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of performance uncertainty can be considered in a holistic manner.18
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INTRODUCTION21

Reliability of geotechnical systems depends heavily on the uncertainty of soil and rock22

properties. Recently, reliability approaches such as first-order second-moment (FOSM)23

method (Duncan 2000) and the Hasofer-Lind approach (first-order reliability method) (Ha-24

sofer and Lind 1974) have gained popularity in the field of geotechnical engineering. However,25

many of these methods do not explicitly consider the spatial variations in material properties,26

which is an important source of uncertainty in geotechnical engineering. For example, the27

significance of such has been discussed by Christian and Baecher (2011), who also suggested28

that traditional assumptions of perfect (or no) spatial correlations in geotechnical proper-29

ties do not always yield conservative estimates. The characterization of spatial variability30

in geotechnical properties has been discussed in Phoon and Kulhawy (1999), Baecher and31

Christian (2003), Liu et al. (2017b), Liu and Leung (2017), etc. A spatially variable soil32

profile can be modeled by the random field theory (Vanmarcke 1984), which considers the33

geotechnical property as a set of spatially correlated random variables, and its applications34

include shallow foundations (Fenton and Griffiths 2003; Al-Bittar and Soubra 2014), slope35

stability (Cho 2010; Jiang et al. 2015), soil liquefaction (Popescu et al. 2005), etc. Mean-36

while, the geotechnical profession has long recognized the importance of obtaining samples37

or conducting in situ tests at ‘representative’ locations, and the spatial uncertainty can be38

reduced considerably when such information is incorporated into the probabilistic analyses39

(Lloret-Cabot et al. 2012; Li et al. 2016a). Accordingly, conditional random field modelling40

is a numerical approach that can assess the influence of known sample values at designated41

locations. In particular, some recent studies quantified the reductions in performance un-42

certainty considering the available sample values and their locations. These include the43

probabilistic assessments of footing settlements by Lo and Leung (2017a), and those for44

slope stability by Li et al. (2016b) and Liu et al. (2017a).45

Despite being a powerful approach to utilize existing field data, conditional random46

field modelling suffers from some key limitations from the risk management perspective.47
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Essentially, the approach requires sample values and locations to be specified prior to the48

analyses, and each probabilistic assessment involves hundreds to thousands of realizations,49

based on one set of such samples. This exercise becomes impractical if the objectives are to50

explore multiple options for future sampling locations, and to evaluate how the additional,51

currently unknown, sample values may affect the performance uncertainty.52

A complete assessment of the performance uncertainty should be based on all possible53

random field realizations. Also, it is desirable to develop an efficient strategy to obtain the54

optimal sampling pattern tailored to the specific application, allowing assessments of the55

influence of future sample values to the overall system reliability. To this end, this paper56

extends the formulation of Sobol’ sensitivity index for geotechnical reliability assessments57

involving spatial variability in soil properties. It facilitates a feedback mechanism so that58

the planning of geotechnical investigation and evaluation of performance uncertainty can59

be considered in a holistic manner. While the approach is potentially applicable to various60

geotechnical problems, this study focuses on slope stability and presents design charts to61

illustrate the relationships between sample values and associated uncertainty in factor of62

safety.63

RELIABILITY ASSESSMENT THROUGH SENSITIVITY ANALYSIS BY SOBOL’64

INDEX65

Sobol’ sensitivity index is a probabilistic tool developed by Sobol’ (2001) to assess the66

influence of each input parameter in a physical model. In general, each model parameter67

can be regarded as a random variable. A Sobol’ index can then be associated with each68

parameter, and used to quantify its contribution to the variance of the model response. This69

concept has been applied to a number of geotechnical applications, including investigations70

on the parameters affecting the consolidation process (Houmadi et al. 2012) and ground71

settlements induced by tunneling (Miro et al. 2014). Others have combined the Sobol’72

index approach with the response surface (or surrogate modeling) method to enhance the73

computational efficiency, and studied the parameters associated with footing displacements74
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and stability of pressurized tunnels (Mollon et al. 2011).75

These previous studies mainly focused on the influence of parameters in ‘deterministic’76

models, where spatial variability of the concerned parameters was not considered. In fact, the77

Sobol’ index was originally developed for independent input variables, and cannot be directly78

applied to spatially correlated fields of soil properties. Therefore, this study extends the79

original theory for applications to correlated random variables, which represent the correlated80

properties at various locations. The Sobol’ index can be evaluated for each location, resulting81

in a ‘Sobol’ index map’ that reveals the relative importance of soil properties at all location to82

the system response. The maximum index value corresponds to the most influential location,83

which is equivalent to the optimal sampling location.84

The proposed Sobol’ index approach enables site-specific geotechnical reliability assess-85

ments to be performed with considerations of spatial variability and information from soil86

samples. Details of the assessment strategy are shown in a flowchart in Fig. S1, while the key87

elements are briefly described herein. Based on existing soil samples or experience at the site,88

the mean, variance and spatial correlation features of the parameters can be estimated. A89

set of unconditional (or conditional if prior samples are available) random field analyses can90

be performed for system response g. The Sobol’ indices throughout the subsurface domain91

are then evaluated to (1) identify optimal locations for additional samples; and (2) derive the92

relationships between system reliability (mean and variance of g) and potential values of the93

future samples (referred to as ‘sensitivity functions’ herein). These can provide guidance on94

the adequacy of the design, and whether more samples should be planned to further reduce95

the uncertainty or risk levels. In this process, only one set of random field simulations is96

required unless major revisions of the original design are involved. In the following sections,97

the formulation of Sobol’ index approach for spatially variable soils are presented, together98

with its application to single and multiple sample points in slope stability assessments.99
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FORMULATION FOR GEOTECHNICAL RELIABILITY ASSESSMENT100

