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Abstract 

Engineering structures are prone to fatigue damage over service lifespan, entailing early 

detection and continuous monitoring of the fatigue damage from its initiation through 

growth. A hybrid approach for characterizing fatigue damage was developed, using two 

genres of damage indices constructed based on the linear and the nonlinear features of 

acousto-ultrasonic waves, respectively. The feasibility, precision and practicability of using 

linear and nonlinear signal features, for quantitatively evaluating multiple barely visible 

fatigue cracks in a metallic structure, was compared. Miniaturized piezoelectric elements 

were networked to actively generate and acquire acousto-ultrasonic waves. The active 

sensing, in conjunction with a diagnostic imaging algorithm, enabled quantitative 

evaluation of fatigue damage and facilitated embeddable health monitoring. Results 

unveiled that the nonlinear features of acousto-ultrasonic waves outperform their linear 

counterparts in terms of the detectability. Despite the deficiency in perceiving small-scale 

damage and the possibility of conveying false alarms, linear features show advantages in 

noise tolerance and therefore superior practicability. The comparison has consequently 

motivated an amalgamation of linear and nonlinear features of acousto-ultrasonic waves, 

targeting the prediction of multi-scale damage ranging from microscopic fatigue cracks to 

macroscopic gross damage. 

 

 

Keywords: signal processing; fatigue damage characterization; acousto-ultrasonics; 

nonlinear signal features; linear signal features; piezoelectric sensor network; structural 

health monitoring 
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1. Introduction 

Acousto-ultrasonics, a coalescence of ultrasonic characterization and acoustic-emission, is 

one of the prevailing tools to develop non-destructive evaluation (NDE) and structural 

health monitoring (SHM) techniques [1–4]. Of particular interest in acousto-ultrasonics is 

the Lamb waves (the modality of acousto-ultrasonic (AU) disturbance guided by a thin 

sheet-like structure) in the ultrasonic regime. Inherently possessing appealing features 

including strong penetration, fast propagation, omnidirectional dissemination and high 

sensitivity to damage, Lamb-wave-based acousto-ultrasonics has been deployed in a 

diversity of fashions, showing demonstrated compromise among resolution, detectability, 

practicality, and cost [5–12]. The majority of such techniques are based on exploring 

changes in the damage-scattered AU waves, which can be documented in time domain 

signals in the form of amplitude alteration and/or phase deviation (in comparison with 

baseline signals), typified by the delay in time-of-flight (ToF) [12–16], wave 

reflection/transmission [17–20], energy dissipation [21,22] and mode conversion [23,24]. 

These signal features, for example the delay in ToF, show, to some extent, linear 

correlation with damage parameters such as the location, and are therefore colloquially 

referred to as linear features in this study. 

 

On the other hand, there has been a consistent effort to reap the nonlinear features 

extracted from the damage-scattered AU waves to characterize material degradation [25] 

or structural damage [26–34]. Now on the verge of maturity for practical applications, the 

detection using nonlinear signal features is based on such a premise that AU waves, when 

propagating in an elastic medium, can be distorted by the inherent nonlinearity of the 

medium, resulting in an energy shift from the excitation to other frequency bands and 

generating nonlinear features such as high-order harmonics (contrastively called nonlinear 
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features in what follows); upon occurrence of damage, micro-structures of the medium are 

altered, and the plastic zone in the vicinity of the damage incurs nonlinearities of AU 

waves. In addition, when AU waves traverse crack-like damage, the “breathing” motion 

pattern of the crack interface, under cyclic loads, creates localized nonlinear behaviors and 

introduces additional nonlinearity (generally called contacting acoustic nonlinearity 

(CAN) [26]). The nonlinear features which are often exploited by the approaches in this 

category include second-[27–30] or sub-[31] harmonics, mixed frequency responses [32] 

(e.g., nonlinear wave modulation spectroscopy), shift of resonance frequency [33] (e.g., 

nonlinear resonant ultrasound spectroscopy), dual frequency mixing [34], to name a few, 

as surveyed comprehensively elsewhere [35]. 

 

Yet, real-world structural damage often initiates from fatigue damage at imperceptible 

levels. Under cyclic loads the fatigue damage accumulates as the formation of dislocation 

monopoles, followed by dislocation loops and dipoles and subsequent dislocation veins 

and persistent slip bands. Fatigue cracks at the scale of few millimetres are then nucleated 

to microcracks, which can deteriorate and eventually coalesce to form macrocracks [36]. 

