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Abstract 10 

Soil contamination by trace elements such as arsenic (As) can pose considerable threats to human 11 

health, and need to be carefully identified through site investigation before the soil remediation 12 

and development works. However, due to the high costs of soil sampling and testing, decisions on 13 

risk management or mitigation strategies are often based on limited data at the site, with 14 

substantial uncertainty in the spatial distributions of potentially toxic elements. This study 15 

incorporates the restricted maximum likelihood method with three-dimensional spatial 16 

autocovariance structure, to investigate the spatial variability features of As-containing soils of 17 

geogenic origin. A recent case study in Hong Kong is presented, where more than 550 samples 18 

were retrieved and tested for distributions of As concentrations. The proposed approach is applied 19 

to characterize their spatial correlation patterns, to predict the As concentrations at unsampled 20 

locations, and to quantify the uncertainty of such estimates. The validity of the approach is 21 

illustrated by utilizing the multi-stage site investigation data, through which the advantages of the 22 

approach over traditional geostatistical methods are revealed and discussed. The new approach 23 

also quantifies the effectiveness of soil sampling on reduction of uncertainty levels across the site. 24 

This can become a useful indicator for risk management or mitigation strategies, as it is often 25 

necessary to balance between the available resources for soil sampling at the site and the needs 26 

for proper characterization of contaminant distributions. 27 
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 30 

1. Introduction 31 

Soil contamination by metals/metalloids poses an increasing threat to human health and 32 

environmental quality across the globe (Tóth et al., 2016; Xia et al., 2017; Plessl et al., 2017). 33 

Among the potentially toxic elements, arsenic (As) has received considerable attention over 34 

the last few decades due to its high toxicity and environmental risk (Bundschuh et al., 2013; 35 

Ehlert et al., 2016; Sandhi et al., 2017). Geochemical properties of As are complex because of 36 

its various chemical species and amphoteric nature (Yang et al., 2017; Wu et al., 2017), 37 

which makes it challenging for proper assessment and remediation (Rahman et al., 2017). 38 

Soil can naturally possess high concentrations of As due to weathering of the parent materials, 39 

volcanic eruptions, and forest fires (Beiyuan et al., 2017; Li et al., 2017). In recent years, 40 

industrialization and urbanization have also transferred As from used products into the 41 

environment, resulting in many industrial contaminated sites (Tsang et al., 2014; Gallego et 42 

al., 2016; Wcisło et al., 2016). Consequently, many studies have focused on urban 43 

contaminated soils with As from anthropogenic sources, such as agricultural activities and 44 

industrial and mining processes (Rieuwerts et al., 2014; Cao et al., 2016; Yoon et al., 2016; 45 

González-Fernández et al., 2018). Although geogenic As-containing soil/sediment is a 46 

common problem worldwide (Fendorf et al., 2010; Yang et al., 2014), including Hong Kong 47 

(Li et al., 2017; Cui et al., 2018), there has been limited discussion on the characterization of 48 

spatial variations of geogenic As and the corresponding implications on 49 

management/remediation of As-containing sites.  50 

To develop cost-effective management and risk mitigation recommendations, the 51 

concentration distribution and variability features (or spatial correlation patterns) of the trace 52 
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elements should be established foremost through identifying, mapping, and monitoring 53 

processes (Bednářová et al., 2016; Pan et al., 2017). It is because the remediation processes, 54 

especially for extraction-based approaches, are often expensive and highly dependent on the 55 

types of contaminants and estimated amounts of contaminated soils that need to be treated 56 

(Bolan et al., 2014; Tsang and Yip, 2014; Wan et al., 2016). In practice, however, it is 57 

difficult to accurately predict the concentrations of metals/metalloids due to their complex 58 

spatial distribution patterns, including the occasional occurrence of ‘hotspots’ with high 59 

levels of anthropogenic contamination or geogenic formation. Legislations in various 60 

countries (e.g., China, the United States, the Netherlands, Australia, and New Zealand) 61 

advocate the use of probabilistic sampling schemes (e.g., square grid, simple random, 62 

stratified random) for contaminated site assessments (Waterhouse, 1980; Bell et al., 1983; 63 

