
Middleware for Multi-Robot Systems

Yuvraj Sahni, Jiannong Cao, and Shan Jiang

Abstract Recent advances in robotics technology have made it viable to assign com-
plex tasks to large numbers of inexpensive robots. The robots as an ensemble form
into a multi-robot system (MRS), which can be utilized for many applications where
a single robot is not efficient or feasible. MRS can be used for a wide variety of ap-
plication domains such as military, agriculture, smart home, disaster relief, etc. It
offers higher scalability, reliability, and efficiency as compared to single robot sys-
tem. However, it is non-trivial to develop and deploy MRS applications due to many
challenging issues such as distributed computation, collaboration, coordination, and
real-time integration of robotic modules and services. To make the development of
multi-robot applications easier, researchers have proposed various middleware ar-
chitectures to provide programming abstractions that help in managing the complex-
ity and heterogeneity of hardware and applications. With the help of middleware, an
application developer can concentrate on the high-level logic of applications instead
of worrying about low-level hardware and network details. In this chapter, we survey
state of the art in both distributed MRS and middleware being used for developing
their applications. We provide a taxonomy that can be used to classify the MRS
middleware and analyze existing middleware functionalities and features. Our work
will help researchers and developers in the systematic understanding of middleware
for MRS and in selecting or developing the appropriate middleware based on the
application requirements.

Yuvraj Sahni
Department of Computing ,The Hong Kong Polytechnic University, Kowloon, Hong Kong e-mail:
csysahni@comp.polyu.edu.hk

Jiannong Cao
Department of Computing ,The Hong Kong Polytechnic University, Kowloon, Hong Kong e-mail:
csjcao@comp.polyu.edu.hk

Shan Jiang
Department of Computing ,The Hong Kong Polytechnic University, Kowloon, Hong Kong e-mail:
cssjiang@comp.polyu.edu.hk

1

This is the Preprint Version.
This version of the book chapter has been submitted for publication and is subject to Springer Nature’s terms of use (https://www.springernature.com/
gp/open-research/policies/book-policies). The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-92384-0_18.

csysahni@comp.polyu.edu.hk
csjcao@comp.polyu.edu.hk
cssjiang@comp.polyu.edu.hk

2 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

1 Introduction

Recent advances in robotics and other related fields have made it feasible for de-
velopers to build inexpensive robots. The current trend in robotics community is to
use a group of robots to accomplish task objectives instead of using single robot
systems. These group of robots working in collaboration with each other form an
ensemble which is commonly referred as a multi-robot system (MRS). Use of MRS
provides better scalability, reliability, flexibility, versatility and helps in performing
any task in a faster and cheaper way as compared to single robot system [6]. MRS
system can be very useful in search and surveillance applications especially for ar-
eas which are difficult or impossible for humans to access. Another benefit of MRS
is that it has better spatial distribution [97]. Many applications such as underwater
and space exploration, disaster relief, rescue missions in hazardous environments,
military operations, medical surgeries, agriculture, smart home etc. can make use
of distributed group of robots working in collaboration with each other [6] [50]. It
would not only be difficult but may also lead to wastage of resources if such appli-
cations are developed using single robot systems.

The benefits provided by MRS do not come at low cost. MRS is a dynamic and
distributed system where different robots are connected to each other using wireless
connection. Robots in MRS should collaborate with each other to perform complex
tasks such as navigation, planning, distributed computation etc. but it is not easy as
the systems are usually heterogeneous. Heterogeneity in MRS can arise due to the
use of heterogeneous hardware, software, operating system, or communication pro-
tocol and standards. Besides, the large number of robots used in the system make the
system development even more complicated. It is extremely difficult for a robotic
system developer to develop such complex systems that should be robust, reliable,
scalable, and support the real-time integration of heterogeneous components. Devel-
oping a complete robotic application requires knowledge from multiple disciplines
such as mechanical engineering, electrical engineering, computer science etc.

These complexities can be reduced by use of middleware layer. Middleware pro-
vides programming abstractions for a developer so that the developer can focus on
application logic instead of low-level details [20]. Many middleware architectures
have been proposed for MRS. There is wide range of applications for MRS and each
application has some specific requirements. It is not trivial to develop a middleware
for MRS due to peculiar characteristics of MRS and diverse application require-
ments. The complexity of middleware becomes higher as more features are incor-
porated. In fact, it is extremely hard to develop a common middleware for all robotic
applications [86]. Therefore, it is important to study different types of middleware
to help make a better decision while selecting the middleware for an application.

In this chapter, we first study the recent developments in building MRS. We de-
scribe the key applications and requirements of MRS. We then describe the design
goals and provide a feature tree-based taxonomy of MRS middleware for systematic
understanding of middleware. After giving the background of MRS and the moti-
vation for using middleware, we survey state of the art of middleware for MRS.
Although survey of middleware for robotics can be found in literature in [65] [28]

Middleware for Multi-Robot Systems 3

[48] [66], they do not focus specifically on middleware for MRS. Besides, many
new middleware architectures have been developed and have not been discussed in
previous survey papers.

The contributions of this work are:

• We describe the key requirements and applications of MRS. We also show the
developments made by robotics community in building distributed MRS. This
is useful for researchers and developers who are interested in developing a real
testbed for MRS.

• We provide a feature tree-based taxonomy of MRS middleware features. We have
considered features corresponding to both middleware and MRS. We utilize the
structure of the phylogenetic tree to give a comprehensive framework that can
be used by researchers for systematic understanding and comparison of different
MRS middleware. This is the first time such a taxonomy has been given specifi-
cally for MRS middleware.

• We have done a comprehensive review of existing middleware for MRS. 14 dif-
ferent middleware examples have been discussed in this work. We have also pro-
vided design goals for middleware and analyzed existing works. The review and
analysis done in this chapter will be especially useful for beginners who are in-
terested in developing their own multi-robot system. This work can also be used
by developers and other researchers in selecting a suitable middleware based on
their application requirements.

The remainder of this chapter is as follows. In Section 2, we discuss the recent
developments in building MRS and provide a classification of robotic applications.
In Section 3, we discuss the need of middleware for MRS and give some design
goals for MRS middleware. In Section 4, we provide a feature tree-based taxonomy
of MRS middleware. In Section 5, we do the comprehensive review of existing
middleware for MRS. In Section 6, we provide an analysis of existing middleware
for MRS.

2 Existing Multi-Robot Systems and Applications

This section is divided into two subsections. In Subsection 2.1, we give some key
requirements of MRS, and then discuss the developments made by the robotic com-
munity in building distributed MRS. In Subsection 2.2, we give a classification of
robotic applications. We answer two important questions in this section, which are:
What is the current stage of development in MRS? and What are the different pos-
sible applications of MRS?

4 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

2.1 Existing Multi-Robot Systems

Experimental evaluation and validation are important for research in MRS. It often
happens that theoretical models and algorithms with perfect simulation results do
not work under real-world conditions. In MRS, these divergences are even more
amplified compared with single-robot system due to the large number of robots,
interactions between robots, and the effects of asynchronous and distributed control,
sensing, actuation, and communication. Therefore, it is crucial to build a testbed for
MRS to conduct multi-robot research [64]. In this section, we list key requirements
of a MRS and show how robotics community has progressed in building distributed
MRS over the years.

(a) Mataric R2 (b) Khepera (c) Khepera II

Fig. 1: Three kinds of robot for multi-robot system in early age

One of the earliest multi-robot systems is the Mataric R2 robots built in the 1990s
(seen in Fig. 1a). They use a group of four robots to demonstrate and verify the
group behavior such as foraging, flocking and cooperative learning [58]. For each
Mataric R2 robot, it equips piezoelectric bump sensors for collision detection, two-
pronged forklift for picking goods, six infrared sensors for object detection and radio
transceivers for broadcasting up to one byte of data per second. Nearly the same
time, the K-Team from Switzerland developed Khepera robot team in 1996 and
Khepera II robot team in 1999 [67] seen in Fig. 1b and Fig. 1c respectively. The size
of the robot is reduced from 36-cm long (Mataric R2 robot) to 8-cm long (Khepera
and Khepera II). The Khepera II robot has stronger functionality than the Mataric
R2 robot such as more powerful computation ability and more reliable wireless
communication. Due to the development of electronic technology, the Khepera II
robot also has a smaller size.

After the early age, more and more multi-robot systems are built in both labora-
tory and industry nowadays. Two representative multi-robot systems are Swarmbot
[59] [60] developed by McLurkin and iRobot for research purpose in 2004 (seen in
Fig. 2a) and Kiva [96] developed by Amazon for warehouse usage in 2007 (seen in
Fig. 2b). Also, the research community has organized a lot of multi-robot competi-
tions such as RoboCup for robotic soccer, MAGIC competition for military surveil-

Middleware for Multi-Robot Systems 5

(a) Swarmbot (b) Kiva

Fig. 2: Two representative multi-robot system in recent years: Swarmbot for re-
search purpose and Kiva for industry usage

lance and MicroMouse for maze exploration. A lot of multi-robot systems result
from these competitions such as AIBO dog [18], NAO humanoid [33] and Cmdrag-
ons [12].

We have observed several features of a multi-robot system:

• Cost: inexpensive for each single robot. A general purpose for MRS is to let
quantities of agents, each of which owns limited ability, to achieve a complex
system-level target. The system must be designed to be inexpensive to allow
researchers to incrementally increase the size of the system. When a multi-robot
system is scaled up, it will be hard to cover the fee if each individual robot is
highly expensive.

• Size: small size for each single robot. Given limited space, robots with the large
size may have problems of frequent collisions, communication blocking and less
flexibility. Also, robots in huge size go against the scalability of the whole sys-
tem.

• Functionality: stable and strong sensibility for each single robot. If every robot
has stable functionality, the whole system can be reliable enough. Stronger the
sensibility is, more information it may acquire from itself, the environment and
other robots. Hence, the whole system may achieve more complex tasks.

As we know, stronger functionality may result in larger size and higher cost. There-
fore, to build a MRS it is crucial to find a balance between cost, size and function-
ality.

Though there have been a lot of multi-robot systems, most of them are con-
trolled in centralized way. In another word, there is a central controller to sched-
ule the robots to perform cooperative tasks. Centralized multi-robot system can be
hardly scaled up due to limited computation capability of the central controller.
Hence, scholars transfer their research direction to distributed multi-robot system
[30]. There are varieties of active research topics that explore efficient algorithms
to control distributed multi-robot system, such as self-reconfiguration [7] [76] and

6 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

exploration [38] [14]. Scholars generally envision their algorithms to be feasible for
a distributed multi-robot system consisting of hundreds, thousands and even more
robots [25] [7] [90]. However, these algorithms are usually evaluated in simulator
only [7] [76], or deployed on a small group of tens of robots or fewer [45] [44] due
to cost, time or complexity. As we previously mentioned, a simulator can hardly
model robots’ movement, communication and sensibility in a precise way. There-
fore, it would be significant if a large-scale distributed MRS can be built up for
algorithm evaluation.

A MRS is said to be fully distributed [72] if each robot in the system supports:

• Distributed control: to process gathered information and to make the decision
locally while achieving the system-level goal.

• Distributed sensing: to sense itself, the environment and other robots locally.
• Distributed actuation: to navigate freely in the environment without collision

with obstacles and other robots.
• Distributed communication: to receive and transmit data from other robots in a

scalable robot network.