Single sample point101

In general, the properties of a spatially variable soil can be represented by a trend com-102

ponent and the residuals, or deviations from the trend:103

z = µ+ ε (1)104

where z = {z1, z2, . . . , zd}T is a vector of soil properties at d different locations. ε represents105

the random deviation of the property at each location, and has a constant variance σ2
z . µ106

represents the trend, or expected value, at each location. In this study, µ is assumed to be107

a constant vector, i.e., the random field is statistically stationary. z represents lognormal108

random fields of soil properties in this study, i.e. zi = ln(z′i), where z′i is the original value of109

the concerned property. The zi components are correlated with each other, and the spatial110

correlation structure is described herein by a squared exponential function:111

Rij = exp

[
−
(
xi − xj
θln,x

)2

−
(
yi − yj
θln,y

)2
]

(2)112

where Rij is the spatial correlation (autocorrelation) between zi and zj, which also represents113

the ij-th element of the correlation matrix R. The spatial coordinates of zi and zj are (xi, yi)114

and (xj, yj), respectively, while θln,x and θln,y are the autocorrelation distances in x and y115

directions. The system response of a geotechnical model can be represented as g(z), which116

is also a random variable since the model input z is random. Alternatively, to facilitate the117

formulation of the proposed approach, g can be treated as a function of the standardized118

residual instead, i.e. g(e), where e = ε/σz.119

The Sobol’ index can be adopted to assess the influence of property at each soil location,120

ei, to the variance of g. By the law of total variance, the first order Sobol’ index can be121
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defined as:122

S(ei) =
Varei

[
Ee−i

(g|ei)
]

Var(g)
= 1−

Eei

[
Vare−i

(g|ei)
]

Var(g)
(3)123

In the context of spatially variable subsurface domain, Eei [Vare−i
(g|ei)] is the expected124

value of system variance if sample value (ei) is known for location i. Such variance arises from125

the fact that properties are unknown at other locations (−i). Varei [Ee−i
(g|ei)] represents the126

variance in expected system response, due to all possible values of ei. These two terms are127

denoted as E[Var(g|ei)] and Var[E(g|ei)] hereafter. In other words, the Sobol’ index can128

be interpreted as the variance reduction in model response, when a soil sample is obtained129

at the i-th location. To facilitate the calculation of the Sobol’ index, the response surface130

method may be used to reduce the number of simulations of the geotechnical model. In131

this study, the second order Polynomial Chaos Expansion (PCE) is adopted (Ghanem and132

Spanos 1991), which is given by:133

g = a0 +
M∑
j=1

ajξj +
M∑
j1=1

M∑
j2=j1

aj1j2(ξj1ξj2 − δj1j2) (4)134

where ξ1, . . . , ξM are independent standard normal variables, which may be grouped as a vec-135

tor ξ with M principal components, representing a realization of soil profile. δj1j2 is the Kro-136

necker delta. The unknown PCE coefficients (a0, aj, aj1j2) are determined by a non-intrusive137

approach, which involves generating and simulating N realizations of the geotechnical model138

for g, followed by a linear regression analysis. The prediction accuracy of the coefficients139

is measured by an indicator known as Q2. Meanwhile, an adaptive algorithm proposed by140

Blatman and Sudret (2010) is adopted, whereby only the PCE coefficients that can increase141

the Q2 are kept in the expansion (Eq. (4)). Once the PCE coefficients are determined, the142

expectation and variance of g can be evaluated as below:143

E(g) = a0 (5a)144
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145

Var(g) =
M∑
j=1

a2j +
M∑
j1=1

M∑
j2=j1

a2j1j2(1 + δj1j2) (5b)146

To utilize the PCE for evaluation of S(ei), it should be noted that although the vectors147

ξ and e are not equivalent, they are related by the following transformation:148

e = HΛ
1
2ξ = Cξ (6)149

where H and Λ are obtained from spectral decomposition of the correlation matrix (R =150

HΛHT), with H = [h1,h2, . . . ,hd] being a matrix containing d orthonormal eigenvectors,151

and Λ is a diagonal matrix with d descending eigenvalues (λ1, λ2, . . . , λd). The residual at152

the i-th location is therefore ei = Ciξ. Ci is the i-th row of C, and is abbreviated as c in153

the subsequent formulation. Taking a conditional expectation on both sides of Eq. (4), the154

mean response of g conditioned on sample value ei can be represented by:155

E(g|ei) = a0 + aj

M∑
j=1

E(ξj|ei) + aj1j2

M∑
j1=1

M∑
j2=j1

[E(ξj1ξj2 |ei)− δj1j2 ] (7)156

Since ξ is multivariate normal and e is standard normal, the conditional distribution of ξ157

given ei is multivariate normal with mean of cTei and covariance of I−cTc (I is the identity158

matrix). Therefore,159

E(ξj|ei) = cjei (8a)160

161

E(ξj1ξj2|ei) = δj1j2 − cj1cj2 + cj1cj2e
2
i (8b)162
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Substituting (8) into (7), E(g|ei) can be rewritten as:163

E(g|ei) = r0 + r1ei + r2e
2
i164

where r1 =
M∑
j=1

ajcj165

r2 =
M∑
j1=1

M∑
j2=j1

aj1j2cj1cj2166

r0 = a0 − r2 (9)167

Using Eq. (9), the mean response can be evaluated efficiently for any sample value, with-168

out resorting to additional conditional random field simulations. To evaluate Var[E(g|ei)],169

it should be noted that ei is a standard normal variable, and Var(ei) = 1; Var(e2i ) = 2;170

Cov(ei, e
2
i ) = 0. Therefore,171

Var [E(g|ei)] = r21 + 2r22 (10)172

With Eqs. (9) and (10), the Sobol’ index S(ei) can be computed by Eq. (3). A Sobol’173

index map can be generated once S(ei) are calculated for all locations, and can be used to174

identify the most influential location, where the S(ei) value is maximum.175

While Eq. (9) represents the conditional mean of g for normal random variable e, the176

soil property in this study is modeled as lognomal random variable. In other words, e in177

Eq. (9) represents the residual in log-transformed space: e = (ln z′ − µln z′)/σln z′ , but the178

residual in original space is e′ = (z′ − µz′)/σz′ . Conversion between the original residual e′179

and transformed residual e is given by:180

e =
ln(e′CV(z′) + 1)√

ln(1 + CV(z′)2)
+

1

2

√
ln(1 + CV(z′)2) (11)181
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where CV(z′) = σz′/µz′ . Substituting (11) into (9), the conditional mean in terms of e′ is:182

