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ABSTRACT 17 

18 

This study investigated pedestrian jaywalking at signalized crosswalks. Observational 19 

surveys were conducted at 7 crosswalks in different areas in Hong Kong, after which 20 

pedestrian information and site condition data were incorporated into a database. A binary 21 

logit model was used to identify possible factors that determine the probability of pedestrian 22 

jaywalking. To address the variation in the effects of the explanatory variables among 23 
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pedestrians and the unobserved heterogeneity across sites, we used a random parameter 24 

model and a random effect model, respectively. The results showed that the random 25 

parameter model performed the best in terms of goodness-of-fit. It was found that the signal 26 

when a pedestrian arrives at the crosswalk is critical for decision making, and the jaywalking 27 

of surrounding pedestrians also influences the pedestrian’s decision to cross. The gender and 28 

walking speed of the pedestrian, vehicle flow, and site location and condition of the 29 

crosswalk were also found to significantly determine the probability of pedestrian jaywalking. 30 

 31 
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parameter model; Random effect model 33 

  34 



INTRODUCTION 35 

 36 

Signal control has been widely used around the world for more than 100 years. It provides a 37 

safe, economic, and efficient means of coordinating conflicting traffic flows at junctions, and 38 

is particularly popular in densely populated cities with heavy vehicle and pedestrian traffic 39 

loads. Signalized junctions are the most common type of junction in Hong Kong. Although 40 

pedestrian-vehicle collisions at signalized junctions have been reduced by 35% in the past 5 41 

years, 387 pedestrian-vehicle crashes were still recorded, which comprised nearly 25% of the 42 

accidents that occurred at signalized junctions. Drivers should be aware of the traffic 43 

regulations as they must pass a written test on the Road Users’ Code before obtaining their 44 

licenses, so pedestrian jaywalking is the most likely cause of pedestrian-vehicle accidents at 45 

signalized junctions in Hong Kong. 46 

 47 

Studies have attempted to identify the factors that influence pedestrian crossing behavior. In 48 

terms of individual characteristics, it was observed that male pedestrians tend to jaywalk 49 

more than female pedestrians (Tiwari et al., 2007, Rosenbloom, 2009, Brosseau et al., 2013). 50 

A similar tendency was observed in questionnaire surveys based on the theory of planned 51 

behavior, which investigated pedestrians’ attitudes toward jaywalking (Diaz, 2002, Zhou et 52 

al., 2009). However, Ren et al. (2011) observed that middle-aged female pedestrians had the 53 

lowest compliance rate in China. The elderly were also found to be more patient and less 54 

likely to jaywalk (Guo et al., 2011, Zhuang & Wu, 2011, Ren et al., 2011, Brosseau et al., 55 

2013). Oxley (1997) conducted an experiment on pedestrian traffic judgment and observed 56 

that older adult pedestrians generally adopted a less safe crossing strategy and performed 57 

worse than younger pedestrians on two-way undivided roads, although their performance was 58 

similar to that of younger pedestrians on one-way divided roads. The differences associated 59 



with age-related physical, perceptual, and cognitive deficits were further discussed and 60 

validated in an experimental study of the age differences in pedestrians’ gap selection (Oxley, 61 

2005). Holland and Hill (2009) pointed out that driving experience also affected pedestrians’ 62 

decisions to make unsafe crossings. Surprisingly, pedestrians with driving experience left 63 

smaller safety margins, although they were more likely to look both ways before crossing 64 

than non-drivers. Ren et al. (2011) suggested that a possible reason for the low compliance 65 

rate of female pedestrians in China was that fewer of them had driving licenses. They showed 66 

that individual characteristics affect pedestrians’ judgement of the traffic conditions and gap 67 

selection. In view of this, Koh and Wong (2014) used a binary logit model to predict the 68 

proportion of pedestrians who accept a gap, and hence jaywalk. They found that the type of 69 

gap (location and sequence of oncoming vehicles) and the stage of crossing (near end or far 70 

end) influenced pedestrians’ crossing decisions.  71 

 72 

In addition to the pedestrian characteristics and types of gap, the environment and site 73 

conditions may also affect the decision making of pedestrians. Lavalette et al. (2009) found 74 

that the number of lanes of traffic, the presence of pedestrian crossing signals, and the 75 

presence of a central traffic island influenced pedestrians’ decision making at crossings. 76 