(a) Kilobot (b) R-one (c) Khepera IV

(d) E-puck (e) Scarab

Fig. 3: Five representative robots suitable for multi-robot system nowadays

Knowing basic elements for a distributed MRS, we characterize some typical
MRSs in detail and compare their functionality and cost. The criteria are to select

Middleware for Multi-Robot Systems 7

Ta
bl

e
1:

A
co

m
pa

ri
so

n
of

of
f-

th
e-

sh
el

fm
ul

ti-
ro

bo
ts

ys
te

m
s

in
te

rm
s

of
fu

nc
tio

na
lit

ie
s

an
d

ha
rd

w
ar

e

K
ilo

bo
t

R
-o

ne
K

he
pe

ra
IV

E
-p

uc
k

Sc
ar

ab

So
ur

ce
H

ar
va

rd
U

R
ic

e
U

K
-T

ea
m

E
PF

L
Pe

nn
sy

lv
an

ia
U

L
oc

om
ot

io
n

vi
br

at
io

n
w

he
el

en
co

de
rs

3-
ax

is
gy

ro
3-

ax
is

ac
ce

le
ro

m
et

er

w
he

el
en

co
de

rs
3-

ax
is

gy
ro

3-
ax

is
ac

ce
le

ro
m

et
er

w
he

el
en

co
de

rs
3-

ax
is

gy
ro

3-
ax

is
ac

ce
le

ro
m

et
er

w
he

el
en

co
de

rs
3-

ax
is

gy
ro

3-
ax

is
ac

ce
le

ro
m

et
er

Se
ns

ib
ili

ty
1

IR
ra

ng
e

se
ns

or

8
IR

ra
ng

e
se

ns
or

s
8

bu
m

p
se

ns
or

s
4

lig
ht

se
ns

or
s

a
sp

ea
ke

r

8
IR

ra
ng

e
se

ns
or

s
8

lig
ht

se
ns

or
s

4
IR

cl
iff

se
ns

or
s

5
ul

tr
as

on
ic

ra
ng

e
se

ns
or

s
1

m
ic

ro
ph

on
e

1
sp

ea
ke

r
1

co
lo

rc
am

er
a

8
IR

ra
ng

e
se

ns
or

s
8

lig
ht

se
ns

or
s

1
m

ic
ro

ph
on

e
1

sp
ea

ke
r

1
co

lo
rc

am
er

a

la
se

rr
an

ge
se

ns
or

hi
gh

-r
es

co
lo

rc
am

er
a

C
om

m
un

ic
at

io
n

IR
si

gn
al

IR
si

gn
al

ra
di

o
80

2.
11

b/
g

W
iF

i
B

lu
et

oo
th

2.
0

E
D

R
ra

di
o

ra
di

o

C
om

pu
ta

tio
n

8M
H

z
A

tm
eg

a3
28

32
kB

M
em

or
y

50
M

H
z

A
R

M
C

or
te

x-
M

3
64

K
B

SR
A

M
25

6K
B

Fl
as

h

80
0M

H
z

A
R

M
C

or
te

x-
A

8
51

2M
B

R
A

M
51

2M
B

Fl
as

h
4G

B
Fl

as
h

fo
rd

at
a

M
ic

ro
ch

ip
ds

PI
C

M
C

U
8K

B
R

A
M

14
4K

B
fla

sh
Fl

as
h

/*

B
at

te
ry

lif
e

(h
)

3-
24

4
7

1-
10

/*
Si

ze
(c

m
)

3.
3

10
14

7.
5

22
.2

C
os

t(
$)

14
22

0
26

25
54

5
30

00
*

no
ts

pe
ci

fie
d

8 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

open-source, still active and relatively high-impact MRS. The summary of com-
parison can be seen in Tab. 1. In detail, five multi-robot systems are considered as
follows: Kilobot [77] [79], r-one [61], Khepera IV [88] (evolved from Khepera III
[73]), e-puck [68], Scarab [64].

• The Kilobot1 (seen in Fig. 3a) is designed by the K-Team and used in SSR lab
of Harvard University. Kilobot is a low-cost robotic system especially suitable
for research of swarm robotics. The functionality of each individual Kilobot is
limited, i.e., only can sense the distance from its neighbor, sense the intensity
of visible light and receive/transfer message from/to its neighbors. However, a
collective of Kilobot achieve relatively complicated behaviors such as generating
different shapes [80] and transporting large objects [78]. This kind of robotic
system in which every robot is with limited ability while can achieve complicated
behavior together is called swarm robotics. It is inspired by biological swarm
behaviors [71] such as bird flocking and ant manipulation. Another such kind of
system is the I-Swarm [46] from the University of Stuttgart. However, the robot
Jasmine in I-Swarm is far more expensive ($130) compared with Kilobot ($14)
while the functionality is similar. Simple functionality makes low-cost possible,
on the other hand, limits the feasible environment. For example, a message is
transmitted using the reflection of infrared signals. Therefore, the floor where
the Kilobots move must be smooth enough, or infrared signals may not reach
individual’s neighbors.

• The r-one2 (seen in Fig. 3b) is designed and used in Rice University. r-one is a
relatively low-cost robot that enables large-scale multi-robot research and edu-
cation. In terms of locomotion, each robot is equipped with two-wheel encoders,
a 3-axis gyro and a 3-axis accelerometer to move on a floor with awareness of
odometer, speed and acceleration. With respect to communication, there are two
kinds of communication method. First one is to use infrared transmitter and re-
ceiver to achieve directional communication and second one is to use radio to
achieve nondirectional communication with higher bandwidth. The sensing abil-
ity is provided by using 8 bump sensors for 360◦ detection. r-one provides ample
functionalities at a low cost which has motivated its use for education area ap-
plication [62]. Several courses are taught using r-one . r-one can also be used for
multi-robot manipulation [63] and transportation [36] if each robot is equipped
with a gripper.

• The Khepera IV3 (seen in Fig. 3c) is designed and made by K-Team. It is a
commercial robot with abundant and powerful functionality compared with non-
commercial ones. A standard Khepera IV has the same equipment for locomo-
tion as r-one. For the communication part, Khepera uses 802.11 b/g Wi-Fi and
Bluetooth 2.0 EDR for wireless communication instead of infrared signals or ra-
dio. Khepera IV has strong sensibility due to the presence to multiple sensors. A
Khepera IV is equipped with five ultrasonic transceivers and eight infrared sen-

1 http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html
2 http://mrsl.rice.edu/projects/r-one
3 http://www.k-team.com/khepera-iv

http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html
http://mrsl.rice.edu/projects/r-one
http://www.k-team.com/khepera-iv

Middleware for Multi-Robot Systems 9

sors for obstacle detection, four extra infrared sensors for cliff detection, one mi-
crophone and one color camera for multimedia functions and twelve light sensors
and three programmable LED for human-robot interaction. Besides, Khepera IV
is highly extensible. Developers may extend native functions using the generic
USB, Bluetooth devices and custom boards plugging into the KB-250 bus. Khep-
era IV wrap the remarkable abilities of sensing, communication and locomotion
in a small body of 14-centimeter diameter. However, the cost of each Khepera IV
is over 2600 US dollars. The Khepera series robot is adopted by DISAL of EPFL
and is used for various research topics such as multi-robot learning [26] and odor
plume tracing [87].

• The e-puck4 (seen in Fig. 3d) is designed and made by EPFL. E-puck designer
Francesco Mondada started with the Khepera group and moved to make sim-
pler education robots. An e-puck is equipped with two-wheel encoders, a VGA
camera, three omnidirectional microphones, 3-axis accelerometer, eight infrared
sensors and eight ambient light sensors. Also, e-puck is only 7cm long and easy
to extend functionality. For instance, rotating scanner and turret with three linear
cameras are two optional extensions. E-puck is specially designed and widely
used for education purpose [21]. It is used in the teaching areas of signal pro-
cessing, automatic control, behavior-based robotics, distributed intelligent sys-
tems and position estimation and path finding of a mobile robot [68]. In addition,
e-puck is also used in many research topics such as supervisory control theory
[51] and distributed control strategy [83].

• The Scarab shown in Fig. 3e is designed and made at the University of Penn-
sylvania. Compared with other robots, the design of Scarab shifts from minimal
multi-robots to a complex and robust system. Two of the major components in a
Scarab is the Hokuyo URG laser range finder and the Point Grey Firefly IEEE
1394 camera. Using the laser and camera, Scarab is capable of the tasks requir-
ing strong sensibility and high computation payload such as SLAM (simultane-
ous localization and mapping) [75] and vision processing. However, A Scarab
is significantly large, heavy and expensive with 23cm diameter, 8kg weight and
over 3000-dollar cost. Consequently, Scarab is not practical for large populations
i.e., more than ten Scarabs working together. But using less than five Scarabs for
multi-robot SLAM is applicable [81].

2.2 Multi-Robot System Applications

Robots contain both sensing and actuator components which makes them useful for
a wide range of applications. Applications which involve navigation, exploration,
object transport and manipulation benefit from the use of MRS. Researchers have
been trying to develop biologically inspired robots that incorporate not only the
structure of insects and animals but also their social characteristics to design multi-

4 http://www.e-puck.org/

http://www.e-puck.org/

10 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

robot system. Researchers try to emulate the communication behavior in bees, birds,
and other insects to design control and coordination system for MRS. We have
classified the robotic applications into seven categories as shown in Fig. 4. A brief
overview of the robotic application is also provided below. These applications are
generic and not specifically related to MRS. However, the current research trend is
that most applications are now being developed using MRS instead of single robot
system.

Robotic Applications

HealthCare Robotics

Industrial Robotics

Service Robotics

Military Operations

Search/Rescue missions

Exploration/Surveillance applications

Educational Robotics

Surgery Rehabilitation Assistance

Assembly

Line

Pick-Up

Delivery
Logistic

Sweeping Customer Care

Explosive

Ordinance

Disposal

Carrying

Weapons

Monitoring

Territories

Disaster

Rescue
Mapping

Structural

Inspection

In-Situ

Medical

Assessment

Space

Exploration

Underwater

Exploration

Sea

Surveillance
Archaeology

Engineering

Courses

Critical

Thinking
Psychotherapy

...

...

...

...

...

...

...

Fig. 4: Classification of Robotic Application

Middleware for Multi-Robot Systems 11

• HealthCare Robots: Robots have been used by healthcare and medical profes-
sionals for a long time. One of the most important uses of robots in healthcare has
been for performing and assisting surgeries. Robots are used for performing pre-
cise and minimally invasive surgeries [9] [15]. The current research trend in this
area is to use biologically inspired robots that can move in confined spaces and
manipulate objects in complex environments [15]. Other areas where robots are
being used in this application domain is rehabilitation and assistive robotics [34]
[91]. Robots are used for recovery of patients with impaired motor and cognitive
skills [34]. Robots are being used for assistance to elderly and other physically
or mentally disabled individuals to help them live independently. There are even
companion robots that help such individuals with special needs. However, due to
lack of awareness and other reasons, patients and even healthcare professionals
are reluctant to accept robots for medical purpose [91] [11].

• Industrial robotics: Robots are now a main component in manufacturing and
logistics industries. Industries have been using robots for tasks which are im-
possible or difficult for humans, such as working in a room filled with hazardous
substances, inside a furnace, etc. [34]. Several robotic application studies in man-
ufacturing industries have been mentioned in [29] including die casting appli-
cations, forging applications, heat treatment applications, glass manufacturing
applications etc. All large-scale manufacturing industries especially automobile,
component assembly, and many other industries involving tasks related to pack-
aging, testing, and logistics rely on the use of robots for efficient task completion
[85]. Besides automation, robots are also used for assisting humans in their ac-
tivities in industries.

• Service robotics: Service robots are fully or semi-autonomous robots that per-
form tasks useful for the well-being of humans except in manufacturing related
activities. Service robots are useful for performing tasks that are trivial, danger-
ous, or repetitive for humans. Home service robots are one such type of robots.
They can be used for activities that range from cleaning floor, kitchen, bathroom,
windows, swimming pool to lawn mowing, washing clothes, and many other ac-
tivities [34] [85]. Besides home, service robots can also be used for other services
such as object pickup and delivery, customer care, etc. [34].

• Military operations: Most of the military organizations around the world are us-
ing different types of robots for situations that are risky for humans [82]. Robots
are also cheaper to maintain than having the human personnel. Military robots
can be classified into three categories, which are ground robots, aerial robots,
and maritime robots [82]. These military robots are very often used for battle-
field surveillance from ground, air and underwater level. Ground robots are also
being utilized for explosive ordinance disposal. Besides carrying out surveillance
operations in enemy territories, unmanned aerial vehicles (UAVs) are also used
for carrying missiles to attack enemy sites.

• Search and Rescue missions: Rescue robots are used to provide real-time infor-
mation about the situation to aid search and rescue missions. Rescue robots are
used for performing tasks such as searching in unstructured and hazardous en-
vironments, reconnaissance and mapping, rubble removal, structural inspection,

12 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

in-situ medical assessment and intervention, and providing logical support [85].
Rescue robots can be utilized for many situations including natural disasters,
mining accidents, fire accidents, explosions, etc. [34]. Rescue robots are also
useful for post-disaster experimentation [85]. A key aspect of this application is
that rescue robots must be autonomous and they are supposed to work in an un-
structured environment where any pre-existing communication network may not
work properly.

• Exploration/Surveillance application: Robots are a useful for collecting data in
unstructured environments, unknown territories, and from areas which are diffi-
cult or impossible for humans to access. Space exploration, underwater explo-
ration, and exploration in hazardous environments such as radiation prone areas,
wilderness, mines, damaged buildings, etc. are some examples of this application
[85]. Exploration or surveillance is an important part of other applications too
such as military operations, and rescue missions. Navigation, coordination, and
collaboration are three important tasks performed by robots in surveillance ap-
plications. A lot of researchers are trying to develop biologically inspired robots
that can navigate in confined spaces and perform complex tasks [47].

• Educational robotics: Robots are now being used in schools and universities for
the educational purpose also. Students can learn about multiple disciplines such
as computer science, electronics, mechatronics etc. by developing robotic ap-
plications and learning from the experience [3]. However, there is a drawback
with this approach as students only learn about robot related fields. Several stud-
ies have been reviewed in [10] and it is observed that most studies only help
in teaching concepts related to physics and mathematics such as Newton’s Law
of motion, kinematics, fractions, etc. Students who are interested in other fields
such as music or arts do not get much benefit out of this. There are few in-
stances where robots have been used for teaching students something different
from mathematics or physics. In [95], Lego robots have been used to teach about
evolution. Lego robots have also been utilized in [70] to improve social connec-
tion in individuals with autism and Asperger’s syndrome. This shows that robots
have huge potential for contribution towards education. Research efforts are re-
quired to find ways to use robots for the development of skills such as critical
thinking, problem solving, teamwork, etc.