E(g|e′i) = s0 + s1 ln [e′iCV(z′) + 1] + s2(ln [e′iCV(z′) + 1])2183

where s0 = r0 +
r1
2

√
ln(1 + CV(z′)2) +

r2
4

ln(1 + CV(z′)2)184

s1 =
r1√

ln(1 + CV(z′)2)
+ r2185

s2 =
r2

ln(1 + CV(z′)2)
(12)186

From the risk assessment perspective, a key concern is the remaining uncertainty in sys-187

tem response after a sample value has been obtained. This is represented by the conditional188

variance, E[Var(g|ei)], or the conditional standard deviation (SD). There are two methods to189

estimate the conditional SD. The first method is to estimate directly from the Sobol’ index:190

E [SD(g|ei)] ≈
√

E [Var(g|ei)] =
√

[1− S(ei)] Var(g) =
√

1− S(ei)SD(g) (13)191

This method has been employed by Lo and Leung (2017b) to investigate the uncertainty192

reduction in footing displacement, and is accurate if the conditional SD is insensitive to the193

sample value. If the sample value heavily influences the conditional SD, an explicit function194

for conditional SD is required. Therefore, a conditional variance function Var(g|ei) = V (θ, ei)195

is proposed, with θ being a vector of parameters describing the variance function. During196

the construction of PCE, N combinations of model response and sample values (gi, ei) are197

obtained. θ can then be obtained by maximizing the following log-likelihood function (Da-198

vidian and Carroll 1987):199

L(θ) = −
N∑
i=1

ln [V (θ, ei)]−
N∑
i=1

[gi − E(g|ei)]2

V (θ, ei)
(14)200

where E(g|ei) is evaluated from Eq. (9). The maximization is performed in this study by201

an evolutionary searching algorithm known as Differential Evolution (Storn and Price 1997),202
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which is not prone to converging at local maxima. Once Var(g|ei) is obtained, it can be203

converted to Var(g|e′i) through Eq. (11).204

Multiple sample points205

Geotechnical investigation usually involves multiple samples being retrieved from bore-206

hole(s). It is therefore beneficial to extend the sensitivity analysis framework, for determi-207

nation of multiple sample locations and the corresponding reduction in system uncertainty.208

This can be achieved by evaluating the n-th order Sobol’ sensitivity index S(e). The defi-209

nition of the n-th order Sobol’ index is similar to the 1st order index in Eq. (3), with the210

standardized residual ei being replaced by a residual vector, e = {e1, e2, . . . , en}T, represent-211

ing samples from n locations. S(e) can be interpreted as the averaged variance reduction of212

the system response, when soil samples are available from n locations.213

From a second order PCE, S(e) can be formulated by first considering the joint distri-214

bution of vectors ξ and e:215 

ξ1

ξ2
...

ξM

e1

e2
...

en


∼ N





0

0
...

0

0

0
...

0


,



1 0 · · · 0 C11 C21 · · · Cn1

0 1 · · · 0 C12 C22 · · · Cn2
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 C1M C2M · · · CnM

C11 C12 · · · C1M 1 R12 · · · R1n

C21 C22 · · · C2M R21 1 · · · R2n
...

...
. . .

...
...

...
. . .

...

Cn1 Cn2 · · · CnM Rn1 Rn2 · · · 1




= N

0

0

 ,

 I CT
s

Cs Rs



(15)216

with covariance between ξ and e being Cov(ei, ξj) = Cov(Ci,ξ, ξj) = Cij. Cs and Rs in217

Eq. (15) is a subset of the full C (Eq. (6)) and R matrices, and they are not identical. By218

multivariate normal theory, the conditional distribution of ξ given e is also multivariate nor-219

mal with mean of CT
s R−1s e and covariance of I−CT

s R−1s Cs. Hereafter, they are expressed as220

Ke and I−Q, respectively. Based on this conditional distribution, the following conditional221

expectations can be obtained:222

E(ξj|e) = Kje (16a)223
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224

E(ξj1ξj2|e) = δj1j2 −Qj1j2 + (Kj1e)(Kj2e) (16b)225

Substituting Eq. (16) into the conditional mean of a 2nd order PCE, the conditional226

mean of g can be written as:227

E(g|e) = r0 +
n∑
i=1

riei +
n∑

i1=1

n∑
i2=i1

ri1i2ei1ei2228

where r0 = a0 −
M∑
j1=1

M∑
j2=j1

aj1j2Qj1j2229

ri =

[
M∑
j=1

ajKj

]
i

230

ri1i2 =

 Pii if i1 = i2 = i

Pi1i2 + Pi2i1 if i1 6= i2

231

P =

[
M∑
j1=1

M∑
j2=j1

aj1j2K
T
j1

Kj2

]
(17)232

It is also possible to represent the conditional mean in terms of residuals in original space (e′),233

and derive the s coefficients similar to Eq. (12). However, the corresponding formulation is234

complex, and it may be easier to directly apply Eq. (17) with log-transformed e. Meanwhile,235

Var[E(g|e)] is given by:236

Var [E(g|e)] =
n∑
i=1

n∑
k=1

rirkCov(ei, ek) +
n∑

i1=1

n∑
i2=i1

n∑
k1=1

n∑
k2=k1

ri1i2rk1k2Cov(ei1ei2 , ek1ek2) (18)237

To evaluate the components in Eq. (18), it should be noted that the components in e are238

spatially correlated. The following covariance can be obtained by the theory of characteristic239

functions (with details in the Appendix):240

Cov(ei, ek) = Rik (19a)241
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242