Kruszyna and Rychlewski (2013) investigated the influence of approaching trams on 77 

pedestrian behavior at signalized crosswalks in Portland. Li and Fernie (2010) suggested that 78 

the weather also influenced the compliance rate, particularly for pedestrians crossing a 79 

signalized two-stage crossing with a center refuge island in the winter. The waiting time was 80 

also found to increase the probability of pedestrians jaywalking (Tiwari, 2007, Li and Ferinie, 81 

2010), and Li (2013) proposed a model for pedestrians’ intended waiting time. To reduce the 82 

high incidence of jaywalking and, hence, improve pedestrian safety at signalized crosswalks, 83 

pedestrian countdown signals have been introduced in recent years to prevent pedestrians 84 



from overestimating the waiting time (Keegan and Mahony, 2003) and taking the risk to 85 

jaywalk. This measure has been proven to effectively reduce the number of pedestrians 86 

starting to cross before the signal eventually turns green (Schattler et al., 2002). 87 

 88 

Among the approaches used to identify the factors associated with pedestrian jaywalking 89 

behavior, ANOVA has been used to analyze the differences among groups of pedestrians (Li 90 

and Ferinie, 2010, Ren, et al., 2011) and logistic regression has been used to represent the 91 

effects of explanatory variables in determining the probability of jaywalking (Rosenbloom, 92 

2009, Brosseau et al., 2013). ANOVA is useful for evaluating the influence of demographic 93 

factors, whereas logistic regression models are capable of linking the effects of the factors 94 

with the probability of jaywalking. However, the effects of explanatory variables are 95 

considered to be constant and fixed among all pedestrians in the simple logistic regression 96 

models, which may lead to misleading outcomes if considerable variation exists in the effects 97 

among individual pedestrians. In addition, although numerous previous studies have observed 98 

pedestrian crossing behavior at different sites, few studies have discussed the possible 99 

unobserved site differences. 100 

 101 

In this study, observational surveys were conducted in 7 crosswalks in Hong Kong. The 102 

relevant individual-specific factors and site-specific factors were extracted and incorporated 103 

into a binary logit model to identify the contributory factors that determine the probability of 104 

jaywalking. To address the heterogeneity across pedestrians and sites, a random parameter 105 

model was used to accommodate the variation in the effects of the explanatory variables, and 106 

a random effect models was used to account for the unobserved heterogeneity across sites.  107 

 108 



In Hong Kong, the sequence of pedestrian signals is a steady green signal, a flashing green 109 

signal, and a steady red signal. Pedestrians are only allowed to start crossing when the steady 110 

green signal is illuminated. The flashing green signal indicates that the pedestrians already on 111 

the crosswalk should continue and finish crossing at a reasonable speed. However, 112 

pedestrians who have not started crossing should wait until the next steady green signal. No 113 

pedestrians are allowed to cross during the red signal. In this study, pedestrians who entered a 114 

crosswalk during the flashing green signal or the red signal were regarded as jaywalkers 115 

according to the traffic regulations in Hong Kong. No countdown signals are provided at 116 

pedestrian crosswalks. 117 

 118 

DATA 119 

 120 

In this study, seven signalized junctions were randomly selected from different areas of Hong 121 

Kong (Table 1). There were 4 sites in urban areas, including 2 in Hong Kong Island and 2 in 122 

Kowloon, and the other 3 were in the New Territories. Video recording was conducted at 123 

each site for about 90 minutes, during which pedestrian movements were captured for further 124 

analysis. Preliminary analysis had previously been conducted based on the Travel 125 

Characteristic Survey 2011 to determine the period with the highest pedestrian flow on a 126 

typical working day from the video recording. In total, 7230 pedestrians who arrived during 127 

flashing green or red signals were recorded at the 7 sites. The number of observations varied 128 

from site to site, mainly depending on the populations of the areas. Table 1 lists the numbers 129 

of observations obtained at each site with the corresponding signal cycle time and average 130 

flow. The signal cycle times ranged from 90 seconds to 130 seconds. The crosswalk at Hung 131 

Hom had the lowest average pedestrian arrival rate at 2.7 ped/min, while the site at Tsuen 132 

