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Nomenclature 

c [ m ] Standard deviation of gauss function 

D  [ N m ] Bending stiffness of thin plate 

DI  Damage index of “strong formulation” of PE technique 

DI  Damage index of “weak formulation” of PE technique 

md  [ m ]    Distance between adjacent measurement points 

f  [ Hz ] Vibration frequency 

h [ m ] Thickness of plate 

I   [ 4m ] Moment of inertia 

N  Number of points in the integration interval 

S  [
2m ] Cross section area 

cx  [m] Centre of integration interval 
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Abstract 

A damage characterization framework based on the “pseudo-excitation” (PE) approach has 

recently been established, aimed at quantitatively identifying damage in beam-, plate-, and 

shell-like structural components. However, it is envisaged that the effectiveness of the PE 

approach can be restricted in practical implementation, due to the involvement of high-

order derivatives of structural dynamic deflections, in which measurement noise and 

uncertainties can overwhelm the damage-associated signal features upon mathematical 

differentiation. In this study, the PE approach was revamped by introducing the weighted 

integration, whereby the prerequisite of satisfying the local equilibrium conditions was 

relaxed from “point-by-point” to “region-by-region”. The revamped modality was thus 

colloquially referred to as “weak formulation” of the PE approach, as opposed to its 

original version which is contrastively termed “strong formulation”. By properly 

configuring a weight function, noise immunity of the PE approach was enhanced, giving 

rise to improved detection accuracy and precision even under noisy measurement 

conditions. Furthermore, the “weak formulation” was extended to a series of coherent 

variants through partial integration, rendering a multitude of detection strategies by 

selecting measurement parameters and configurations. This endowed the PE approach with 

flexibility in experimental manipulability, so as to accommodate various detection 

requirements. As an application of the “weak formulation”, a Continuous Gauss 

Smoothing (CGS)-based detection scheme was developed, and validated by localizing 

multiple cracks in a beam structure, showing fairly improved noise tolerance. 

 

Keywords: pseudo-excitation (PE); vibration-based damage detection; local equilibrium; 

noise reduction; laser scanning vibrometry 
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1. Introduction 

“Pseudo-excitation” (PE) is a damage detection framework, recently developed in virtue of 

exploring and calibrating damage-induced perturbation to the local dynamic equilibrium of 

a structural component [1-4]. The effectiveness of the approach has been examined 

rigorously, using various damage scenarios in diverse structural components (e.g., beam [1, 

2], and plate [3]) as well as complex engineering structures (e.g., multi-component 

structures [3], and steel-reinforced concrete slabs [4]). Notably, the PE approach is not 

restricted by the type of damage (viz., crack, notch, delamination, material degradation, 

etc.) and its number within the inspection region, and the approach has proven sensitivity 

to the boundary of a damaged zone in particular. Residing on an explicit physical 

cornerstone, the PE approach can be used to construct assorted damage indices (DI) with 

different structural vibration parameters. It exhibits prominent advantages in some aspects 

over conventional global vibration-based [5-11] or local guided-wave-based [12-19] 

damage detection techniques, including 

(1) higher sensitivity to damage of small dimension, owing to the use of high-order 

equation of motion (in contrast, a global vibration-based approach is usually 

insensitive to damage before it reaches a conspicuous extent, while a local guided-

wave-based method can be limited by the wavelength of the selected wave mode); 

(2) capability of locally interrogating the inspection region point-by-point, thus 

independent of a global model of the entire structure; 

(3) by the same token, applicability to detection of multi-damage, regardless of the type of 

respective damage; 

(4) independence of prior information on structural boundaries (meaning the complexity 

of a system would not limit the applicability of the approach) and modal behavior (i.e., 

a deliberately generated mode shape of the structure is not of necessity); and 
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(5) no need to reference a benchmark structure or a baseline signal, therefore immune 

from possible interferences from fluctuating environment (e.g., varying temperature). 

 

The original version of the PE approach requests that the local equilibrium of the structural 

component be examined rigorously at every single inspection point. Such a “strong” 

prerequisite may downgrade practicability of the PE approach, as a result of the connatural 

vulnerability of the constructed DI to measurement noise and uncertainties. That is because 

the local dynamic equilibrium of a structural component features high-order derivatives of 

the structural dynamic deflection (e.g., 
4

4

d ( )

d

v x

x
for a beam component where ( )v x  is the 

flexural displacement of the component at location , while 
4

4

( , )v x y

x




 for a plate 

component with ( , )v x y being the flexural displacement of the component at  ,x y ). During 

the fourth-order differentiation, measurement noise and uncertainties unavoidably included 

in ( )v x  and ( , )v x y  are to be magnified to a significant level, masking the damage-induced 

changes in DI and jeopardizing the robustness of the approach. 

 

In recognition of such deficiencies, the original PE approach was revamped by introducing 

the weighted integration, aimed at enhancing the noise immunity of the approach when 

deployed under noisy measurement conditions. In brief, the prerequisite of satisfying the 

local equilibrium is relaxed from “point-by-point” to “region-by-region”. To highlight such 

relaxation, the revamped modality of the PE approach is colloquially called “weak 

formulation”, as opposed to its original version otherwise termed “strong formulation”. 