Cov(ei, ek1ek2) = 0 (19b)243

244

Cov(ei1ei2 , ek1ek2) = Ri1k1Ri2k2 +Ri1k2Ri2k1 (19c)245

and Var[E(g|e)] can then be used to calculate the n-order Sobol’ index.246

To obtain the maximum index S(e), the spatial configuration of the sample vector e has247

to be optimized. The n locations for vector e may be searched simultaneously using various248

optimization algorithms. Alternatively, the multiple sample locations can be determined249

sequentially. For example, starting with i = 1, the Sobol’ index is evaluated across the250

domain to identify the location that corresponds to the maximum value of S(e1). Once251

this location is decided for the first sample, the Sobol’ index is evaluated again with i = 2,252

based on the selected location of sample 1, to identify the second sample location leading to253

the maximum value of S(e1, e2). This stepwise procedure is then repeated until the target254

number of samples is reached. It is also possible to impose various constraints when searching255

for the optimal sample locations. For example, when multiple samples are retrieved from a256

single borehole, they need to share the same horizontal coordinates.257

The proposed Sobol’ index approach is essentially a post-processing technique for ran-258

dom field analyses, performed in this study through the PCE. The benefits of the proposed259

approach are multifold. Contrary to previous conditional random field modeling techniques,260

the Sobol’ index is a global sensitivity index, which means it encompasses all possible values261

of an uncertain input parameter. In addition, by constructing a Sobol’ index map, all po-262

tential sample locations are assessed simultaneously for the formulation of optimal sampling263

strategy. There are no needs for pre-determined sample values or sampling patterns, and it264

is not necessary to perform separate conditional random field simulations to investigate mul-265

tiple scenarios, thereby reducing the computational demands substantially. In the following266

sections, the Sobol’ index approach will be validated through comparisons with conditional267

random field simulations, and then applied to reliability assessments involving slope stability.268
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APPLICATIONS IN RELIABILITY ASSESSMENTS OF SLOPES269

Comparisons with conditional random field simulations270

The proposed Sobol’ index approach can be validated by comparisons with conditional271

random field simulations, through which the advantages of the approach are also illustrated.272

Essentially, it allows efficient evaluation of the mean and standard deviation of factor of273

safety (FS) from any sample value e′, which can then be used to obtain the reliability index274

or failure probability of the slope. This section considers a 35° slope with a height of 5 m,275

simulated in FLAC with a model boundary 15 m below the top of the slope. The soil is276

idealized as Tresca material, with mean undrained shear strength (cu) of 36.3 kPa, which277

would correspond to a ‘deterministic’ FS of 2.0, if the soil profile was assumed to be uniform.278

Instead, the cu profile is simulated as lognormally distributed in the model, with coefficient279

of variation of 0.4, horizontal autocorrelation distances of θln,x = 14.3 m and θln,y = 2.5 m.280

Throughout this study, the element size in the FLAC model is about 0.5 m (vertical) ×281

1.0 m (horizontal), which are always smaller than half of the autocorrelation distances in the282

corresponding directions. The influence of element size on FS values of slopes was studied by283

Dawson et al. (1999), who showed that for a 10-m slope with slope angles between 15°-45°,284

the difference in FS values obtained by a fine mesh (60 × 60) and a coarse mesh (20 × 20)285

is smaller than 4%. As part of the verification process in this study, a separate analysis286

was conducted with 4 times the number of elements (each 0.25 m × 0.5 m in size), and the287

subsequent changes to the Sobol’ indices, conditional mean and SD curves are mostly under288

5%.289

Based on these spatial variability features, unconditional random field simulations are290

first performed without specifying any sample locations in the domain. 1,000 realizations291

of cu profiles are generated by Latin Hypercube Sampling with Dependence (LHSD), which292

is an extension of LHS and aims to introduce stratification while maintaining the spatial293

correlation of random variables. Details of LHSD and its incorporation into Cholesky de-294

composition are described in Packham and Schmidt (2010) and Lo and Leung (2017a), who295
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also showed that when LHSD is coupled with PCE, 1,000 realizations are sufficient to obtain296

robust estimates of the PCE coefficients and hence probability density of the FS for slopes297

with similar features of spatially variable soils.298

Using this approach, the unconditional mean and standard deviation of FS are found to299

be E(FS)= 1.697 and SD(FS)= 0.308 in this case. Through decomposition of the R matrix300

and Eqs. (9) and (10), the Sobol’ index map is then derived, and is shown in Fig. 1(a). The301

optimal sample location is found at the depth of 6.25 m from the slope top, with horizontal302

separation of 5.8 m from the slope toe, where the Sobol’ index is at the maximum of 0.397.303

This means that on average (considering all possible sample values), an approximate SD304

reduction of 22.3% can be achieved if a sample is obtained at this location. The concentric305

shape of the Sobol’ index variation is related to the ratio between θln,x and θln,y. Since θln,x is306

more than 5.5 times larger than θln,y in this example, the corresponding contour is elongated307

in the x-direction. In case of a layered soil profile with θln,x = ∞, the Sobol’ index contour308

will also display a ‘layered’ feature as all locations at the same depth are equally important309

because of the highly correlated properties.310

The conditional mean equation, considering standardized residuals in original space311

(E(FS|e′)), is then calculated from the PCE through Eq. (12) and plotted in Fig. 1(b),312

where the coefficients are found to be (s0, s1, s2) = (1.76, 0.47,−0.175) for this case. As313

mentioned earlier, the conditional variance equation can be obtained by maximizing the314

log-likelihood function (Eq. (3)) involving V (θ, e). In this study, the generalized logistic315

function (Richards 1959) is adopted for V (θ, e) since it has a flexible functional form with316

an asymmetric S-shape:317

Var(FS|e) = V (θ, e) = l +
u− l

{1 + t exp[−b(e−m)]}1/t
(20)318

The shape of the function is controlled by the parameters θ = {l, u, t, b,m}, where l is319

the lower bound, u is the upper bound, t is the asymmetry parameter, b is the growth rate,320
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and m is the point of inflection. The maximization is performed by Differential Evolution,321

with the following optimized parameters: {l, u, t, b,m} = {0.013, 0.12, 1.6, 1, 0.56} in this322

case. Through this ‘sensitivity function’, the relationship between uncertainty in FS and the323

potential sample values can be developed. For example, the conditional variance Var(FS|e)324

is converted to the conditional SD curve in terms of original residual, i.e. SD(FS|e′), and325

plotted in Fig. 1(c). The function allows rapid determination of the system reliability once326

the sample value becomes available.327

These results by the Sobol’ index approach can be validated through conducting sepa-328

rate conditional random field simulations, where sample values are assigned at the optimal329