3 Design Goals for MRS Middleware

The current trend in robotics is to use MRS for application development instead of
a single robot system. Multiple robots are connected using a wireless network and
they work together as a group to accomplish application objectives. These robots are
usually composed of heterogeneous hardware and software components that collab-
orate and coordinate with each other to perform complex tasks such as planning,
navigation, distributed computation, object manipulation etc. [66] It is not trivial to
design software architecture for MRS due to many challenges such as interoperabil-

Middleware for Multi-Robot Systems 13

ity, dynamic configuration, real-time integration of heterogeneous components, etc.
Middleware can resolve these issues by providing programming abstractions and
help in reducing the development time and cost [66]. Middleware can also make
the application development easier and flexible by providing reusable services. It
is, however, challenging to develop a middleware as middleware needs to not only
deal with complex issues related to MRS but also satisfy multiple application re-
quirements. In this subsection, we have explained some design goals that should be
considered while developing a middleware for MRS. An ideal middleware should
be able to support all the features but it should be noted that the complexity of mid-
dleware becomes higher as more features are supported. Therefore, it is a trade-off
between the number of features supported by a middleware and its complexity.

• Hardware and software abstractions: Developing a robotic application requires
knowledge of multiple disciplines, which includes knowledge of hardware and
software components being used, and corresponding application domain. Usu-
ally, robotic application developers have knowledge of their application domain
but it is difficult for them to have expertise on low-level hardware and software
issues. The primary purpose of using middleware is to make the application de-
velopment easier and faster. Development of an application using MRS can be
done easily if high-level abstractions are provided to a robotic application devel-
oper. Having hardware and software abstractions will enable developers to focus
on high-level application requirements rather than low-level hardware and net-
work issues. Besides making the application development easier, it will also help
in enhancing the efficiency of the application.

• Interoperability: MRSs can have multiple sources of heterogeneity. Heterogene-
ity in MRS may arise due to the difference in either hardware or software of
multiple robots. It is not uncommon to use robots from different hardware man-
ufacturers within the same MRS. Even with the same hardware manufacturer,
hardware heterogeneity can arise due to difference in the sensor and actuators
being used for the robots. Different communication standards can be used within
the same MRS which also leads to heterogeneity in the network. Even if the
homogeneous hardware is used for MRS, there can be differences in the soft-
ware architecture of multiple robots. Software modules developed by different
programmers using different programming environment can also lead to hetero-
geneity. Middleware should provide abstractions for developers to enable inter-
operability between heterogeneous robots. Middleware should enable platform
independence such that robots can be developed on different platforms. Mid-
dleware should allow robots developed using different platforms or containing
heterogeneous hardware and software components to communicate with each
other.

• Real-time support for required services: Time critical robotic applications such
as rescue operations, medical surgeries, military operations, etc. require real-
time support for services. Most of the applications require real-time support
is required for many services that are responsible for collision detection and
avoidance, collaboration between multiple robots in MRS, integration of mul-

14 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

tiple components in robots, etc. There are some tasks which can afford a delay in
services but for most of the services used in MRS, real-time support is required.

• Dynamic resource discovery and configuration: MRS is a dynamic system where
robots are mobile and since robots are usually used in unstructured environments,
there is always change in connectivity. MRS is a scalable system where robots
can be added, removed or changed in configuration. There is always change in
the configuration of the network. Middleware should enable dynamic discovery
of resources which includes both robots and the software services being used.
Middleware should enable autonomous detection and recovery from any fault
in the network or software. Middleware should provide support for MRS to be
self-adapting, self-configuring, and self-optimizing [66].

• Flexibility and Software reuse: Software reuse means using the same service
even for a different application, hardware or software environment. Middleware
should enable flexibility in using software services such that services are defined
by their functionalities and not based on the hardware, software, or the applica-
tions for which they are used. This implies that a developer should not redevelop
the service every time there is some change in hardware, operating system, or
even application. Middleware should enable the developer to add new function-
alities to a system without having to redevelop everything from scratch.

• Collaboration among multiple robots: In MRS, multiple robots collaborate with
each other by sharing data. Distributed computation is necessary to enable col-
laboration between robots, however, due to heterogeneity in MRS, it becomes
challenging to understand data belonging to the different type of robots. Another
requirement for collaboration between robots is that it should be real-time which
makes it even more complex for developers to support this functionality. Mid-
dleware should provide services that make it easier to do collaboration between
robots. Robots should not only be able to transfer data between each other but
also understand the meaning of shared data. Middleware should provide abstrac-
tions that can help achieve this objective.

• Integration with other systems: Nowadays, robotic applications are developed by
integrating robots with other systems such as Internet of things (IoT) and Cloud.
Cloud robotics is a new paradigm where robots utilize computation and storage
benefits of the cloud to perform tasks [39]. In near future, IoT and Robotics
will be combined to provide better services to humans. Issues and technological
implication in implementing IoT-aided robotic applications have been studied
in [34]. In coming future, more technologies will be integrated with robotics to
provide improved services. Middleware should enable integration of MRS with
other systems and technologies. Middleware should provide abstractions for a
developer to integrate different technologies.

• Management and monitoring tools: A lot of components are involved in devel-
opment, deployment, and functioning of MRS including multiple robots consist-
ing sensors and actuators, software services, and many other resources. Due to
the complexity of MRS, it is difficult for a developer to control everything un-
less there are some tools available that can help in management and monitoring
of the overall system. Besides providing services to program MRS, middleware

Middleware for Multi-Robot Systems 15

can also provide management tools to configure, debug, and view the overall
MRS [20]. Middleware should also enable the developer to view whole system
component-wise to provide a better understanding. This functionality will make
it easier even for non-programmers to understand and contribute to the develop-
ment of the robotic application.

• Support for the addition of extra services: MRS is usually deployed in an un-
structured environment and every application requires some specific services.
Middleware should be flexible to enable the addition of services at run-time. Mid-
dleware should support addition of new services to address both network-specific
and application-specific quality of service (QoS) requirements. It should support
the addition of services to address issues such as security, reliability, availability,
energy optimization, collision detection and avoidance, etc.

4 A Taxonomy of MRS Middleware

There are tens of existing middleware for multi-robot systems focusing on various
aspects and purposes. Among the off-the-shelf middleware, it is difficult for a begin-
ner to choose an appropriate one suitable for a specific multi-robot system or multi-
robot application. To address this issue, we propose a taxonomy of MRS middleware
features to formally describe MRS middleware. In detail, we utilize the structure of
the phylogenetic tree to provide a comprehensive, yet succinct framework that al-
lows for a systematic comparison of MRS middleware. Developers could look up
desired features in the phylogenetic tree for purpose of finding a suitable MRS mid-
dleware. In biology, a phylogenetic tree or evolutionary tree is a branching diagram
showing the inferred evolutionary relationships among various biological species
[24]. In the field of computer science, phylogenetic tree has been used to visualize
a taxonomy in many survey papers such as WSN programming abstractions [69],
WSN middleware [94], and programming distributed Intelligent MEMS [49], but it
has not been used for describing MRS middleware yet.

In Fig. 5, we decompose the MRS middleware features into ten leaf features.
Between Fig. 6 to Fig. 13, we describe each leaf feature appeared in Fig. 5 in detail.
In these figures, we utilize some notations to describe relationship among features.
The relationship between a father feature and several child features can be either
inclusive or alternative, notated by solid dot and hollow dot respectively. Also, a
child feature can be either necessary or optional, notated by solid square and hollow
square respectively.

As seen in Fig. 5, when we are investigating MRS middleware features, it can be
divided into software features from middleware and hardware features from MRS.
On the one hand, features from middleware can be divided into two parts. One is the
services by the middleware and the other is the system architecture of the middle-
ware. In terms of provided services, it includes functional services as well as non-
functional services. With respect to features from the system architecture, three parts
are included which are programming abstraction features, infrastructure features and

16 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

MRS

Middleware

Feature

Feature from

Middleware

Feature from

MRS

Function

Feature

Feature from

Architecture

Non-Function

Feature

Feature from

Service

Programming

Abstraction

Feature

Infrastructure

Feature

Coordination

Feature

Feature from

MRS

Infrastructure

Feature from

MRS

Application

Node-Level

Feature

System-Level

Feature

Environment

Feature

Scope/Area

Feature

Purpose/Goal

Feature

Fig. 5: Overview of feature tree of MRS middleware

coordination method features respectively. On the other hand, features from MRS
come from both the infrastructure and concrete applications. The features from in-
frastructure can be node-level one and system-level one. The features from concrete
applications are divided into subcategories based on environment, scope/area and
purpose/goal. In this way, MRS middleware features are divided level by level and
result in ten leaf features. We explain and describe each leaf feature in detail in the
following paragraphs.

There are a variety of functional features (seen in Fig. 6) for MRS middleware.
Functional features of MRS middleware are the basic functions implemented by
the middleware. Such functions include localization, mapping, collision avoidance,

Middleware for Multi-Robot Systems 17

Function Feature

Localization Path Planning
Collision

Avoidance

Vision

Processing
Mapping

Other

Functionalities

Fig. 6: Function Feature

Non-Function

Feature

Security Fault Tolerance
Real-Time

Support

Reliability

Support

Other

Support

Fig. 7: Non-Function Feature

path planning, vision processing and many others. With the off-the-shelf imple-
mentation, developers may use these basic but important functions conveniently.
Non-functional features (seen in Fig. 7) are features provided by the middleware
in terms of QoS, for example, security, fault tolerance, reliability, real-time sup-
port, etc. Holonomic MRS middleware provides as many non-functional features
as possible for developers so that they can choose a set of the features depending
on specific applications. You can’t have your cake and eat it too, it is very suit-
able for some of the non-function features. For example, if the developer desires the
privacy features, it may consume more time and consequently affects the real-time
feature. Similar issue may be observed when fault tolerance and real-time support
are provided by the middleware. There is always some form of trade-off between
different non-function features. Such conflicts of non-function features are ubiqui-
tous for middleware in other fields too such as wireless sensor network [19], and
cloud computing [16].

Modern MRS middleware always provides a programming model or program-
ming abstraction to facilitate development. A programming model masks the com-
plexity of the system. Programming paradigm and abstraction level serve as the two
fundamental elements of a programming model (seen in Fig. 8). The programming
paradigm refers to the abstractions used to represent individual elements of a pro-
gram. The individual elements of a program include constants, variables, clauses
(iterations, conditions, etc.), and functions. Programming paradigm of a program-
ming model can be imperative or declarative. While programming with imperative
approach, the state of the program is explicitly expressed through statements. Rel-
evant subcategories of imperative approaches include sequential and event-driven.
On the other hand, while using a declarative programming model, the application
goal is described without specifying how it is accomplished. Declarative approaches

18 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

Programming

Abstraction

Feature

Programming

Paradigm

Abstraction

Level

DeclarativeImperative Ensemble-Based Node-Based

Sequential Event-driven Funtional Rule-based SQL-like

Fig. 8: Programming Abstraction Feature

can be further classified into functional, rule-based, SQL-like and special-purpose.
The abstraction level refers to how developers view the multi-robot system and can
be either node-based or ensemble-based. Node-based abstraction is used in tradi-
tional programming model where each robot is programmed respectively. When a
group of robots are assigned with a task, it is natural to think about what the robot
ensemble should do. This leads us to consider the ensemble-level abstraction. The
entire MRS can be viewed as a single and monolithic unit for the programmer.
Ensemble-level abstraction is referred to as macro-programming in wireless sensor
networks [35].

OS Support Simulator

Infrastructure

Feature

Logging

Facility

Debugging

Facility

Hardware

Configuration

Support

Graphical

Interface

Unix-like Windows Other OS

Language

Support

C++ Java Python
Other

Language

Fig. 9: Infrastructure Feature

There is a wide range of infrastructures (seen in Fig. 9) for MRS middleware. In-
frastructures of MRS middleware include hardware configuration support, operating
system support, logging facility, debugging facility, simulator, language support and
graphical interface.

• Since MRS middleware may be applied to all kinds of robotic system, hardware
configuration support is required to configure the hardware of a specific kind of
robot.

Middleware for Multi-Robot Systems 19

• MRS middleware must support a specific operating system or be cross-platform.
Traditional operating systems can be UNIX-like OS, Microsoft Windows, Java
virtual machine and others.

• Logging facility and debugging facility are essential and useful for application
development, algorithm evaluation. Looking up the log and debugging informa-
tion, developers can have direction for development and improvement, which
save significant amount of time.

• Simulator are useful when deployment is costly, hardware is unavailable or de-
velopers want to testify algorithms before deployment.

• Language support is another necessary feature for MRS middleware. It can sup-
port one or several languages, for example, C++, Java, Python, etc.

• Graphical interface can be used to visualize the MRS and for human-robot inter-
action purpose.