Such relaxation creates a twofold merit: 

x
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(1) by properly configuring a weight function, the effect of measurement noise and 

uncertainties strengthened upon high-order differentiation can be largely reduced 

within a selected integration interval; and 

(2) by properly selecting measurement parameters and configurations, a series of coherent 

variants of the “weak formulation” can be derived using partial integration, leading to 

a multitude of detection strategies, to accommodate various detection requirements. 

As an application, a weighted function was designed using the classic Gaussian function, 

and the correspondingly developed “weak formulation”, called Continuous Gauss 

Smoothing (CGS), was validated by localizing multiple cracks in a beam-like structure. 

 

2. “Strong Formulation” of PE Approach 

Considering an intact Euler-Bernoulli beam component with a homogeneous isotropic 

material nature, a one-dimensional DI, denoted by DI( , )x t , can be defined by quantifying 

damage-induced local perturbation to the dynamic equilibrium of the component, which 

reads 

 
 

 
 2 22

2 2 2

, ,
DI( , )

v x t v x t
x t EI x S x

x x t


  
  
   

,                           (1a) 

where ( , )v x t  is the dynamic deflection of the component at location  at time t. E ,  , 

I  and S  are the complex modulus of elasticity (comprehending material damping), 

density, cross-sectional moment of inertia, and area of the component in its pristine status, 

respectively. It is noteworthy that  ,v x t  can be obtained from a broad spectrum of 

vibration conditions of the structure that are either instantaneous or steady. For a pristine 

beam component (free of any damage in the absence of external surface excitation), 

DI( , ) 0x t  . As Eq. (1a) describes a local equilibrium, the boundary conditions of the 

beam are not of interest. 

x
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Specifically, under a steady vibration, ( , )v x t  can be replaced with the steady vibration 

deflection of the beam, ( )w x . Assuming that the beam possesses a uniform cross-section 

and constant material properties, Eq. (1a) can be simplified, in a harmonic regime, as 

 
 

 
4

2

4

d
DI

d

w x
x EI S w x

x
   ,                                        (1b) 

where   is the angular vibration frequency of the steady vibration. In the case that the 

excitation is not harmonic, one frequency component in the frequency domain after Fourier 

transform can also be used. 

 

Equations (1a) and (1b) reveal that the PE approach is, in essence, a dynamic response-

based damage detection philosophy. In practice, ( )w x  can be measured discretely using 

well-defined techniques such as accelerometers, laser holography or Doppler laser 

vibrometer, with which DI can be constructed via a finite difference scheme. By way of 

illustration, DI at measurement point i in a discrete form can be expressed, by involving 

four neighboring measurement points from point 2i   to 2i  , as 

  2

2 1 1 24
DI 4 6 4i i i i i i i

m

EI
w w w w w S w

d
          ,                    (1c) 

where md  is the distance between two adjacent measurement points, and 
iw  the flexural 

displacement measured at point i . 

 

Similarly, a two-dimensional DI can be derived for a homogeneous isotropic plate-like 

component, based on the plate theory, as 

   
 2

4

2

, ,
DI , , , ,

v x y t
x y t D v x y t h

t



  


,                            (2a) 

or, under a steady vibration, as 
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     4 2DI , , ,x y D w x y h w x y    ,                                (2b) 

where 
 

3

212 1

Eh
D





. In the above,  , ,v x y t  and  ,w x y  signify the dynamic 

deflection and vibration deflection under steady vibration, respectively; D is the bending 

stiffness; h and   are the thickness and the Poisson’s ratio of the component, respectively. 

 

Likewise, the two-dimensional DI can be re-defined in a discrete form, using a finite 

difference scheme, as 

 4 2 2 4 2

, , , , ,DI 2x x y y

i j c i j i j i j c i jD ph w       .                               (2c) 

Here  is the flexural displacement of the plate measured at point , and 

                     (2d) 

                     (2e) 

                    (2f) 

where  and  are the intervals between two adjacent measurement points along the 

x  and yaxes, respectively. 

 

The underlying philosophy of PE approach-based damage identification can be stated as 

follows: 

(1) for a pristine component in its intact status and in the absence of any external 

excitation, the DI (defined by Eqs. (1) or (2)) remains zero across the component, 

owing to the strict satisfaction of local equilibrium on every infinitesimal fragment of 

,i jw  ,i j

 
4

4

, 2, 1, , 1, 2,4 4

1
4 6 4 ,x

i j i j i j i j i j i j

x

w
w w w w w

x
    


     
 

 
4

4

, , 2 , 1 , , 1 , 24 4

1
4 6 4 ,y

i j i j i j i j i j i j

y

w
w w w w w

y
    


     
 





4
2 2

, 1, 1 1, 1, 1 , 12 2 2 2

, , 1 1, 1 1, 1, 1

1
2 2

4 2 2 ,

x y

i j i j i j i j i j

x y

i j i j i j i j i j

w
w w w w

x y

w w w w w

      

