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Abstract 

A previously developed damage identification strategy, named Pseudo–Excitation (PE), 

was enhanced using a statistical processing approach. In terms of the local dynamic 

equilibrium of the structural component under inspection, the distribution of its vibration 

displacements, which are of necessity to construct the damage index in the PE, was re-

defined using sole dynamic strains based on the statistical method. On top of those 

advantages inheriting from the original PE compared with traditional vibration-based 

damage detection including the independence of baseline signals and pre-developed 

benchmark structures, the enhanced PE (EPE) possesses improved immunity to the 

interference of measurement noise. Moreover, the EPE can facilitate practical 

implementation of online structural health monitoring, benefiting from the use of sole 

strain information. Proof-of-concept numerical study was conducted to examine the 

feasibility and accuracy of the EPE, and the effectiveness of the proposed statistical 

enhancement in re-constructing the vibration displacements was evaluated under noise 

influence; experimental validation was followed up by characterizing multi-cracks in a 

beam-like structure, in which the dynamic strains were measured using Lead zirconium 

titanate (PZT) sensors. For comparison, the original PE, the Gapped Smoothing Method 

(GSM), and the EPE were respectively used to evaluate the cracks. It was observed from 

the damage identification results that both the GSM and EPE were able to achieve higher 

identification accuracy than the original PE, and the robustness of the EPE in damage 

identification was proven to be superior than that of the GSM. 

  

Keywords: dynamic equilibrium; damage detection; statistical enhancement; strain 

measurement; structural health monitoring 
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1. Introduction 

Relying on the examination of local dynamic equilibrium for different structural 

components, e.g., beam and plate component, the Pseudo–excitation (PE) method for 

damage identification was developed in recent studies [1-3]. Compared with conventional 

vibration-based damage detection methods established based on the changes in structural 

global vibration signature, e.g., eigen-frequency [4-7], mode shape [8,9], flexibility matrix 

[10,11] and damping property [12], the PE was able to identify structural damage in the 

absence of a variety of prerequisites that are of necessity for the conventional methods, 

such as baseline signal, benchmark structure, and the prior knowledge of structural 

boundary conditions [1], etc.  

 

The effectiveness of the PE approach, however, was limited by several drawbacks. First, 

involving the high-order derivatives of vibration signals, the damage index of the PE was 

highly sensitive to the influence of measurement noise, and the captured signals can be 

severely contaminated by the noise, obscuring damage-associated signal features. On the 

other hand, because the original PE was applied by using the signal of vibration 

displacements, its application was largely limited to off-line damage identification due to 

the restrictions in the size and type of available displacement sensors. In the previous 

studies, scanning laser vibrometer (SLV) was adopted to measure the vibration 

displacements under the steady vibration state of inspected structure. Although with 

remarkable precision, the measurement using SLV, typified by point-wise scanning [13,14], 

was not able to fulfill the real-time reflection of ambient vibrations that are associate with 

structural operational state. 
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Measurement of dynamic strains has been widely adopted in a variety of methods for 

structural health monitoring [15-19]. Benefiting from the flexible selection of a wide range 

of types of strain sensors, e.g., impedance strain gauges, PZT and Fiber Bragg Grating 

(FBG) sensors, the on-line monitoring of structural health can be implemented cost-

effectively. More importantly, for the PE, measured strain (curvature) signal involves 

largely reduced influence from measurement noise, compared with the curvature signals 

that constructed based on the second-order derivation of measured vibration displacements. 

However, because vibration displacements are of necessity to be included in the 

formulation of the damage index of the PE, an effective way must be developed to re-

construct the distribution of vibration displacements depending on the signal of dynamic 

strains/curvatures, if sole strain information is used. Up to the present, however, only a 

very limited number of studies have been reported.  

 

In this study, the original PE was enhanced to be applied based on the measurement of 

structural dynamic strains. The essence of the method resides on the re-construction of 

vibration displacements using measured strain/curvature signal, according to a statistical 

approach linked with the condition of structural local dynamic equilibrium. The EPE 

inherits the various advantages of the original PE, i.e., independence of baseline signal and 

benchmark structure, etc., and possesses improved noise immunity compared with the 

original PE. Moreover, relying on an explicit physical implication, the EPE is possible to 

show superior adaptability and robustness in damage identification compared with other 

benchmark-free methods, such as the GSM [20,21], developed based on conventional 

curvature mode shape [22,23] method.  
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Proof-of-concept numerical study was conducted to specify the implementation of the EPE, 

and the influence from measurement noise, with different levels, on the accuracy of 

damage identification was discussed. An experiment was carried out subsequently to 

characterize multi-cracks in a beam-like structure. PZT sensors were selected to measure 

the dynamic strains of the structure, and the vibration displacements were also measured 

using a SLV. The effectiveness of the proposed statistical approach for displacement re-

construction was examined both numerically and experimentally. And the identification 

results constructed using three different methods, i.e., the original PE, the GSM, and the 

EPE, were presented and compared. 

