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INTRODUCTION23

Variability in soil and rock properties and its potential impacts on geotechnical per-24

formance have been well recognized in the profession. For example, Phoon and Kulhawy25

(1999a), Phoon and Kulhawy (1999b) and Baecher and Christian (2003) presented detailed26

discussions on the characterization and evaluation of geotechnical variability, while their27

spatial correlation features have also been studied earlier by Vanmarcke (1977), Soulié et al.28

(1990), DeGroot (1996), and Zhang and Dasaka (2010), among others. Meanwhile, consider-29

ation of such variability in geotechnical applications have been investigated by a number of30

researchers, including Li and Lumb (1987), Christian et al. (1994), Griffiths et al. (2009), Cho31

(2010) and Jiang et al. (2015), who focused on slope stability analysis; while Duncan (2000),32

Griffiths and Fenton (2009), Kasama and Whittle (2011), Al-Bittar and Soubra (2014) and33

Li et al. (2015) discussed its influence on the performance of shallow foundations. Some34

typical approaches include first-order second-moment (FOSM) methods, the Hasofer-Lind35

approach (also known as the first-order reliability method) (Hasofer and Lind 1974) and the36

random finite element method (RFEM).37

The total uncertainty associated with geotechnical processes is often separated between38

aleatory (natural variation) and epistemic (limited knowledge) uncertainty. To account for39

the former source, random field modelling can be adopted where variations of properties40

are represented by the spatial correlation structure. Meanwhile, since the actual pattern of41

variations is unknown from limited soil samples, normally a large number of random field42

realizations are required to account for such epistemic source of uncertainty.43

The Monte Carlo simulation technique, implemented through RFEM, has become a pop-44

ular approach to study the influence of soil variability on geotechnical performance. To45

improve the accuracy of the Monte Carlo estimator, a stratified sampling scheme, known as46

Latin hypercube sampling (LHS), is often applied in the implementation. LHS was originally47

proposed by McKay et al. (1979), with the fundamental assumption that components of the48

vector of random variables are independent of each other. However, this does not correspond49
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to most scenarios of spatially-correlated soil properties. To resolve this issue, Cho (2010)50

represented the random process by the Karhunen-Loève expansion in terms of uncorrelated51

(orthonormal) random variables, while Jiang et al. (2015) applied LHS in the polynomial52

chaos expansion (Wiener 1938; Ghanem and Spanos 1991) of the system response.53

This paper presents the application of a stratified sampling technique called the Latin54

hypercube sampling with dependence (LHSD), recently developed by Packham and Schmidt55

(2010). LHSD preserves the covariance structure of random variables, and is extended to56

simulate cross-correlated and conditioned random fields in the current study. Probabilistic57

assessments of slopes and strip footings are presented to demonstrate the capabilities of58

the approach, and in the latter case, to quantify the importance of various sampling loca-59

tions through conditioned random field simulations. Comparisons between conditioned and60

unconditioned models further advance the understanding on the influence of the epistemic61

source of uncertainty. These lead to the development of design charts for quick assessments62

of uncertainties in footing settlements according to the locations of sampled points.63

LATIN HYPERCUBE SAMPLING WITH DEPENDENCE (LHSD)64

There have been a number of previous attempts (Vanmarcke 1984) to model soil proper-65

ties as spatially-correlated random variables. In general, the spatial variability of geotechnical66

properties can be represented by the following general linear model:67

z = µ+ e (1)68

where z is the vector representing soil properties at various locations, and µ is the determin-69

istic trend. When there is no prevalent trend in the data, µ will become a constant mean70

vector. e is a random (residual) vector with mean 0 and spatial covariance matrix V. z is71

said to be a Gaussian random field if the distribution of e is multivariate Gaussian. The72

random field is usually assumed to be second-order stationary, meaning that the variance73