     


    
   

    

x y
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the component. By way of illustration, an Euler-Bernoulli beam fragment is shown 

schematically in Figure 1(a). In the figure,  ,M x t  and ( , )Q x t  are the internal 

bending moment and shear force, respectively;  ,q x t  is the distribution density of the 

external excitation, with  , 0q x t   signifying the absence of any external excitation; 

and 

(2) when damage (say a damaged zone  ) occurs, DI along the boundary of   fluctuates 

due to the damage-induced shear forces, bending and torsion moments; within  , DI  

smoothly varies, provided the material and geometry are continuous within   (but 

they can be different from those outside of  ). Note that, although the isolated 

fragment in Figure 1(a) is free of any external force, the internal forces and moments 

exerted by the rest of the component still exist, on the sharing boundaries between the 

fragment and the rest of the component. 

 

The nature of the DI alludes to that the vibration of a structural component bearing a 

damaged zone   can be equivalent to that of its pristine counterpart, with fictitious 

“external” forces applied on the surface over  . Therefore, these fictitious “external” 

forces are referred to as “pseudo-excitation” (PE). Equations (1) and (2) also articulate that 

DI, though associated with the damage, is developed using the material and geometric 

parameters of the component in an intact region (free of damage). Any drastic oscillation 

in DI implies the existence of damage therein; and the distribution profile of DI can thus be 

used to quantitatively evaluate a damaged zone. It has been demonstrated that the most 

prominent oscillations of DI can be perceived along the boundaries of a damaged zone [1]. 
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3. “Weak Formulation” of PE Approach 

3.1 Motivation 

However, the DI based on the “strong formulation” of the PE approach is prone to the 

contamination from measurement noise and uncertainties which may overwhelm the 

damage-induced perturbation to the local equilibrium. That is because the noise and 

uncertainties contained in an experimentally captured  w x  (for beam component) or 

 ,w x y  (for plate component) can become overwhelmingly dominant upon fourth-order 

differentiation (e.g., 
4

4

( )w x

x




 or 

4

4

( , )w x y

x




). 

 

For illustration, the distribution of DI constructed via numerical simulation for a plate 

component is presented in Figures 2(a) and (b), respectively, for the noise-free and noise-

corrupted measurement [3] (denoted by 
exact

,DIi j  and 
noisy

,DIi j , respectively). In the absence of 

noise, Figure 2(a), the damaged zone, small in size, can be located precisely using the PE 

approach, as evidenced by the prominent changes in DI along the damaged zone, 

contrasting the poor detection resolution obtained using the noise-contaminated vibration 

displacements as shown in Figure 2(b). It is noteworthy that the level of the added noise, in 

Figure 2(b), is as low as only 1% of the magnitude of the maximum vibration displacement 

of the plate. The unintelligible detection results from 
noisy

,DIi j  can be attributed to the strong 

noisy interference in the damage-induced changes in DI after fourth-order derivation of the 

vibration displacements. It is thus of vital necessity to enhance the noise immunity of the 

PE approach. 
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3.2 General Expression of “Weak Formulation” 

For the Euler-Bernoulli beam component in Figure 1(a), the DI constructed using Eq. (1b) 

˗ the “strong formulation” of the PE approach ˗ can be retrofitted within an integration 

interval, instead of at every single point, by introducing the weighted integration as 

   
/2

/2
DI DI

c

c

x

c
x

x x x dx








     ,                                                (3) 

where DI  is the re-defined DI within integration interval  / 2, / 2c cx x   , centralized 

at cx  with a length of  . This integration interval is denoted by   in what follows.  x  

is a weighting function which can, in principle, take an arbitrary form. The bar over DI 

signifies the re-defined DI is an integral within   rather than at a specific point. By 

regulating cx  and  , the position and length of   can be adjusted, serving as a “scanning 

window” to examine the entire component ‘region-by-region’. Similarly, the two-

dimensional expression of DI  towards a plate component can also be developed using the 

dual-integration along x  and yaxes with a two-dimensional integration interval. 

 

Fluctuation of DI  can be an indicator to damage occurrence during the “scanning” of the 

window. Different from the detection using DI (with “strong formulation”) to examine the 

inspection region “point-by-point”, the detection based on the use of DI  is executed 

“region-by-region”. In that sense, the prerequisite of satisfying the local equilibrium 

condition has been relaxed from “point-by-point” to “region-by-region”. 

 

In an extreme case by setting   1x  , it has  DI DI x dx


  , which possesses explicit 

physical implication: as shown in Figure 1(b) for the exemplary fragment in Figure 1(a), 

DI  represents the summation of all the “pseudo-exactions” applied over the surface of  . 
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Certainly,  x  can be designed optimally, by taking a sophisticated form so as to 

accommodate specific purposes and to improve the detection accuracy (to be detailed in 

subsequent sections). 