Gilbert, 1987; Horta et al., 2015), which is similarly applied in Hong Kong (HK EPD, 2011).  64 

However, these methods focused on detecting high concentration regions of anthropogenic 65 

contaminants and quantifying the extent of such hotspots. This is considered appropriate 66 

when there is prior knowledge about the contaminants involved, their transport mechanisms, 67 

and the human activities causing the contamination.  68 

For trace elements of geogenic nature, the determination of sampling strategies and 69 

characterization of their spatial distributions may require different techniques because their 70 

existence are not caused by anthropogenic activities (Li et al., 2015; Cui et al., 2018). To this 71 

end, various methods such as Geostatistics, multivariate methods, and Geographic 72 

Information System (GIS) mapping have been applied to identify and reveal the distributions 73 

of these trace elements (Lark, 2000; Lark & Cullis, 2004; Santra et al., 2012; Antunes & 74 

Albuquerque, 2013; Hao et al., 2016; Chakraborty et al., 2017; Boente et al., 2017). 75 

Geostatistics has been developed for application in various disciplines, and is represented by 76 

techniques including various types of kriging (ordinary/disjunctive/indicator kriging), 77 
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global/local polynomial interpolation (G/LPI), inverse distance weighting (IDW), nearest 78 

neighbour interpolation (NNI), radial basis functions (RBF), sequential Gaussian simulation 79 

(SGS), etc. Each of them involves different statistical assumptions. Despite the growing 80 

literature of these methods, there are major limitations associated with their application for 81 

site investigation in an urban setting. For instance, many development sites in densely-82 

populated cities may span across hundreds of metres to tens of kilometres, within which a 83 

large number (i.e., hundreds to thousands) of samples may be needed to provide adequate 84 

precision for meaningful geostatistical analyses to aid the site development plans. Meanwhile, 85 

the concentrations of trace elements may display three-dimensional spatial variations across 86 

the subsurface soil domain, which should be properly accounted for in such analyses. Many 87 

previous studies (e.g., Santra et al., 2012; Chakraborty et al., 2012; Chakraborty et al., 2017; 88 

Zhang & Yang, 2017) discussed the accuracy of various geostatistical approaches through 89 

cross validation measures and indicators such as root-mean-square-error (RMSE) and mean 90 

percentage error (MPE). However, the uncertainty associated with As distribution across the 91 

site is rarely discussed in detail. While quantification of uncertainty is essential from the 92 

project management perspective, such estimates are often difficult to verify.  93 

This study extends the integrated framework for spatial variability analyses from our 94 

recent studies (Liu et al., 2017; Liu & Leung, 2017), incorporating the restricted maximum 95 

likelihood (REML) method with a three-dimensional, anisotropic autocorrelation structure, 96 

tailored for analysing the concentrations of trace elements in soils. Effectiveness of the 97 

approach is illustrated by the implementation on a major development site in Hong Kong, 98 

where borehole sampling of As is performed in multiple stages. The current study articulates 99 

the spatial extent of the geogenic As, and proposes a rational approach to quantify the 100 

associated uncertainty, hence improving the effectiveness of geoenvironmental sampling 101 

strategy for site assessment and remediation.  102 
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 103 

2. Methodology  104 

2.1. Soil sampling and analysis 105 

A new development site located in the New Territories in Hong Kong is discussed in this 106 

study to illustrate the three-dimensional variations of As concentrations, and how the 107 

variability can be characterized by the proposed framework in this study. Two stages of 108 

geoenvironmental investigation were performed within this development area, with their key 109 

information summarized in Table 1. In order to identify potential contamination at the site, 110 

the Stage 1 investigation was performed (Fig. 1a) at an early stage of the project, which 111 

included drilling of 35 boreholes, with 388 soil samples retrieved from different depths for 112 

the testing of As concentrations (HK CEDD, 2015). The locations of boreholes had been 113 

strategically selected for broad coverage across the development area (approximately 1,600 m 114 