Wan had the highest at 79.7 ped/min. 133 



 134 

[Insert Table 1 Here] 135 

 136 

To identify the factors that influenced the pedestrians’ decisions to jaywalk, the pedestrian 137 

walking trajectories were manually tracked, and a series of variables were further extracted to 138 

build the dataset, including the demographic characteristics of the pedestrians, the pedestrian 139 

and traffic flow characteristics, the geometric design data, and the signal scheme of the 140 

junctions. The variables included are listed as Table 2. The upper part gives the proportions 141 

for the categorical variables, and the lower part provides the descriptive statistics of the 142 

continuous variables.  143 

 144 

As shown in Table 2, only the pedestrians who arrived at the crosswalks during the flashing 145 

green (14.7%) or red (85.3%) signal were recorded. More than 60% of these pedestrians 146 

entered the crosswalks before the pedestrian signal finally turned green, i.e. jaywalked. It was 147 

found that 57% of the pedestrians who arrived at the crosswalks during the red signal 148 

jaywalked, and 100% of those who arrived during the flashing green signal jaywalked 149 

without waiting for another cycle. Some of the pedestrians may have thought that it was too 150 

long to wait for another cycle, and some may have been confused about the exact meaning of 151 

the flashing green signal and were unaware they were actually jaywalking. 152 

 153 

The gender and age of the pedestrians were identified during the video tracking. The gender 154 

was easy to identify according to the pedestrians’ appearance, and more than 90% of the 155 

observations were successfully distinguished. To accommodate the remaining unidentified 156 

cases, two dummy variables M, F were used to represent male pedestrians as M = 1 and F = 0, 157 

female pedestrians as M = 0 and F = 1, and the unidentified pedestrians as M = 0 and F = 0. 158 



However, most of the pedestrians (96.1%) could not be identified as either elderly or children, 159 

and they were thus generally regarded as adults. As previously mentioned, there were four 160 

sites (two in Hong Kong Island and two in Kowloon) in urban areas, and three sites in the 161 

New Territories. We obtained 5064 observations (70.0%) from the four urban sites and 2166 162 

observations (30.0%) from the other three sites in the New Territories. 163 

 164 

The walking speed of each pedestrian was measured at 1 s intervals and then the average 165 

walking speed was computed. The mean of the average walking speed was 1.22 m/s, as 166 

shown in Table 2, which is similar to the findings of Lam et al. (2002) on pedestrian walking 167 

speeds at crosswalks in commercial areas in Hong Kong (75.38 m/min, i.e. 1.26 m/s). 168 

However, according to the Transport Planning and Design Manual (Transport Department, 169 

2001), an assumed walking speed of 1.2 m/s is generally used to determine the flashing green 170 

period for the distance between the curbs in Hong Kong, although a walking speed of 0.9 m/s 171 

may be considered in exceptional cases to accommodate the elderly, people with disabilities, 172 

or exceptionally heavy pedestrian flows. Of the 1061 pedestrians who arrived during the 173 

flashing green signal, 668 (63.0%) walked slower than 1.2 m/s, and 377 (35.5%) walked 174 

slower than 0.9 m/s. This implies that the majority of pedestrians normally walk slower than 175 

1.2 m/s, and that they are at risk of a vehicle accident if they do not pay attention to the 176 

duration of the flashing green signal and fail to speed up.  177 

 178 

The total number of pedestrians in the cycle was used in the dataset instead of the average 179 

pedestrian arrival rate, as a simple number of pedestrians is more straightforward and easy to 180 

observe. Russell et al. (1976) and Reed and Sen (2005) found that pedestrians were 181 

encouraged to follow when observing someone else jaywalking. The percentage of 182 

pedestrians who jaywalked in the same cycle was used as a proxy of a situation variable to 183 



represent the follower behavior and estimate the influence of other jaywalkers on a pedestrian. 184 

In addition to the surrounding pedestrians, the average vehicle flow in a cycle and the 185 

pedestrian crossing time were used to measure the risk of vehicle-pedestrian accidents. 186 

Finally, the geometric data of the junctions and the signal phasing scheme were taken into 187 

account, as these represent the site conditions and the corresponding waiting times. 188 

 189 

 [Insert Table 2 Here] 190 

 191 

METHODS 192 

 193 

Basic binary logit model 194 

 195 

The binary logit model was used to represent how the individual-specific and site-specific 196 

factors influence the pedestrians’ jaywalking behavior. The response variable for the ith 197 

pedestrian 1iY   if he/she jaywalks, and 0iY  if he/she does not. Denote the probability of 198 

1iY   as πi, then it follows a binomial distribution as  199 
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   (1) 200 

where Xik is the kth explanatory variable for the ith pedestrian, and βk (k = 1,…, p) are the 201 

regression coefficients. In using the basic binary logit model, each pedestrian was regarded as 202 

an individual observation, and parameters β were assumed to be constant for all individuals at 203 

all sites, i.e., a fixed-parameter model. 204 

 205 

The same set of parameters β were applied to all observations at all sites. However, random 206 

variations in the effects of the explanatory variables among pedestrians and random effects 207 



across sites could have existed. Therefore, the random parameter binary logit model was used 208 

to account for the effect of the heterogeneity among pedestrians, and the random effect binary 209 

logit model was used to accommodate the unobserved heterogeneity across sites. 210 