Coordination

Feature

Synchronized Semi-Synchronized Asynchronized

Fig. 10: Coordination Feature

Coordination (seen in Fig. 10) is a general issue in multi-agent system as well
as in MRS where each realistic robot is regarded as an agent. A robot is a com-
putational device capable of sensing, computing, and locomoting. The sequence of
sensing, computing, and locomoting form a computation cycle of a robot. The co-
ordination method is classified based on the relationship among computation cycles
of the robots. In the asynchronized setting, the robots in the MRS dont have com-
mon notion of the time. That is to say, there is no assumption on the relationship
among the cycles of the same robot or different robots. The only assumption is that
all cycles finish in finite time. The robots are said to run in a semi-synchronized
setting if all robots share a global clock and their actions are atomic. The robots can
be either active or inactive at each clock tick and only robots in active state perform
their cycles. To make sure every clock tick and every robot to be meaningful, it is
restricted that at least one robot is active at every clock tick and every robot becomes
active for infinite time instants. In a special case, every robot is active at every time
instant. In this cases, the robots are said to be fully synchronized. In this setting, all
the robots are in the same state at each clock tick.

With respect to node-level features (seen in Fig. 11) of a single robot, it refers
to the hardware features relating to sensing ability, locomotion ability, computa-
tion ability, and communication ability. For the sensing part, an individual robot

20 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

Node-Level

Feature

Sensing Ability
Movement

Ability

Communication

Ability

Vibration
Wheel

Encoder
Propeller RatioOthers

Infrared

Message
OthersLaser Compass Camera Others

Fig. 11: Node-Level Feature

may contain laser, compass, camera, microphone, etc. For the locomotion part, each
robot may use vibration, wheel encoders or propellers to navigate the environment.
For the computation part, the CPU frequency, the memory size, and the data stor-
age size vary a lot. For the communication part, ratio, infrared signals, Wi-Fi, and
Bluetooth can be utilized to achieve it.

Coordination

Feature

Centralized Decentralized
Fully

Distributed

System-Level

Feature

Network Protocol

Feature

TCP UDP Zigbee Others

Communication

Feature

ScopeAwareness

Physical

Neighbor

Multi-Hop

Group
GlobalExplicit Implicit

Addressing

Physical Logical

Fig. 12: System-Level Feature

In terms of system-level features (seen in Fig. 12) of the whole MRS, it can be
categorized by coordination method, embedded network protocol, and communi-
cation model. For the coordination method in a MRS, it can be centralized where
there is a central controller, decentralized where the MRS is divided into groups, or
fully distributed where all robots are equal. For communication, robot network may
utilize TCP, UDP, ZigBee, or other network protocol. Communication is a general
issue in network systems as well as in MRSs which can be regarded as robot net-
works. Communication features can be classified in the light of awareness, scope
and addressing. Awareness feature within communication can be further classified
into explicit or implicit. If the communication is explicitly exposed to developers,
it is termed as explicit. On the other hand, if the communication is hidden behind
some higher-level construct, it is said to be implicit. The scope of communication
refers to the set of robots that exchange data to accomplish a given task. Physical
neighborhood, multi-hop group, and system-wide serve as the three approaches for
the scope of communication. The scope is physical neighborhood if programmers

Middleware for Multi-Robot Systems 21

are only provided with method for exchanging data among robots within direct ra-
dio range. The scope is said to be multi-hop group if data exchange can be achieved
with using multiple-hop transmission. The scope is system-wide if all the robots in
the MRS are possible to be involved in data exchange. With respect to addressing
in MRS middleware, it utilizes physical addressing if the target robots are identi-
fied using statically assigned identifiers. Otherwise, the target robots are identified
through properties provided by the applications. This kind of addressing approach is
logical addressing, which is generally called attribute-based addressing in wireless
sensor networks [2].

Environment

Feature

Land Underwater Air Space Others

Scope/Area

Feature

Military Agriculture Education
Other

Scope

Purpose/Goal

Feature

Information

Gathering

Service

Providing

Educational

Purpose

Other

Purpose

Features from

MRS Application

Fig. 13: Features from MRS Application

In terms of application features, we sort it using environment, scope/area and
purpose/goal respectively (seen in Fig. 13). A MRS can be deployed in one or more
kinds of environments including land, underwater, air and even space environment.
The area of MRS application can be military, agriculture, education, household,
manufacturing, etc. The purpose of a MRS application can be information gather-
ing, service providing, educational usage and others. Full discussion of the MRS
applications can be found in Section 2.2.

5 Representative Middleware for MRS

In this section, we give a comprehensive overview of some popular middleware
for MRS. This list is not exhaustive and there are many more middleware such as
OROCOS [13], SmartSoft [84], CLARAty [93], etc. that have not been discussed in
this work. We have focused on more recent and popular middleware for robotics. For
each middleware that has been included below, we have discussed the architecture,
objective, development tools and utilities provided, and platforms and programming
languages supported by the middleware. An overview of various MRS middleware,
discussed in this section, has been shown in Table 2. This overview is done on the
basis of middleware specific features illustrated in Fig. 5, which shows the overview
of feature tree of MRS middleware.

Player/Stage: Player5 is device server that provides clients with programming in-
terfaces to control robots comprising of sensors and actuators [31]. Player is imple-

5 http://playerstage.sourceforge.net/

http://playerstage.sourceforge.net/

22 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

Ta
bl

e
2:

O
ve

rv
ie

w
of

E
xi

st
in

g
M

R
S

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Fu
nc

tio
n

Fe
at

ur
es

N
on

-f
un

ct
io

n
Fe

at
ur

es
Pr

og
ra

m
m

in
g

A
bs

tr
ac

tio
n

In
fr

as
tr

uc
tu

re
Fe

at
ur

es
C

oo
rd

in
at

io
n

Fe
at

ur
e

Pl
ay

er

L
oc

al
iz

at
io

n,
M

ap
pi

ng
,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

Se
cu

ri
ty

,
R

ob
us

tn
es

s
Im

pe
ra

tiv
e,

N
od

e-
ba

se
d

U
ni

x-
lik

e/
W

in
do

w
s,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
-S

ta
ge

/G
az

eb
o,

C
,C

++
,J

av
a,

Py
th

on
et

c.

A
sy

nc
hr

on
iz

ed

O
rc

a
L

oc
al

iz
at

io
n,

M
ap

pi
ng

et
c.

re
us

ab
le

fr
om

ot
he

rp
ro

je
ct

s
N

on
e

Im
pe

ra
tiv

e,
N

od
e-

ba
se

d

U
ni

x-
lik

e/
W

in
do

w
s/

M
ac

O
S

X
,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

G
ra

ph
ic

al
In

te
rf

ac
e:

G
O

rc
a,

C
++

,J
av

a,
Py

th
on

,P
H

P,
C

#,
an

d
V

is
ua

lB
as

ic

A
sy

nc
hr

on
iz

ed

M
ir

o

M
ap

pi
ng

,
L

oc
al

iz
at

io
n,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

Sp
ee

ch
R

ec
og

ni
tio

n,
V

is
io

n
Pr

oc
es

si
ng

R
ob

us
tn

es
s

Im
pe

ra
tiv

e,
N

od
e-

ba
se

d

U
ni

x-
lik

e/
W

in
do

w
s,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

G
ra

ph
ic

al
In

te
rf

ac
e:

Q
tG

U
I,

C
++

A
sy

nc
hr

on
iz

ed
(E

ve
nt

-d
riv

en
co

nt
ro

l)

M
IR

A

L
oc

al
iz

at
io

n,
M

ap
pi

ng
,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

Se
cu

ri
ty

,
R

ob
us

tn
es

s,
R

el
ia

bi
lit

y,
Fa

ul
tT

ol
er

an
ce

,
R

ea
l-

tim
e

su
pp

or
t

Im
pe

ra
tiv

e,
N

od
e-

ba
se

d

L
in

ux
/W

in
do

w
s,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

G
ra

ph
ic

al
In

te
rf

ac
e:

Q
tG

U
I,

C
++

,P
yt

ho
n,

Ja
va

Sc
ri

pt
et

c.

A
sy

nc
hr

on
iz

ed

O
pe

nR
D

K

M
ap

pi
ng

,
L

oc
al

iz
at

io
n,

Pa
th

Pl
an

ni
ng

,
N

av
ig

at
io

n,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

R
ob

us
tn

es
s

Im
pe

ra
tiv

e,
N

od
e-

ba
se

d

U
ni

x-
lik

e,
L

og
gi

ng
/D

eb
ug

gi
ng

Fa
ci

lit
ie

s,
Si

m
ul

at
or

:U
SA

R
Si

m
/S

ta
ge

/G
az

eb
o,

C
++

A
sy

nc
hr

on
iz

ed

Middleware for Multi-Robot Systems 23

Ta
bl

e
2:

O
ve

rv
ie

w
of

E
xi

st
in

g
M

R
S

M
id

dl
ew

ar
e

(C
on

tin
ue

d)

M
id

dl
ew

ar
e

Fu
nc

tio
n

Fe
at

ur
es

N
on

-f
un

ct
io

n
Fe

at
ur

es
Pr

og
ra

m
m

in
g

A
bs

tr
ac

tio
n

In
fr

as
tr

uc
tu

re
Fe

at
ur

es
C

oo
rd

in
at

io
n

Fe
at

ur
e

M
A

R
IE

M
ap

pi
ng

,
L

oc
al

iz
at

io
n,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

R
ob

us
tn

es
s

Im
pe

ra
tiv

e,
N

od
e-

ba
se

d

U
ni

x-
lik

e,
L

og
gi

ng
/D

eb
ug

gi
ng

Fa
ci

lit
ie

s,
Si

m
ul

at
or

:S
ta

ge
/G

az
eb

o,
G

ra
ph

ic
al

In
te

rf
ac

e:
lo

gv
ie

w
er

,
C

++

A
sy

nc
hr

on
iz

ed

U
rb

i
V

is
io

n
Pr

oc
es

si
ng

N
on

e
Im

pe
ra

tiv
e,

N
od

e-
ba

se
d

U
ni

x-
lik

e/
W

in
do

w
s/

M
ac

O
S

X
,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
:W

eb
ot

s,
G

ra
ph

ic
al

In
te

rf
ac

e:
U

rb
iL

ab
,

C
++

,J
av

a,
M

A
T

L
A

B
,P

yt
ho

n
et

c.

B
ot

h
Sy

ch
ro

ni
ze

d
an

d
A

sy
ch

ro
ni

ze
d

M
R

D
S

Sp
ee

ch
R

ec
og

ni
tio

n,
V

is
io

n
Pr

oc
es

si
ng

Se
cu

ri
ty

,
Fa

ul
tT

ol
er

an
ce

,
R

ob
us

tn
es

s

D
ec

la
ra

tiv
e,

E
ns

em
bl

e-
ba

se
d

W
in

do
w

s,
L

og
gi

ng
/D

eb
ug

gi
ng

Fa
ci

lit
ie

s,
Si

m
ul

at
or

:V
is

ua
lS

im
ul

at
io

n
E

nv
ir

on
m

en
t,

G
ra

ph
ic

al
In

te
rf

ac
e:

V
is

ua
lP

ro
gr

am
m

in
g

L
an

gu
ag

e,
C

#,
V

is
ua

lB
as

ic
,a

nd
Ir

on
Py

th
on

A
sy

nc
hr

on
iz

ed

R
ob

oC
om

p
M

ap
pi

ng
,L

oc
al

iz
at

io
n

et
c.

re
us

ab
le

fr
om

ot
he

rp
ro

je
ct

s
su

ch
as

Pl
ay

er
,O

rc
a,

an
d

R
O

S
N

on
e

Im
pe

ra
tiv

e,
N

od
e-

ba
se

d

U
ni

x-
lik

e/
W

in
do

w
s/

M
ac

O
S

X
,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
:S

ta
ge

/G
az

eb
o,

G
ra

ph
ic

al
In

te
rf

ac
es

:m
an

ag
er

C
om

p,
m

on
ito

rC
om

p
et

c.
,

C
++

,J
av

a,
Py

th
on

,R
ub

y,
C

#,
PH

P,
an

d
O

bj
ec

tiv
e

C

A
sy

ch
ro

ni
ze

d

R
O

S
M

ap
pi

ng
,L

oc
al

iz
at

io
n

et
c.

re
us

ed
fr

om
ot

he
rp

ro
je

ct
s

su
ch

as
Pl

ay
er

,O
pe

nR
AV

E
et

c.