  2,700 m on plan), considering both site accessibility and the locations of future structures. 115 

Within the development area, there was a smaller site (around 100 m   200 m) of particular 116 

concern in the project. The site was where one of the first structures (Building A shown in 117 

Fig. 1) would be constructed, and the As concentrations at this location had to be assessed to 118 

formulate appropriate mitigation measures. However, during the Stage 1 investigation, no 119 

boreholes had been drilled within this site due to accessibility issues at that stage. Predictions 120 

were therefore made by the proposed approach (Section 2.2), utilizing all 388 sample values 121 

obtained from the Stage 1, and their corresponding spatial information. Shortly before 122 

construction of Building A, the Stage 2 investigation was conducted with 12 additional 123 

boreholes and 205 samples across the site (Fig. 1b). These additional samples are treated in 124 

this study as verification data for independent assessments of the accuracy of the proposed 125 

approach. 126 
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During the geoenvironmental investigation, the average depth of boreholes is 127 

approximately 20 m (with minimum of 2 m and maximum of 52 m), where soil samples were 128 

retrieved every 0.5 – 2 m along the depth of borehole. Soil samples obtained at varying depth 129 

of the boreholes were sealed to be air-tight at the site, frozen with ice packs in freezing boxes 130 

before and during transportation, and stored at 4
o
C in the dark in cold chamber. Selected 131 

samples were freeze-dried within two weeks upon sample delivery and stored at -20
o
C in a 132 

refrigerator before spectroscopic analysis (Beiyuan et al., 2017; Li et al., 2017). The As 133 

concentrations in the digested samples were determined by using an Inductively Coupled 134 

Plasma-Atomic Emission Spectrometry (ICP-AES, Perkin Elmer Optima 3300DV), with the 135 

limit of detection of 1 mg/kg. In addition, 20% random replicates and spiked samples were 136 

included for quality control of sample analysis, and NIST Reference Soil 2710A (containing 137 

1540 mg/kg As) were used for quality assurance. The As recovery rate was 91-93% after 138 

digestion and ICP-OES analysis, thus suggesting good recovery and reliability/reproducibility.  139 

During the Stage 1 investigation, the laboratory tests revealed variations of As 140 

concentrations ranging from 1 mg/kg to 1,220 mg/kg dry soil in the 388 samples. The 141 

enormous variations in concentrations, with the occasional detection of high levels of As, 142 

warranted careful assessments of contamination levels during the planning stages of the 143 

development. In particular, it was important to make predictions of As levels at the Building 144 

A site in order to formulate the mitigation measures before the construction. 145 

 146 

2.2. Geostatistical characterization method  147 

Based on the locations of the 388 Stage 1 samples and their corresponding As concentrations, 148 

the spatial variability features can be established for better prediction at the Building A site 149 

using geostatistical approach. In many previous attempts of geostatistical characterization of 150 

trace elements (e.g. Zupan et al. 2000; Burgos et al. 2006; Yang et al., 2009, etc.), a 151 



7 
 

semivariogram ( ) is developed for the spatial variable,  , that represents concentrations of 152 

the trace elements at different locations  : 153 

     
 

     
                 

    

   

 (1) 

where       represents the value of   at location    ;      is the number of pairs of samples 154 

that are separated at a distance   (in any direction).  In many of these studies, however, the 155 

spatial trend was not explicitly discussed or considered in the analyses.  However, the 156 

accuracy of the semivariogram analyses can be affected if the ‘deterministic’ trend is not 157 

properly defined based on the site data.  In addition, depending on the site history and 158 

geochemical properties of the specific trace element, its spatial variations may display 159 

features of three-dimensional anisotropy: the concentrations may be relatively uniform in one 160 

direction, but show more variations in other directions in the subsurface domain. These 161 

features cannot be rigorously considered by Eq. (1). 162 

This study extends the integrated approach from our recent work (Liu et al., 2017; Liu & 163 