 211 

Random parameter binary logit model 212 

 213 

To account for individual pedestrian’s taste variations, a randomly distributed term was 214 

introduced for each coefficient, and the random parameter binary logit model was thus 215 

formulated as 216 
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 218 

where βik is the coefficient of the kth explanatory variable for the ith pedestrian, and µik is 219 

normally distributed with a mean of 0 and variance σk
2. In general practice, a random 220 

parameter βik is introduced if the corresponding standard deviation σk is significantly larger 221 

than 0, otherwise, a fixed coefficient βk is used for the corresponding explanatory variable Xik. 222 

 223 

Random effect binary logit model 224 

 225 

The pedestrian movements were captured from 7 crosswalks with different characteristics in 226 

Hong Kong. Therefore, observations in the same site were grouped as panel data, and a 227 

random effect binary logit model was used to account for both the within-site correlations and 228 

the inter-site heterogeneity. Hence, the random effect binary logit model is as follows: 229 
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where πij is the probability that the ith pedestrian at the jth crosswalk jaywalks, Xijk is the kth 231 

explanatory variable for the ith pedestrian at jth crosswalk, and µj is the random intercept with 232 

a mean of 0 and variance σj
2. Hence, the random effects µj vary across different crosswalks 233 

but remain constant for all of the pedestrians at the same crosswalk. 234 

 235 

Goodness-of-fit 236 

 237 

The Akaike information criterion (AIC) is widely applied to evaluate the quality of models 238 

for a given set of data. Although the likelihood values of models can always be improved by 239 

adding predictors, a penalty term for the number of estimated parameters is introduced to deal 240 

with the trade-off between the goodness of fit and the model complexity. The formula for 241 

AIC is given as  242 

 AIC 2 2 ln( )K L   (4) 243 

where K is the number of estimated parameters in the model and L is the maximum likelihood 244 

of the given set of data for the model. Therefore, the model with a lower AIC value is 245 

considered to be a better statistical fit. 246 

 247 

To further evaluate the overall fit of the model, McFadden’s adjusted pseudo R2 is used to 248 

compare the log-likelihood value of the model at convergence with that of the model with all 249 

parameters set to zero. The formula for the index is 250 

 2 ( )
1

( )

LL K
R

LL


 

β

0
 (5) 251 

where LL(β) and LL(0) are the log-likelihood values of the proposed and null models, 252 

respectively. The value of the index varies between 0 for no fit and 1 for a perfect fit. In 253 

practice, a value of around 0.4 is generally considered to be an excellent fit (Ortuzar and 254 

Willumsen, 2011). 255 



 256 

Finally, the likelihood-ratio test can be used to compare the goodness-of-fit of two competing 257 

models and to decide whether the null model should be rejected in favor of the alternative 258 

model. The test statistic is defined as twice the difference between the log-likelihoods: 259 

  2 ( ) ( )null alternativeD LL LL  β β  (6)                               260 

Comparing the chi-square distribution with degrees of freedom Kalternative – Knull, the null 261 

model can be rejected if the value exceeds the critical value at the 95% confidence level. 262 

 263 

In this study, the likelihood-ratio test was first conducted to compare the basic binary logit 264 

model with the random effect binary logit model. Then, a second likelihood-ratio test was 265 

conducted between the random effect binary logit model and the random parameter binary 266 

logit model. The degree of freedom had to be 1 for the first test, because the number of 267 

parameters in the random effect binary logit model was one more than that of the basic model. 268 

