.6 8

Feng 2021 [19] China FAMHES CS 1970 37.53 Serum AHA/NHLBI 100 8

Ghaedrahmat
2021 [22] Iran Hoveyzeh cohort

study Nested CC 150 36–70 Urine AHA/NHLBI 35.0 6

Li 2013 [23] China Nil CC 544 53.7 Diet NCEP ATP III 38.4 6

Lo 2021 [24] U.S. U.S. NHANES
2011–2016 CS 3335 ≥18 Whole blood, Urine NCEP ATP III 48.1 8

Ma 2020 [25] China Wuhan–Zhuhai cohort CS 3272 53.2 Urine NCEP ATP III 31.5 8

Rhee 2013 [26] Korea The Korea
NHANES 2008 CS 1405 ≥20 Whole blood NCEP ATP III 49.3 8

Wen 2020 [27] China (Taiwan) Nil CS 2444 55.1 Urine NCEP ATP III 39.9 7

Zhang 2020 [28] China Beijing Population
Health Cohort study Nested CC 4134 60.0 Serum IDF 49.5 6

Zhou 2016 [29] China CNNHS 2010–2012 CS 2111 53.1 Diet AHA/NHLBI 47.2 8

Zhou 2021 [30] U.S. U.S. NHANES
2011–2018 CS 23,825 ≥18 Whole blood IDF 48.4 8

AHA/NHLBI: The American Heart Association and the National Heart, Lung, and Blood Institute; FAMHES: Fang Chenggang Area Male Health Examination Survey; IASO:
International Association for the Study of Obesity; IDF: International Diabetes Federation; CC: case-control; CNNHS: Chinese National Nutrition and Health Survey; CS: cross-sectional;
MetS: metabolic syndrome; Mn: manganese; NCEP ATP III: The National Cholesterol Education Program Adult Treatment Panel III; NHANES: National Health and Nutrition
Examination Survey; U.S.: United States; WHF: World Heart Federation a Quality assessed by The Newcastle–Ottawa Scale (maximum score = 10 for cross-sectional studies and 9 for
case-control studies).
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3.2. Dietary Mn and MetS

Three of the included studies examined the association between dietary Mn and
the presence of MetS [21,23,29]. Among the 2111 adults that participated in the Chinese
National Nutrition and Health Survey 2010–2012 [29], men with the highest Mn intake
(>6.87 mg/day) had a significant lower likelihood for MetS (OR: 0.62, 95% C.I. = 0.42, 0.92),
but a positive association (OR: 1.56, 95% C.I. = 1.02, 2.45) was found for women with the
highest Mn intake (>5.79 mg/day). There was significant interaction between sex and
dietary Mn in affecting the likelihood for MetS. On the other hand, for a case-control study
conducted among 550 adults [23], the highest quartile of Mn intake was associated with a
lower likelihood of MetS (OR: 0.47, 95% C.I. = 0.29, 0.79), but the result was not stratified by
sex. Choi et al. analyzed the data of 5136 adults from the general population of Korea [21],
but did not found a significant relationship between the highest quartile of Mn intake and
MetS among men (OR: 1.01, 95% C.I. = 0.68, 1.49) nor women (OR: 0.82, 95% C.I. = 0.55, 1.22).
When pooling the results from included studies (Figure 2), the overall association between
the highest level of dietary Mn and MetS was not significant (OR: 0.83, 95% C.I. = 0.57, 1.21,
I2 = 74%), and the heterogeneity across study was substantial (I2 > 50%). When omitting
one analysis at a time, the heterogeneity remained substantial (53% to 81%). The overall
association changed to significant (pooled OR: 0.72, 95% C.I. = 0.53, 0.98) only after omitting
the analysis on dietary Mn and MetS among participating women in the study of Zhou
and colleagues (OR: 1.56, 95% C.I. = 1.02, 2.45) [29].
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Figure 2. Forest plot for different exposures of manganese and metabolic syndrome. The Figure
summarizes the overall association between the highest Mn level from diet, serum, urine, whole
blood, and the likelihood of metabolic syndrome. Random effects models using the inversed variance
(IV) approach were used to pool the estimates from individual studies. The effect estimates are
presented as odds ratio with 95% confidence intervals (CI).
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3.3. Serum Mn and MetS

Two included studies conducted in China examined the association between Mn from
serum and the likelihood of MetS [19,28]. Feng et al. analyzed the association of 11 serum
metals with MetS among 4303 men who participated in the Fang Chenggang Area Male
Health and Examination Survey cohort [19]. As one of the selected serum metals, Mn was
only inversely associated with MetS in the second tertile (OR: 0.65, 95% C.I. = 0.43, 0.98), not
the highest tertile (OR: 1.06, 95% C.I. = 0.95, 1.18) [19]. Similarly, the case-control study of
4134 adults conducted by Zhang et al. analyzed 15 serum metals and their association with
MetS by putting them in the same logistic regression model [28]. Serum Mn was associated
with a lower likelihood of MetS (OR: 0.78, 95% C.I.: 0.63, 0.97) only at the highest quartile
(>1.69 µg/L) [28]. When pooling the results from included studies (Figure 2), the overall
association between serum Mn and MetS was not significant (OR: 0.87, 95% C.I. = 0.66, 1.14,
I2 = 47%), and the heterogeneity across studies was not substantial (I2 < 50%). Given the
limited number of studies, we did not omit one analysis at a time for this part.