Leung, 2017) for three-dimensional spatial variability analyses of As concentrations in soils. 164 

In these previous studies, the restricted maximum likelihood (REML) is incorporated with 165 

rigorous statistical tests to ensure that the assumptions on normality and stationarity are 166 

satisfied, while the optimal polynomial order for the trend can be determined, and with 167 

potential outliers in the dataset identified in an integrated framework of spatial data analysis. 168 

Liu & Leung (2017) also showed that patterns of spatial variations observed in various 169 

directions of natural soil/rock properties can be interpreted together with geological settings 170 

of the site. In the current study, the framework is implemented with considerations of three-171 

dimensional spatial correlation structure, where the estimates of As concentration profiles can 172 

be sequentially updated when additional data become available from the geoenvironmental 173 

investigation. The proposed approach will be compared with traditional geostatistical 174 
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methods in characterizing the spatial variations of As-containing soils. While the analyses 175 

enhance our understanding on the distributions of geogenic As in soils, this study further 176 

elaborates on their significance to site-specific uncertainty quantification and management 177 

strategies. In the current work, the spatial distributions of As, referred to as  , consists of a 178 

large-scale ‘deterministic’ trend across the site, and residual effects that represent the local 179 

deviations from the trend: 180 

        (2) 

where   is a matrix containing the spatial coordinates of sample points in three dimensions.   181 

is the vector of trend coefficients, and    combine to produce the trend.   represent the 182 

residuals, or deviations from the trend, which is often found to be spatially correlated: the 183 

values of    and    are often similar if the locations   and   are close to each other, while 184 

greater variations are observed for larger separation distances. To simulate such effects, the 185 

Gaussian (squared exponential) autocorrelation function is adopted: 186 

           
  

    
 

  
   

  
 

  
   (3) 

where    ,    and    are the separation distances in  ,   and   directions, respectively.    187 

and    are range parameters in the lateral and vertical directions, also known as 188 

autocovariance distances. The significance of Eq. (3) lies on its flexibility in modelling 189 

anisotropic spatial correlations, as different values of    and    may arise as a result of the 190 

geogenic origin of the trace element in nature. This has not been considered by previous 191 

REML analyses (e.g. Lark & Cullis, 2004), and the importance of such features will be 192 

illustrated by the case study presented in later sections. Considering all sampling points 193 

within the site,      for different   and   locations combine to form the matrix  , which 194 

represents the smooth scale spatial variations in As concentrations. Apart from such spatial 195 

variations, there is also contribution from the ‘white noise’ (nugget) effect in the overall 196 
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variance of concentrations. This white noise may be due to handling/measurement errors for 197 

the specimens, or other random natural variations that do not correlate with separation 198 

distances. The variance contributions from the smooth scale variations and white noise 199 

effects are represented by   
  and   

 , respectively. The variance of  , denoted as   herein, 200 

can then be expressed as: 201 

    
     

      
    

                             
  

 

   
    

  
   (4) 

and I is the identity matrix. Therefore, the objectives of the analyses are to obtain the trend 202 

coefficients,  , and parameters that characterize three-dimensional spatial variability of   (i.e., 203 

 ,   ,   ) , based on the measured data  . The REML method is adopted for this purpose, and 204 

the approach mainly involves finding the set of parameters             that maximizes the 205 

following log-likelihood function: 206 

        
   

 
        

 

 
       

 

 
       

 

 
        (5) 

where         ;              ;                  , and represents the 207 

filtered dataset with the trend components filtered out. The maximization can be treated as an 208 

optimization problem, i.e. to obtain the set of   parameters that best matches the observed 209 

data  . This can be achieved by various optimization techniques; the current study adopts the 210 

differential evolution algorithm, and details of this heuristic algorithm can be found in Storn 211 

& Price (1997). With   determined, the autocorrelation structure of   is well defined. The 212 

trend coefficients   can then be estimated (i.e.   ) using general least squares method, and 213 

predictions at unsampled locations,   , and the corresponding uncertainty in prediction 214 