However, the degrees of freedom for the second test were dependent on the number of 269 

random parameters in the random parameter binary logit model. 270 

 271 

RESULTS 272 

 273 

STATA 13 was used to estimate the three binary logit models. Before the models were 274 

finalized, a Pearson’s correlation test was conducted to identify the explanatory variables that 275 

were independent of each other and to eliminate the highly correlated variables to ensure an 276 

unbiased estimation (Table 3). Not surprisingly, the correlation analysis indicated that the two 277 

dummy variables of gender, M and F, were highly correlated. This meant that either of the 278 

two dummy variables could be included in the model to represent pedestrian gender. Average 279 

vehicle flow was found to be highly correlated with cycle time and pedestrian red signal time, 280 



as the longer the time for vehicles, the larger the average vehicle flow. High correlations also 281 

existed among the geometric design variables and the signal phasing variables, including the 282 

number of lanes at the crosswalk, the numbers of approaches and approach lanes at the 283 

junction, the number of traffic streams at the junction, the number of signal stages, the cycle 284 

time, and the red signal time. These are all related to the size of the junction; i.e., the larger 285 

the junction, the longer the time to clear the vehicle traffic, and hence the longer the red 286 

signal time for pedestrians and the longer the cycle time. Only one or two of these variables 287 

can be included in the model. 288 

 289 

[Insert Table 3 Here] 290 

 291 

Finally, 8 explanatory variables (gender, signal at arrival, walking speed, number of 292 

pedestrian in the cycle, percentage of pedestrian jaywalking in the cycle, average vehicle 293 

flow in the cycle, crossing time, and number of stage) were included in the model. The 294 

estimation results and the average marginal effects for the basic (fixed parameter), random 295 

effect, and random parameter binary logit models are shown in Tables 4 and 5, respectively. 296 

The parameter estimates of all modeling approaches are significant at the 5% level. The signs 297 

of all parameters are consistent across the three models.  298 

 299 

In terms of goodness-of-fit, all three models have acceptable overall fit with the McFadden’s 300 

adjusted pseudo R2 values in the 0.26 ~ 0.29 range. Both the random effect and random 301 

parameter binary logit models have lower AIC values and larger values of McFadden’s 302 

adjusted pseudo R2 than the basic binary logit model. Unobserved heterogeneities thus exist 303 

across sites and also among pedestrians, and hence the two models provide statistically 304 

superior fit compared to the basic binary logit model. The statistic of the likelihood-ratio test 305 



between the basic model and the random effect models is 240.66, which is much greater than 306 

χ2 (1, 99%) = 6.64, i.e., the basic model is rejected in favor of the random effect model. 307 

Similarly, the statistic of the likelihood-ratio test between the random effect model and the 308 

random parameter model is 103.50, which again is much larger than χ2 (3, 99%) = 11.34. 309 

This result shows that the random parameter model is statistically superior to the random 310 

effect model. Therefore, we mainly focus on the latter model in the following section. 311 

 312 

DISCUSSION 313 

 314 

In the random parameter model, 4 of the 8 variables (gender, walking speed, percentage of 315 

pedestrians jaywalking, and crossing time) produced statistically significant random 316 

parameters (all were normally distributed). Table 4 shows that the gender variable (M: 0, F: 1) 317 

resulted in a random parameter with a mean of − 0.360 and a standard deviation of 0.156 318 

(98.95 % of the distribution is negative). This suggests that male pedestrians were less patient 319 

and more likely to jaywalk than female pedestrians, which is in line with the findings of most 320 

previous studies (Tiwari et al., 2007, Rosenbloom, 2009, Brosseau et al., 2013). The average 321 

marginal effect shows that female pedestrians are 5% less likely to jaywalk.  322 

 323 

The signal at arrival resulted in a fixed parameter and was found to significantly determine 324 

the probability of jaywalking. According to the marginal effects in Table 5, the pedestrians 325 

who arrived at the crosswalk during the red signal were 33.9% less likely to jaywalk. This 326 

suggests that those who arrived at the crosswalks during the flashing green periods probably 327 

seized the remaining time before the vehicle traffic discharged, and directly walked across to 328 

avoid waiting for one more cycle time.  329 

 330 



The average walking speed resulted in a random parameter with a mean of 3.251 and a 331 

standard deviation of 0.978 (nearly 100% of the distribution is greater than 0), which implies 332 

that there was considerable variation in the effect of walking speed. However, jaywalking 333 

pedestrians were found to walk faster, as they had to seize gaps in the traffic flow when 334 

crossing to avoid having accidents. The average walking speed was 1.22 m/s, as reported in 335 