3.4. Urinary Mn and MetS

Four included studies examined the association between urinary Mn and the pres-
ence of MetS [22,24,25,27], and two of them provided adequate data for meta-analysis
(Figure 2) [24,25], but the overall association between the highest level of Mn from urine
and MetS was not significant (OR: 0.84, 95% C.I. = 0.59, 1.19, I2 = 0%), and the heterogeneity
across studies was not substantial (I2 < 50%). When omitting one analysis at the time,
the I2 value remained as 0% and the overall association remained insignificant. However,
nonlinear relationship between urinary Mn and MetS was observed from some of the
included studies. By analyzing the data from U.S. NHANES 2011–2016, Lo et al. observed
that urinary Mn at the third quartile associated with a lower odd of MetS among overall
participants (OR = 0.55, 95% C.I. = 0.32, 0.97) and men (OR = 0.40, 95% C.I. = 0.16, 0.99) [24].
From the restricted cubic spline analysis, the U-shaped dose-response relationship between
urinary Mn and MetS was observed among all participants [24]. As demonstrated by
posterior inclusion probabilities (PIP), urinary Mn played a less important role in devel-
opment of MetS (PIP = 0.49 for Mn versus 0.54 to 0.91 for other metals) [24]. For two
case-control studies (conducted in Iran and China, respectively) that were not included in
the meta-analysis, per unit increment of urinary Mn did not associate with MetS [22,27].

3.5. Whole Blood Mn and MetS

Four of the included studies examined the association between Mn from whole blood
and the presence of MetS [20,24,26,30]. For the three studies that analyzed data from U.S.
NHANES, different approaches were adapted in each included study. Bulka et al. put each
metal exposure separately into the logistic regression model [20], and found that blood Mn
did not associate with MetS across the quartiles (OR at quartile 4: 1.04, 95% C.I. = 0.88, 1.24).
Moreover, Lo et al. observed a null association between blood Mn and MetS for both male
and female participants in the multi-metal model (including all whole blood metals into the
regression model) [24]. They have further evaluated the relative importance of blood Mn
and other metals in the association with MetS by the Bayesian kernel machine regression
(BKMR) model. As measured by PIP, they found that blood Mn has the least relative
importance in the presence of MetS compared with other blood metals (cadmium, mercury,
lead, and selenium) [24]. Zhou et al. demonstrated that the association between blood Mn
and MetS per log increment was not significant (OR: 1.22, 95% C.I. = 0.96, 1.56), which
was consistent across age groups and sex [30]. In addition, they demonstrated a M-shaped
association between blood Mn and MetS using restricted cubic spline analysis [30]. Rhee
et al. analyzed data from the Korea NHANES 2008, and they did not find a significant
association between blood Mn and MetS across the quartiles (OR at the highest quartile:
1.22, 95% C.I. = 0.76, 1.97) [26]. To perform meta-analysis, the data from Lo et al. were
selected out of three studies that analyzed U.S. NHANES, because it covered a larger data
set than Bulka et al., while Zhou et al. did not provide the effect estimate across quartiles.



Nutrients 2022, 14, 825 7 of 10

When pooling the results from the included studies (Figure 2), the overall association
between whole blood Mn and MetS was not significant (OR: 0.92, 95% C.I. = 0.53, 1.60,
I2 = 51%), and the heterogeneity across the studies was substantial (I2 > 50%). When
omitting one analysis at the time, the overall association remained insignificant, but the
heterogeneity was not substantial after excluding the analysis from the male participants of
Lo’s study (I2 = 0%) [24], and the data from Rhee et al. (I2 = 6%) [26].

4. Discussion

In the present review, we have summarized how dietary Mn intake, and Mn levels
as reflected from serum, urine, and whole blood, may associate with the risk of MetS.
However, we did not find significant association between the highest level of Mn from
diet, blood, nor urine with MetS from meta-analysis. The insignificant results could be
explained by two reasons. First, all the included studies were cross-sectional or case control
in nature, which could be biased by reverse causality, attenuating the relationship between
Mn and MetS as suggested by the physiological mechanism.