(prediction variance   
 ), can be estimated based on the best linear unbiased prediction 215 

(BLUP) technique (Atkinson et al., 2008; Santra et al., 2012): 216 

                (6a) 
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                                (6b) 

where    is the matrix containing spatial coordinates of unsampled (prediction) locations;   217 

is the covariance matrix between observations and predictions, i.e.                  , 218 

                  
   and     

        .  In general, the level of uncertainty is low 219 

near existing samples, and increases with separation distance away from these sample points. 220 

In other words, the uncertainty at unsampled areas varies in three dimensions across the site 221 

domain, and is dependent on both spatial locations of all existing samples, the trend of the 222 

variations,  , and autocorrelation features represented by  . 223 

 224 

3. Results and Discussion 225 

3.1. Spatial variability analysis based on Stage 1 samples 226 

The As concentrations obtained from the 388 samples of Stage 1 investigation are first 227 

analyzed using the proposed REML approach. The sample values are log-transformed, as 228 

positive-value variables in geochemistry often follow the lognormal distribution. Figure 2 229 

shows the statistical distributions of the As data and the log-transformed values, which 230 

further validates the assumption of lognormal distribution.  Regarding the deterministic trend 231 

function, a quadratic structure for lateral directions and linear trend for vertical direction are 232 

adopted to represent the large-scale variations across the site (  ). Using the observed data   233 

(vector with 388 components), the   parameters that maximizes the log-likelihood function 234 

(Eq. 5) are found to be       ,          m and        m. These are the parameters 235 

that characterize the spatial variability of As concentrations, and the large difference between 236 

   and    illustrates the strong anisotropy effects regarding the influence range the 237 

correlation: the variations are more abrupt along the vertical direction (small   ), compared 238 

to a more gradual transition along the lateral directions. Figure 3a shows the corresponding 239 

autocorrelation functions (R), decoupled in the vertical and lateral directions. As a 240 
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comparison with more conventional geostatistical approaches, a separate analysis is 241 

conducted using the method of moments (MoM), where the autocovariance is defined by: 242 

     
 

    
                               

    

   

 (7) 

with   representing the trend component vector (i.e.     ). The similarity between Eqs. (1) 243 

and (7) should be noted, as the MoM approach is closely related to the determination of 244 

semivariogram in geostatistics (Reilly & Gelman, 2007; Oliver & Webster, 2014). Together 245 

with the assumption of isotropic spatial feature (     ), there is no need to separate   ,    246 

and   , and the corresponding MoM approach is similar to the geostatistical approach 247 

adopted by Zupan et al. (2000), Burgos et al. (2006) and Yang et al. (2009). The spatial 248 

correlation structure obtained by this MoM analysis is shown in Fig. 3b for comparison. The 249 

accuracies of the two approaches will be compared and discussed in more detail in the next 250 

section. 251 

The proposed REML approach allows the prediction of As concentrations at unsampled 252 

locations (  ), and quantification of the associated uncertainty through the prediction variance 253 

(  
 ), across the three-dimensional subsurface domain of the entire development site.  For 254 

example, the ground surface at the Building A site is at +15 mPD (mPD: metres above Hong 255 

Kong Principal Datum, which is 1.230 m below Mean Sea Level), and Fig. 4 shows the 256 

predictions of As concentrations and the prediction variance at three different depths 257 

(+10 mPD, 0 mPD, -10 mPD).  258 

Based on the raw data of measured As concentrations from Stage 1 investigation, the 259 

sample variance is 1.99 (in log-space, since the concentrations are assumed to follow 260 

lognormal distribution). Figure 4b shows that the value of prediction variance across the 261 