Table 2, so the marginal effect (0.349 in the random parameter model) can be interpreted as 336 

indicating that a 0.1 m/s increase in walking speed resulted in a 3.49% increase in the 337 

probability of jaywalking.  338 

 339 

In addition to the abovementioned individual-specific factors, individual pedestrians were 340 

likely to be influenced by surrounding pedestrians who arrived during the same cycle. The 341 

results in Table 4 indicate that both a larger number of pedestrians in the cycle and a higher 342 

percentage of those jaywalking in the cycle increased the probability that a particular 343 

pedestrian would jaywalk. The number of pedestrians in the cycle resulted in a fixed 344 

parameter of 0.005, and the percentage of pedestrians jaywalking in the cycle resulted in a 345 

random parameter with a mean of 5.276 and a standard deviation of 0.964 (nearly 100% of 346 

the distribution is greater than 0). The marginal effects of the random parameter model (0.001 347 

for the total number of pedestrians and 0.567 for the percentage of pedestrians jaywalking) 348 

indicated that 1 additional jaywalking pedestrian resulted in a much greater increase in the 349 

probability of a particular pedestrian jaywalking than simply one more pedestrian in the same 350 

cycle. The two parameter estimates imply that the more pedestrians in a cycle, the greater the 351 

likelihood an individual will jaywalk, and the other pedestrians would then be encouraged by 352 

the first rule breaker and proceed to jaywalk. This result is the opposite of Rosenbloom’s 353 

(2009) finding that the tendency to cross on a red signal is lower when there are more people 354 

waiting at the curb, due to the power of social control. 355 



 356 

[Insert Table 4 Here]  357 

[Insert Table 5 Here]  358 

Pedestrians also typically observe and assess the site conditions. The average vehicle flow 359 

resulted in a fixed parameter of −0.025, indicating that a higher average vehicle flow 360 

decreased the probability of jaywalking, as the higher the vehicle flow, the shorter the gaps 361 

between vehicles, and hence the higher the risk of an accident. Crossing time was also found 362 

to be crucial in determining the probability of jaywalking and resulted in a random parameter 363 

with a mean of 0.194 and a standard deviation of 0.054 (nearly 100% of the distribution is 364 

greater than 0). The marginal effect (0.021 in the random parameter model) implies that a 365 

second increase in crossing time resulted in a 2% increase in the probability of jaywalking. 366 

The number of stages resulted in a fixed parameter of 1.734. The marginal effect (0.186 in 367 

the random parameter model) implies that one additional stage of the signal scheme resulted 368 

in an 18.6% increase in the probability of jaywalking. The results of both crossing time and 369 

number of stages indicated that pedestrians may be more likely to jaywalk at larger signalized 370 

intersections with longer kerb-to-kerb distance and more signal stages. 371 

 372 

CONCLUSION 373 

 374 

This study investigated the contributory factors of pedestrians’ jaywalking behavior at 375 

signalized crosswalks. The crossing movements of 7230 pedestrians were captured at 7 376 

crosswalks in Hong Kong. The information on the pedestrian behavior, the vehicle traffic 377 

flow, and the site-specific factors were incorporated into our proposed binary logit models to 378 

determine the probability of pedestrian jaywalking. To address the heterogeneity issues, the 379 

random parameter model was used to accommodate the variation in the effects of the 380 



explanatory variables among pedestrians, while the random effect model was used to account 381 

for the unobserved heterogeneity across sites.    382 

 383 

The random parameter model was found to be more suitable for addressing the heterogeneous 384 

effects of the explanatory variables among pedestrians. The pedestrian characteristics (gender, 385 

walking speed), the behavior of surrounding pedestrians (total number of pedestrians and the 386 

proportion of jaywalkers), the vehicle traffic, the timing of arrival and the length of signal, 387 

and the location of the crosswalk were found to significantly determine the probability of 388 

pedestrian jaywalking. The results imply that pedestrians with superior physical ability are 389 

generally less patient and more likely to take the risk of jaywalking.  390 

 391 

The results also revealed some critical issues relating to the current policies and design of 392 

signalized pedestrian crosswalks in Hong Kong. The significance of the flashing green signal 393 

is ambiguous to some pedestrians, as it seems that most pedestrians are not aware that starting 394 

to cross during the flashing green signal period is also illegal. Because Hong Kong is a 395 

densely populated city, it would be well worth considering providing more informative 396 

signals rather than simply promoting the regulation. Furthermore, it was also found that the 397 

majority of pedestrians normally walked slower than 1.2 m/s, which is the speed commonly 398 

used in the design of signalized pedestrian crossings to determine the length of the flashing 399 

green signal. This may lead pedestrians to overestimate the remaining time before the vehicle 400 

traffic streams discharge, and hence rather take the risk of jaywalking than wait for the length 401 

of another cycle. A possible measure that policy makers could consider is to introduce a 402 

signal countdown with the conventional graphic signal, which has been shown to 403 

significantly increase the proportion of pedestrians who start to cross during the green signal 404 