R
ea

l-
tim

e
su

pp
or

t,
R

ob
us

tn
es

s
Im

pe
ra

tiv
e,

N
od

e-
ba

se
d

U
ni

x-
lik

e/
W

in
do

w
s

(p
ar

tia
l)

/M
ac

O
S

X
,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
:S

ta
ge

/G
az

eb
o,

G
ra

ph
ic

al
In

te
rf

ac
es

:r
xp

lo
t,

rx
gr

ap
h,

C
++

,P
yt

ho
n,

O
ct

av
e,

an
d

L
IS

P

A
sy

nc
hr

on
iz

ed

24 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

Ta
bl

e
2:

O
ve

rv
ie

w
of

E
xi

st
in

g
M

R
S

M
id

dl
ew

ar
e

(C
on

tin
ue

d)

M
id

dl
ew

ar
e

Fu
nc

tio
n

Fe
at

ur
es

N
on

-f
un

ct
io

n
Fe

at
ur

es
Pr

og
ra

m
m

in
g

A
bs

tr
ac

tio
n

In
fr

as
tr

uc
tu

re
Fe

at
ur

es
C

oo
rd

in
at

io
n

Fe
at

ur
e

W
U

R
D

E
L

oc
al

iz
at

io
n,

C
ol

lis
io

n
A

vo
id

an
ce

,
V

is
io

n
Pr

oc
es

si
ng

R
ob

us
tn

es
s

D
ec

la
ra

tiv
e,

N
od

e-
ba

se
d

U
ni

x-
lik

e,
L

og
gi

ng
/D

eb
ug

gi
ng

Fa
ci

lit
ie

s,
Si

m
ul

at
or

:S
ta

ge
,

G
ra

ph
ic

al
In

te
rf

ac
e:

R
ID

E
,

C
++

A
sy

nc
hr

on
iz

ed

O
PR

oS

M
ap

pi
ng

,
L

oc
al

iz
at

io
n,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

Fa
ul

tT
ol

er
an

ce
,

R
ob

us
tn

es
s,

R
ea

l-
tim

e
su

pp
or

t
(u

nd
er

de
ve

lo
pm

en
t)

D
ec

la
ra

tiv
e,

no
de

-b
as

ed

L
in

ux
/W

in
do

w
s,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
:O

PR
oS

Si
m

ul
at

or
,R

ob
ot

B
ui

ld
er

,
G

ra
ph

ic
al

In
te

rf
ac

e:
C

om
po

ne
nt

C
om

po
se

r,
C

++
,J

av
a

A
sy

nc
hr

on
iz

ed
(e

ve
nt

-d
riv

en
)

R
T-

M
id

dl
ew

ar
e

M
ap

pi
ng

,
L

oc
al

iz
at

io
n,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

R
ea

l-
tim

e
su

pp
or

t,
R

ob
us

tn
es

s
Im

pe
ra

tiv
e,

N
od

e-
ba

se
d

U
ni

x-
lik

e/
W

in
do

w
s,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
:S

ta
ge

,
G

ra
ph

ic
al

In
te

rf
ac

e:
R

T
Sy

st
em

E
di

to
r,

C
++

,J
av

a,
an

d
Py

th
on

B
ot

h
Sy

nc
hr

on
iz

ed
,

an
d

A
sy

nc
hr

on
iz

ed

A
SE

B
A

M
ap

pi
ng

,
L

oc
al

iz
at

io
n,

Pa
th

Pl
an

ni
ng

,
C

ol
lis

io
n

A
vo

id
an

ce
,

V
is

io
n

Pr
oc

es
si

ng

R
ea

l-
tim

e
su

pp
or

t,
R

ob
us

tn
es

s
Im

pe
ra

tiv
e,

N
od

e-
ba

se
d

U
ni

x-
lik

e/
W

in
do

w
s,

L
og

gi
ng

/D
eb

ug
gi

ng
Fa

ci
lit

ie
s,

Si
m

ul
at

or
:E

nk
iS

im
ul

at
or

,
G

ra
ph

ic
al

In
te

rf
ac

e:
A

SE
B

A
ID

E
ba

se
d

on
Q

t4
,

A
SE

L
(A

SE
B

A
E

ve
nt

Sc
ri

pt
in

g
L

an
gu

ag
e)

A
sy

nc
hr

on
iz

ed
(E

ve
nt

-b
as

ed
)

Middleware for Multi-Robot Systems 25

mented in C++ as a multi-threaded TCP socket server for transparent robot control.
Socket based robot server provides many benefits such as platform independence,
language independence, and location neutrality which means a client can access and
control robotic devices anywhere on the network. Player has been designed to sup-
port heterogeneous devices and clients simultaneously at different timescales [31].
One-to-many client/server architecture has been followed which implies that one
server can serve multiple clients. Each client is connected to Player by a TCP socket
connection while a device can be connected to Player by any appropriate method.
Client can be implemented in any language providing socket mechanism such as C,
C++, Tcl, Java, Python, etc.

Player is modular therefore, devices can be added dynamically. UNIX model of
treating devices as files has been chosen to provide an abstraction for a variety of de-
vices. To receive sensor readings, client opens the device with read access while for
controlling an actuator, client must open the device with write access. Each device
has an associated command and data buffer that provides an asynchronous commu-
nication channel between device threads and client reader and writer threads. Clients
and devices are decoupled from each other. Player also supports request-reply mech-
anism, similar to ioctl(), for configuration requests that can be used to access
specific hardware features. There is no device locking mechanism implemented in
Player therefore, clients can overwrite commands of the other clients.

Stage is a simulator that is used for simulating population of mobile robots, sen-
sors, and environmental objects. This enables development and testing of clients
without accessing real hardware and environment. Stage simulator is also useful for
experimentation of novel devices that have not been developed yet [31]. Sensors
and actuator models in Stage are available through normal Player interface. Usu-
ally, clients cannot differentiate between real and simulated stage equivalents. Stage
also supports non-locking, platform- and language independence characteristic of
interfaces in Player.

Since Player is freely available as open-source, many improvements have been
done since the original version [32]. Some major improvements related to simplic-
ity and flexibility have been done in [22]. Player has been divided into two parts,
the core and transport layer. Separation of Player core from transport layer provides
more flexibility. Original version [32] was a TCP-based device server, but now it
can support many other configurations. Other transport layers, or no transport layer,
can also be used. Player is supported on most of the UNIX flavors and on Windows
using Cygwin.

Orca: Orca6 is a framework that can be used for development of component-
based robotic systems. Complex robotic systems can be developed by piecing to-
gether the components provided by Orca. The main objective of Orca is to promote
software reuse. Orca does not impose any constraint on the component granularity
(size of modules used to make up the complete system), system architecture (any

6 http://orca-robotics.sourceforge.net/index.html

http://orca-robotics.sourceforge.net/index.html

26 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

architecture such as centralized, blackboard, strictly-layered, strictly-decentralized,
or mixed can be implemented), interfaces, and component architecture [56].

Orca uses Internet Communication Engine (Ice) for communication between in-
terfaces [56]. Slice, a specification language for Ice, is used for defining interfaces.
There are many Ice services such as IceGrid Registry, IceGrid Node, IceBox, and
IceStorm which are extensively used in Orca. IceGrid Registry is a centralized reg-
istry for naming service. IceGrid Node is a software activation service. IceBox is an
application server that is responsible for starting and stopping of application compo-
nents. Application components are deployed as a dynamic library which makes them
easy to deploy and administer, and also optimizes the communication between com-
ponents within the same application server. IceStorm is an event service which for-
wards the messages received from a server to multiple clients without marshalling or
demarshalling them. IceStorm can also weaken client dependencies by configuring
multiple threads.

Orca also provides a library called libOrcaIce which provided simplified API
that can be used for development of robotic applications [56]. This lowers the bar-
rier for developers as the majority of functionalities used for robotic applications
are provided by Orca library. To allow the use of Orca on wider platforms, CMake
is used to build system. Orca can be used on different operating systems including
Linux, several flavors of Windows, and Mac OS X. Programming languages that are
supported are C++, Java, Python, PHP, C#, and Visual Basic. Also, Ice Client and
server are language independent so they can be implemented in any programming
language.

Miro: Miro7 is a three-layered middleware for mobile robot applications which
is designed and implemented using object-oriented approach [92]. The three layers
from bottom to top are MIRO device layer, MIRO service layer, and MIRO class
framework layer. The higher layers access lower layers using interfaces. MIRO de-
vice layer is a platform dependent layer that provides classes to interface and ab-
stracts the low-level sensors and actuators within a robot. The classes also allow
access to low-level hardware resources using ordinary method calls. MIRO service
layer provides service abstraction for sensors and actuators with event-based com-
munication by using CORBA interface definition layer (IDL). The services are im-
plemented as network transparent CORBA objects which enable language and plat-
form independence. Sensors and actuators are presented in a platform-independent
manner by use of classes in this layer. MIRO class framework layer provides func-
tional modules such as mapping, localization, behavior generation, logging and vi-
sualization facilities etc. which are extensively used for mobile robotic application
development. Besides providing common functionalities for application develop-
ment, MIRO class framework also provides functionality for experimental evalua-
tion.

All MIRO functionalities have been implemented in C++. The communica-
tion mechanism is developed using TAO package which is an implementation of

7 https://sourceforge.net/projects/miro-middleware.berlios/

https://sourceforge.net/projects/miro-middleware.berlios/

Middleware for Multi-Robot Systems 27

CORBA-based on adaptive communication engine (ACE). Client-server model has
been used for communication between objects. MIRO implementation includes
three type of clients (sample client, test client, and monitoring client) for testing
and evaluation of service functionalities. Apart from event-driven communication
between services, synchronous and asynchronous communication are also used.

MIRA: MIRA8 is a decentralized middleware that supports the development of
fully distributed robotic applications. The objective of MIRA is to support the de-
velopment of real-world applications therefore, mechanisms have been used to ad-
dress issues such as memory consumption, latency, fault tolerance and robustness.
Each application is composed of different processes that can be located on different
machines. Each process further consists of multiple software modules called units
which implement algorithms to solve any task. In case multiple units are present in
a single process, then each of the unit runs in its own thread.

MIRA is written in C++ but it can be interoperable with other programming
languages such Java, Python etc. Reflection and serialization are two concepts that
have been widely used in implementing different mechanisms in MIRA. MIRA uses
a reflect method to reflect and serialize any arbitrary class since reflection and seri-
alization are not supported natively by C++. This mechanism enables the complete
use of object-oriented programming paradigm. This allows transport of not only
simple data but also complex objects including robot models, GUI components etc.
to the remote side. Use of serialization makes MIRA interoperable with other pro-
gramming languages and middleware. Serialization formats such as XML, JSON,
and binary are currently supported by MIRA.

Two communication mechanisms are supported by MIRA, message passing and
remote procedure calls (RPC). There is no central server used in MIRA for name
look or other management tasks. MIRA supports robustness and reliability by us-
ing peer-to-peer architecture for communication between different processes. Com-
munication between units and message exchange is done using named channels.
Channels allow one-to-one, one-to-many, and many-to-many communication [27].
MIRA supports autonomous handling of multi-threading and data synchronization.
Slot-based communication avoids unnecessary copying and blocking of data when
there is simultaneous read and write access. Slot-based communication also helps
in reducing memory usage. MIRA reduces latency of RPC by using futures, which
act as proxy for the result of asynchronous calls. MIRA is currently supported for
Linux and Windows operating system.

OpenRDK: OpenRDK9 is a modular software framework designed to develop
distributed and mobile robotic applications. The objective of OpenRDK is to support
modularity and code reusability of software to enable easier and faster development
of robotic application. The main entity of the software framework is a software pro-
cess called agent. Single thread inside an agent process is called module, which can

8 http://www.mira-project.org/joomla-mira/
9 http://openrdk.sourceforge.net/index.php?n=Main.HomePage

http://www.mira-project.org/joomla-mira/
http://openrdk.sourceforge.net/index.php?n=Main.HomePage

28 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

be loaded and started dynamically once agent is running [17]. An agent configura-
tion is a list of modules that are to be loaded and executed, their interconnection
layout, and value of their parameters. All modules publish the data they want to
share in a repository. Variables published by modules i.e. input, output, and param-
eter, are called properties. Each property is assigned to a globally-unique URL ad-
dress. These URL addresses enable modules to transparently access modules within
the same agent or remotely. There are some special queue objects that are also ad-
dressed using global-URL just like other local properties.

OpenRDK uses multiple processes with multiple threads. Since information shar-
ing between modules is done with the help of URL, it introduces some coupling be-
tween modules which adversely affects the modularity of the whole system. To re-
solve this issue, property links are specified in configuration file that allows modules
to refer to different names for the properties thus, avoiding any coupling between
modules. While sharing of information within the same agent can be done using
repository, inter-agent information sharing can be done by either property sharing
or message sending. OpenRDK also contains RConsole which is a graphical tool
used for remote inspection and management of modules. Other modules for con-
necting to simulators or for logging are also provided by OpenRDK. OpenRDK is
written in C++. It can run on a UNIX-like operating system. OpenRDK does not
focus on platform-independence of the software framework.

MARIE: Mobile and Autonomous Robotics Integration Environment (MARIE)10

is a distributed component-based middleware framework designed to develop robotic
applications by enabling integration of new and existing systems [23]. The objec-
tive of MARIE is to enable software reuse, support multiple sets of concepts, and
support a wide range of communication protocols, mechanism and robotic stan-
dards. MARIE supports multiple levels of abstraction by utilizing layered software
architecture consisting of three layers, which are Core layer, Component layer, and
Application layer. Core layer is the lower level layer that provides tools for low-level
functionalities such as communication, distributed computation, data handling, and
many low-level operating system functions. Component layer implements a frame-
work to add components and support domain-specific concepts. Application layer
consists of tools required to build robotic applications from available components.