Under repetitious loads, the macrocracks can further grow and develop to a critical level at 

an alarming rate without sufficient warning, impacting detrimental effects on structural 

integrity and potentially resulting in catastrophic consequences. Early perception of small-

scale fatigue damage has therefore become a cardinal measure to warrant the reliability, 

integrity and durability of ageing engineering structures, although it is a highly challenging 

task due to the small scales of the fatigue damage. 

 

Both NDE and SHM techniques for characterizing fatigue damage, using either linear or 

nonlinear features of AU waves are in a good supply with diverse deployments, albeit the 
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effectiveness and practicability of individual approaches are somewhat debatable. In the 

present study, a hybrid approach, using linear features (i.e., delay in time-of-flight, and 

dissipation of wave energy) and nonlinear features (i.e., second harmonic generation) 

extracted from AU wave signals, was developed. Two genres of damage indices were 

constructed, and respectively employed to evaluate barely visible fatigue cracks near rivet 

holes in a metallic structure. The feasibility, precision and practicability of using linear and 

nonlinear features were discussed comparatively. Miniaturized lead zirconate titanate (PZT) 

elements were networked and affixed to the structure, for generating and acquiring AU 

waves, which is deemed a critical step towards automatic and embeddable SHM. 

 

2. Linear features for damage characterization 

The ToF and wave energy are two sorts of most representative linear features which can be 

extracted from a captured AU wave signal [37]. In this study, these features acquired with 

a PZT sensor network in terms of pulse-echo and pitch-catch configurations are 

respectively associated with different damage parameters, for establishing linear damage 

indices (DIs). 

 

2.1. ToF-based DI 

ToF, the time spent for a wave packet to travel a certain distance, correlates the damage 

position with regard to the actuator and sensor in a sensor network (assuming the network 

comprises N  PZT elements), according to 

2 2 2 22 2 ( ) ( ) ( ) ( )( ) ( )
( )

d j d j j i j id d

i j

incident damage scattered incident

i i
x x y y x x y yx x y y

t
V V V





       
    ,

 

      
( i, j = 1, 2, …N, i ≠ j)                                                 (1) 
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where
 incidentV  and damage scatteredV   are the group velocities of the probing and the damage-

scattered AU wave packets, respectively; 
jit   the difference between (i) the ToF for the 

probing AU wave to propagate from actuator 
iS
 
at ( , )i ix y  to damage at ( , )d dx y  and then 

to sensor 
jS  at ),( jj yx , and (ii) the ToF for the probing AU wave to propagate from 

iS   to 

jS  directly, as illustrated in Fig. 1. Equation (1) mathematically depicts an ellipse-like 

locus, indicating all possible damage locations, perceived by sensing path 
i jS S . 

 

Inherently linking the damage location to the position of a known sensing path, ToF-based 

signal features can be used to define a DI with the assistance of a probabilistic imaging 

algorithm (PIA) [18,22,23]. The PIA differentiates itself from traditional damage imaging 

techniques such as tomography, taking advantage of its unique traits including in particular 

the use of an active sensor network with a much sparse transducer configuration instead of 

a dense network in tomography, and the adoption of a fast image reconstruction algorithm 

instead of computationally-expensive tomography. With PIA, the inspection region of the 

plate is meshed virtually, and projected to an image with each image pixel corresponding 

exclusively to a spatial point in the inspection region. The probability of damage presence 

at each spatial point is calibrated by the value borne by its corresponding pixel in the image 

(called field value hereinafter), in terms of the Euclid distance between a pixel to each 

locus defined by Eq. (1), as 

( , )
( ) ( )

ij

m n

z

i x y
F z f z dz



  ,                                             (2) 

where ]
2

exp[
2

1
)(

2

2

ijij

z
zf


 , a Gaussian distribution function representing the 

probability density of damage presence at pixel node ),( nm yx  (m = 1, 2, …, L; n = 1, 2, …, 

K, given the inspection region is rectangular and can be meshed using KL  nodes), 
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established by sensing path 
i jS S . ijz  is the Euclid distance between pixel ),( nm yx  and 

the locus created by 
i jS S , and 

ij  the standard variance. Equation (2) implies that the 

pixel right on a particular locus created by a sensing path has the highest probability (100%) 

of damage presence (from the perspective of that sensing path), while for other pixels the 

further the distance to this locus the lower the probability of damage is present at those 

pixels. Residing on Eq. (2), a DI is defined at each pixel for each sensing path in the sensor 

network, and for instance the one for path 
i jS S , denoted by ( , )i m nDI x y , reads 

( , ) ( , )
( , ) 1 ( ) ( )

m n m n
i m n linear ToF i ix y x y

DI x y F z F z
    
 

.                          (3) 

In the above, “i” and “linear-ToF” in the subscripts signify that the DI is defined at pixel 

),( nm yx  by the sensing path with 
iS  as the actuator, and it is based upon ToF-related linear 

signal features. The pixels with remarkably high field values are expected to highlight and 

further shape a damaged zone in the projected image, providing quantitative and detailed 

depiction about the damage (e.g., size and orientation). 