Moreover, the Mn–MetS association could be non-linear, as suggested by some in-
cluded studies examining Mn exposure from serum [19], urine [2,4], and whole blood [30].
From a physiological perspective, deficient and excessive Mn exposure may relate to a
higher risk for metabolic syndrome. As a co-factor of Mn superoxide dismutase, Mn defi-
ciency may increase oxidative stress by producing more ROS [8], leading to inflammation
and endothelial dysfunction [31,32], and accelerate the proliferation of vascular cells and
increase vasoconstriction [33,34]. On the other side, Mn shares the calcium uniporter
mechanism, and the accumulation of excessive Mn may inhibit the efflux of calcium, then
inhibit the respiratory chain and adenosine triphosphate production [9]. This will in turn
disrupt normal mitochondrial function and also increase oxidative stress, elevating the
risk of metabolic diseases [8]. With regard to the harm–benefit duality of Mn, it is nec-
essary to identify the optimal level of exposure. Although the statistical approaches for
dose-response meta-analyses have been well-established [35], as revealed by the present
review, very few included studies have provided adequate information for analysis [21,28],
such as the levels of Mn exposure and cases by quantiles. A more unified reporting format
of results, providing adequate data for dose-response meta-analysis, will facilitate the
summary of evidence on the association of Mn with MetS in the future.

Moreover, one included study investigated the effects of metal mixtures on MetS,
which used the BKMR model to quantify the relative importance of each urinary/blood
metal on the presence of MetS [24]. In the study conducted by Lo and colleagues, Mn
from urine and blood might have less contribution to MetS risk than heavy metals such
as cadmium and mercury [24]. For other metals included in this study, arsenic, cadmium,
and mercury may have dose-response toxicity to adverse cardiometabolic health [36–38].
Meanwhile, Mn serves as both essential metal and neurotoxin depending on dosage [8], and
therefore the variation in the shape of relationship may weaken the association of Mn with
MetS. The rationale of using a machine-learning approach is that most previous studies have
estimated the association of single-metal exposure with disease risk by adjusting for other
multiple metals in the traditional regression models simultaneously, or introducing the
cross-product terms [39,40]. These traditional approaches have methodological limitations
and cannot address the overall effects of metal mixtures, single-metal effects, and their
interactions in the high-dimensional set of correlated exposures [41]. In other words, future
studies are suggested to incorporate novel statistical approaches that can account for the
interactions of multiple metal exposures.

For the relationship between dietary Mn and MetS, two out of the three included stud-
ies observed significant inverse associations [23,29]. The overall association was significant
after omitting the positive association between dietary Mn and MetS in women [29]. The
potential inverse association between dietary Mn and MetS was consistent with the findings
from several prospective cohorts on the relationship between Mn from diet and type 2 dia-
betes, which were conducted among general population in China and Japan [42,43], as well
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as postmenopausal women from the U.S. [10]. However, the results should be interpreted
with caution, because only 3% to 5% of dietary Mn is absorbed from the gastrointestinal
tract [9]. The observed association could be confounded by other nutrients (e.g., magne-
sium) from the common food sources (nuts, grains, fruits, green vegetables, and caffeinated
drinks) [44]. Similar to the research on environmental exposure of Mn, future studies may
adapt statistical approaches that quantify the relative importance of inter-related dietary
exposure and MetS risk. One example is a recent publication that explored the association
between 12 dietary factors and 10 year predicted risk of atherosclerotic cardiovascular
disease using BKMR, and found that fruit intake was the strongest protective factor among
men and unprocessed red meat was the most important predictor among women [45]. In
addition, more evidence from prospective cohorts is needed to verify the potential effect
modification by sex in the relationship between dietary Mn and MetS.

The major strength of the present systematic review and meta-analysis lies in quantify-
ing the influence of Mn exposure from various sources, including diet, serum, whole blood,
and urine, respectively, on the presence of MetS, which is the first meta-analysis conducted
to summarize this relationship. It also covers various populations in the world. Nonethe-
less, several limitations should be noted. Firstly, the present study included only articles
written in English, wherein eligible studies published in other languages might have been
overlooked. However, it is arguable that many of the included studies were performed
in China; therefore, the language restriction is probably not a major flaw in the present
literature search. Thirdly, in the present review, all included studies were cross-sectional or
case-control in nature, which are subject to reverse causality, and prospective cohort studies
should be conducted to elucidate the temporal relationships. Lastly, different definitions of
MetS should also be adapted in the same study to identify how the associations may differ.

5. Conclusions

The overall association between dietary, serum, urinary, and whole blood Mn and
MetS was not significant, which might be attributed to the inconsistency in epidemiological
findings. However, urinary and blood Mn may have a non-linear relationship with MetS,
and higher dietary Mn may associate with a lower risk of MetS in some included studies.
While more evidence from prospective cohorts is needed, future studies should use novel
statistical approaches to evaluate the relative contribution of Mn on MetS risk along with
other inter-related exposures of nutrients or metals.
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