MARIE uses mediator interoperability layer (MIL) to act as a mediator for in-
teraction with each component independently. MIL is implemented as virtual space
where components can interact with each other using a common language. This
design leads to the decoupling between components, increases reusability, interop-
erability, and reduces the complexity of managing a large number of centralized
components. MIL is composed of four types of components, which are application
adapter (AA), communication adapter (CA), application manager (AM), and com-
munication manager (CM). AA is responsible for interfacing applications with MIL.
CA is responsible for communication between components by adapting different
communication mechanisms. AM is responsible for management of all components

10 http://marie.sourceforge.net/wiki/index.php/Main_Page

http://marie.sourceforge.net/wiki/index.php/Main_Page

Middleware for Multi-Robot Systems 29

in the system and CM is responsible for management of communication between
AAs.

MARIE has been written in C++. MARIE does not focus on any specific com-
munication mechanism rather it uses communication abstraction framework, called
port, for provided communication protocols and component interconnection. It uses
Adaptive communication environment (ACE) library to implement for transport
layer and low-level operating system function implementation.

Urbi: Urbi11 is a software platform for developing robotic applications. Urbi is
based on an event-driven scripting language, URBISCRIPT, and distributed compo-
nent architecture [8]. URBISCRIPT is designed not only to create robotic applica-
tions and controlling robots but also it is the foundation of the communication pro-
tocol based on which client/server architecture for Urbi software platform is built.
Multiple clients can interact concurrently with a server by means of URBISCRIPT.
Urbi server which lies above the operating system is responsible for abstracting
low-level hardware details. Urbi platform interacts with underlying operating sys-
tem using engines which are also responsible for running the Urbi server. Urbi ker-
nel is another part of the Urbi server that provides primitive services including Urbi
Virtual Machine (UVM). URBISCRIPT running on top of Urbi Virtual Machine
(UVM) is responsible for providing CPU independence.

Diversity in robots is addressed by the use of UObject architecture. UObject
enables communication between low-level and high-level components, and their in-
teraction with URBISCRIPT. Complex data flowing between multiple components
can also be handled by use of UObject API. UObject can be either plugged into
the server or also used as standalone remote process. Besides low-level abstraction
provided by UObject, high-level abstraction is also provided by use Urbi Naming
standard. These abstractions enable development of portable applications.

There are many graphical applications such as UrbiLive and UrbiLab provided
by Urbi platform to enable easy interaction with robots. UrbiLive is a graphical ed-
itor useful for composing and chaining actions based on external events. UrbiLab
is a graphical tool used as Urbi server inspector and effector. UrbiLab can also
be used for remote control of robots. Urbi is open to programming environments
such as Java, MATLAB, and Python. Although Urbi platform is based on C++ and
URBISCRIPT, it is not necessary to know these languages to program robots and
components.

Microsoft Robotics Developer Studio (MRDS): Microsoft Robotics Developer
Studio (MRDS)12 is a service-driven robotic studio that follows representational
state transfer (REST) pattern [40]. Decoupled software services are used for interac-
tion with robots. Use of decoupled services enables modularity and code reuse. Ser-
vices are used for both robot interaction and implementation of functionalities such
as web-based error reporting, wireless communication etc. The interaction between

11 http://www.gostai.com/products/urbi/
12 https://www.microsoft.com/en-us/download/details.aspx?id=29081

http://www.gostai.com/products/urbi/
https://www.microsoft.com/en-us/download/details.aspx?id=29081

30 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

services is done by use of XML-based configuration manifest file. Manifest file en-
ables start-up of services by MRDS by defining partnership between services. The
partnership of services also enables registration between services, message passing,
and fault notification. Partnership and distributed messaging are enabled by use of
software library called Decentralized Software Services Protocol (DSSP). MRDS
also uses another software called Coordination and Concurrency Runtime (CCR)
for handling state updates and message processing. CCR also enables abstraction of
complex functionalities such as memory locking and communication between vari-
ous operating systems. There are two other main components in MRDS, which are
visual programming language (VPL) for graphical interface and visual simulation
environment (VSE) for running simulation.

There are some utility services provided by MRDS. A control panel enables the
user to view all currently running services and links between them. There is a mes-
sage logging service that runs built-in filtering to provide a debugging view of the
system. Resource diagnostic service is also provided to enable the developer to ob-
tain additional debugging and performance evaluation information. A 3D simulator,
based on Microsoft DirectX technology, is also included in MRDS. The simulator
is useful for both graphics and physics simulation. MRDS is implemented in .NET.
Services in MRDS can be written in any .NET compatible language. Service im-
plementations have been done in C#, Visual Basic, and Iron Python. Simple Object
Access Protocol (SOAP) interface can also be used to interface services with other
programming interfaces. MRDS is a popular proprietary middleware that only sup-
ports Windows platform.

RoboComp: RoboComp13 is a component-oriented robotic framework that fo-
cuses on ease of use and rapid development of robotic applications [57]. Robo-
comp is based on Ice which is extended further by use of different classes and tools.
Components used in Robocomp consist of three main elements, which are server
interface, worker class, and proxies that are used for communicating with other
components. Worker class implements the core functionality of components. Server
interface and worker class run in different threads to avoid delays. There is another
optional common interface called CommonBehavior that is used for accessing the
parameters and status of components.

Different tools provided by RoboComp are used for providing functionalities
such as monitoring, management, debugging, simulation etc. These tools are:

a) componentGenerator: This tool makes the task of the programmer easier by au-
tomatically generating the skeleton of the new component and even the code
pieces for the programmer.

b) managerComp: managerComp is a graphical tool that can be used for building
and running the system. Both local and remote components are managed can be
managed by use managerComp. This tool also makes use of CommonBehavior
interface to visually access the parameters of the components.

13 http://robocomp.github.io/website/

http://robocomp.github.io/website/

Middleware for Multi-Robot Systems 31

c) monitorComp: This tool is used for connection and monitoring of components.
monitorComp provides a graphical interface for testing the components in an
easier way. Testing is done either by use of custom monitoring code or template
available to test HAL components

d) replayComp: This tool records the output of components to replay them. This is
also a graphical tool that is useful for debugging purposes.

e) Simulation Support: RoboComp makes use of two widely used open source sim-
ulators, Stage and Gazebo, for simulation purpose.

f) loggerComp: This tool is used for analyzing the execution and interaction of
components. This tool also provides a graphical interface to display different
types of information.

RoboComp can be deployed on any computer system supporting Ice. Platforms
supported by RoboComp are Linux, Windows, Mac OS X, Android and iPhone.
Any programming language that supports Ice can be used for RoboComp, which
includes C++, Java, Python, C#, Ruby, PHP, and Obective-C.

ROS: ROS14 is a modular framework for developing robotic systems [74]. ROS
provides a structured communication layer above operating system of the host. Mul-
tiple processes running in a system are connected using peer-to-peer topology in-
stead of using a central server. ROS is language-neutral. A simple and language-
neutral interface definition language (IDL) is used to provide support for cross-
language development. All the functionalities in ROS are developed using small
modules. Use of modular architecture reduces complexity and enhances stability.
All the driver and algorithm development is done in standalone libraries which are
independent of ROS. Small executables are created inside the source code which
exposes library functionality to ROS. This mechanism makes code reuse easier and
helps in unit testing.

There are some fundamental concepts that have been defined for ROS imple-
mentation, which are nodes, messages, topics, and services. A system is composed
of multiple nodes which are processes that perform computation [74]. Communi-
cation between nodes is using messages. A message can consist of other messages,
or array or messages. Topic-based publish-subscribe communication paradigm has
been used. To enable request/response communication, the concept of services has
been defined. There can be multiple simultaneous publishers and/or subscribers for
a single topic, a single node can publish and/or subscribe to multiple topics.

ROS follows tool-based design thus, there are many tools provided with ROS
for different scenarios. ROS uses rconsole library to enable logging and monitor-
ing of distributed system. Packaging functionality is enabled by use of roslaunch
tool. Collaborative development is enabled by use of utilities such as rospack and
rosbash. ROS uses a utility named rostopic for filtering messages. There are tools
such as rxplot, rsgraph that are used for generating plots and graphs. ROS has been
designed to be language neutral. ROS supports four different types of programming

14 http://www.ros.org/

http://www.ros.org/

32 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

languages, which are C++, Python, Octave, and LISP.

WURDE: WURDE (Washington University Robotics Development Environ-
ment) is a modular middleware for developing robotic systems [37]. The objective of
WURDE is to develop middleware that is easy to use even for beginners. WURDE
provides set of abstraction and utilities to achieve this objective. Four layers of ab-
straction are provided by WURDE, which are communication, interface, applica-
tion and system. WURDE does not use specific communication protocol instead the
communication layer defines types and methods for moving data to communication
adapter [28]. Interface layer describes the data required by each type of robot. In-
terfaces are described using XML. Application layer provides API for controlling
different aspects of applications. System layer is top most abstraction layer which is
used for connecting different applications.

WURDE does not use any specific software architecture instead, the robotic sys-
tem is developed as system of small interconnected modules. WURDE uses asyn-
chronous communication for communication between modules. One of the modules
provided by WURDE is a tasking and control interface called RIDE (Robot Inter-
action Display Environment). RIDE enables single user to control and task multiple
robots at same time. Implementation of WURDE is not yet complete as there are
many software packages that are still needed to be developed.

OPRoS: OPRoS (Open platform for robotic services) 15 is a distributed component-
based platform for developing robotic systems [41]. The objective of OPRoS is
to enable full development of robot software by providing required developmen-
tal tools, middleware services, component execution engine, simulation environ-
ment and other utilities. Robotic services in OPRoS is composed of loosely coupled
components. There are two types of components, atomic component and composite
component. Components can have different granularities. Communication between
components is done by use of ports on each specific components. Each component
can have multiple ports that are used for transmission of different type of infor-
mation such as method invocation, data and events. Components in OPRoS can
support either of the three different types of execution modes, which are periodic,
non-periodic, and passive.

All the information related to components such as port types, execution seman-
tics, properties and other relevant information is stored in an XML file called compo-
nent profile [41]. There are other XML profiles such as service profile, data profile,
and application profile. Component and application profile is used by communica-
tion execution engine for execution and management of components. Component
execution engine provides abstractions to developers by hiding low-level details
such as thread management, resource allocation, and other functions offered by the
operating system. Component execution engine also provides a self-configurable
fault-tolerance module for detecting faults and anomalies.

15 http://www.opros.or.kr/display/opros/OPRoS+Wiki

http://www.opros.or.kr/display/opros/OPRoS+Wiki

Middleware for Multi-Robot Systems 33

OPRoS also provides development tools for authoring atomic components and
composing components. Component authoring tool, as the name suggests, is used
for authoring atomic components. This tool also supports debugging, execution con-
trol, and monitoring of atomic components. Component Composer is used for com-
posing components to develop the robotic application. Component Composer can
also be used for remote control and monitoring of multiple component execution en-
gines concurrently. All these tools can be supported on any operating system where
eclipse is installed. OPRoS currently supports both Windows and Linux operating
system.

RT-Middleware: RT (Robot Technology) - Middleware 16 serves as a distributed
component-based middleware for developing robotic systems. [4] It studies mod-
ularization of robotic elements and proposed RT-Components as the basic soft-
ware unit based on CORBA (Common Object Request Broker Architecture). RT-
middleware supports the construction of various networked robotic systems by
the integration of various RT-Components. An open source implementation called
OpenRTM-aist [5] was developed for feedback from the robotic research commu-
nity.

An RT-Component is composed of a component object as the main body, activ-
ity as the main process unit, input ports (InPorts) and output ports (OutPorts) as
data stream ports. The activity serves as a controller of the device and process the
designed tasks continuously. The activity has eleven states and each state is pos-
sible to have three methods called entry, do and exit. These three methods will be
called automatically on entry to, being in and on exit from the state respectively.
The transition of the states is uniform for all RT-Components. Hence, developers
may implement the methods for each state to build a new RT-Component.

The InPorts and OutPorts take advantages of publisher/subscriber model. On the
one hand, an InPort serves as a subscriber and may subscribe several OutPorts. It
also provides a common method called InPort::put to allow data to be written.
On the other hand, an OutPort serves as a publisher and write data to those InPorts
who have subscribed it by using the method of InPort::put. It also provides
several subscription types, e.g., Once, Periodic and Triggered.

The RT-Middleware provides several methods for integrating RT-Components.
These methods include assembly GUI tool, script language, XML file, other RT-
Components and other application programs. By integration of RT-Components,
applications can be built from bottom to up. Such applications include network dis-
tributed monitoring system [42] and intelligent home service robotic system [43].

ASEBA: ASEBA17 is an event-based middleware supporting distributed con-
trol and efficient resources exploitation among multiple microcontrollers in a robot.
[52] [55] The ASEBA is specially designed for robots with more than one micro-
controllers sharing a bus for communication.