σ2 of e is constant across the domain, and hence the covariance matrix can be factored as74
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V = σ2R, with R defined as the spatial correlation matrix. Methods of inferring the µ,75

variance (σ2), and spatial correlation (R) from site investigation data have been discussed76

by DeGroot (1996) and Liu et al. (2017).77

Engineers are often interested in assessing the system reliability, or the probability of78

failure due to geotechnical variability. In this case, a limit state function D(z) can be79

defined where D(z) > 0 represents failure of the system, and the failure zone refers to the80

corresponding set of z. The term ‘failure’ here is used in a broad sense, which does not81

necessarily mean a collapse, but can also refer to inadequate factors of safety or occurrence82

of excessive displacements. The failure probability, Pf , is the area of the joint probability83

distribution of z (denoted as f(z)) in the failure zone. Pf , and its Monte Carlo estimator,84

P̂f , can be represented by:85

Pf =

∫
z

I [D(z) > 0] f(z)dz (2a)86

87

P̂f =
1

n

n∑
i=1

I [D(zi) > 0] =
nf
n

(2b)88

where nf is the number of failure cases within n simulations; I is an indicator function which89

equals 1 when D(z) > 0 and 0 otherwise. In the current study, D(z) > 0 or factor of90

safety (FS) < 1 refers to stability failure. In practice, when Pf is small, a large number91

of realizations are required to achieve a satisfactory accuracy. For example, in order to92

reduce the maximum estimation error to 0.01, Griffiths et al. (2009) used 2,000 simulations93

to evaluate the slope failure probability. To improve the robustness of P̂f estimation and94

reduce number of simulations, LHS was proposed as a multi-dimensional stratified sampling95

scheme, which ensures a uniform placement of random realizations in the sample domain.96

However, LHS requires uncorrelated random variables. Although there are transformation97

techniques to introduce spatial dependence into these samples, Packham (2015) noted that98

such operation would damage the original stratification and effectiveness of LHS.99

Packham and Schmidt (2010) proposed the Latin Hypercube Sampling with Dependence100

(LHSD), which is an extension of LHS and aims to introduce stratification while maintain-101
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ing the covariance structure. In addition, LHSD offers two critical advantages. It can be102

applied to any covariance structure, and its implementation does not depend on the specific103

geotechnical problem. These enable LHSD to be a robust and flexible algorithm for a wide104

range of geotechnical applications, as will be illustrated in this paper through analyses on105

slopes and shallow foundations.106

LHSD ensures a uniform placement of random realizations in a d-dimensional unit cube.107

In each dimension, a permutation has to be performed to decide which sample is placed into108

which stratum. The core concept of LHSD is that the permutation for a particular dimension109

is calculated using the rank statistic of the simulated samples. For example, if the simulated110

samples in dimension j is u(j) = u
(j)
1 , u

(j)
2 , . . . , u

(j)
n , the permutation (r(j)) can be obtained111

by the following rank statistic:112

r
(j)
i =

n∑
k=1

I
[
u
(j)
k ≤ u

(j)
i

]
(3)113

with I being an indicator function, which returns 1 if u
(j)
k ≤ u

(j)
i and 0 otherwise. Through114

the permutation r(j), u can be converted into the LHSD sample, v. Fig. 1 shows an example115

of the conversion from u to v, and details of the implementation will be illustrated with an116

application on Gaussian random field in the next section.117

In statistical terms, LHSD can be applied to a random vector, with distribution of each118

component being standard uniform, i.e. U(0,1). The property of the LHSD samples has been119

proven, and a stated key property (Packham and Schmidt 2010) is that the empirical cumu-120

lative distribution of the LHSD sample converges to its theoretical cumulative distribution,121

given the sample size n is sufficiently large.122

Application to Gaussian and transformed random fields123

The distribution of a Gaussian random field is obviously not standard uniform. However,124

any random vector z (which may represent Gaussian random field of geotechnical properties)125

with arbitrary distribution can be transformed into a random vector u with uniform distri-126
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bution, by the use of cumulative distribution functions (CDF). In theory, to apply LHSD to127

an arbitrary distribution, it is possible to first transform the simulated z into the standard128

uniform sample u, obtain v and then back-transform v into the LHSD sample of z. In fact,129