sampling point mentioned earlier. Eight individual sets of analyses are performed, with dif-330

ferent sample values assigned at that location: e′ = (−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2), which331

corresponds to about 95% of the possible cases considering the lognormal distribution of332

cu. For each set of analysis, 1,000 realizations of the conditional random field are simulated333

and assessed using the LHSD-PCE approach. The corresponding conditional mean and SD334

results are also plotted in Figs. 1(b) and (c), showing close agreements with the relationships335

developed by the proposed Sobol’ index approach, and therefore validating its accuracy. It336

is important to note that an additional 8,000 FLAC analyses are required by conditional337

random field modeling, whereas the proposed Sobol’ index approach only requires 1,000 un-338

conditional random field simulations. The associated reductions in computational demands339

are substantial.340

In fact, the influence of sampling at any (non-optimal) location can be evaluated by341

the proposed approach, by adopting another c vector corresponding to the intended sample342

location i. To illustrate such effects, a sensitivity analysis is performed with another sample343

location indicated in Fig. 1(a). The prediction intervals, taken as E(FS|e′)±SD(FS|e′), are344

shown in Fig. 1(d) for both sample locations. The prediction interval arising from the345

optimal location is steeper and narrower than that of the non-optimal location, which again346

demonstrates that FS is more sensitive to the cu value at the optimal location.347
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Design charts for slopes in cu soils348

Based on the proposed Sobol’ index approach, a series of design charts can be developed349

for efficient assessments of slope reliability according to the available sample value of shear350

strength parameters. For example, a long embankment may be designed based on mean351

shear strength parameters across the site. Making use of the charts in this study, the failure352

probabilities of individual sections can be easily evaluated when a soil sample is retrieved at353

any of those locations.354

Table 1 presents the various slope geometries and subsurface conditions considered in355

this study. For slopes in cu soils, the FLAC model geometries are similar to those described356

earlier, with slope height H = 5 m, and model boundary 15 m below the top of the slope.357

Four different slope angles are considered: β = 20°, 30°, 35° and 40°, and the width of358

the slope is therefore W = H/ tan β. cu is modeled as a lognormal random field, with the359

mean values (µcu) chosen such that deterministic analyses (assuming uniform soil profiles)360

would lead to FS of 1.0, 1.5 or 2.0. Such ‘deterministic FS’ provides a useful indicator of the361

degree of strength mobilization, which can be easily applied by most practitioners in a typical362

design process. Various patterns of spatial variability for cu are considered in developing the363

design charts. The coefficient of variation (i.e. CVcu) is assigned to be 0.15 or 0.4, while the364

autocorrelation distance θln,x = 0.5W , 2W or ∞, and θln,y = 0.25H or 0.5H. Considering365

these variations, 36 series of probabilistic analyses are performed for each slope angle.366

For each series of analyses, a PCE is constructed using 1,000 cu profile realizations. It367

should be noted that for all analyses in this study, the value of Q2, which measures accuracy368

of PCE coefficients, exceeds 0.92. With the coefficients determined, the optimal sampling369

locations are then obtained using the Sobol’ index approach. It was found that the sampling370

locations are insensitive to the mean values of the property, and therefore cases with different371

µcu values are averaged. According to Fig. 2(a), the optimal sampling depths D are all below372

the slope, i.e., D/H > 1, which is expected since deep-seated failures are more common for373

slopes in cu soils. In general, D becomes shallower as β increases or with higher variability374
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in cu, since the possibilities of shallow slope failures increase with potential weak spots at375

shallow depths. Fig. 2(a) also shows the horizontal distance between the optimal sampling376

location and the slope toe (L), normalized by the width of slope (W ). In most cases, it377

would be reasonable to adopt L = 0.5W .378

Based on these optimal sample locations, the sensitivity functions (conditional mean379

E(FS|e′) and conditional standard deviation SD(FS|e′) relationships) can be evaluated by380

the procedures described earlier. Fig. 3 shows that under the same deterministic FS (of381

1.5) and spatial variability conditions (i.e. CVcu, θln,x, θln,y), the sensitivity functions are382

relatively insensitive to the slope angle (from 20° to 40°), with a narrow range around the383

average value. Therefore, the obtained functions are averaged across various slope angles in384

the subsequent figures. Also, various sets of analyses are performed with the model scale385

doubled, as illustrated in Table 1. The results are also shown in Fig. 3 and indicated that386

the sensitivity functions are scale-invariant. In other words, regardless of the size of the387

slope, the functions will be identical for the same θln,x/W and θln,y/H ratios. Meanwhile,388

the intention of Fig. 3 is not to imply that autocorrelation distances will be scaled up or389

down with the slope geometries at a particular site. In fact, for site-specific applications, it390

is necessary to evaluate the θln,x/W and θln,y/H ratios based on the site conditions, and use391

the corresponding sensitivity functions pertaining to those conditions.392

For example, Fig. 4 represents the design charts with sensitivity functions for different393

values of deterministic FS, and demonstrates the influence of spatial correlation features394

on slope reliability. In particular, the E(FS|e′) function becomes steeper with larger values395

of θln,x, θln,y and/or CVcu, which means the sample has a larger conditioning effect to FS396

in these cases. In Figs. 4(a) and (b), the E(FS|e′) functions for θln,x = 2W are omitted397

for brevity, but the curves lie approximately midway between those of θln,x = 0.5W and398

θln,x = ∞ for positive e′ values, and are close to the latter for negative e′ values. The399

corresponding SD(FS|e′) curves are also shown in Figs. 4(c) to (h), and they are found to400

increase with CVcu, θln,x and θln,y. Using these relationships, the reliability of a slope can401
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be quickly assessed for any sampled value of cu represented as standardized residual e′. For402

other values of deterministic FS, it is reasonable to interpolate the results as a monotonic403

trend is observed among the various curves. As discussed earlier, these relationships are404

independent of the problem scale and may also be applied to other slope dimensions.405

Design charts for slopes in c− φ soils406

Similar procedures are applied to slopes in c−φ soils to establish the corresponding design407

charts. In this section, a slope height of H = 10 m is adopted, and the model boundary is408