 

2. Enhanced PE (EPE) Method 

2.1 Theory 

Damage index of the original PE can be established based on equations of motion for 

different types of structural components, e.g., beam, plate or shell component. Using a 

homogeneous isotropic Euler-Bernoulli beam component as an example, the damage index, 

corresponding to steady vibration state, can be expressed as 

 
 

 
4

2

4

d
DI

d

w x
x EI S w x

x
   ,       

    
                                  (1a) 

where  w x  is the vibration displacement at location ;   is the angular vibration 

frequency of the beam; E ,  , I  and S  are the modulus of elasticity, density, cross-

sectional moment of inertia and area of the beam under pristine statue, respectively. In 

classic beam vibration theory,  DI x  represents the distribution of external excitation on 

the surface of the beam without damage existence, and  DI 0x   signifies the absence of 

external excitation. In a damaged beam, however, variations of  DI x  from zero can be 

x
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observed at the location of damage, particularly at the boundaries of damaged zone, where 

prominent singularities of  DI x  are formed due to the discontinuities of structural 

geometry and material, which can be well utilized to accurately indicate the location and 

size of damage. Because of the similarity between damage and actual excitation in causing 

variation in  DI x , the  DI x  in Eq. (1a), when used for damage identification, is defined 

as “Pseudo–excitation” (PE). 

 

It should be emphasized that besides the singularities of  DI x  for locating damage, as 

explained above, the  DI x  signal always remain zero at the intact regions of tested 

structure because of the satisfaction of dynamic equilibrium therein. This feature further 

increases the accuracy of damage identification, and enables the PE to be applied with 

strong adaptability, for example, in the absence of baseline signal, benchmark structure, 

and the prior knowledge of structural boundary conditions. 

 

The formulation of the damage index of the PE, as shown in Eq. (1a), can be easily derived 

for other structural components, for example, a two-dimensional damage index can be 

derived based on plate vibration theory, as 

     4 2DI , , ,x y D w x y h w x y     ,                                   (1b) 

where D , of being  3 2/12 1Eh  , signifies the bending stiffness of the plate component;

 ,w x y  is the vibration displacement; h and   are the thickness and the Poisson’s ratio, 

respectively.   

 

Damage indices constructed according to Eq. (1a) and (1b) correspond to structures with 

isotropic material properties, e.g., metal, and damage index with different form is needed 
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to be established for structures with more complex material properties, such as composite 

structure, for which the condition of local dynamic equilibrium should be established using 

delamination theory. Moreover, in engineering practice, the surfaces of tested structures 

are usually not smooth, for example, stiffened composite plate. Under such circumstance, 

the non-smooth parts (e.g., the stiffeners) can still be detected as added masses and 

reflected by the damage indices of PE, because the PE is able to reveal any local change of 

geometric and material properties. 

 

Characterized by fourth-order derivatives of vibration displacements, as included in Eq. 

(1a) and (1b), the PE suffers from the influence of measurement noise, because the noise 

influence contained in the vibration displacements, although with a small level, can be 

drastically amplified due to the high-order derivation [1]. Aimed at noise reduction, the 

order of the derivative of vibration signals can be reduced based on the direct measurement 

of curvature (strain) signal. The formulation of the original PE is modified, using beam 

component as an example, by dividing 
2S   on both the left- and right-side terms of Eq. 

(1a), leading to the damage index of the EPE as 

     EDI x x w x    ,     
    

                                     (2a) 

where 

 
 

2

DI
EDI

x
x

S 
  , 

2

EI

S


 
  and   

 2

2

d

d

x
x

x



  ,                         (2b) 

and  

 
 2

2

d

d

w x
x

x

  .                                                                    (2c) 

In the above equations,  x  is the curvature of vibration displacement, proportional to 

strain signal measured along x direction;  w x  represents the vibration displacement re-



8 

constructed using  x .  EDI x  is proportional to  DI x , as shown in Eq. (2b), thus is 

with equivalent accuracy of damage identification compared with  DI x  as shown in Eq. 

(1a). 