 

3.3 Variants of “Weak Formulation” 

Substituting Eq. (1b) into (3) yields 

 
   

4

2
4

4

d
DI

d
c

w x
EI S w x x x dx

x
  



 
   

 
 .                              (4a) 

The subscript “4” accentuates that this damage index is based on the fourth-order 

derivative of  w x . To take a step further, Eq. (4a) can be extended to the following 

variants, using partial integration, as 

 
 

   
   

/2
3

3
3

/2

3

2

3

d
DI

d

d d
,

d d

c

c

x

c

x

c

c

w x
EI x x

x

w x x x
EI S x x w x dx

x x








  







 
   

 

 
      

 


                  (4b) 

 

 
 

   

   
   

/2
3 2

2
3 2

/2

2 2

2

2 2

d d d
DI

d d d

d d
,

d d

c

c

x

c

c

x

c

c

w x w x x x
EI x x

x x x

w x x x
EI S x x w x dx

x x









  







 
     

 

 
      

 


,                     (4c) 

 

 
 

       

   
   

/2
3 2 2

1
3 2 2

/2

3

2

3

d d d d d
DI

d d d d d

d d
,

d d

c

c

x

c c

c

x

c

c

w x w x x x w x x x
EI x x

x x x x x

w x x x
EI S x x w x dx

x x





 



  







  
       

 

 
      

 


(4d) 

and 
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 
 

       

 
   

   

3 2 2

0
3 2 2

/2
3 4

2

3 4

/2

d d d d d
DI

d d d d d

d d
.

d d

c

c

c c

c

x

c c

c

x

w x w x x x w x x x
EI x x

x x x x x

x x x x
w x EI S x x w x dx

x x





 


 
  





  
      



   
       

  


(4e) 

 

In the above, the subscript of DIk  ( 0,1, 2, 3, 4k  ) points out the highest order of  w x

involved. DIk  defined by Eqs (4b) to (4e) are the variants of original “weak formulation” 

(Eq. (4a)). 

 

The “weak formulation” defined by Eq. (4a), as well as its variants in different modalities 

(from Eqs. (4b) to (4e)), feature a twofold characteristic: 

(1) mathematically, DIk  of different orders ( 0,1, 2, 3, 4k  ) are identical, independent of 

 x , although numerical errors might exist among different expressions in numerical 

computation; and 

(2) any variant of “weak formulation” contains two terms: an “integration part” (  dx


 ) 

− the operation of integration within  , and a “boundary part” (  
/2

/2

c

c

x

x








 ) − the 

operation of subtracting relevant terms at the boundary of  . Specifically, in the 

“integration part”, the order of derivative of  w x  decreases stepwise from three in 

3DI  to zero in 0DI ; while in the “boundary part”, the order of derivative of  x  

increases from zero in 3DI  to three in 0DI . 

 

The above characteristic endows the “weak formulation” with a dual-merit, compared with 

its strong counterpart: 

(1) an enhanced immunity to noise interference, because the level of measurement noise 
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can be largely averaged due to the weighted integration; and 

(2) a diversity of experimental implementation options by using the variants of DIk . This 

offers certain flexibility towards practical applications of the PE approach, as 

elaborated in the followings: 

 

a. Flexible Selection of  x  

The variants, compared with their original form of the “weak formulation”, take a more 

complicated appearance which involves more parameters and in particular at a lower 

differential order. It is however feasible to simplify the expression of these variants by 

tactically choosing  x . A sophisticated design of  x  is able to achieve a twofold aim: 

(i) suppressing the influence from measurement noise and strengthening signal features 

pertaining to damage, and (ii) eliminating several terms in the variants which may be 

difficult to obtain, for instance the “integration part” or “boundary part”, to simplify the 

expression of DIk . 

 

b. Flexible Selection of Measurands 

The derivatives of  w x  in the variants are linked to different measurands to be acquired. 

For instance, 
 2

2

d

d

w x

x
 and 

 d

d

w x

x
 can be obtained by measuring the local strains and 

angle of rotation of the component, respectively. Thus, various measurands can be chosen 

depending on the needs and available measurement means, for example, to achieve an 

enhanced noise immunity by measuring multiple types of measurands. 
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c. Flexible Selection of Measurement Points 

The “integration part” and “boundary part” are mutually independent in the variants, and 

this creates the possibility to construct two parts separately ˗ using different densities of 

measurement points − for example a higher density of measurement points within the 

“integration part”, while lower in the “boundary part”. Notably, a sophisticated adjustment 

of measurement density and positions can facilitate optimization of the experimental 

configuration, in turn leading to improved detection accuracy (to be discussed in later 

sections). 

 

d. Flexible Selection of Noise-influenced Terms 

It is apparent that the measurement noise and uncertainties are included in  w x  and its 

derivatives only. From 4DI  to 0DI , the noise-influenced terms are transferred among the 

derivative of  w x  with various orders. Particularly, as seen in 0DI , the measurement 

noise is associated with  w x  in the “integration part” only, while all the high-order 

derivatives of  w x , including measurement noise and uncertainties, are transferred to the 

“boundary part”. Such a trait of the “weak formulation” can be conducive to minimizing 

the noise influence on detection precision under noisy measurement conditions, by 

properly selecting measurement parameters (to be discussed in subsequent sections). 