Packham and Schmidt (2010) stated that if all dimensions have the same distribution, then130

the rank statistic r computed using the original sample (z) will be equal to r computed131

using the corresponding standard uniform sample (u). In other words, it is actually not132

necessary to perform the CDF transformation. The implementation of LHSD on a Gaussian133

random field can then be summarized by the following steps:134

1. Simulate n Gaussian vectors ei =
{
e
(1)
i , e

(2)
i , . . . , e

(d)
i

}T
with mean 0 and spatial correla-135

tion R, using Cholesky decomposition: ei = Lsi, where L is the Cholesky factor of R, si136

is a d× 1 vector of independent standard Gaussian random variables.137

2. Stack the n vectors by rows to form a matrix, with the ith row and jth column denoted138

by ei and e(j). For each column, compute the rank statistic according to Eq. (3).139

3. Calculate v
(j)
i = (r

(j)
i −0.5)/n, where vi =

{
v
(1)
i , v

(2)
i , . . . , v

(d)
i

}T
is the ith LHSD standard140

uniform sample.141

4. Back-transform the standard uniform sample into a multivariate Gaussian sample using142

the inverse cumulative distribution function with consideration of the deterministric trend:143

zi =
{

F−1
1 (v

(1)
i ),F−1

2 (v
(2)
i ), . . . ,F−1

d (v
(d)
i )
}T

144

where F−1
j (v

(j)
i ) = µj +

√
σ2 Φ−1(v

(j)
i ) (4)145

with
√
σ2 being the standard deviation of Gaussian random field, and Φ−1 : [0, 1] → R146

being the inverse cumulative standard Gaussian distribution function.147

In some cases, the original random field is non-Gaussian, and a transformation on the148

original field is necessary. A non-Gaussian original random field is denoted as z∗ herein.149

For example, log-transform is common in modeling positive-valued soil properties such as150

Young’s modulus and undrained shear strength (zi = log z∗i ), while Box-Cox transform151
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may be applied to ensure stationarity assumptions are satisfied, i.e. normality and constant152

variance across the spatial domain (Liu et al. 2017). It should be noted that both log and153

Box-Cox transform are monotonic. If a transform T is monotonic, then its back-transform154

(or inverse) function T−1 will also be monotonic. Meanwhile, the percentile for a distribution155

is unchanged under a monotonic transformation, as noted by Lark and Lapworth (2012). In156

other words, the kth percentile in a normal distribution is still the kth percentile in the157

monotonic back-transformed distribution. Therefore, stratification is preserved when the158

LHSD sample, zi from Eq. (4), is back-transformed to the original space (i.e., z∗i = T−1(zi)).159

This back transformation will be an additional step to the implementation of LHSD in cases160

of non-Gaussian random field.161

Application to cross-correlated random fields162

Geotechnical properties are often found to correlate with each other. For example,163

the shear strength and stiffness of many soils are observed, or assumed, to be positively-164

correlated. Fenton and Griffiths (2003) outlined the simulation of cross-correlated random165

fields, making use of the lower triangular matrix, Lρ, from Cholesky decomposition of the166

correlation matrix between the two properties. If z1 and z2 are two cross-correlated standard167

Gaussian random fields with cross correlation coefficient ρ, at each spatial location xi:168

z1(xi)
z2(xi)

 = Lρ

s1(xi)
s2(xi)

 =

1 0

ρ
√

1− ρ2

s1(xi)
s2(xi)

 (5)169

where s1, and s2 are the two independent standard Gaussian random fields. To adopt this170

approach in the LHSD framework, the spatial correlation matrix (R) in Step (1) needs to171

incorporate cross-correlation between the considered properties, and the updated matrix is172

denoted as Rρ herein. Rρ can be obtained by considering a block correlation matrix R
(ij)
12 ,173

whose ijth block represents the correlation of the two properties (1 and 2) between locations174

xi and xj:175
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R(ij)
ρ = LρR

(ij)
12 LT

ρ176

where R
(ij)
12 =

R1(xi,xj) 0

0 R2(xi,xj)

 (6)177

The rows and columns of Rρ need to be re-arranged such that Rows 1 to d correspond to178