 

With given geometric and material parameters and measured curvature (strain) signals,   

and  x  in Eq. (2b) can be easily calculated. Thus the key step of constructing  EDI x  

in Eq. (2a) resides on the re-construction of  w x  using  x . By observing Eq. (2c), it 

is seen that  w x  can be derived through integrating  x  in spatial domain, as 

introduced as follows. 

 

2.2 Re-construction of Vibration Displacements Based on Curvature/Strain Signal 

In practical application, the values of  x  are measured discretely along tested structure. 

Corresponding to m measurement points located at  1,2,...ix i m ,  x  can be expressed 

discretely as  ix . Normally, there is no explicit analytical expression for the distribution 

of  ix . But the distribution of  ix  can be approximated using curve fitting, expressed 

as  

   fit i ix x  ,                                                                  (3) 

where the values of  fit ix  are extracted from the function of  fit x  which can be 

expressed as the summation of a series of integrable functions, e.g., polynomials. 

 

The integral of  x  is then approximated by that of  fit x . The indefinite integral of 

 fit x  is  
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   dfit x x F x A   ,                                               (4a) 

and 

   dfit x x G x Ax B     ,                                          (4b) 

where  F x  is the primitive function of  fit x ;  G x  is the primitive function of  F x ; 

A and B are constants with arbitrary values. According to Eq. (2c), it can be understood 

that  w x  can be approximated using the form of Eq. (4b), as 

   w x G x Ax B    ,                                                 (5) 

where A and B are fixed values, to be determined statistically according to structural local 

dynamic equilibrium. 

 

Corresponding to  1,2,...ix i m ,  EDI x  in Eq. (2a) is written as a vector comprising of 

 EDI ix . Without damage existence,  EDI 0ix   at every ix , because of the satisfaction 

of dynamic equilibrium at ix , as explained previously. And Eq. (2a) can be written as 

     0. 1,2,...i ix w x i m                                             (6a) 

By substituting Eq. (5) into Eq. (6a), a set of equations is formed, as 

   

   

   

1 1 1

2 2 2

...

.m m m

Ax B x G x

Ax B x G x

Ax B x G x













   


   


    

                                             (6b) 

Since the number of equations (measurement points), i.e., m, is normally much larger than 

that of the unknowns (A and B), A and B can be calculated by solving any two of the above 

equations. Because of damage existence, not all equations in Eq. (6b) truly hold, and false 

values of A and B will be obtained if equations located at damaged zone (particularly at the 

boundaries of damaged zone where  EDI ix  shows prominent singularities) are involved. 
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Under such circumstance, a number of pairs of A and B can be calculated by solving all the 

combinations of the above equations in Eq. (6b), by doing which A and B can be estimated 

statistically, by excluding the abnormal pairs of A and B, identified as outliers [24,25] that 

show large differences from other pairs. The total number of the combinations of equations 

(pairs of A and B) can be calculated to be !/ [2 ( 2)!]m m  . 

 

In the following analysis, a more straightforward way of estimating A and B is developed, 

by defining 

   1, 2,...i iY x Ax B i m   ,                                               (7) 

where  iY x  is calculated at different ix  according to the right-side terms of the equations 

in Eq. (6b), and then plotted along with the variation of ix . Because A and B are with fixed 

values, the curve of  iY x , if plotted using the true values of A and B, should be a straight 

line with A and B as its slope and intercept, respectively. However, nonlinear distribution 

of  iY x  will be observed due to the existence of abnormal pairs of A and B, associate 

with damage or measurement noise. Thus linear curve fitting was applied based on the data 

of  iY x , giving rise to the estimated values of A and B nearest to the true values. 

 

3. Numerical Validation 

The feasibility of the EPE was demonstrated using a finite element (FE) model of a 

damaged cantilever beam. The accuracies of displacement re-construction and damage 

identification were examined using the model.  
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3.1 FE Model 

Considering an Euler-Bernoulli cantilever beam with geometric and material properties 

listed in Table 1, and the beam was clamped at its left end as shown in Fig. 1. A FE model 

of the beam, with 550 beam elements evenly distributing across the beam length, was 

created using commercial FEM code ANSYS®. A harmonic point excitation of 1000 Hz 

was applied at 10 mmx   (referring to Fig.1 for the coordinate system). The beam bore a 

damaged zone spanning over the region of  890mm, 910mm , which was simulated with a 

reduced Young’s modulus by 50% of their original value of corresponding elements within 

the damaged zone. To avoid any singularity caused by the excitation, an inspection region 

of  200mm,1100mm  was pre-determined to exclude the vicinity of the excitation point. 