 

From the above statements, it can be seen that if using Eq. (4a) only, the “weak 

formulation” shows large similarity with other signal processing techniques such as 

wavelet transform, the principle of which also resides on the weighted integration. 

However, the variants of the “weak formulation” play a number of important roles far 

beyond signal processing, largely contributing to the development of new detection 
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strategies. 

 

4. Implementation of “Weak Formulation” 

It is straightforward that the selection of  x  essentially determines the ultimate form of 

DIk . By way of illustration, a classic Gaussian function is used as  x , to configure the 

“weak formulation”. 

 

4.1 Principle 

With the classic Gaussian function,  x  can be defined as 

   
2

22 , / 2 , / 2

x

cx e x  


                                          (5) 

where c is the standard deviation of the Gaussian function. The mathematical property of 

the Gaussian function [20] confines majority of the energy of  x  within  , while 

vanishing at boundaries of  , as explained in Figure 3(a). Furthermore, the derivatives of 

 x  at different orders, from 
 d

d

x

x


 to 

 4

4

d

d

x

x


,  as well as at the boundaries, become 

zero, as illustrated in Figures 3(b) to (e). This characteristic of the Gaussian function 

eliminates all the “boundary parts” in the variants of “weak formulation” in Eqs. (4b)-(4e), 

greatly simplifying the expression of DIk . Benefiting from this, the accordingly simplified 

“weak formulation” and its variants at different orders, termed Continuous Gauss 

Smoothing (CGS), read 

 
   

4
/2

2
4

4/2

d
DI

d

c

c

x

CGS c
x

w x
EI S w x x x dx

x




  






 
   

 
 ,                                          (6a) 
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   
   

3
/2

2
3

3/2

d d
DI

d d

c

c

x
c

CGS c
x

w x x x
EI S x x w x dx

x x






  






 
       

 
 ,         (6b) 

   
   

2 2
/2

2
2

2 2/2

d d
DI

d d

c

c

x
c

CGS c
x

w x x x
EI S x x w x dx

x x






  






 
      

 
 ,           (6c) 

   
   

3
/2

2
1

3/2

d d
DI

d d

c

c

x
c

CGS c
x

w x x x
EI S x x w x dx

x x






  






 
       

 
 ,          (6d) 

 
   

4
/2

2
0

4/2

d
DI

d

c

c

x
c

CGS c
x

x x
EI S x x w x dx

x






  






 
    

 
 .                      (6e) 

“CGS” in the subscript differentiates the simplified “weak formulation” from its original 

forms defined by Eq. (4). By changing   (via adjusting cx  in Eq. (6)) within which  x

is defined, the integration window can shift along the inspection region. 

 

4.2 Numerical Simulation 

The feasibility of using CGS for quantitative identification of structural damage was 

evaluated using finite element (FE) simulation first. 

 

4.2.1 FE Model 

Considering an Euler-Bernoulli cantilever beam, 1200 mm in length, with geometric and 

material properties listed in Table 1, the beam was clamped at its left end as shown in 

Figure 4. 
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Table 1 Material and geometric properties of the cantilever beam in FE analysis 

 

 

 

 

 

 

 

 

 

 

A FE model for the beam, with 600 beam elements evenly across the beam length, was 

created using commercial FE code ANSYS®. A harmonic point-force excitation of 1000 

Hz was applied at 10 mmx   (referring to Figure 4 for the coordinate system). Note that 

selecting a resonance frequency of the structure is not of necessity; actually it is preferable 

to apply this method at an off-resonance regime, so as to minimize the effect of system 

damping. But it has been shown in previous study [1] that a relatively high frequency 

corresponds to strong noise immunity of the PE technique, and thus the frequency was 

selected to be higher than the third natural frequency. The beam bore a damaged zone at 

 820, 840 mm , which was simulated by reducing the Young’s modulus by 50% of their 

original value within the damaged zone. To avoid the influence from the excitation, an 

inspection region,  200,1200 mmx , was selected to exclude the vicinity of the 

excitation point. 

 

Density   
3kg/m    2700 

Young's Modulus E  GPa  70 

Beam length L  mm  1200 

Width b   mm  10 

Thickness h  mm  10 
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The flexural displacement at each FE node (corresponding to the measurement point in 

subsequent experiment) in the absence of noise interference, denoted by exact

iw , was 

obtained using ANSYS®, which was then numerically contaminated with added noise as 

 noisy exact 1 ij

i i iw w e
    ,                                             (7) 

where noisy

iw  is the noise-corrupted counterpart of exact

iw ; i  a Gaussian random real 

number related to the magnitude of exact

iw ; i  another Gaussian random real number 

related to the phase of exact

iw . In the succeeding analysis,     0i i     ,   1%i    

and   o1i   ( and   signify the mathematical manipulation to calculate the mean and 

the standard deviation, respectively). The noise of such a level is indistinguishable between 

exact

iw  and noisy

iw . 