16 http://openrtm.org
17 http://mobots.epfl.ch/aseba.php

http://openrtm.org
http://mobots.epfl.ch/aseba.php

34 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

The ASEBA abandons traditional architecture where the main microcontroller
controls all the other microcontrollers and manages all data transfers. As an event-
based middleware, it utilizes multi-master bus in which all microcontrollers can
initiate data transfers. The multi-master bus enables asynchronous messages, called
events, transferred between microcontrollers. Without control of a centralized main
processor, load on bus is significantly reduced. Also, the main process can get re-
leased from processing messages and be dedicated for CPU-intensive tasks such as
path planning and image processing.

A scripting language called AESL (ASEBA Event Scripting Language) is pro-
vided to describe even emission and reception policy in ASEBA. A piece of AESL
program can be compiled into bytecode using the designed compiler and ran on the
implemented virtual machine. The compiler, together with a script editor and a dis-
tributed debugger form into the integrated development environment for ASEBA.
The virtual machine is lightweight with less than 1000 lines of C program including
debugging logic.

The ASEBA has been successfully deployed in the handbot for the task of climb-
ing a shelf and in the marXbot to improve the performance of behaviors in terms of
a polling-based approach. The ASEBA has been utilized for purpose of education
[53] and managing a collection of single-microcontroller robots [54].

6 Future Directions and Challenges

In this section, we have given some observations regarding future directions and
challenges for MRS middleware. These observation have been made after reviewing
existing middleware for MRS. We discuss which design goals have been commonly
addressed by existing middleware and which ones need more research effort. Since
design of middleware is dependent on hardware, it is important to develop multi-
robot systems, which are cheaper, smaller, and have better sensing, processing, and
communication technologies. Due to limitation in technology, each robot in MRS
has very limited processing power, storage, communication capability, and battery
capacity. These resource limitations make it difficult to develop sophisticated mid-
dleware for MRS. One of the major research directions is to develop lightweight
middleware that can be used to enable different design goals. Another challenging
issue arises due to the heterogeneity of robots. MRS work by collaborating and co-
ordinating with each other, however, heterogeneity of robots and communication
protocols makes it a challenging task. Collaboration involves partitioning and dis-
tribution of complicated tasks among multiple robots, therefore, middleware should
provide lightweight algorithms for task partitioning and management. Scalability
will be another major challenge in coming future. Middleware should be designed
to support scalability and dynamic configuration of system.

Middleware evaluation is a major part in analyzing the middleware. Middleware
is usually evaluated by quantifying the system parameters based on some application
example, however, there are some issues with this approach. Application examples

Middleware for Multi-Robot Systems 35

that are used for middleware evaluation only focus on some specific system require-
ments which means evaluation depends highly on the application example being
used [69]. Besides, different middleware architectures are developed for different
applications thus, it may not be the best criteria to evaluate a middleware based on
some specific parameters. Another issue with middleware evaluation is that it is dif-
ficult to quantify the usability of middleware [69]. Several mechanisms such as the
use of a questionnaire, number of lines of code, or time to develop the system have
been used to determine whether middleware is easy to use or not but, this is not very
efficient. Middleware evaluation is currently a challenging issue for researchers and
developers which requires more research efforts.

Robot Software architecture can usually be classified into three types, which are
object-oriented robotics, component-based robotics, and service-driven robotics [1].
Most middleware examples that have been discussed in Section 5 use small mod-
ules or components for developing a robotic system. Very few middleware, in gen-
eral, follow monolithic approach for developing robotic software platform. It is pre-
ferred to use small modules for system development as it reduces the complexity
of the whole system and enables reusability. Component-based approach is a com-
mon choice for building middleware for MRS. Orca, MARIE, Urbi, Robocomp,
OPRoS, RT-Middleware follow component-based architecture for developing mid-
dleware. Miro and Mira follow object-oriented paradigm, and MRDS is a service-
driven middleware that follows REST pattern. All the other remaining middleware
such as ROS, WURDE, OpenRDK, Player etc. use modular architecture. Out of all
these middleware architectures, ROS and Player are most popular among robotic
system developers. Although component and modular based approaches offer many
benefits, a challenging issue is to integrate different components which results in
issues related to communication, interoperability, and configuration [65]. Currently,
a new trend is emerging in robotics community to use model-driven engineering for
robotics software [1]. SmartMDSD Toolchain [89] is a toolchain based on model-
driven software development approach that provides an integrated modelling envi-
ronment to create an overall workflow for robotics software development.

We described some design goals for middleware in section 3, however, we ob-
served that each middleware is usually designed focusing on some specific goals. It
is very difficult to achieve all design goals simultaneously [86]. Future work in MRS
middleware should consider satisfying multiple design goals to enable multidimen-
sional benefits. Out of all the design goals, flexibility and software reusability is the
most common objective for existing middleware. Software reusability is enabled by
use of modular or component-based middleware architectures. Second observation
is that most of the middleware are freely available as open source. This is usually
done to enable debugging of the software and make it more popular. Since hetero-
geneity is a major issue in robotic system development, most middleware try to
provide some programming abstractions and make their system platform and lan-
guage independent. Linux is the first choice of operating system that is supported
by most middleware, Windows being the second, and there are some middleware
such as Orca, RoboComp that support Mac OS too. Most middleware provide some
graphical interface that enables management and monitoring of the robotic system.

36 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

Orca, OpenRDK, MARIE, Urbi, MRDS, RoboComp, ROS, OPRoS are some mid-
dleware examples that provide specific management and monitoring tools. Apart
from graphical interfaces, other mechanisms can also be used for management and
monitoring purposes.

Although the features currently supported by existing middleware help in de-
creasing the complexity and provide some other useful features, there are many
design goals which have not been fully addressed. One such design goal is collab-
oration among multiple robots which is currently achieved by existing middleware
as they are usually modular and support distributed control. However, existing mid-
dleware do not focus much on providing some specific abstractions or tools to facil-
itate collaboration. A similar case is observed for dynamic resource discovery and
configuration where specific tools and abstractions are not provided to enable dy-
namic configuration of system. Most middleware do not provide explicit facilities
to make the system more robust. Very few middleware provide explicit fault toler-
ance capabilities. Out of all the middleware discussed, OPRoS, MIRA, and MRDS
explicitly consider fault tolerance. Real-time support is another design goal which
has not been addressed by many middleware. RT-Middleware, MIRA, ROS, and
ASEBA are among the few middleware that provide some form of real-time support.
RT-Middleware provides some support for real-time processing, MIRA provides a
mechanism to minimize latency, ROS enables real-time inspection and monitoring
of any variable, and ASEBA also provides real-time support. Real-time support is
essential for many robotic applications and thus, more research efforts are required
to address this issue. Most middleware currently do not focus much on supporting
Quality of Service (QoS) requirements such as security, reliability etc. Security and
privacy are important concerns as MRSs are used for critical applications such as
battlefield surveillance, exploration missions, etc. Very few middleware provide se-
curity mechanism. Since MRSs are distributed in nature, it is challenging to develop
distributed security algorithm. Although existing middleware are developed to inte-
grate sensors and actuators within the robots, integration with other technologies
such as cloud computing, IoT has not been taken into much consideration.

Acknowledgements This work was supported by the ANR/RGC Joint Research Scheme [grant
number A-PolyU505/12], the NSFC Key Grant [grant number 61332004], and the NSFC/RGC
Joint Research Scheme [grant number N-PolyU519/12].

References

[1] Ahmad A, Babar MA (2016) Software architectures for robotic systems: A
systematic mapping study. Journal of Systems and Software 122:16–39

[2] Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor
networks: a survey. Computer networks 38(4):393–422

[3] Alimisis D (2013) Educational robotics: Open questions and new challenges.
Themes in Science and Technology Education 6(1):63–71

Middleware for Multi-Robot Systems 37

[4] Ando N, Suehiro T, Kitagaki K, Kotoku T, Yoon WK (2005) Rt-middleware:
distributed component middleware for rt (robot technology). In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
pp 3933–3938

[5] Ando N, Suehiro T, Kotoku T (2008) A software platform for component based
rt-system development: Openrtm-aist. In: International Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots, Springer, pp 87–
98

[6] Arai T, Pagello E, Parker LE (2002) Editorial: Advances in multi-robot sys-
tems. IEEE Transactions on robotics and automation 18(5):655–661

[7] Arbuckle D, Requicha AA (2010) Self-assembly and self-repair of arbi-
trary shapes by a swarm of reactive robots: algorithms and simulations. Au-
tonomous Robots 28(2):197–211

[8] Baillie JC, Demaille A, Hocquet Q, Nottale M, Tardieu S (2008) The urbi
universal platform for robotics. In: First International Workshop on Standards
and Common Platform for Robotics

[9] Beasley RA (2012) Medical robots: current systems and research directions.
Journal of Robotics 2012

[10] Benitti FBV (2012) Exploring the educational potential of robotics in schools:
A systematic review. Computers & Education 58(3):978–988

[11] Broadbent E, Stafford R, MacDonald B (2009) Acceptance of healthcare
robots for the older population: review and future directions. International
Journal of Social Robotics 1(4):319–330

[12] Bruce J, Zickler S, Licitra M, Veloso M (2008) Cmdragons: Dynamic passing
and strategy on a champion robot soccer team. In: Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, IEEE, pp 4074–4079

[13] Bruyninckx H (2001) Open robot control software: the orocos project. In:
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, IEEE, vol 3, pp 2523–2528

[14] Burgard W, Moors M, Fox D, Simmons R, Thrun S (2000) Collaborative multi-
robot exploration. In: Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, IEEE, vol 1, pp 476–481

[15] Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical
applications: A survey. IEEE Transactions on Robotics 31(6):1261–1280

[16] Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011)
Cloudsim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice
and experience 41(1):23–50

[17] Calisi D, Censi A, Iocchi L, Nardi D (2008) Openrdk: a modular framework for
robotic software development. In: 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, pp 1872–1877

[18] Chalup SK, Murch CL, Quinlan MJ (2007) Machine learning with aibo robots
in the four-legged league of robocup. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 37(3):297–310

38 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

[19] Chen D, Varshney PK (2004) Qos support in wireless sensor networks: A sur-
vey. In: International conference on wireless networks, vol 233, pp 1–7

[20] Chitic SG, Ponge J, Simonin O (2014) Are middlewares ready for multi-robots
systems? In: International Conference on Simulation, Modeling, and Program-
ming for Autonomous Robots, Springer, pp 279–290

[21] Cianci CM, Raemy X, Pugh J, Martinoli A (2006) Communication in a swarm
of miniature robots: The e-puck as an educational tool for swarm robotics. In:
International Workshop on Swarm Robotics, Springer, pp 103–115

[22] Collett TH, MacDonald BA, Gerkey BP (2005) Player 2.0: Toward a practical
robot programming framework. In: Proceedings of the Australasian Confer-
ence on Robotics and Automation (ACRA 2005), p 145

[23] Cote C, Brosseau Y, Letourneau D, Raı̈evsky C, Michaud F (2006) Robotic
software integration using marie. International Journal of Advanced Robotic
Systems 3(1):55–60

[24] Darwin C, Beer G (1951) The origin of species. Dent
[25] De Rosa M, Goldstein S, Lee P, Campbell J, Pillai P (2006) Scalable shape

sculpting via hole motion: Motion planning in lattice-constrained modular
robots. In: Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., IEEE, pp 1462–1468

[26] Di Mario E, Martinoli A (2014) Distributed particle swarm optimization for
limited-time adaptation with real robots. Robotica 32(02):193–208

[27] Einhorn E, Langner T, Stricker R, Martin C, Gross HM (2012) Mira-
middleware for robotic applications. In: 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IEEE, pp 2591–2598

[28] Elkady A, Sobh T (2012) Robotics middleware: A comprehensive literature
survey and attribute-based bibliography. Journal of Robotics 2012

[29] Engelberger JF (2012) Robotics in practice: management and applications of
industrial robots. Springer Science & Business Media

[30] Farinelli A, Iocchi L, Nardi D (2004) Multirobot systems: a classification fo-
cused on coordination. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 34(5):2015–2028

[31] Gerkey B, Vaughan RT, Howard A (2003) The player/stage project: Tools for
multi-robot and distributed sensor systems. In: Proceedings of the 11th inter-
national conference on advanced robotics, vol 1, pp 317–323

[32] Gerkey BP, Vaughan RT, Stoy K, Howard A, Sukhatme GS, Mataric MJ (2001)
Most valuable player: A robot device server for distributed control. In: Intel-
ligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, IEEE, vol 3, pp 1226–1231

[33] Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P,
Marnier B, Serre J, Maisonnier B (2008) The nao humanoid: a combination
of performance and affordability. CoRR abs/08073223

[34] Grieco LA, Rizzo A, Colucci S, Sicari S, Piro G, Di Paola D, Boggia G
(2014) Iot-aided robotics applications: Technological implications, target do-
mains and open issues. Computer Communications 54:32–47

Middleware for Multi-Robot Systems 39

[35] Gummadi R, Gnawali O, Govindan R (2005) Macro-programming wireless
sensor networks using kairos. In: International Conference on Distributed
Computing in Sensor Systems, Springer, pp 126–140