The curvature values, i.e.,  ix , were calculated using a central finite difference method 

[26] based on the signal of vibration displacements obtained based on FE analysis. In the 

following study,  ix  were extracted from 46 measurement points evenly distributing 

along the inspection region, as shown in Fig. 2(a). The uniform distance between adjacent 

measurement points, defined as  , is 20mm.  

 

3.2 Results of Damage Identification 

The two terms included in  EDI x ,  ix   and  iw x  as shown in Eq. (2a), were 

constructed, respectively, based on  ix .  ix  was calculated using Eq. (2b), 

according to the central difference scheme as 

       1 12

1
2 .i i i ix x x x



        
                                            (8) 

The distribution of  ix   is presented in Fig. 2(b). Characterized by the second-order 

derivative of vibration signal (two orders lower than the fourth-order included in Eq. (1a)), 
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 ix   shows singularity at the damage location, but prominent fluctuations of 

 ix   are also observed at the intact regions of the beam, jeopardizing the accuracy 

and precision of damage identification. 

 

To re-construct the distribution of  iw x , the signal of  ix  was first approximated by 

curve fitting. Because the frequency of vibration is relatively high, i.e., between the 8th and 

9th natural frequencies of the beam model, badly conditioned polynomials, involving 

significantly high degrees, appeared when adopted for curve fitting. Thus the curve fitting 

was implemented based on the summation of Fourier series, with the form of 

   0

1

cos sin
n

fit i i

i

x a a i x b i x  


   ,                                     (9a) 

where 0a , ia , ib , and   were mathematically determined using least-squares algorithms; n 

is the order of the Fourier series. Figure 2(a) shows the distribution of  fit x  by setting 

4n  . 

 

The primitive function,  G x , as presented in Eq. (4b), can be easily derived based on Eq. 

(9a), to be 

 
 

 20

2
1

1
cos sin

2

n

i i

i

a
G x x a i x b i x

i
 

 

   .                                     (9b) 

And the approximated distribution of  iw x , referring to Eq. (5), can be expressed as 

 
 

   20

2
1

1
cos sin .

2

n

i i i i i i i

i

a
w x x a i x b i x Y x

i
  

 

                            (9c) 

Remember that  iY x  includes two unknowns, i.e., A and B as shown in Eq. (7), to be 

determined according to structural local dynamic equilibrium. Keeping 4n   in Eq. (9a), 
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 iY x  was calculated at different ix  according to Eq. (6b) and plotted in Fig. 3(a). As 

expected, the overall trend of  iY x  is as a straight line, except three abnormal points 

distributing randomly around the damage location. Based on the data of  iY x , A and B 

were estimated using linear curve fitting, as presented in Fig. 3(a). And with A and B 

estimated,  iw x  can be re-constructed according to Eq. (9c). In Fig. 3(b), it can be seen 

that the re-constructed vibration displacements basically coincide with the true 

displacements calculated based on FE analysis.  

 

Using the re-constructed  iw x  in Fig. 3(b), the values of  EDI ix  were calculated 

according to Eq. (2a) and presented in Fig. 4. Both the location and size of the damaged 

zone were accurately identified. Specifically, the damage-related feature included in 

 ix  , as shown in Fig. 2(b), was largely highlighted by eliminating all the fluctuations 

in  ix   at the intact regions using the re-constructed  iw x  in Fig. 3(b). 

 

3.3 Influence from Measurement Noise 

To simulate experimental condition with noise influence involved, the data of  ix  were 

numerically polluted according to 

     n 1i i ix x     ,                                                (10) 

where  n

ix  is the noise-corrupted counterpart of  ix ; i  a Gaussian random real 

number related to the magnitude of  ix . In the succeeding analysis,   0
i

   , and  

 i
   was set to be 1%, 3% and 5%, respectively (   and   signify the mathematical 

manipulation of calculating mean and standard deviation, respectively). 
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In Fig. 5(a), it can be observed that the re-constructed  iw x  signals show insignificant 

sensitivities to the noise influence, although certain degree of magnitude variations were 

observed by comparing the re-constructed and true displacements. Corresponding to 

  5%i    in Eq. (10), the distribution of  iY x  is plotted along with the variation of ix , 

as presented in Fig. 5(b). It can be seen that although the data of  iY x  distribute more 

randomly compared with that in Fig. 3(a) due to noise influence, A and B can still be 

estimated accurately by the linear curve fitting (shown in Fig. 5(b)), evidenced by the 

distributions of re-constructed displacements in Fig. 5(a). Compared with the re-

constructed displacements, the signals of  ix   are more vulnerable to noise influence, 

showing random fluctuations at the intact regions of the beam model, as presented in Fig. 