(Keegan and O’Mahony, 2003) and to effectively enhance pedestrian safety (Schattler et al., 405 



2002). The text “Don’t walk/Walk” may also be considered to give clear instructions to 406 

pedestrians.  407 

 408 

Overall, our findings show that pedestrian crossing behavior is dependent on individual-409 

specific factors and site-specific factors. In the future, observational surveys conducted at 410 

more sites with different geometric features and signal phasing schemes would enable further 411 

insights to be obtained on the effects of site-specific factors. Other environmental factors, 412 

including weather, temperature, noise, and type of land use, would be well worth 413 

investigating with a more comprehensive dataset. 414 

 415 
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Table 1 Site locations 486 

Area 
District  
(Land use) 

Junction 
No. 
of 

Obs. 

Signal cycle 
time (s) 

Average 
pedestrian 
arrival rate 
(ped/min) 

West Island 
Central 
(Commercial) 

Queen’s Rd. 
Central* 
Pedder St. 

1832 120 31.0

East Island 
Causeway Bay 
(Commercial) 

Morrison Hill Rd.* 

Leighton Rd. 
1984 120 25.2

West 
Kowloon 

Jordan 
(Commercial) 

Jordan Rd.* 

Nathan Rd. 
1142 130 73.5

East 
Kowloon 

Hung Hom 
(Residential) 

Hung Lok Rd.* 
Hung Lai Rd. 

106 90 2.7

West New 
Territories 

Tsuen Wan 
(Commercial 
/Residential) 

Sha Tsui Rd.* 

Chung On St. 
1142 95 79.7

Middle New 
Territories 

Sha Tin 
(Industrial) 

Ngan Shing St.* 
Siu Lek Yuen Rd. 

128 110 5.1

East New 
Territories 

Tseung Kwan 
O (Residential) 

King Ling St.* 
Choi Ming St. 

896 110 8.6

*The selected crosswalk 487 

  488 



Table 2 Summary of data 489 

Categorical variables Attributes Count 
(Proportion) 

   
Jaywalking Yes:1 4586 (63.4%) 
 No: 0 2644 (36.6%) 
   
Gender Male: (1, 0) 3357 (46.4%) 

Represented by two dummy variables  
(M, F) 

Female: (0, 1) 3265 (45.2%) 
Unidentified: (0, 0) 608 (8.4%) 

   
Age Adults: 0 6948 (96.1%) 
 Kids: 1 140 (1.9%) 
 Elderly: 2 142 (2.0%) 
   
Signal at arrival Flashing green: 0 1061 (14.7%) 
 Red: 1 6169 (85.3%) 
   
District Urban: 1 5064 (70.0%) 
 New Territories 

(NT): 0 
2166 (30.0%) 

   
Continuous variables Range Mean S.D.
   
Walking speed (m/s) Min: 0.16;  Max: 4.56 1.22 0.41
Total number of pedestrians in the cycle Min: 1;       Max: 207 84.44 58.26
Percentage jaywalking in the cycle Min: 0;       Max: 1 0.42 0.19
Average vehicle flow in the cycle 
(veh/min) 

Min: 0.6;    Max: 20.4 10.80 4.10

Crossing time (s) Min:2;        Max: 85 10.5 7.98
   
Geometric design   

Number of lanes at the crosswalk Min: 1;       Max: 6 3.14 1.42
Number of approaches at the junction Min: 1;       Max: 4 2.79 1.13
Number of approach lanes at the 

junction 
Min: 3;       Max: 13 8.51 3.94

Number of traffic streams at the 
junction 

Min: 1;       Max: 9 4.50 2.47

Signal phasing scheme   
Number of signal stages Min: 2;       Max: 4 3.34 0.85
Cycle time (s) Min: 90;     Max: 130 119.72 6.56
Pedestrian red signal time (s) Min: 67;     Max: 100 93.90 8.61

   
 490 

  491 



Table 3. Pearson correlation test of variable492 

M
 

F
 

A
ge 

S
ignal at arrival 

D
istrict 

W
alking speed 

N
o. of pedestrians in 

the cycle 

P
ercentage of 
jayw

alking 

A
verage vehicle flow

 