 

2.2. Energy-based DI 

The discrepancy in damage (e.g., different distances to a sensing path, or different shapes, 

severities and orientations [37]) can result in distinct magnitudes of damage-scattered AU 

wave energy. Therefore, deviation of the wave energy, determined from an AU signal 

captured from the structure under current inspection (called current signal), with regard to 

its counterpart captured from a pristine benchmark (baseline signal), can be employed to 

develop a DI, in terms of the correlation between the current and baseline signals, as 
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Similar to Eq. (3), “ij” and “linear-energy” allude to that the DI is defined at pixel ),( nm yx  

by 
i jS S , based on energy-associated linear signal features. ( , )XY i j  is the correlation 

coefficient between the current signal 1 2{ , , ..., }pX x x x  acquired by 
i jS S  and its 

corresponding baseline signal 1 2{ , , ..., }pY y y y .   is the signal mean and “HT” stands 

for Hilbert transform-processed signal. The use of Hilbert transform is aimed at producing 

an explicit envelope of the AU wave energy distribution and improving the recognisability 

of damage-scattered energy. The greater the similarity between  ( , )kHT x i j  and 

 ( , )kHT y i j , the closer to unity is ( , )XY i j . A greater ( , )XY i j  leads to a lower DI along 

path 
i jS S , indicating a lower probability of damage existence near 

i jS S ; in contrast, 

in the case where damage is right on or close to 
i jS S , ( , )XY i j  becomes lower, resulting 

in a higher DI. Each sensing path, based on Eq. (4), contributes a probabilistic image in 

which the field value at each pixel is quantified in terms of ( , )XY i j , indicating the 

probability of damage presence at the spatial points of the inspected structure correlated by 

that pixel. 

 

2.3. Fusion of linear DIs 

Each PZT element in the sensor network contributes two probabilistic images in terms of 

the ToF-based DI (Eq. (3)) and the energy-based DI (Eq. (4)), respectively. Called source 

image, each image is a prior perception on damage from the viewpoint of the sensing path 

creating the source image. With all sensing paths, a multitude of source images form a data 

pool, rendering such perceptions in plenty. In order to strengthen damage-related features 

(commonality in individual source images) and meanwhile dilute measurement 
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noise/uncertainties (random information in individual source images), all source images 

are fused at the pixel level, leading to an ultimate image. 

 

Note that during the fusion, the DI defined by Eq. (3) is given at each pixel, whereas the DI 

described by Eq. (4) is defined along a sensing path (viz., all the pixels along a sensing path 

holding the same DI). Compatibility between two DIs must be reached provided the fusion 

is carried out at the pixel level. It can be seen that in Eq. (4), ( , ) linear energyDI i j   is 

calculated when 
iS  serving as the actuator, and thus each actuator contributes 1N  

probabilistic images using PIA. To achieve such compatibility (i.e., a transform from a 

sensing path defined by Eq. (4) to a pixel), all these images are pre-aggregated, to create a 

source image for 
iS  at ),( nm yx , denoted by ( , )i m n linear energyDI x y 

, according to 

( )

1

1
( , ) ( , )

( 1)

N j i

i m n linear energy linear energy

j

DI x y DI i j
N



 






 ,                        (5) 

where “i” in the subscript accentuates that the DI is now re-defined at pixel ),( nm yx  for the 

sensing path with 
iS  as the actuator. Conclusively, each actuator in the sensor network 

ends up with a source image via ToF-based DI (Eq. (3)), and another source image via 

energy-based DI (Eq. (5)), which are then fused by 

1

1
( , ) ( ( , ) ( , ) )

N

m n i m n linear ToF i m n linear energylinear
i

DI x y DI x y DI x y
N

 



  ,               (6) 

where ( , )m n linear
DI x y  is the fused DI in the ultimate image, based on all the extracted 

linear features, reflecting the probability of damage presence at each pixel. In Eq. (6) an 

arithmetic fusion (‘Σ’) takes into account the prior perceptions from all source images and 

equally decentralizes individual contributions. But arithmetic fusion is anticipated to 

embrace ambient noise and measurement uncertainty as well. Thus, a conjunctive fusion 

(‘ ’) multiplicatively processes source images to supplement the arithmetic fusion, with 
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which a low field value at a pixel in any source image due to noise or uncertainty can lead 

to a significantly low likelihood of damage presence at that pixel in the ultimate image, 

effectively eliminating the measurement noise and uncertainties. 