6(a), (c) and (e), respectively. The reason is attributed to the involvement of second-order 

derivation of  ix  in  ix  , as shown in Eq. (2b), which amplified the noise level in 

 ix . However, the  EDI ix  signals constructed according to Eq. (2a), as presented in 

Fig. 6(b), (d) and (f), respectively, are still able to indicate the damage location with 

satisfactory accuracies, benefiting from the contributions from the  iw x  signals (in Fig. 

5(a)) in suppressing the random fluctuations in  ix  . 

 

It is noteworthy that along with the increase of the severity and number of damage, as well 

as the level of noise influence, more random and fluctuated distribution of  iY x  can be 

generated, compared with that shown in Fig. 5(b). Under such circumstance, A and B can 

still be estimated using liner curve fitting, with the exclusion of some outliers. The outliers 

were identified as the points of  iY x  at a distance greater than a threshold (e.g., 2 
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standard deviation) from a baseline model, which is built using linear curve fitting based 

on the entirety of the data of  iY x . 

 

4. Experimental Validation  

4.1 Setup 

Experimental validation was carried out to further scrutinize the accuracy and robustness 

of the EPE in damage identification, by locating multiple cracks in a cantilever beam-like 

structure, as sketched in Fig. 7(a). The irregular shape of the structure, i.e., non-constant 

width near the free end, was intentionally designed to demonstrate the effectiveness of EPE 

subject to complex structural boundary geometries. The structure was made of aluminum 

6061 with a density of 2.7 kg/m3 and a Young’s modulus of 68.9 GPa. The defined 

inspection region spanning over  108mm, 476mm , shown in Fig. 7(a), features a constant 

width of 30mm and a uniform thickness of 8 mm, within which two through-width cracks 

(1.2mm×30mm× 2mm), each accounting for 0.2% of the beam-span, were pre-treated at 

220mm and 380mm from the clamped end, respectively, as presented in Fig. 7(b). A 

harmonic excitation at 1000 Hz was applied on the beam with an electromechanical shaker 

(B&K®4809), near the free end of the structure. And 24 PZT sensors, with uniform 

diameters of 7 mm, were evenly attached on the intact surface of the structure within the 

inspection region, with identical adjacent distances to be 16 mm. As shown in Fig. 8(a), the 

voltage signal measured by the PZT sensors, proportional to dynamic strains (curvatures), 

was directly used to identify the cracks. In addition, vibration displacements were also 

measured using a SLV (Polytec○R  PSV-400B), as presented in Fig. 8(b). The distance 

between adjacent values of vibration displacements is 2 mm.  
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4.2 Identification Results Based on the Original PE and GSM 

The original PE was first applied by using the displacements signal as shown in Fig. 8(b), 

according to a five-point finite difference scheme [1]. It can be seen in Fig. 8(c) that 

without any de-noising treatment, the identification result was excessively contaminated by 

measurement noise, unable to reflect any damage-related information. 

 

The GSM was widely considered as a benchmark-free damage detection method 

depending on the approximation of curvature distribution using curve fitting techniques. So 

the measured signal in Fig. 8(a) was first used to construct the damage index of the GSM, 

expressed as 

     DI ,GSM i i fit ix x x                                                              (11) 

where  ix  is the measured value and  fit ix  is the approximated value. It should be 

noted that for the purpose of being compared with the damage index of EPE as shown in 

Eq. (2a), absolute value are used in Eq. (11), different from in other studies using square of 

the difference between measured and approximated values [20]. 

 

Because 1000 Hz is a relatively high frequency for the structure, i.e., between the 4th and 

5th natural frequencies, Fourier series as shown in Eq. (9a) was still selected to 

approximate the strain/curvature distribution. By setting 4n  , 6 and 8 in Eq. (9a), 

respectively, the approximated strain/curvature distribution was presented in Fig. 8(a), and 

the corresponding identification results constructed using Eq. (11) are shown in Fig. 9(a), 

(b) and (c), respectively. 
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4.3 Identification Results Based on the EPE 

The damage index of the EPE, i.e.,  EDI ix , was constructed based on the signals of 

measured and approximated dynamic strains as shown in Fig. 8(a). According to 4n  , 6 

and 8 in Eq. 9(c), respectively, the re-constructed signals of vibration displacements 

basically coincide with each other, thus were represented by a single curve in Fig. 10. It 

should be noted that the displacements were re-constructed directly using the voltage 

signal as shown in Fig. 8(a), thus were with different scales compared with the measured 

data as shown in Fig. 8(b). Damage identification results of the EPE were presented in Fig. 