15 m below the top of the slope. The H to model boundary ratio is smaller than that for409

cu soils, since slopes in ‘sandy’ soils often fail with relatively shallow slip surfaces, and this410

phenomenon will be discussed here in terms of sensitivity analyses. This section will focus411

on the variability of friction angle φ, while c is assumed to be a constant of 5 kPa. As shown412

in Table 1, φ is modeled as a lognormal random field, with mean values (µφ) designated to413

achieve deterministic FS of 1.0, 1.5 or 2.0. The coefficient of variation of φ (i.e. CVφ) is414

assigned to be 0.05 or 0.1, while other variations are similar to those adopted for cu slopes.415

‘Dry’ slopes are first investigated and the influence of water table will be discussed later.416

Again, the optimal sampling locations are found to be insensitive to the µφ values, and417

therefore cases with different µφ are averaged. The normalized sampling positions are shown418

in Figs. 2(c) and (d), where the optimal sampling depths are all within the slope, with419

D/H < 1. In other words, stability of c− φ slopes are mostly influenced by shear strength420

close to the slope face, which is another manifestation of the shallow slip surfaces usually421

observed in these slopes. Similar to the cu slopes, a larger slope angle or CVφ value would422

lead to a shallower optimal sampling depth, and D/H ranges from around 0.75 to 0.95 for423

all the studied cases. Meanwhile, L is approximately 0.4W for most cases.424

Fig. 5 shows the conditional mean and SD curves for c− φ slopes with sample obtained425

from the optimal location. Similar to the case of cu slopes, additional analyses are performed426

with a double model size, and the results are found to be invariant to the model scale (Fig. 3).427

In addition, the curves are found to be insensitive to the horizontal autocorrelation distance428
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of φ once θln,x exceeds 2W . This may be attributed to the relatively shallow slip surfaces,429

which tend to intercept several horizontal soil layers, making θln,y generally more influential430

when θln,x extends beyond the width of the slope. On the other hand, Figs. 5(a) and (b)431

shows that the E(FS|e′) curves becomes steeper with increasing values of θln,y, which means432

the sample significance increases as the soil becomes more uniform.433

Interestingly, the SD(FS|e′) curves in Figs. 5(c) to (h) are shifted downwards with in-434

creasing θln,y, which is an opposite trend compared to cu slopes. In fact, the conditional SD435

curves depend both on the value of θln,y, and the conditioning effects of the sample. For a436

probabilistic assessment without any sample value, the ‘unconditional’ SD of slope perfor-437

mance will always increase with θln,y, since there are less random effects that ‘average out’438

the soil variability, leading to more uncertain performance. This trend is, however, counter-439

acted by the knowledge of sample value at a designated location, in which case a larger θln,y440

means a greater conditioning effect of the sample, as a thicker layer becomes associated with441

that value. The conditioning effects appear to be less dominant for cu slopes that involve442

deep-seated failure mass, but are more influential for c− φ slopes with shallow slip surfaces.443

Similar influence of conditioning to the trend reversal of SD is also observed in probabilistic444

assessments of footing performance presented by Lo and Leung (2017a).445

The influence of water table to the reliability of c − φ slopes is also investigated in446

this study, where the water level is modeled such that 3/4 of the slope is submerged, as447

shown in the inset of Fig. 6(a). The scenario with deterministic FS=1.5 and slope angle of448

30° is selected for comparisons of E(FS|e′) and SD(FS|e′), as shown in Fig. 6. It should be449

noted that the mean friction angles are different for dry and submerged slopes in order to450

achieve the same deterministic FS, with µφ = 32.5° for the former case and µφ = 42.5° for451

the latter. Fig. 6 shows that the E(FS|e′) relationships are steeper for submerged slope,452

resulting in higher E(FS|e′) for positive e′ and lower E(FS|e′) for negative e′. Meanwhile,453

the SD(FS|e′) relationships are shifted upwards when water table is present. However, the454

differences in both mean and standard deviation of FS are not substantial comparing the455
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dry and submerged cases. In general, the optimal sampling depths for the submerged slope456

is slightly deeper (by about 0.05H) compared to the dry slope case.457

Example applications of the design charts458

To illustrate the application of the presented charts, this section considers a scenario459

where a 5 m high cut slope of 30° is to be constructed. Based on previous geotechnical460

investigation and/or knowledge of the site, suppose the mean cu of the clayey deposits is461

estimated to be 27 kPa, with CVcu = 0.4. The standard deviation of cu (i.e., σz) is therefore462

10.8 kPa, while θln,x = 17.3 m (= 2W ) and θln,y = 2.5 m. With this mean cu value, the463

deterministic FS is 1.5. To refine the estimates of failure probability for a particular section464

of the slope, a soil sample is to be obtained. Making use of Fig. 2, the optimal location of465

the sample would be about 7.5 m deep from the top of slope, and 4.3 m away from the toe466

of the future slope profile. Suppose a clay sample is then retrieved from this location with467

cu determined to be 22.7 kPa. This would correspond to e′ = −0.4 (the sampled value is468

−0.4σz away from the mean). From the design charts in Fig. 4, taking deterministic FS= 1.5,469

θln,y = 0.5H and with e′ = −0.4, the conditional mean and SD of FS become 1.27 and 0.18,470

respectively. Assuming the FS has a normal distribution, the slope has a failure probability471

of 0.067.472

Consider another possible scenario at the same site, where prior samples or knowledge473

of the soil properties are limited, and the mean cu at the site cannot be determined with474

confidence. Nonetheless, the optimal sample location is still the same since it does not475

depend on the mean property value. Suppose a sample is retrieved and the cu of that sample476

is determined to be 22.7 kPa. Without other information, this is taken as the mean value477

and the deterministic FS is found to be 1.26. Making use of the design charts in Fig. 4, the478

conditional mean and SD of FS may be further approximated, assuming e′ = 0 and with479

estimates of CVcu and θln,y according to published literature or the engineers’ judgement. It480

is also possible to test how the failure probability changes with different CV or θ assumptions,481

and these estimates may provide useful information to support the engineering decisions.482
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Applications for multiple sample points483