 

4.2.2 Identification of Damage Using “Strong Formulation” 

With exact

iw and noisy

iw , the correspondingly constructed exactDI  and noisyDI , using the 

“strong formulation” of the PE approach (Eq. (2c)), are displayed in Figure 5. exactDI , 

Figure 5(a), explicitly and accurately indicates the location of the damaged zone by 

revealing its two ends. On the contrary, noisyDI , Figure 5(b), fails to pinpoint the damaged 

zone, because the added noise, though low in its level, masks the damage-induced changes 

in the damage index significantly, which can be attributed to the drastic magnification of 

the noise in the signal during the fourth-order differentiation. Such an observation is in 

agreement with the analyses made previously. 
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4.2.3 Identification of Damage Using CGS-based “Weak Formulation” 

exact

iw  and noisy

iw  were then processed with CGS-based “weak formulation” defined by Eq. 

(6a). Figures 6(a) to (h) present correspondingly constructed 
exact

4DI CGS  and 
noisy

4DI CGS , using 

various integration windows (when /   of   equals to 0.27, 0.5, 1 and 1.32, respectively; 

  is the vibration wavelength of the beam which is 0.3 m under the current excitation 

frequency). With a smaller   (Figures 6(a) and (b)), both 
exact

4DI CGS  and 
noisy

4DI CGS  show 

greater similarity respectively with exactDI  and noisyDI  in Figure 5 which are obtained using 

the “strong formulation”. This implies that the anticipated advantages of the “weak 

formulation” over “strong formulation” tend to be obscure when the integration interval 

becomes smaller. On the contrary, with an increase in  , a dual effect can be observed: (i) 

the detection resolution decreases, as seen in Figures 6(a), (c), (e) and (g) for 
exact

4DI CGS , 

because of a progressively enlarged  ; (ii) the noise immunity of the damage index 

increases, in Figures 6(b), (d), (f) and (h) for 
noisy

4DI CGS , because of the intensified averaging 

of measurement noise with more measurement points included in  . 

 

It is therefore crucial to strike a balance between the detection resolution and the noise 

immunity for the CGS-based damage index through optimizing /  . In Figure 6, it is 

obvious that a reasonable compromise can be reached when / 1   , − the case in Figure 

6(f), with which the damaged zone can be located with satisfactory resolution using 

noisy

4DI CGS . However, to achieve such compromise is a challenging task, as the adjustment of 

/   simultaneously changes the number of the measurement points included in   (N in 

the following), incurring additional influence on the detection accuracy. 
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To interrogate such an influence from N, /   is kept to be constant (i.e., / 1   ), and N 

is reduced gradually from 151 to 38 in this case, giving rise to different detection results 

obtained using 
exact

4DI CGS  and 
noisy

4DI CGS , as shown in Figures 7(a) to (f) ( 151N   in (a) and 

(b); 76N   in (c) and (d); 38N   in (e) and (f)). It can be seen that the distribution of 

exact

4DI CGS  basically remains unchanged regardless of N. However, the decrease in N affects 

the distribution of  
noisy

4DI CGS  considerably. These observations reveal that, at a given /  , 

the noise influence becomes more phenomenal with less measurement points in   , − a 

possibility to suppress noise along with improved detection accuracy in practical 

implementations. On the other hand, reduction in N simultaneously increases md  (the 

distance between two adjacent measurement points), in turn influencing detection accuracy 

as well. Further insight into the relationship among different parameters (e.g.,  , md , and 

N) and their influence on detection accuracy is to be given in Section 4.4. 

 

Similarly, different orders of the CGS-based damage indices, 
noisy

3DI CGS , 
noisy

2DI CGS , 
noisy

1DI CGS , 

and 
noisy

0DI CGS , at the above said optimal setting when / 1    ( 151N  ), were obtained 

using Eq. (6b) to (6e), and their distribution is displayed in Figure 8, highly resembling 

those results in Figure 6 in which 
noisy

4DI CGS  is concerned. The high similarity among 

different orders of the “weak formulation”, from 
noisy

4DI CGS to 
noisy

0DI CGS  confirms the 

mathematical nature of the “weak formulation”, as illustrated previously in Section 3.3: 

DIk  of different orders ( 0,1, 2, 3, 4k  ) are in principle identical, provided there are 

sufficient measurement points within  . 
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4.3 Experimental Validation 

4.3.1 Setup 

Experimental validation was subsequently conducted, to identify multiple cracks in a 

cantilever beam (aluminum 6061, Young modulus: 68.9 GPa, mass density: 2700 kg/m3, 

and Poisson’s ratio: 0.27) which was fixed-supported on a testing table (NEWPORT® 
ST-