11(a), (b) and (c), corresponding to 4n  , 6 and 8 in Eq. (9c), respectively. It can be seen 

that although the two cracks are with same dimensions, the magnitudes of the damage 

indices of the EPE are different at the two crack locations, this is because of the difference 

of internal forces (i.e., bending moments and shear forces) at the two crack locations [1].  

 

4.4 Discussion 

Corresponding to a certain order of curve fitting, e.g., 6n   in Eq. (9c), the GSM is able to 

identify the crack locations with satisfactory accuracy, as shown in Fig. 9(b). However, the 

identification accuracy of the GSM shows high sensitivity to the variation of the order of 

curve fitting, by comparing Fig. 9(a), (b) and (c), probably resulting in poor identification 

accuracy due to improper order selection, as shown in Fig. 9(c). Compared with the GSM, 

superior stability and robustness of damage identification can be achieved by using EPE, as 

presented from Fig. 11(a) to (c), where the identification results show large similarity with 

each other, at the same time with high accuracy, although along with the variation of the 

order of curve fitting. The above difference between the GSM and EPE can be explained 

that: For the GSM, as shown in Eq. (11), the accuracy of curve fitting should be 

sufficiently high to approximate the global trend of the curvature/strain distribution, but 
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should not be “too high” to precisely depict the damage-induced singularity contained in 

the curvature distribution, as shown in Fig. 8(a) and 9(c) corresponding to 8n  . Thus the 

order of curve fitting should be selected sophisticatedly for the GSM, to be neither too 

small nor too large. For the EPE, on the other hand, higher accuracy of curve fitting always 

leads to higher accuracy of displacements re-construction, due to the strict analytical 

relation between  x  and  w x  as shown in Eq. (2c). And the local singularity 

contained in curvature distribution will be minimized in the re-constructed displacements, 

because of the integral operation of the curvature distribution, evidenced by comparing Fig. 

8(a) and 10. It should be mentioned that for EPE, improved precision of damage 

identification can be achieved by increasing the density of measurement, which will 

naturally enhance the detection resolution and indicate the size of damage more accurately. 

 

Another concern may be raised that compared with the GSM, the application of EPE 

requires additional information relating to structural geometry, material and vibration 

frequency, represented by different parameters as shown in Eq. (2b). Such a drawback can 

be overcome by setting   in Eq. (6b) as an additional unknown besides A and B. And A, B 

and   can be estimated by solving the combinations of the equations (as detailed in 

Section 2.2), as long as the number of equations (measurement points), i.e., m in Eq. (6b), 

is sufficiently large compared with the number of unknowns. By doing so, the reliance on 

the prior knowledge of the various parameters in Eq. (2b) can be prevented. Moreover, one 

of these parameters, e.g., E , can even be calculated according to Eq. (2b) using an 

estimated  , when other parameters are known.  
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5. Concluding Remarks 

The effectiveness of EPE in damage identification, relying on the measurement of dynamic 

strains, was demonstrated in the present study. A statistical approach relying on curve 

fitting technique and structural local dynamic equilibrium was developed to re-construct 

the distribution of vibration displacements, by using the signal of measured 

curvature/strain. The damage identification results of EPE showed largely enhanced noise 

immunity compared with that of the original PE, and exhibited superior stability and 

robustness in damage identification compared with the GSM. Moreover, depending on a 

sufficiently large number of measurement points, the EPE was anticipated to be validly 

applied even without any prior knowledge of the basic parameters relating to structural 

geometry, martial and vibration frequency.  

 

Depending on strain measurement, the EPE is able to perform on-line monitoring of 

structural health by using a wide range of types of strain sensors, showing potential of 

application in engineering practices, such as the monitoring of interfacial debonding for 

multi-layered civil structures [3]. In addition, the developed method also shows potential of 

identifying the location and magnitude of external force applied on tested structure. And 

under the case when damage and force coexist, they can be differentiated according to 

some unique signal features, for example, the detection results corresponding to damage 

exhibit drastic local oscillations, while those corresponding to external force do not show 

any oscillation. Relevant studies will be introduced in the future work. 

 

 

 

 



20 

Acknowledgements 

This project is supported by National Natural Science Foundation of China (Grant No. 

51375414 and 11272272). This project is also supported by the Hong Kong Research 

Grants Council via General Research Fund (GRF) (No. 15214414 and No. 523313). 