Property 1 and Rows (d+ 1) to 2d correspond to Property 2.179

Application to conditioned random field180

In most engineering applications, a number of sampled points (e.g., boreholes, CPT181

soundings) are available, providing limited amount of information upon which engineering182

assumptions of geotechnical properties are based. The characterization of spatial variability183

in geological profiles and geotechnical properties have been discussed by Lloret-Cabot et al.184

(2012), Dasaka and Zhang (2012), Liu et al. (2017), Li et al. (2016), etc., with consideration185

on the observed data at sampled locations. These recent efforts illustrate how site information186

can be utilized in the construction of conditioned random fields.187

In the current study, the importance of sample locations will be demonstrated through188

probabilistic analyses involving conditioned random fields generated using the LHSD ap-189

proach. Consider the case with k observed sample points, denoted as z0 = z
(1)
0 , z

(2)
0 , . . . , z

(k)
0 .190

The generated random field, z, can reflect the sampling data by becoming conditional on191

z0, (i.e. z|z0). If z and z0 are both multivariate Gaussian, then z|z0 is also multivariate192

Gaussian, and the conditional mean and covariance can be derived as:193

µcond = E [z|z0] = µ+ VT
c V−1

0 (z0 − µ0) (7a)194

195

Vcond = cov[z|z0] = V−VT
c V−1

0 Vc (7b)196

In Eq. (7b), V represents the covariance of the application domain, and V0 is a k × k197

spatial covariance matrix between the k sampled locations, which is a subset of V. Vc198

is the k × d covariance matrix between the sampled and unsampled (simulated) locations,199
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µ0 represents the expected values at the sampled locations. Under the ordinary kriging200

formulation (Cressie 1993), µcond represents the kriging predictor, and the diagonal terms201

of Vcond are equivalent to the prediction variance, σ2
z . The conditioned random field is no202

longer second-order stationary, since the diagonal of Vcond is not constant. The following203

transforms Vcond into a conditional correlation matrix Rcond:204

Rcond = D− 1
2 VcondD

− 1
2 (8)205

where D is a d × d diagonal matrix formed by the d terms in σ2
z . To apply the LHSD206

approach to a conditioned random field, R will be replaced by Rcond in Step (1) described207

earlier, and µj and
√
σ2 will be replaced by µcond,j and

√
σ2
z,j, respectively, in Step (4).208

LHSD coupled with polynomial chaos expansion209

If the input to a geotechnical model consists of independent standard Gaussian random210

variables, the probability density function of the response can be approximated by the poly-211

nomial chaos expansion (PCE), which was described in detail by Ghanem and Spanos (1991)212

and recently applied by Al-Bittar and Soubra (2014) and Jiang et al. (2015) in reliability213

analyses of slopes and footings. In the current study, PCE is coupled with the LHSD to214

further enhance the robustness of the estimator. Following earlier description, the LHSD215

sample, with spatial correlation R, can be transformed into a set of independent standard216

Gaussians through the principal component analysis, which is a standard multivariate statis-217

tical technique as outlined below. A spectral decomposition is first performed on the spatial218

correlation matrix R:219

R = HΛHT (9)220

where H = [h1 h2 . . . hd] is a matrix containing d orthonormal eigenvectors; and Λ is221

a diagonal matrix with d positive descending eigenvalues (λ1, λ2, . . . , λd). The number of222

principal components could be less than d. For example, if one needs to preserve 95% of the223

total variance, the number of components, M , and the corresponding principal components,224
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ξ, can be obtained by:225

min
M

M∑
i=1

λi > 0.95d (10a)226

227

ξi =
hTi Φ−1(v)√

λi
i = 1, 2, . . . ,M (10b)228

with v being the standard uniform sample discussed earlier. ξi are independent standard229

Gaussians, which are used directly to construct the PCE. The system response, g, can be230

expressed as PCE of order p:231

g(ξ) =
P−1∑
β=0

aβΨβ232

where P =
(M + p)!