UT2), as sketched in Figure 9. The defined inspection region, shown in Figure 9, featured a 

length of 550 mm, a constant width of 30 mm and a uniform thickness of 8 mm, within 

which two through-width cracks (1.2 mm×30 mm× 2 mm for each, i.e., 0.2% of the beam-

span) were pre-treated at 220 mm and 380 mm from the clamped end of the beam, 

respectively. Notably, the irregular shape of the beam, i.e., non-constant width near the 

free end, was intentionally designed, in order to demonstrate the effectiveness of the PE 

technique and its “weak formulation” in detecting damage in beam components with 

complex boundary geometries. A harmonic point-force excitation of 2000 Hz was applied 

on the beam with an electromechanical shaker (B&K®4809), near the free end of the beam, 

this leading to a   of 0.18 m approximately. A scanning Doppler laser vibrometer 

(Polytec○R PSV- 400B) was used to measure the out-of-plane flexural deflections at 210 

measurement points (with a spacing interval of 2.6 mm), along the central line of the beam 

within the inspection region. It took circa twenty minutes to finish a single test. During the 

scanning, the measurement noise may come from a variety of sources, such as the 

measurement error of the PSV, the non-perfect boundary condition of the cantilever beam, 

the non-perfect excitation provided by the electro-mechanical shaker, etc. 

 

4.3.2 Results and Discussion 

As representative results, the absolute values of iw  across the inspection region under the 

above excitation are shown in Figure 10(a), along with the damage index constructed using 
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“strong formulation” of the PE approach shown in Figure 10(b). As anticipated, the “strong 

formulation”-based damage index fails to delineate any damage, because of the 

interference from measurement noise. On the contrary, 4DI CGS  calculated using Eq. (6a) is 

displayed in Figure 11 (for several /   values, namely different  ). In Figure 11(a) 

(when / 0.14   ), the “weak formulation” of the PE approach does not present 

significantly improved de-noising effect, and the profile of corresponding 4DI CGS  shows 

great similarity with that of the index calculated using “strong formulation” shown in 

Figure 10(b). When /   is increased to 0.33, improvement of detection accuracy is 

observed, as shown in Figure 11(b), whereby the location of one of the two cracks can be 

identified, more or less, though the other is yet masked by the noise. With an even greater 

  (when / 0.6   ), satisfactory detection accuracy is reached, in Figure 11(c), in which 

locations of both cracks are identified precisely. However, progressive enlargement of 

/   does not lead to further improved detection accuracy, instead a decrease of the 

resolution is noticed, as seen in Figure 11(d) where / 0.95   . This is in consistent with 

the conclusion drawn previously that a balance between the detection resolution and noise 

immunity can be obtained through optimizing /  . In addition, it can be seen that, 

although the cracks are of the same parameters, the corresponding magnitudes are different 

as presented in Fig. 11(c). This can be attributed to the fact that the magnitudes of the 

damage indices of the PE technique vary in accordance with the variation of internal 

bending moments along the beam [1]. Thus the differences in the magnitude of damage 

indices are mainly attributed to the differences of bending moments at the two crack 

locations. 

 

The influence of measurement points included in   (viz., N) on the detection accuracy was 

then gauged by fixing /   to be 0.6. It is reasonable to see from Figures 12(a) to (d) that 
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the detection accuracy declines progressively as N decreases. In particular, in Figure 12(c) 

(when 12N  ), a pseudo peak of 4DI CGS  (indicating pseudo damage) is observed in the 

intact region of the beam, and in Figure 12(d) (when 6N  ), the 4DI CGS  becomes 

indistinguishable to reveal the position of either of the two cracks, because of insufficient 

measurement points included  . 

 

4.4 Estimate of Noise Effect 

As commented in Section 3, the effect of measurement noise in the “weak formulation” 

can be transferred between the “integration part” and the “boundary part”, at different 

orders of the damage index. One can thus make use of such a trait, to facilitate the 

selection of measurement parameters and experimental configurations with reduced noise 

effect. 

 

In this backdrop, the “weak formulation” provides a means to estimate the noise effect on 

the detection accuracy. Mathematically, the integral of any function, say  f x , within an 

integration interval between a and b can be expressed, according to the principle of 

Riemann integral [21], as 

   *

1

lim
nb

k k
a n

k

f x dx f x x




  ,                                                (8) 
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where *

kx  is an arbitrary point in the sub-interval kx . Provided the measurement density 

is sufficiently large (viz., there are sufficient measurement points to depict the profile of 

 w x  accurately), 0DI CGS  defined by Eq. (6e), without and with noise influence, can be 

approximated, respectively, as 

exact exact
0

1

DI
N

CGS m r r

r

d w



    ,                                              (9a) 

noisy noisy
0

1

DI
N

CGS m r r

r

d w



    ,                                              (9b) 

where 

  2

2 1 1 24
4 4 6r r r r r r r

m

EI
S

d
                 .                         (9c) 

In the above, r is a sequence number of the measurement point locally defined in  . The 

high-order derivative of  x  in Eq. (6e) can be calculated using a finite difference 

scheme defined by Eq. (9c). Note that r  in Eq. (9a) and (9b) is free of noise interference. 