  



21 

References 

[1]. H.Xu, L.Cheng, Z.Su and J.L.Guyader, Identification of damage in structural 

components based on locally perturbed dynamic equilibrium. Journal of Sound and 

Vibration 330 (24) (2011) 5963-5981. 

[2]. H.Xu, L.Cheng, Z.Su and J.L.Guyader, Damage Visualization based on Local 

Dynamic Perturbation: Theory and Application to Characterization of Multi-damage 

in a Plane Structure. Journal of Sound and Vibration 332 (14) (2013) 3438-3462.  

[3]. H.Xu, L.Cheng, Z.Su, J.L.Guyader and P.Hamelin, Reconstructing Interfacial Force 

Distribution for Identification of Multi-debonding in Steel-reinforced Concrete 

Structures Using Noncontact Laser Vibrometry. Structural Health Monitoring: An 

International Journal 12 (5-6) (2013) 507-521. 

[4]. O.S.Salawu, Detection of Structural Damage Through Changes in Frequency: A 

Review. Engineering Structures 19 (9) (1997) 718-723. 

[5]. Y.S.Lee and M.J.Chung, A Study on Crack Detection Using Eigenfrequency Test 

Data. Computers and Structures 77 (2000) 327-342. 

[6]. X.Wang, N.Hu, H.Fukunaga and Z.H.Yao, Structural damage identification using 

static test data and changes in frequencies. Engineering Structures 23 (2001) 610-621. 

[7]. N. Hu, X. Wang, H. Fukunaga, Z.H.Yao, H.X.Zhang and Z.S.Wu, Damage 

assessment of structures using modal test data. International Journal of Solids and 

Structures 38 (2001) 3111-3126. 

[8]. A.Z.Khan, A.B.Stanbridge and D.J.Ewins, Detecting Damage in Vibrating Structures 

with a Scanning LDV. Optics and Lasers in Engineering 32 (2000) 583-592. 

[9]. J.T.Kim, Y.S.Ryu, H.M.Cho and N.Stubbs, Damage Identification in Beam-type 

Structures: Frequency-based Method vs. Mode-shape-based Method. Engineering 

Structures 25 (2003) 57-67. 



22 

[10]. A.K.Pandey and M. Biswas, Damage Detection in Structures Using Changes in 

Flexibility. Journal of Sound and Vibration 169(1) (1994) 3-17. 

[11]. Y.Aoki and O.Byon, Damage Detection of CFRP Pipes and Shells by Using 

Localized Flexibility Method. Advanced Composite Materials 10 (2001) 189-198. 

[12]. G.Kawiecki, Modal damping measurement for damage detection. Smart Materials 

and Structures 10 (2001) 466-471. 

[13]. M.S.Cao, W.Ostachowicz, R.B.Bai and M.Radzienski, Fractal mechanism for 

characterizing singularity of mode shape for damage detection. Applied Physics 

Letters 103 (2013) 221906. 

[14]. M.S.Cao, W.Ostachowicz, M.Radzienski and W.Xu, Multiscale shear-strain gradient 

for detecting delamination in composite laminates. Applied Physics Letters 103 

(2013) 101910. 

[15]. J.-B.Ihn and F.-K.Chang, Pitch-catch active sensing methods in structural health 

monitoring for aircraft structures. Structural Health Monitoring: An International 

Journal 7 (2008) 5-19. 

[16]. Z.Su, L.Ye and Y.Lu, Guided Lamb waves for identification of damage in composite 

structures: a review. Journal of Sound and Vibration 295 (2006) 753-780. 

[17]. W.Ostachowicz, P.Kudela, P.Malinowski and T.Wandowski, Damage localisation in 

plate-like structures based on PZT sensors. Mechanical Systems and Signal 

Processing 23 (2009) 1805-1829. 

[18]. K.Worden, C.R.Farrar, G.Manson and G.Park, The fundamental axioms of structural 

health monitoring. Proceedings of the Royal Society A 463 (2007) 1639-1664. 

[19]. X.Zhao, H.Gao, G.Zhang, B.Ayhan, F.Yan, C.Kwan and J.L.Rose, Active health 

monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: 

http://iopscience.iop.org/0964-1726/
http://iopscience.iop.org/0964-1726/


23 

I. defect detection, localization and growth monitoring. Smart Materials and 

Structures 16 (2007) 1208-1217. 

[20]. C.P.Ratcliffe and W.J.Bagaria, Vibration technique for locating delamination in a 

composite beam. AIAA Journal 36 (1998) 1074-1077. 