Building A site is relatively uniform, with a magnitude around 1.6, which illustrates two 262 

interesting aspects of the spatial correlation analyses. Firstly, the difference between raw data 263 
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variance (1.99) and prediction variance of residuals (1.6) arises from the removal of the 264 

deterministic trend (  ), or the de-trending process, in the proposed approach. Meanwhile, 265 

the almost uniform prediction variance across Building A site means that the uncertainty is 266 

not heavily influenced (reduced) by any ‘nearby’ existing samples. In fact, the closest 267 

borehole from Stage 1 investigation is more than 100 m away from the site, while the 268 

horizontal range of influence (  ) for each sample is only around 131 m according to the 269 

analyses. In other words, considering the spatial features of As in this region, the Stage 1 270 

boreholes and samples are not located close enough to the Building A site to aid the 271 

assessment of contamination levels there. These spatial correlation features also carry 272 

important implications to the predictive capabilities of various approaches, as will be 273 

illustrated in the next section. 274 

 275 

3.2. Predictions and validations with Stage 2 investigation data 276 

While a number of previous studies described the geostatistical characterization of trace 277 

elements such as As, there is limited discussion on the accuracy of the approaches, 278 

particularly within the context of predictive capabilities verified through subsequent geo-279 

environmental investigation.  In this study, the two aspects of predictions, namely the best 280 

estimates (  ) and uncertainty quantification (  
 ) by Eqs. (6a) and (6b), are compared with the 281 

additional sample data retrieved from Stage 2 investigation at the Building A site. The 282 

advantages of the proposed approach over ‘conventional’ techniques of MoM are also 283 

illustrated through the verification process. 284 

Comparisons between predicted and measured As concentrations can be made relatively 285 

easily for the Stage 2 sample data. On the contrary, it is more difficult to verify the 286 

‘uncertainty’ estimates, since the prediction variance varies across the site, but there is only 287 

one measured value, and therefore one prediction error, at any location in the subsurface 288 
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domain. An indirect approach to verify the   
  estimates is to normalize the prediction error 289 

(           ) for each location   by the value of      evaluated at that location. The 290 

normalized errors associated with all Stage 2 samples can then be compared with the standard 291 

normal distribution. This comparison is based on the proposition that with a proper 292 

characterization of uncertainty, the prediction errors across the domain should follow a 293 

normal distribution, with the variance denoted by the corresponding     
  at the location. 294 

Figure 5 shows the histograms of normalized prediction errors (in log-space) using both 295 

the proposed REML approach (Eqs. 2-6), and the conventional MoM approach (Eq. 7). In 296 

Fig. 5a, the predictions are made solely based on the Stage 1 data (388 samples), and both 297 

approaches generally underestimated the As concentrations at the Building A site, with mean 298 

error smaller than zero. As mentioned earlier, considering the horizontal spatial range (  ) of 299 

131 m, and that the closest borehole is more than 100 m away, it is not surprising that both 300 

approaches cannot accurately predict the As concentrations at Building A, as the ‘knowledge’ 301 

of Stage 1 samples do not reach far enough to provide useful information at that site. 302 

In the next modelling scenario, data from two of the twelve Stage 2 boreholes is 303 

incorporated into the geostatistical analyses, and predictions are then made at the locations of 304 

the remaining ten boreholes. Since these boreholes are within the Building A site with plan 305 

dimensions in the same order as   , incorporating such additional information is expected to 306 

enhance the accuracy of the approach. In each analysis, both the    and   
  estimates are 307 

updated using sample information from the two additional boreholes. Also, for a 308 

comprehensive comparison, all possible combinations of locations of the two ‘known’ 309 

boreholes are simulated, and the corresponding normalized prediction errors at the ten 310 

‘unknown’ borehole locations are summarized in the histograms in Fig. 5b. With the 311 

knowledge from two additional boreholes, predictions by the proposed REML approach are 312 

improved, both in terms of the best estimates (mean error closer to zero) and with error 313 
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distribution closely resembling the standard normal distribution. In contrast, results by the 314 

MoM are not significantly improved, mainly due to the fact that the three-dimensional nature 315 

of spatial variability cannot be properly reflected (Fig. 3) and assimilated into the prediction 316 

model. The similar exercise is then repeated for two other scenarios: (1) incorporating sample 317 

data from four boreholes and making predictions at the remaining eight borehole locations 318 