 

3. Nonlinear features for damage characterization 

In parallel with the linear features, nonlinear features are extracted from the same AU 

wave signals to establish a nonlinear DI. In this connection, most existing efforts are of a 

nature of qualitative detection (capable only of indicating damage existence), and 

extension to quantitative and automatic SHM are fairly hampered due to the use of bulky 

ultrasonic probes. In this study, in conjunction with the use of the above active PZT sensor 

network, the developed nonlinear DI can be endowed with a capacity of characterizing 

fatigue damage quantitatively, facilitating embeddable SHM. 

 

3.1. Theory 

For an undamaged isotropic solid medium, two types of nonlinearity need to be addressed: 

the material nonlinearity and the geometric (or convective) nonlinearity. The former 

inherently originates from the nonlinear elastic properties of the medium (viz., the lattice 

elasticity), while the latter from the mathematic transformation of wave motion equation 

from the Eulerian to the Lagrangian coordinate systems [38]. Both can be described, using 

the second-order nonlinear approximation, as 

 ( 1 2 )ij ijkl ijklmn mn klC M    ,                                        (7) 

where ij  is the stress tensor; mn  and kl  the strain tensors. ijklC  and those in a similar 

form in followings with different subscript ordering are the second-order elastic (SoE) 



 11 

tensors defined with Lamé’s constants   and  ; and ijklmnM  a tensor embracing the above 

two types of nonlinearity simultaneously, which reads 

 ijklmn ijklmn ijln km jnkl im jlmn ikM C C C C      ,                       (8a) 

where 

1
  ( )  2 ( )  2
2

ijklmn ik jlmn il jkmn jk ilmn jl ikmn ij klmn kl mnij mn ijkl ij kl mnC A I I I I B I I I C                 .(8b) 

In the above, km  and those in a similar form with different subscript ordering ( im , etc.) 

are the Kronecker deltas; jlmnI  and those in a similar form ( jkmnI , etc.) the fourth-order 

identity tensors; ijklmnC  the third-order elastic (ToE) tensor addressing material nonlinearity. 

A, B, and C are three ToF constants. The last three terms in Eq. (8a) all together reflect the 

geometric nonlinearity. In an extreme occasion that the second-order nonlinear term 

(1 2 ijklmn mnM  ) eliminated, Eq. (7) reverts to the three-dimensional Hooke’s Law for linear 

elasticity. 

 

Without loss of generality, consider a one-dimensional medium for illustration, and Eq. (7) 

can be re-written, using a quadratic approach, as 

2 ( )E E    ,                                                  (9) 

where  ,  , E  and 2E  are the stress, strain, first-order (reflecting linear property) and 

second-order (reflecting nonlinear property) Young’s moduli of the medium, respectively 

[39]. Combining Eqs. (7) – (9) yields 

 2

1
–   3 2 6 2

2
E E A B C    ,                                      (10) 

and further 

2 1 2 6 2
–  (3 )

2
g

E A B C

E E


 
   ,                                   (11) 
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where g  is the ratio of two Young’s Moduli. It can be seen that all the parameters in Eqs. 

(10) and (11) are pertaining to the SoE and ToE constants, and thus for an ideal material in 

its pristine status without any fatigue damage or plastic deformation, g  is a constant at a 

given measurement distance, serving as an intrinsic material property accounting for the 

nonlinearity caused by the material’s lattice anharmonicity. 

 

The occurrence of fatigue damage brings about additional nonlinear sources in its vicinity. 

Taking this into account, a twofold coefficient,  , is introduced 

            (without fatigue damage)

,      (with fatigue damage)

g

g l




 


 



                                 (12) 

where l  is a localized nonlinearity coefficient addressing the nonlinearity contributed by 

the fatigue damage alone. The authors’ previous study [39] has demonstrated that l  plays 

a dominant role in the generation of nonlinearity in AU waves, much prominent than g . 

 

To deploy l  in an explicit modality, recall the governing equation for the above one-

dimensional medium 

2

2

( , )
,

u x t

t x



 


 

                                                 (13)  

where   is the density of the medium, ( , )u x t  the particle displacement at x along 

propagation direction at instant t (abbreviated as u ). Using a perturbation theory [29,40], 

Eq. (12) can be solved, leading to 

1 2cos( ) cos(2 2 ),u A kx t A kx t    
                                

(14) 

where 
2 2

2 1

ˆ
.