[21]. P.Qiao, K.Lu, W.Lestari and J.L.Wang, Curvature mode shape-based damage 

detection in composite laminated plates. Composite Structures 80(2) (2007) 409-428. 

[22]. A.K. Pandey, M. Biswas, M.M. Samman, Damage detection from changes in 

curvature mode shapes. Journal of Sound and Vibration 145(2) (1991) 321-332. 

[23]. C.S.Hamey, W.Lestari, P.Qiao and G.Song, Experimental damage identification of 

carbon/epoxy composite beams using curvature mode shapes. Structural Health 

Monitoring: An International Journal 3(4) (2004) 333-353. 

[24]. H.J.Lim, H.Sohn, M.P.DeSimio and K.Brown, Reference-free fatigue crack detection 

using nonlinear ultrasonic modulation under various temperature and loading 

conditions. Mechanical System and Signal Processing 45(2) (2014) 468-478. 

[25]. E.O.Bayman, K.M.Chaloner, B.J.Hindman, M.M.Todd and the IHAST Investigators, 

Bayesian methods to determine performance differences and quantify variability 

among centers in multi-center trials: the IHAST trial. BMC Medical Research 

Methodology 13(5) (2013). 

[26]. M.M.A.Wahab and G.D.Roeck, Damage detection in bridges using modal curvatures: 

application to a real damage scenario. Journal of Sound and Vibration 226(2) (1999) 

217-235. 

 



24 

Table and Figure Captions 

 

Table 1 Material properties and geometric parameters of the beam model for 

numerical validation 

  

Figure 1 FE model of a cantilever beam bearing a damaged zone 

Figure 2 (a) Distributions of curvature values calculated from FE analysis (i.e.,

 ix ) and approximated using curve fitting (i.e.,  fit ix ) according to 

4n   in Eq. (9a), and (b) constructed signal of  ix   according to Eq. 

(8) based on  ix  as shown in (a) 

Figure 3 (a) Distribution of  iY x  calculated according to Eq. (6b) and the linear 

curve fitting based on the data of  iY x , and (b) the re-constructed 

vibration displacements, compared with the true vibration displacements 

calculated based on FE analysis, in the absence of noise influence 

Figure 4 Distribution of  EDI ix  constructed according to Eq. (2a), in the absence 

of noise influence. 

Figure 5 (a) Distributions of the true vibration displacements (calculated based on 

FE analysis without noise influence) and the re-constructed vibration 

displacements corresponding to 4n   in Eq. (9c), under noise influence 

with levels of being   1%
i

   , 3% and 5% in Eq. (10), respectively, and 

(b) distribution of  iY x  calculated according to Eq. (6b) subject to noise 

level of   5%
i

    and the linear curve fitting based on the noise-

influenced data of  iY x  

Figure 6 Distributions of the absolute values of  ix   and  EDI ix , subject to 

noise influence with levels of (a) and (b)   1%
i

   , (c) and (d) 

  3%
i

   , and (e) and (f)   5%
i

   . 
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Figure 7 (a) Schematic of the damaged beam-like structure with multi cracks, and 

(b) image of the inspection region and the cracks 

Figure 8 (a) Distributions of the voltage (strain) signal measured by PZT sensors 

and its approximations using curve fitting according to 4n  , 6 and 8 in 

Eq. (9a), respectively; (b) distribution of the vibration displacements 

measured by SLV, and (c) damage identification result of the original PE 

constructed using Eq. (1a) based on the measured vibration displacements 

shown in (b) 

Figure 9 Damage identification results of the GSM constructed using Eq. (11), 

corresponding to (a) 4n  , (b) 6n   and (c) 8n   in Eq. (9a), 

respectively 

Figure 10 Distribution of the re-constructed vibration displacements according to 

4n  , 6 and 8 in Eq. (9c) 

Figure 11 Damage identification results of the EPE constructed using Eq. (2a), 

corresponding to (a) 4n  , (b) 6n   and (c) 8n   in Eq. (9c), 

respectively 
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Table 1. Material and geometric properties of the simulated cantilever beam for numerical 

validation 

 

 

 

 

 

 

 

 

 

 

 

  

Properties Numerical value 

Density 3kg/m  
 2700 

Young's Modulus E  GPa  70 

Beam length L mm  1100 

Width b mm  10 

Thickness h mm  10 
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Figure 1 

 

 

 

 

 

 

  890, 910 mmx  
Damaged zone x =10 mm 

L=1100 mm 

 200,1100 mmx  
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 10 
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Figure 11 
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