(Fig. 5c); and (2) incorporating sample data from six boreholes and making predictions at the 319 

remaining six locations (Fig. 5d). In both cases, the improvement by the REML approach is 320 

more substantial than the conventional MoM approach: the mean prediction error is close to 321 

zero using the REML approach, and the distributions of normalized error roughly follow the 322 

standard normal distribution. Applying this concept to realistic project situations, it would be 323 

desirable to continuously refine the predictions at unsampled locations, based on new sample 324 

data as the investigation programme progresses. 325 

As a further comparison between the proposed REML approach and conventional MoM 326 

analyses, Fig. 6 shows the results of one simulated scenario incorporating data from two 327 

boreholes of Stage 2 investigation, to predict the As concentrations at the other ten borehole 328 

locations. In this example, 41% of the measured values fall within ±30% of the REML 329 

predictions, which is a significantly higher percentage than using the conventional method. 330 

Similarly, Fig. 7 shows the simulated scenario with knowledge of six boreholes and 331 

prediction of the other six, in which case almost 60% of the measured values fall within 332 

±30% of the REML predictions. In fact, the substantial variability in the natural occurrence of 333 

As makes it unlikely for any modelling approach to precisely pinpoint their concentrations at 334 

all locations, and the occasional existence of extreme values does comply with classical 335 

statistical theories. Nonetheless, the improved predictive power of the proposed approach, 336 

and the capabilities to rationally quantify and represent the uncertainty (Fig. 5), mean that it 337 



15 
 

can become a useful tool in assessing the risks associated with the occurrence of As, or 338 

potentially other contaminants or trace elements, at a development site. 339 

Figures 8 and 9 show the contours of predicted As concentrations, and the associated 340 

prediction variance (in log-space) after drilling and sampling at the six and twelve Stage 2 341 

boreholes at the Building A site. It should be noted that the colour scales in Figs. 3, 8 and 9 342 

are consistent with each other, which facilitate comparison between the estimates as more 343 

information becomes available. Also, combining the best estimates with prediction variance 344 

(after back-transformation to original space), the range of predictions with different 345 

confidence levels (e.g., mean ± standard deviation) can be established, which provide an 346 

alternative means to demonstrate the risk levels associated with As occurrence across the site.  347 

 348 

3.3. Effectiveness of sampling in reducing uncertainty of As concentrations  349 

The proposed approach also provides information regarding the effectiveness of additional 350 

samples in reducing uncertainty.  From a risk management perspective, this would be a useful 351 

indicator on the required number of samples to adequately characterize As distributions 352 

across the site. Following previous discussions, the uncertainty indicator, i.e. the prediction 353 

variance, varies spatially in three dimensions across the entire subsurface domain at all 354 

unsampled locations, and can only be shown in a series of contours. In this section, a simpler 355 

definition is adopted, and denoted as the prediction variance reduction factor (PVRF). PVRF 356 

is calculated by first obtaining the average prediction variance across the site (e.g., 357 

Building A), and then evaluating the change of this average variance upon drilling and 358 

sampling at a new borehole location. This quantifies the significance of each borehole (and 359 

its samples) in reducing the overall uncertainty. To quantify the effectiveness of a particular 360 

borehole,       is defined by:  361 
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      (8) 

where     is the average prediction variance across the site after drilling borehole i. Therefore, 362 

PVRF may be interpreted as the percentage reduction in overall uncertainty associated with 363 

each successive borehole. A low level of       refers to a low impact from borehole   in 364 

further reducing uncertainty in As variations. By evaluating the value of PVRF associated 365 

with each borehole, its effectiveness on the overall uncertainty can be quantified. It is then 366 

possible to make informed decisions regarding the appropriate number of boreholes and 367 

samples, to balance the need to characterize site uncertainty and the time and resources 368 

associated with drilling, sampling and testing at each additional borehole location. 369 