In Eq. (9b), assuming noisy

rw  can be expressed in a simplified form (similar to Eq. (7)), as 

 noisy exact 1r r rw w    ,                                                (10) 

where r  is a Gaussian random number, with the mean and standard deviation being 

 r   (   0r   ) and  r  , respectively. r  can be either a real number related to the 

magnitude of exact

rw , or a complex number related to both the magnitude and phase of 

exact

rw . Then Eq. (9b) can be expanded to 

 
noisy

exact
0

1

exactexact exact
0

1 1

DI 1

DI ,

N

CGS m r r r

r

N N

CGSm r r m r r r

r r

d w

d w d w











 

     

          



 

             (11a) 

where 
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exact

1

N

m r r r

r

d w 


      .                                              (11b) 

Thus, the noise influence on 
exact

0DI CGS , all included in  , is now isolated. It is important to 

note that in practical measurement, r  is a random variable associated with rth 

measurement point. According to the theory of probability and statistics [22],   is also an 

independent random variable subject to individual integration interval, conforming to 

Gaussian distribution, with its mean and standard deviation being 

  0   ,                                                      (12a) 

and           
2

exact

1

N

m r r r

k

d w  


      .                                      (12b) 

Therefore, the level of noise effect included in 
noisy

0DI CGS  can be estimated quantitatively in 

terms of    , which can also be used to estimate the noise effect in different orders of 

the “weak formulation” from 
noisy

1DI CGS  to 
noisy

4DI CGS , as all the expanded expressions are 

mathematically identical. In Eq. (12b),     is substantially determined by several 

parameters, including (i) md , associated with measurement density; (ii) , related to the 

formality of selected  x  and the position of   (serving as a scanning window along 

inspection region); (iii) N, associated with both the measurement density and the selected 

 ; and (iv)  k  , signifying the initial level of measurement noise included in vibration 

displacement. 

 

As stated in section 4.2.3, at a given /  , a smaller N corresponds to a greater md . 

Assuming the summation in Eq. 9(a) is a constant regardless of the change in the 

measurement density, the value of  
2

exact

1

N

r r

k

w


   is inversely proportional to md . 
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However, because of the square root of  
2

exact

1

N

r r

k

w


   involved in Eq. (12b), md  actually 

plays a dominant role in determining the magnitude of    . Thus the increase of noise 

levels along with the decrease of N, as seen in Figures 7 and 12 can be attributed to the 

enlargement of md . 

 

Reaching this point, it is pertinent to note that the key parameters of the “weak 

formulation”, which essentially impacts on the detection accuracy and the noise immunity, 

have been expressed explicitly, and linked quantitatively to the noise influence using Eq. 

(12). Based on these conclusions, measurement parameters can be selected appropriately 

and adjusted optimally, so as to minimize the noise effect on the detection accuracy. 

Equation (12b) is particularly suitable to be used in numerical study as exact

rw  can be 

obtained directly, and in experimental conditions, the overall trend of the noise level can 

also be calculated by approximating exact

rw  through a curve-fitting algorithm based on 

measured data. It should also be emphasized that in order to improve the accuracy of 

numerical integration, advanced algorithms other than the above Riemann integral can also 

be used, though the philosophy of noise estimate remains the same. Moreover, the above 

means of noise effect estimate is not only applicable to the “weak formulation” of the PE 

approach, but also to other methods in conjunction with the use of high-order derivatives 

of vibration signals such as mode shape curvature [23-26], and other signal processing 

techniques relying on weighted integration for instance wavelet analysis [27-30]. 
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5. Concluding Remarks 

A retrofitted modality of the previous PE approach (called “strong formulation”) was 

developed by introducing the weighted integration, which was contrastively termed “weak 

formulation”. Sharing a same rationale (by gauging damage-induced perturbation to the 

local dynamic equilibrium of a structural component), all the merits of the “strong 

formulation” of the PE approach are inherited by the “weak formulation”, but the latter 

exhibits improved capacity in tolerating measurement noise and uncertainties compared 

with the former. A series of coherent variants of the “weak formulation” was established, 

offering a diversity of detection strategies through selecting measurement parameters and 

configurations, and endowing the PE approach with flexibility in experimental 

manipulability. As an application of the “weak formulation”, a Continuous Gauss 

Smoothing (CGS)-based damage detection scheme was developed, and validated 

numerically and experimentally by localizing multiple cracks in a beam-like structure, 

showing satisfactory detection accuracy and improved noise immunity. It has been shown 

that an optimal selection of the scanning window (i.e., /  ) is critical to influence the 

detection accuracy and the robustness of the approach when measurement noise not to be 

ignored. A compromise between the detection resolution and the noise immunity of the 

CGS-based damage index could be reached by optimizing /  . In addition, it was found 

that subject to a given /  , the noise influence increases with a decrease in N, the number 

of measurement points within the integration interval. These all together are conducive to 

enhance the noise immunity of the approach when implemented under noisy measurement 

conditions. In addition, 0DI CGS  can be made use of to explicitly quantify the relationship 

among the measurement density ( md  and N), width of integration ( ) and the level of 

noise influence (  r  ), facilitating selection of measurement parameters and 

experimental configurations so as to reduce noise effect. 
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