C
rossing tim

e 

N
o. of lanes at the 

crossw
alk 

N
o. of approaches at 

the junction 

N
o. of approach lanes 

at the junction 

N
o. of traffic stream

s 
at the junction 

N
o. of signal stage 

C
ycle tim

e 

P
edestrian red signal 

tim
e 

M 1.00 
F -0.84 1.00 
Age 0.04 -0.03 1.00 
Signal at arrival 0.04 0.00 0.02 1.00 
District 0.00 0.06 -0.03 0.01 1.00 
Walking speed 0.16 -0.06 -0.07 0.08 0.19 1.00 
No. of pedestrians in 
the cycle -0.14 -0.08 0.09 -0.07 -0.10 -0.46 1.00 
Percentage of 
jaywalking 0.07 0.05 -0.05 -0.02 0.07 0.15 -0.51 1.00 
Average vehicle flow -0.07 -0.03 0.04 0.03 0.32 0.00 0.45 -0.40 1.00 
Crossing time -0.10 -0.03 0.10 -0.01 0.08 -0.54 0.49 -0.30 0.13 1.00 
No. of lanes at the 
crosswalk -0.02 -0.07 0.05 0.02 0.14 -0.11 0.30 -0.30 0.11 0.78 1.00 
No. of approaches at 
the junction 0.01 -0.11 0.07 0.06 -0.36 -0.04 0.19 -0.35 0.03 0.49 0.69 1.00 
No. of approach 
lanes at the junction 0.07 -0.07 0.04 0.14 0.11 0.32 -0.11 -0.26 0.24 0.26 0.57 0.76 1.00 
No. of traffic streams 
at the junction 0.05 -0.09 0.03 0.07 -0.43 0.09 -0.10 -0.18 -0.19 0.35 0.62 0.93 0.73 1.00 
No. of signal stage 0.05 -0.09 0.05 0.11 -0.51 0.19 -0.05 -0.26 0.09 -0.05 0.10 0.74 0.71 0.73 1.00 
Cycle time -0.08 -0.04 0.06 0.00 0.44 -0.18 0.67 -0.39 0.60 0.51 0.49 -0.02 0.10 -0.24 -0.31 1.00 
Pedestrian red signal 
time -0.08 0.02 0.02 -0.02 0.61 -0.12 0.51 -0.21 0.60 0.13 -0.01 -0.50 -0.24 -0.71 -0.55 0.84 1.00 



Table 4 Estimates and goodness-of-fit for the basic, random effect, and random parameter 493 

binary logit models 494 

 Basic  Random 
Effect 

Random Parameter 

Variables    
Gender (M:0, F:1) − 0.408* − 0.405* − 0.360*

s.d. Gender 0.156*

Signal at arrival  
(Flashing green:0, Red:1) 

− 5.266* − 8.700* − 12.905*

Walking speed (m/s) 1.267* 2.654* 3.251*

s.d. Walking speed 0.978*

No. of pedestrians in the cycle 0.161* 0.005* 0.005*

Percentage of jaywalking 4.890* 4.580* 5.276*

s.d. Percentage of 
jaywalking 

0.964*

Average vehicle flow (veh/min) − 0.094* − 0.029* − 0.025*

Crossing time (s) 0.047* 0.110* 0.194*

s.d. Crossing time 0.054*

Number of stage 0.417* 0.954* 1.734*

σj 1.095*  
    
Goodness-of-fit    
No. of observations 7230 7230 7230
No. of parameters, K 8 9 12
Log likelihood at zero, LL(0) − 5011.45 − 5011.45 − 5011.45
Log likelihood at convergence, 
LL(β) 

− 3686.96 − 3566.63 − 3514.88

AIC 7389.91 7151.25 7066.47
McFadden’s adjusted pseudo R2 0.26 0.29 0.30
 
Likelihood-ratio test   vs. basic 

model
vs. random effect 

model
2 2 ( ) ( )null alternativeLL LL     β β   240.66 103.50

Degrees of freedom  1 3
Significance level  < 0.01 < 0.01
Note: * = Significance at the 5% level 
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Table 5 Average marginal effects for the basic, random effect, and random parameter binary 497 

logit models 498 

Variables Basic  Random 
Effect 

Random 
Parameter 

Gender (M:0, F:1) − 0.072* − 0.405* − 0.039*

Signal at arrival (Flashing green:0, Red:1) − 0.421* − 8.699* − 0.339*

Walking speed (m/s) 0.221* 2.654* 0.349*

No. of pedestrians in the cycle 0.003* 0.005* 0.001*

Percentage of jaywalking 0.839* 4.580* 0.567*

Average vehicle flow (veh/min) − 0.016* − 0.029* − 0.003*

Crossing time (s) 0.008* 0.110* 0.021*

Number of stage 0.073* 0.954* 0.186*

Note: * = Significance at the 5% level 
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