Figure 10 shows the PVRF values obtained for the twelve boreholes at the Building A 370 

site. The data point represents the average value obtained by simulation of 1000 realizations, 371 

with the error bars illustrating the standard deviations. These realizations are necessary since 372 

the calculation of PVRF is a sequential process, and depends on the order of 373 

drilling/sampling at the twelve locations. For example, sampling at the first borehole will 374 

reduce the overall uncertainty by about 16% on average, while the subsequent boreholes will 375 

become less effective as more and more information becomes available within Building A 376 

site. In particular, after drilling and sampling at the sixth borehole location, the uncertainty 377 

reduction by each subsequent borehole will be generally less than 5%. Figures 5d and 7 also 378 

show that with the sample data from six boreholes, the As distributions and uncertainty can 379 

be predicted with reasonable accuracy using the proposed approach. Such information can 380 

become useful when site-specific geoenvironmental sampling strategies are devised.  381 

 382 

4. Conclusions 383 

This study outlines the geostatistical approach using REML, which has been extended for 384 

consideration of three-dimensional spatial autocovariance structure.  The proposed approach 385 
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is applied to investigate the spatial distributions of geogenic As concentrations at a 386 

development site in Hong Kong, which involved 388 samples and 205 samples retrieved 387 

during two separate stages of geoenvironmental investigation. Data from the multi-stage 388 

investigation are utilized in the verification of the proposed approach, both regarding the best 389 

estimates of As levels and the associated uncertainty at previously unsampled areas. The 390 

proposed approach is shown to produce more accurate predictions than conventional 391 

geostatistical approaches, even with a relatively small dataset in a large development area. 392 

The importance of site-specific characterization of spatial variability is also highlighted, as 393 

the accuracy of predictions depend heavily on correlation parameters, geometry of the site 394 

and locations of existing sample information. The proposed approach also addresses another 395 

key consideration in development sites, which is the quantification of uncertainty at 396 

unsampled locations. The estimated prediction variance can be condensed into a simple 397 

indicator defined as PVRF in this study, which quantifies the effectiveness of 398 

geoenvironmental sampling in reducing the uncertainty levels of As concentrations across the 399 

site. This helps to supplement the conventional approach that rely on qualitative expert 400 

opinions, as it provides quantitative indication to support the decision-making process 401 

associated with the necessity and strategies of future sampling, considering the tolerable risk 402 

levels and financial setup of the project.  403 
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Table 

Table 1 Site area and sampling information for Stages 1 and 2 investigations 

 

Stage 1  (Fig. 1a) Stage 2  (Fig. 1b) 

Target area 

Entire development area  

(1,600 m × 2,700 m) 

Building A site 

(100 m × 200 m)   

No. of boreholes 35 12 

No. of samples 388 205 

Average spacing of boreholes 870 m 57 m 

Vertical sampling interval 0.5 – 2 m 0.5 – 2 m 
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Figure 1 Site area and sampling locations for Stages 1 and 2 investigations 
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Figure 2 Statistical distribution of As concentrations from Stage 1 investigation 
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Figure 3 Autocorrelation structure estimated by proposed approach and conventional MoM 
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Figure 4 Predicted As concentrations (left) and prediction variance (right) using Stage 1 

samples 
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Figure 5 Histograms of normalized prediction errors: (a) with no stage 2 sample data;  

(b) incorporating two Stage 2 borehole data; (c) incorporating four Stage 2 borehole data; 

(d) incorporating six Stage 2 borehole data 
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Figure 6 Comparisons between measured As concentration with (a, b) REML and (c, d) MoM 

predictions incorporating two Stage 2 borehole data 
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Figure 7 Comparisons between measured As concentration with (a, b) REML and (c, d) MoM 

predictions, incorporating six Stage 2 borehole data 
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Figure 8 Predicted As concentrations (left) and prediction variance (right) after drilling and 

sampling at six borehole locations (grey circles) in Stage 2 



9 
 

 

Figure 9 Predicted As concentrations (left) and prediction variance (right) after drilling and 

sampling at twelve borehole locations (grey circles) in Stage 2  
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Figure 10 Changes of PVRF with sampling at successive borehole locations 

 