8
A A k x


    is the angular frequency of the excitation and k  the wavenumber, 

respectively; 1A  and 2A  the magnitudes of the probing wave mode (with a frequency of 
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 , called fundamental mode) and its second harmonic wave mode (with a frequency of 

2 , called second harmonic mode), respectively. ̂  denotes the acoustic nonlinearity 

parameter, which after rearrangement reads 

2

2 2

1

8ˆ .
A

k x A
                                                       (15) 

Previous studies [29,30] have demonstrated that an increase in   due to the presence of 

fatigue damage can be faithfully, if not totally, reflected by the increase in ̂ , meaning 

that the nonlinearity originated from the material itself is insignificant compared with that 

arising from the fatigue damage. Therefore, any singular increase in ̂  is able to pinpoint 

the occurrence of fatigue damage. Based on this, the nonlinearities associated with the 

medium and the damage can be determined by probing 1A  and 2A  from a captured AU 

wave signal. To detect the fatigue damage, one is more interested in the change in ̂  than 

its absolute value, and thus for a given wave propagation distance a relative acoustic 

nonlinearity parameter '  is further defined as 

2

2

1

' .
A

A
                                                          (16) 

As seen, '  is proportional to   and addresses the essential nonlinearity of a captured AU 

wave signal subject to fatigue accumulation, therefore able to serve as a primary index for 

quantitative characterization of fatigue damage. Note that Eq. (16) is defined for a one-

dimensional medium, while for Lamb waves in plates, such an index can be achieved by 

multiplying a scaling factor [30], because a medium has an unchanged scaling factor at a 

given measurement point regardless of the occurrence of fatigue damage. 
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3.2. β’-based DI 

To develop a DI capitalizing on ' , first, a correlation is established between (i) the 

relative distance from the fatigue damage to a particular sensing path in the sensor network 

(this relative distance is referred to as measurement deviation (MD) hereinafter) and (ii) 

the value of '  extracted from the AU wave signals acquired via that sensing path [29]. 

Fig. 2 exemplarily shows such a correlation for an aluminum plate with a thickness of 4.5 

mm, where MD is normalized with regard to the wavelength of the fundamental mode 

(MD/λ), making it possible to extend the results to general circumstances at other 

excitation frequencies. It has been shown that the smaller MD is, the higher '  is, 

presenting approximately monotonous variation. In addition, such a correlation is observed 

to be insensitive to the difference in the length of a sensing path [29], which can be 

attributable to the fact that compared with the cumulative material nonlinearity along with 

wave propagation, the one incurred due to fatigue damage dominates the overall 

nonlinearity manifested in AU wave signals. It is also relevant to note that    captured via 

a sensing path possesses high inertness to distant damage away from that path, implying a 

sensing path perceives the damage near it only. Such a trait makes it possible to identify 

multi-fatigue damage using such a nonlinear parameter. 

 

Residing on   , a DI is constructed using the aforementioned PIA, defined at pixel 

),( nm yx  (denoted by ( , )i m n nonlinearDI x y  ), as 

( , )
( , )

1

i
i m n nonlinear i

R x y
DI x y 







 
  

 
.                                 (17) 

The subscripts “i" and “nonlinear-   ” stress that the index is defined for the sensing path 

with iS  being the actuator, and it is obtained upon   -related nonlinear signal features. In 

Eq. (17),   is a scaling parameter controlling the size of the effective distribution area, and  
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),( yxRij  a weight to regulate the area of influence from the fatigue damage on a sensing 

path [22,37] which reads 

2 2 2 2

2 2

( ) ( ) ( ) ( )
( , )

( , ) ( ) ( )

. ( , )

m i n i m j n j

i

i i j i j

i

x x y y x x y y
when r x y

R x y x x y y

when r x y



 

       
 

    




    (18) 

With Eq. (18), each sensing path in the sensor network contributes a probabilistic image. 

Ideally, all the field values are low provided the inspection area is free of fatigue damage 

(practically it is not zero due to noise interference), while they are elevated pronouncedly 

at those pixels contained in the fatigue damage zone (subject to MD). 

 

4. Linear versus nonlinear DIs 

Both the linear and the nonlinear DIs were applied comparatively, to evaluate barely 

visible fatigue cracks in metallic plates. 

 

4.1. Feasibility study 

As a preliminary evaluation, two genres of DIs were first used to identify a mono-fatigue 

crack in an aluminum panel, to examine their respective effectiveness in evaluating fatigue 

cracks in a simple case. 