This section illustrates the application of Sobol’ index approach considering multiple484

sample points, making use of the sequential algorithm described earlier. The slope is in cu485

soils with a slope height of 5 m and slope angle of 35°. The FLAC model boundary is 15 m486

below the top of the slope. cu is simulated as a lognormal random field with a mean value487

27.3 kPa, corresponding to a deterministic FS of 1.5. CVcu = 0.4, while θln,x = 2W = 14.3 m488

and θln,y = 0.25 H = 1.25 m. Based on these parameters, the unconditional mean and489

standard deviation of FS are E(FS)=1.28 and SD(FS)=0.18.490

Considering the scenario where six soil samples are to be obtained from two boreholes491

in the slope, the optimal sample locations and resulting conditional FS distribution can be492

evaluated by the proposed approach. The first sample is determined by searching throughout493

the entire slope profile, and the corresponding lateral coordinates become those of the first494

borehole. If the optimal location of subsequent samples falls within a close horizontal distance495

(taken as 3 m in this case) from the first borehole, then a constrained search is performed496

such that the sample would share the same lateral coordinates as this borehole. Otherwise497

this sample indicates the location of the second borehole.498

Fig. 7(a) shows the location of the six samples thus determined, while Table 2 summarizes499

their coordinates and the corresponding Sobol’ index values. The cumulative reductions in500

SD(FS) are also shown in percentages as the number of samples increases, approximated by501

100[1−
√

1− S(e)](%) as indicated in Eq. (13). The vertical spacing between the samples502

is 2 to 2.5 m, which is about 2 times θln,y. The horizontal spacing between the two boreholes503

is 7.3 m, which is about 0.5 times θln,x, which is consistent with the recommendation by Li504

et al. (2016b). Once the sample locations are determined, sensitivity analysis is conducted505

to obtain the conditional mean equation E(FS|e), according to Eq. (17). The coefficients of506

the conditional mean equation are given in Table 3.507

The improvements in response prediction through the proposed sampling strategy are508

further illustrated through 1,000 realizations of cu profiles, simulated by the LHSD technique509
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described by Lo and Leung (2017a). The profiles are then analyzed by FLAC to obtain the510

FS values, denoted by FS1,FS2, . . . ,FS1000. If an unconditional random field assessment was511

performed, the prediction errors can be represented by FSi−E(FS) (i from 1 to 1,000). On512

the other hand, the conditional predictions can be performed using the sampling strategy513

presented in Table 2, and 1,000 sample combinations can be realized as e1, e2, . . . , e1000. The514

associated prediction errors are therefore FSi−E(FS|ei), where the coefficients of E(FS|ei)515

are given in Table 3 and no separate conditional random field simulations are required.516

Fig. 7(b) shows the density plots of the unconditional errors and the conditional errors,517

with their standard deviations being 0.184 and 0.102, respectively, and hence the percentage518

reduction in SD is about 44.3%. This SD reduction is identical to the value shown in Table 2,519

which is calculated using a different approach, i.e., directly through the Sobol’ index. In other520

words, this numerical testing also verifies the accuracy of the proposed approach for multiple521

sample points.522

EXAMPLE APPLICATION OF DESIGN CHARTS TO CASE STUDY523

The case study of the James Bay hydroelectric project in Quebec was described in detail524

by Christian et al. (1994), and is revisited in this study to illustrate the application of the525

proposed design charts and their differences with the FOSM method. The project involved526

construction of embankments on soft sensitive clays, with the first stage consisting of two527

berms with a total height (H) of 12 m. The two berms are separated from each other in528

the horizontal direction and the total width (W ) is approximately 90 m (Fig. 8a). Field529

vane shear tests had been conducted in 35 boreholes across the site to characterize cu of the530

marine clay and lacustrine clay below the embankment, and the details are also shown in531

Fig. 8b. The spatial variability features were investigated by DeGroot and Baecher (1993)532

and Christian et al. (1994) (Fig. 8c), with the autocorrelation distances in horizontal and533

vertical directions estimated to be 37.3 m and 1.1 m from their results, assuming similar534

spatial correlation features for marine and lacustrine clays.535

Some approximations are inevitable when applying the design charts for the case study.536
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Based on the slope geometries and spatial correlation features, the charts for θln,y = 0.25H537

and θln,x = 0.5W are adopted. The deterministic FS was estimated to be 1.453 (≈ 1.5)538

by Christian et al. (1994), with the critical failure plane intersecting the lower lacustrine539

clay that has CVcu = 0.272. Therefore, when applying the design charts, the results from540

CVcu = 0.15 and CVcu = 0.4 are averaged. Considering the total H and W of the two541

berms, the average slope angle would be 8°, and the corresponding optimal (single) sample542

location is at L = 0.5W and D = 2.4H by extrapolating Fig. 2. The sampled value at that543

depth is very close to the mean cu, and therefore e′ = 0.544

Based on these approximations and by averaging the results from Figs. 4(a) and 4(b),545

the conditional mean FS is estimated to be 1.382, and the conditional SD of FS is 0.083 from546

Figs. 4(g) and 4(h). This SD value is lower than the value estimated with FOSM by Christian547

et al. (1994), which was 0.205 considering only the contributions from spatial variations of548

cu (total SD was 0.257, which included factors such as variations in the fill and crust layers).549

The discrepancy can be attributed to two main reasons. Firstly, the FOSM method assumes550

the soil to be homogeneous (θln,y = θln,x = ∞) when the partial derivative ∂FS/∂cu was551

evaluated, which leads to an increase in SD estimates. For example, if the design charts are552

applied to the scenario of θln,x =∞ and θln,y = 0.5H, with other conditions being the same553

(i.e., Figs. 4(c) and 4(d)), the estimated SD will become 0.154, and will increase further as554

θln,y approaches the assumptions of FOSM. In addition, the proposed approach and design555

charts explicitly considered the influence of the soil sample, which also reduces the SD in FS556

estimates. It should be noted, however, that the James Bay project involves multiple samples557

which cannot be accounted for only by using the design charts. Yet, the estimates through558

the charts can be useful indicators for practitioners. If all samples need to be considered in559

a more rigorous manner, the approach presented in Eqs. (15) to (19) can be adopted.560