[36] Habibi G, Xie W, Jellins M, McLurkin J (2016) Distributed path planning for
collective transport using homogeneous multi-robot systems. In: Distributed
Autonomous Robotic Systems, Springer, pp 151–164

[37] Heckel F, Blakely T, Dixon M, Wilson C, Smart WD (2006) The wurde
robotics middleware and ride multirobot tele-operation interface. In: Proceed-
ings of the 21st national conference on artificial intelligence (AAAI06)

[38] Howard A, Parker LE, Sukhatme GS (2006) Experiments with a large hetero-
geneous mobile robot team: Exploration, mapping, deployment and detection.
The International Journal of Robotics Research 25(5-6):431–447

[39] Hu G, Tay WP, Wen Y (2012) Cloud robotics: architecture, challenges and
applications. IEEE Network 26(3):21–28

[40] Jackson J (2007) Microsoft robotics studio: A technical introduction. IEEE
Robotics & Automation Magazine 14(4):82–87

[41] Jang C, Lee SI, Jung SW, Song B, Kim R, Kim S, Lee CH (2010) Opros: A
new component-based robot software platform. ETRI journal 32(5):646–656

[42] Jia S, Takase K (2007) Network distributed monitoring system based on robot
technology middleware. International Journal of Advanced Robotic Systems
4(1):69–72

[43] Jia S, Hada Y, Gakuhari H, Takase K, Ohnishi T, Nakamoto H (2006) Intelli-
gent home service robotic system based on robot technology middleware. In:
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, pp 4478–4483

[44] Jiang S, Cao J, Liu Y, Chen J, Liu X (2016) Programming large-scale multi-
robot system with timing constraints. In: Computer Communication and Net-
works (ICCCN), 2016 25th International Conference on, IEEE, pp 1–9

[45] Jiang S, Liang J, Cao J, Liu R (2016) An ensemble-level programming model
with real-time support for multi-robot systems. In: 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (Per-
Com Workshops), IEEE, pp 1–3

[46] Kernbach S, Thenius R, Kernbach O, Schmickl T (2009) Re-embodiment of
honeybee aggregation behavior in an artificial micro-robotic system. Adaptive
Behavior 17(3):237–259

[47] Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in
robotics. Trends in biotechnology 31(5):287–294

[48] Kramer J, Scheutz M (2007) Development environments for autonomous mo-
bile robots: A survey. Autonomous Robots 22(2):101–132

[49] Liang J, Cao J, Liu R, Li T (2016) Distributed intelligent mems: A survey
and a real-time programming framework. ACM Computing Surveys (CSUR)
49(1):20

[50] Lima PU, Custodio LM (2005) Multi-robot systems. In: Innovations in robot
mobility and control, Springer, pp 1–64

40 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

[51] Lopes YK, Leal AB, Dodd TJ, Groß R (2014) Application of supervisory con-
trol theory to swarms of e-puck and kilobot robots. In: International Confer-
ence on Swarm Intelligence, Springer, pp 62–73

[52] Magnenat S, Longchamp V, Mondada F (2007) Aseba, an event-based middle-
ware for distributed robot control. In: Workshops and Tutorials CD IEEE/RSJ
2007 International Conference on Intelligent Robots and Systems, IEEE Press,
LSRO-CONF-2007-016

[53] Magnenat S, Noris B, Mondada F (2008) Aseba-challenge: An open-source
multiplayer introduction to mobile robots programming. In: Fun and Games,
Springer, pp 65–74

[54] Magnenat S, Rétornaz P, Noris B, Mondada F (2008) Scripting the swarm:
event-based control of microcontroller-based robots. In: SIMPAR 2008 Work-
shop Proceedings, LSRO-CONF-2008-057

[55] Magnenat S, Rétornaz P, Bonani M, Longchamp V, Mondada F (2011)
Aseba: A modular architecture for event-based control of complex robots.
IEEE/ASME Transactions on Mechatronics 16(2):321–329

[56] Makarenko A, Brooks A, Kaupp T (2006) Orca: Components for robotics. In:
International Conference on Intelligent Robots and Systems (IROS), pp 163–
168

[57] Manso L, Bachiller P, Bustos P, Núñez P, Cintas R, Calderita L (2010) Robo-
comp: a tool-based robotics framework. In: International Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots, Springer, pp
251–262

[58] Mataric MJ (1994) Interaction and intelligent behavior. Tech. rep., DTIC Doc-
ument

[59] McLurkin J, Smith J (2004) Distributed algorithms for dispersion in indoor
environments using a swarm of autonomous mobile robots. In: in 7th Inter-
national Symposium on Distributed Autonomous Robotic Systems (DARS,
Citeseer

[60] McLurkin J, Smith J, Frankel J, Sotkowitz D, Blau D, Schmidt B (2006)
Speaking swarmish: Human-robot interface design for large swarms of au-
tonomous mobile robots. In: AAAI Spring Symposium: To Boldly Go Where
No Human-Robot Team Has Gone Before, pp 72–75

[61] McLurkin J, Lynch AJ, Rixner S, Barr TW, Chou A, Foster K, Bilstein S
(2013) A low-cost multi-robot system for research, teaching, and outreach.
In: Distributed Autonomous Robotic Systems, Springer, pp 597–609

[62] McLurkin J, Rykowski J, John M, Kaseman Q, Lynch AJ (2013) Using multi-
robot systems for engineering education: Teaching and outreach with large
numbers of an advanced, low-cost robot. IEEE transactions on education
56(1):24–33

[63] McLurkin J, McMullen A, Robbins N, Habibi G, Becker A, Chou A, Li H,
John M, Okeke N, Rykowski J, et al (2014) A robot system design for low-
cost multi-robot manipulation. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, pp 912–918

Middleware for Multi-Robot Systems 41

[64] Michael N, Fink J, Kumar V (2008) Experimental testbed for large multirobot
teams. IEEE robotics & automation magazine 15(1):53–61

[65] Mohamed N, Al-Jaroodi J, Jawhar I (2008) Middleware for robotics: A survey.
In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, IEEE,
pp 736–742

[66] Mohamed N, Al-Jaroodi J, Jawhar I (2009) A review of middleware for net-
worked robots. International Journal of Computer Science and Network Secu-
rity 9(5):139–148

[67] Mondada F, Franzi E, Guignard A (1999) The development of khepera. In: Ex-
periments with the Mini-Robot Khepera, Proceedings of the First International
Khepera Workshop, LSRO-CONF-2006-060, pp 7–14

[68] Mondada F, Bonani M, Raemy X, Pugh J, Cianci C, Klaptocz A, Magne-
nat S, Zufferey JC, Floreano D, Martinoli A (2009) The e-puck, a robot de-
signed for education in engineering. In: Proceedings of the 9th conference on
autonomous robot systems and competitions, IPCB: Instituto Politécnico de
Castelo Branco, vol 1, pp 59–65

[69] Mottola L, Picco GP (2011) Programming wireless sensor networks: Fun-
damental concepts and state of the art. ACM Computing Surveys (CSUR)
43(3):19

[70] Owens G, Granader Y, Humphrey A, Baron-Cohen S (2008) Lego R© ther-
apy and the social use of language programme: An evaluation of two social
skills interventions for children with high functioning autism and asperger syn-
drome. Journal of autism and developmental disorders 38(10):1944–1957

[71] Parker LE (2000) Current state of the art in distributed autonomous mobile
robotics. In: Distributed Autonomous Robotic Systems 4, Springer, pp 3–12

[72] Prencipe G, Santoro N (2006) Distributed algorithms for autonomous mo-
bile robots. In: Fourth IFIP International Conference on Theoretical Computer
Science-TCS 2006, Springer, pp 47–62

[73] Pugh J, Raemy X, Favre C, Falconi R, Martinoli A (2009) A fast onboard
relative positioning module for multirobot systems. IEEE/ASME Transactions
on Mechatronics 14(2):151–162

[74] Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY
(2009) Ros: an open-source robot operating system. In: ICRA workshop on
open source software, Kobe, Japan, vol 3, p 5

[75] Rogers III JG, Trevor AJ, Nieto-Granda C, Cunningham A, Paluri M, Michael
N, Dellaert F, Christensen HI, Kumar V (2014) Effects of sensory precision on
mobile robot localization and mapping. In: Experimental Robotics, Springer,
pp 433–446

[76] Rubenstein M, Shen WM (2010) Automatic scalable size selection for the
shape of a distributed robotic collective. In: Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, IEEE, pp 508–513

[77] Rubenstein M, Ahler C, Nagpal R (2012) Kilobot: A low cost scalable robot
system for collective behaviors. In: Robotics and Automation (ICRA), 2012
IEEE International Conference on, IEEE, pp 3293–3298

42 Yuvraj Sahni, Jiannong Cao, and Shan Jiang

[78] Rubenstein M, Cabrera A, Werfel J, Habibi G, McLurkin J, Nagpal R (2013)
Collective transport of complex objects by simple robots: theory and experi-
ments. In: Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, International Foundation for Autonomous
Agents and Multiagent Systems, pp 47–54

[79] Rubenstein M, Ahler C, Hoff N, Cabrera A, Nagpal R (2014) Kilobot: A low
cost robot with scalable operations designed for collective behaviors. Robotics
and Autonomous Systems 62(7):966–975

[80] Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a
thousand-robot swarm. Science 345(6198):795–799

[81] Saeedi S, Trentini M, Seto M, Li H (2016) Multiple-robot simultaneous local-
ization and mapping: A review. Journal of Field Robotics 33(1):3–46

[82] Sapaty P (2015) Military robotics: Latest trends and spatial grasp solutions.
International Journal of Advanced Research in Artificial Intelligence 4(4):9–
18

[83] Sartoretti G, Hongler MO, de Oliveira ME, Mondada F (2014) Decentralized
self-selection of swarm trajectories: from dynamical systems theory to robotic
implementation. Swarm Intelligence 8(4):329–351

[84] Schlegel C, Worz R (1999) Interfacing different layers of a multilayer architec-
ture for sensorimotor systems using the object-oriented framework smartsoft.
In: Advanced Mobile Robots, 1999.(Eurobot’99) 1999 Third European Work-
shop on, IEEE, pp 195–202

[85] Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer Science
& Business Media

[86] Smart WD (2007) Is a common middleware for robotics possible? In: Pro-
ceedings of the IROS 2007 workshop on Measures and Procedures for the
Evaluation of Robot Architectures and Middleware. Citeseer, Citeseer, vol 1

[87] Soares JM, Aguiar AP, Pascoal AM, Martinoli A (2016) A graph-based for-
mation algorithm for odor plume tracing. In: Distributed Autonomous Robotic
Systems, Springer, pp 255–269

[88] Soares JM, Navarro I, Martinoli A (2016) The khepera iv mobile robot: Perfor-
mance evaluation, sensory data and software toolbox. In: Robot 2015: Second
Iberian Robotics Conference, Springer, pp 767–781

[89] Stampfer D, Lotz A, Lutz M, Schlegel C (2016) The smartmdsd toolchain: An
integrated mdsd workflow and integrated development environment (ide) for
robotics software. Journal of Software Engineering for Robotics 7(1):3–19

[90] Stoy K, Nagpal R (2004) Self-repair through scale independent self-
reconfiguration. In: Intelligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on, IEEE, vol 2, pp 2062–
2067

[91] Tsui KM, Yanco HA (2007) Assistive, rehabilitation, and surgical robots from
the perspective of medical and healthcare professionals. In: AAAI 2007 Work-
shop on Human Implications of Human-Robot Interaction, Technical Report
WS-07-07 Papers from the AAAI 2007 Workshop on Human Implications of
HRI

Middleware for Multi-Robot Systems 43

[92] Utz H, Sablatnog S, Enderle S, Kraetzschmar G (2002) Miro-middleware for
mobile robot applications. IEEE Transactions on Robotics and Automation
18(4):493–497

[93] Volpe R, Nesnas I, Estlin T, Mutz D, Petras R, Das H (2001) The claraty ar-
chitecture for robotic autonomy. In: Aerospace Conference, 2001, IEEE Pro-
ceedings., IEEE, vol 1, pp 1–121

[94] Wang MM, Cao JN, Li J, Dasi SK (2008) Middleware for wireless sensor
networks: A survey. Journal of computer science and technology 23(3):305–
326

[95] Whittier LE, Robinson M (2007) Teaching evolution to non-english proficient
students by using lego robotics. American Secondary Education pp 19–28

[96] Wurman PR, D’Andrea R, Mountz M (2008) Coordinating hundreds of coop-
erative, autonomous vehicles in warehouses. AI magazine 29(1):9

[97] Yan Z, Jouandeau N, Cherif AA (2013) A survey and analysis of multi-robot
coordination. International Journal of Advanced Robotic Systems 10

	Middleware for Multi-Robot Systems
	Yuvraj Sahni, Jiannong Cao, and Shan Jiang
	Introduction
	Existing Multi-Robot Systems and Applications
	Existing Multi-Robot Systems
	Multi-Robot System Applications

	Design Goals for MRS Middleware
	A Taxonomy of MRS Middleware
	Representative Middleware for MRS
	Future Directions and Challenges
	References