 

4.1.1. Specimen preparation and measurement configuration 

An aluminum plate (4843002.2 mm3) was prepared as shown in Fig. 3. To introduce a 

fatigue crack in the plate, a sharp notch was machined at the center of the upper edge. The 

plate was fatigued under a sinusoidal tensile load with a magnitude of 4 kN at a frequency 

of 5 Hz using a digitally controlled fatigue testing machine (MTS 810). It took about 
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50,000 cycles to produce a fatigue crack (circa 5 mm in length originating from the notch 

tip). Four PZT wafers (nominal diameter: 6.9 mm, thickness: 0.5 mm each) were surface-

mounted on the plate, denoted by PZTi ( 1, 2, 3, 4i  ), and instrumented with a signal 

generation and acquisition system developed on a VXI platform [41]. Referring to Fig. 3 

for respective coordinates, these four PZT wafers in principle provided 4 3 12   sensing 

paths. The probing fundamental mode, which was different for constructing the linear and 

the nonlinear DIs (to be detailed in the next sections), was generated in MATLAB® and 

downloaded to an arbitrary waveform generation unit (Agilent® E1441), and then 

amplified with a signal amplifier (US-TXP-3) to 80 Vp-p, which was then applied in turn on 

each PZT wafer; the signals sensed by the remaining three wafers were acquired with a 

signal digitizer (Agilent® E1438) at a sampling rate of 40 MHz. 

 

4.1.2. Linear DI 

To construct the ToF-based and energy-based linear DIs defined by Eqs. (3) and (5), 

respectively, five-cycle Hanning-windowed sinusoidal tone bursts at a central frequency of 

300 kHz were excited. The selection of the current frequency facilitated generation of the 

fundamental symmetric wave mode, under which the wave signals were observed to 

feature the best signal recognizability for extracting linear signal features. As a 

representative example, the time domain signal acquired via sensing path PZT2 – PZT3  (a 

sensing path right traversing the fatigue damage) for the current state (with a fatigue crack) 

and its corresponding baseline signal from the pristine counterpart (notched but before the 

fatigue treatment) are compared in Fig. 4. The (2, 3)XY  was calculated to be 0.9408 and 

consequently (2,3) linear energyDI 
 be 0.0592 in terms of Eq. (4), indicating the discrepancy 

between the current and the baseline signals is minute. Meanwhile, 2 ( , )m n linear ToFDI x y   
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along PZT2 – PZT3 also presents a low value (using Eq. (3)), because of the difficulty in 

identifying damage-scattered wave packet. A primary conclusion can thus be drawn that 

the linear DI, attempting to explore changes in the linear signal features such as ToF, 

energy attenuation, transmission and reflection might be ineffective to deal with small-

scale fatigue damage because no phenomenal linear wave scattering can be observed in the 

captured AU wave signals. 

 

4.1.3. Nonlinear DI 

In order to explore an optimal excitation frequency at which the nonlinear features of AU 

waves upon interaction with fatigue damage can be prominent, Gaussian white noise was 

applied on PZT2 as an input signal, and the frequency spectrum of the signal captured by 

PZT3, obtained using fast Fourier transform (FFT), is exhibited in Fig. 5. A strong response 

can be observed at 380 kHz, which was therefore selected as the excitation frequency to 

modulate the five-cycle Hanning-windowed sinusoidal tone bursts. This frequency has 

proven effectiveness in generating AU wave signals with an enhanced signal-to-noise ratio, 

benefiting extraction of nonlinear signal features and improvement of accuracy of    

calculation. Note there was a slight difference in excitation frequency for constructing the 

linear and nonlinear DIs, which was aimed at achieving the highest signal-to-noise ratio 

and best signal recognizability, for extracting linear and nonlinear wave features, 

respectively. 

 

For illustration, the signal spectra, acquired via path PZT2 – PZT3 under excitation of 380 

kHz when the panel was in its pristine status and in fatigued status are displayed in Figs. 

6(a) and (b), respectively, to observe that for the pristine status, the majority of the AU 

wave energy is concentrated near the excitation frequency, whereas for the fatigued status 
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there is an obvious shift of probing energy from the excitation to other frequency bands, as 

evidenced by the occurrence of side lobes at 760 kHz (second harmonic) and even 1.14 

MHz (third harmonic). These nonlinear features captured at twice the fundamental 

frequency can be extracted to construct nonlinear DI using Eq. (17). 

 

4.2. Quantitative evaluation of fatigue cracks near rivet holes 

With demonstrated feasibility, the proposed approach was then applied to characterize 

multi-fatigue cracks near rivet holes in an aluminum plate. 

 

4.2.1. Specimen preparation and measurement configuration 

An aluminum plate (3804004.5 mm3) containing four through-thickness rivet holes for 

bolt connection (diameter: 10 mm each), as schematically shown in Fig. 7(a), was fatigued 

using the aforementioned fatigue processing. To accelerate initiation of fatigue cracks, two 

stress risers were inscribed at the edges of Hole 1 and 2, respectively. Fatiguing the plate 

after 500,000 cycles led to two hairline barely visible fatigue cracks, as displayed in Fig. 