CONCLUSION561

This paper extends the Sobol’ index approach for the simulation of spatially variable soil562

properties, and explores its applications to the reliability assessment of slopes. The approach563
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can be used to identify the optimal locations of samples which will bring maximum reduction564

to the uncertainty in system performance. It also allows the derivation of sensitivity functions565

for site-specific risk assessment of system performance, which is computationally efficient566

since the influence of different sample values can be evaluated without performing additional567

conditional random field simulations.568

Design charts are presented for the case of a single sample in cu slopes and c− φ slopes.569

These charts enable efficient assessment of the failure probability of slopes, represented as570

the conditional mean and standard deviations under various conditions of slope geometries571

and spatial variability. It should be noted, however, that probabilistic methods should not572

be taken as replacement of the understanding of local geology, which can be helpful in573

identifying potential anomalously weak layers that could be one of the main causes of slope574

failures. Also, the charts are developed based on the assumption of statistical stationarity in575

the shear strength parameters of the soil, with constant mean values of cu or φ. They should576

be applied with proper engineering judgement, especially when the geotechnical conditions577

deviate significantly from these assumptions. In those cases, it is also possible to conduct578

detailed risk assessments through the proposed Sobol’ index approach.579

The proposed approach is extended to consider multiple sampling points through evalua-580

tion of multi-ordered Sobol’ index. This is illustrated through an example where the optimal581

locations of six samples along two boreholes are determined. A significant reduction in the582

performance uncertainty can be achieved, and is verified by the much smaller prediction583

errors in the FS of slope, compared to the case when no samples are available. The proposed584

Sobol’ index approach is shown to be a useful post-processing tool on the existing random585

field simulation results, and is capable of revealing high risk zones related to the specific586

geotechnical applications. This can be integrated into a risk assessment framework to assist587

the decision-making process associated with the uncertainty of system performance arising588

from spatial variability of geotechnical properties.589
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APPENDIX598

According to Anderson (1984), if X = {X1, . . . , Xp}T is a multivariate normal distribu-599

tion, i.e. X ∼ N(µ,Σ), then the characteristic function φ is given by:600

φ(t) = E
[
exp(itTX)

]
= exp

(
itTµ− 1

2
tTΣt

)
(21)601

The n-th non-central moment of X can be obtained by differentiating φ:602

E [X1 . . . Xn] =
1

in
∂φ

∂t1 . . . ∂tn

∣∣∣∣
t=0

(22)603

The first four non-central moments are hence derived:604

E[X1] = µ1605

E[X1X2] =
1

i2
∂φ

∂t1∂t2

∣∣∣∣
t=0

= σ12 + µ1µ2606

E[X1X2X3] =
1

i3
∂φ

∂t1∂t2∂t3

∣∣∣∣
t=0

= σ12µ3 + σ13µ2 + σ23µ1 + µ1µ2µ3607

E[X1X2X3X4] =
1

i4
∂φ

∂t1∂t2∂t3∂t4

∣∣∣∣
t=0

= σ12σ34 + σ13σ24 + σ14σ23

+ σ12µ3µ4 + σ13µ2µ4 + σ14µ2µ3 + σ23µ1µ4 + σ24µ1µ3 + σ34µ1µ2

(23)608

25



which lead to these covariances:609

Cov[X1, X2X3] = E[X1X2X3]− E[X1]E[X2X3] = σ12µ3 + σ13µ2610

Cov[X1X2, X3X4] = E[X1X2X3X4]− E[X1X2]E[X3X4]

= σ13σ24 + σ14σ23 + σ13µ2µ4 + σ14µ2µ3 + σ23µ1µ4 + σ24µ1µ3

(24)611

Since e ∼ N(0,R),612

Cov(ei, ek1ek2) = 0613

Cov(ei1ei2 , ek1ek2) = Ri1k1Ri2k2 +Ri1k2Ri2k1 (25)614
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TABLE 1. Slope geometries and shear strength variability parameters adopted in Sobol’
index analyses

Parameters cu soils cu soils c− φ soils c− φ soils

(double scale) (double scale)

Slope angle, β (for all cases) 20°, 30°, 35°, 40°
Soil unit weight (for all cases) 20 kN/m3

Slope Height, H 5 m 10 m 10 m 20 m

Deterministic FS 1, 1.5, 2 1.5 1, 1.5, 2 1.5

Variability of shear CVcu 0.15, 0.4 0.15, 0.4 - -

strength parameters CVφ - - 0.05, 0.1 0.05, 0.1

θln,x (for all cases) 0.5W , 2W , ∞
θln,y (for all cases) 0.25H, 0.5H
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TABLE 2. Six sample locations from two boreholes for a slope in cu soils

n Borehole Depth from S(e1, ..., en) Cumulative %

(No. of samples) number slope top (m) reduction in SD

1 1 6.25 0.24 12.8

2 1 8.75 0.37 20.6

3 2 4.2 0.47 27.2

4 1 10.75 0.56 33.7

5 1 13.25 0.63 39.2

6 2 2.2 0.69 44.3
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TABLE 3. Conditional mean coefficients for multiple samples in cu slope

Order of coefficient r Value

0th order r0 1.318

1st order r1 0.080

r2 0.057

r3 0.050

r4 0.047

r5 0.038

r6 0.039

2nd order r11 -0.0078

r12 0.0012

r13 -0.0097

r14 0.0105

r15 0.0098

r16 -0.0095

r22 -0.0103

r23 0.0046

r24 -0.0019

r25 0.0118

r26 -0.0028

r33 -0.0026

r34 0.0078

r35 0.0137

r36 -0.0073

r44 -0.0096

r45 0.0016

r46 0.0056

r55 -0.0090

r56 0.0085

r66 0.0023
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FIG. 4. Conditional mean and standard deviation functions for slopes in cu soils, with
gray areas bounded by θln,y = 0.25H and 0.5H. θln,y = 0.5H results in higher SD and
mean FS for positive e′ (x-axes are identical for sub-figures)
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FIG. 5. Conditional mean and standard deviation functions for slopes in c − φ soils,
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