7(b), with one measuring 5 mm in length near Hole 1 and the other 3 mm near Hole 2. 

Upon completion of fatigue testing, a sensor network comprising eight circular PZT wafers 

(nominal diameter: 5 mm, thickness: 0.5 mm each) were surface-mounted on the fatigued 

plate, denoted by PZTi  ( 1, 2, , 8i  ), as seen in Fig. 7. All PZT wafers were instrumented 

with the signal generation and acquisition system introduced previously. The configured 

sensor network rendered 5687   sensing paths. 

 

4.2.2. Linear DI 

Fig. 8 displays the probabilistic image using the PIA, upon fusing ToF-based DI (defined 

by Eq. (3)) and energy-based DI (defined by Eq. (5)) using the fusion algorithm described 
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by Eq. (6). In the figure, the presence probability of fatigue damage is calibrated in 

greyscale, where the darker a pixel the greater the presence possibility of fatigue damage at 

that pixel it is. 

 

The two fatigue cracks could not be identified in the image, and such a failure can be 

attributed to the small-scale of the fatigue cracks which was unable to produce phenomenal 

wave scattering (the wavelength of the probing wave is around 27 mm at the current 

excitation frequency, much greater than the major dimension of the fatigue crack), 

therefore failing to generate observable changes in ToF and wave energy. The difficulty in 

extracting linear features resulted in abundant pseudo prediction in the figure, under the 

interference from ambient noise. As the linear signal features are of the same order of 

ambient noise, the diagnostic results of the probabilistic image pessimistically exaggerate 

the possibility of damage occurrence, interpreting this observation. 

 

It is noteworthy that both linear DIs defined by Eqs. (3) and (5) seek the difference 

between a current signal and a baseline signal. Based on such a philosophy, the rivet holes 

and fatigue crack imitators at the hole edges would not, in principle, be detected using the 

linear DIs, because they are the connatural geometric features of the sample in both intact 

and damaged statuses. Provided the pristine plate before the introduction of the rivet holes 

can be benchmarked, these gross damage cases can be identified using the two linear DIs, 

as reported in the authors’ previous work [37,41]. It might be helpful to use the linear DIs 

if one increases the excitation frequency to reach smaller wavelengths that are comparable 

with the fatigue crack size. However, as AU waves are of dispersive nature, the multiple 

modes gradually appearing at higher frequencies would make it highly challenging to 

extract linear features. In contrast, such a barrier may not be a concern for the approach 

capitalizing on nonlinear DI as no time domain features will be explored. 
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4.2.3. Nonlinear DI 

To achieve conspicuous generation and accumulation of the desired second harmonic for 

establishing nonlinear DI, the fundamental and second harmonic modes in Eqs. (14)-(16) 

should ideally satisfy a twofold prerequisite: (i) synchronism: both the phase and the group 

velocities of the fundamental mode match those of the second harmonic mode, respectively 

and concurrently; (ii) non-zero power flux: the fundamental mode is of the same type as the 

second harmonic mode (e.g., both are either symmetric or anti-symmetric). This guarantees 

the shift of AU energy from the fundamental to the second harmonic modes with 

increasing propagation distance [28]. Fig. 9 shows the calculated (using DISPERSE®) 

dispersion curves of AU waves propagating in an aluminum plate, in which the modes S1 

(the first-order symmetric Lamb mode) at 3.57 MHz·mm and S2 (the second-order 

symmetric Lamb mode) at 7.14 MHz·mm, as highlighted in the figures, meet the above 

prerequisite and form a synchronous pair. In addition, at 3.57 MHz·mm and 7.14 MHz·mm, 

the S1 and S2 modes respectively propagate at the same highest speed among all available 

modes, simplifying their isolation from other wave modes. Allowing for the thickness of 

the plate (4.5 mm), sixteen-cycle Hanning-windowed sinusoid tone bursts at a central 

frequency of 800 kHz were applied as the probing wave. The magnitude of S1 at 3.57 

MHz·mm (corresponding to 1A  in Eqs. (14) – (16)) and that of S2 at 7.14 MHz·mm 

(corresponding to 2A ) were calculated from signals captured via available sensing paths. 

 

As a representative, the time domain signal captured via sensing path PZT2 – PZT7 is 

presented in Fig. 10, which was observed to be identical with its corresponding baseline 

signal prior to fatigue processing. The multimodal and dispersive natures of the AU waves 

embarrass proper recognition of the synchronous pair in the time domain, as interpreted 
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previously that the small-scale of the fatigue damage would not incur noticeable wave 

scattering in the time domain. This has entailed meticulous signal processing to improve 

the signal recognizability. To this end, short time Fourier transform (STFT) was used to 

deploy the signal over a time-frequency domain, as shown in Fig. 11 for the signal in Fig. 

10. In the time-frequency spectrum, the fundamental and second harmonic modes were 

extracted at 800 kHz and 1.6 MHz, respectively; both were then re-constructed to the time 

domain and are combined in Fig. 12, where 1A  and 2A  were determined to calculate '  

using Eq. (16). It is relevant to note that the slight difference in the arrival time of two 

wave modes can be attributed to measurement noise and uncertainties. Subsequently, the 

nonlinear DI was constructed using Eq. (17), leading to a source image as shown in Fig. 13. 

This image, like Fig. 8, reflects the presence probability of fatigue damage at each pixel. 

Notably, Fig. 13 corroborates the conclusion previously drawn in Section 3.2 that    

captured via a sensing path possesses high inertness to distant damage (manifested as a 

very narrow dark area centralized along the sensing path in the source image), benefiting 

identification of multi-fatigue damage. 

 

Repeating the above procedure for all available sensing paths in the network, 56 source 

images in total formed a probabilistic image pool, and fusion of these source images using 

an arithmetic mean algorithm with a threshold correction [29] yielded an ultimate image, in 

Fig. 14. The ultimate image highlights explicitly two regions near the edges of Hole 1 and 

Hole 2 with higher probability of fatigue damage occurrence, coinciding with reality; in 

contrast, regions away from the two fatigue cracks present much lower field values. 

 

It is interesting to note that the highlighted regions with higher greyscale in Fig. 14 are 

greater than the actual sizes of the two fatigue cracks, which can be attributable to the fact 
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that the plastic zone in the vicinity of the fatigue damage also increased    and 

consequently the field values therein. It is also relevant to emphasize that the highlighted 

regions are corresponding to the two fatigue cracks initiated from the rivet holes, rather 

than the rivet holes themselves or the fatigue crack initiators at the hole edges, because, as 

explained previously, this approach explores the abnormal increase in    due to a fatigue 

crack only, rather than the connatural material nonlinearity, geometric nonlinearity and 

gross damage (e.g., a rivet hole in this study). Thus, once increase in    is detected, it is 

predicted that fatigue damage exists. By the same token, the nonlinear DI failed to identify 

gross damage such as the rivet holes, because the rivet hole would not incur significant 

change in    before and after the fatigue process. Both fatigue cracks are revealed in the 

ultimate image simultaneously, corroborating the effectiveness of the nonlinear DI in 

evaluating multiple fatigue cracks, a trait of the DI which is highly inert to distant damage 

away from the sensing path via which the DI is constructed. 

 

5. Concluding remarks 

It is significant but also challenging to detect fatigue cracks at a quantitative level. An 

hybrid approach, in conjunction with a probability-based diagnostic imaging algorithm, for 

characterizing fatigue damage was developed, capitalizing on two genres of DIs developed 

using linear and nonlinear features extracted from acousto-ultrasonic waves, respectively. 

Typical linear AU wave characteristics (i.e., delay in ToF and damage-scattered wave 

energy) and nonlinear features (i.e., second harmonic generation) were extracted from AU 

wave signals acquired by an active sensor network, and used, respectively, to construct 

different DIs. The use of the active sensor network enabled an extension of the traditional 

means for capturing nonlinear wave features to embeddable health monitoring, which 

however is at the expense of introducing complexity in extracting the nonlinearity of AU 
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waves using PZT wafers such as the weak magnitudes of the nonlinear features, requesting 

deliberate selection of wave mode, excitation frequency, and signal processing tools (e.g., 

STFT demonstrated in this study). Based on comparison of respective feasibility, precision 

and practicability when evaluating barely visible fatigue cracks in a metallic plate, it has 

been revealed that the nonlinear AU wave features have higher sensitivity than linear 

signal features and therefore superior detectability for small-scale fatigue damage, mainly 

due to the fact that under the modulation of traversing waves, fatigue cracks present 

nonlinear characteristics, which may not be strongly evidenced in the linear macroscopic 

changes of AU waves. The proposed nonlinear DI possesses high inertness to distant 

damage, making it possible to identify multi-fatigue damage. The detection can be at a 

quantitative level, including the co-presence of multi-cracks, and their individual locations 

and severities. The study has consequently motivated proper amalgamation of the linear 

and nonlinear features of AU waves, reaching a capacity of characterizing multi-scale 

damage ranging from microscopic fatigue cracks to macroscopic gross damage. 
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