M !p!
(11)233

where Ψβ are polynomials constructed by ξ, with details shown in the Appendix. The234

coefficients aβ can be computed by the regression approach (Blatman and Sudret 2010; Al-235

Bittar and Soubra 2014). This involves geotechnical analyses of n realizations of ξ which,236

in the current study, are performed using the finite difference software, FLAC. Results from237

the n FLAC analyses are compiled into a Γ vector for the regression analyses to obtain aβ:238

â =
(
ηTη

)−1
ηTΓ239

where ηij = Ψj−1(ξ
(i)) i = 1, 2, . . . , n; j = 1, 2, . . . , P240

Γ =
{
g(ξ(1)), g(ξ(2)), . . . , g(ξ(n))

}T
(12)241

With aβ coefficients determined by Eq. (12), the mean and variance of g(ξ) are given by:242

E [g(ξ)] = a0 (13a)243

244

Var [g(ξ)] =
P−1∑
β=1

(aβ)2 E
[
(Ψβ)2

]
(13b)245
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Once the coefficients are determined using the n FLAC analyses, the probability density246

function of g(ξ) can be constructed by computing Eq. (11) with many sets (nPC sets) of ξ. Al-247

Bittar and Soubra (2014) described this as the ‘metamodel’ evaluation, and the computation248

time for this step is short because it does not involve any FLAC analyses. To evaluate the249

accuracy of the PCE, the coefficient Q2 is used (Blatman and Sudret 2010), which is based250

on leave-one-out cross validation, and reflects the prediction capability of PCE better than251

the traditional R2 in linear regression.252

The proposed approach involves n FLAC analyses used to construct the PCE. While the253

mesh density, i.e. number of elements in the FLAC model, controls the size of R matrix, and254

affects the efficiency of each model simulation, it does not necessarily affect the ‘efficiency255

of the LHSD-PCE approach’ per se. The efficiency of such would, instead, depend on the256

number of model simulations (n) required to achieve a stable PCE. This will be determined257

by correlation parameters such as the autocorrelation distances (θ), which control the number258

of principal components (M). In fact, as will be shown later, incorporating LHSD would lead259

to more robust constructions of PCE, which means fewer model simulations are required.260

In the following analyses, the spatial correlation is assumed to follow a squared expo-261

nential function characterized by θ. In theory, M would vary with the choice of correlation262

function, if the same value of θ is adopted. However, from a practical standpoint, the more263

fundamental issue is the actual autocorrelation of the concerned properties at different sep-264

aration distances. For example, for a particular project site, the spatial correlation may be265

represented (fitted) by various functions (single/squared exponential or spherical function),266

but each of them will correspond to a different value of θ, and the subsequent values of M267

should still be similar. In other words, the choice of correlation function itself is not the268

determining factor of M or the efficiency of the approach.269

APPLICATION TO SLOPE STABILITY ANALYSIS270

Two example applications are presented in the current study. The first involves analyses271

of a slope with c− φ soils, where the slope geometry, soil properties and spatial correlation272
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features are identical to those studied by Cho (2010) and Jiang et al. (2015). Comparisons273

between the results serve as a validation for the formulation of the current approach, mean-274

while illustrating the capabilities and features of LHSD and PCE. In this section, the failure275

probability in slope analyses is defined as Pf for simplicity, despite the slightly different276

notations between Eqs. (2)(a) and (b).277

Table 1 shows the input parameters of the slope example. The slope has a height of 10 m,278

slope angle of 45°, with the model boundary at 15 m below the top of slope, and water table279

is not considered in the analyses. The mean values of shear strength parameters, c and φ,280

are 10 kPa and 30°, respectively. A deterministic analysis is first performed with uniform281

soil properties, and the corresponding FS is found to be 1.201 using the strength reduction282

method implemented in FLAC. This is comparable to the value of 1.204 reported by Cho283

(2010) and 1.206 by Jiang et al. (2015).284

In the probabilistic analyses, c and φ are assumed to be lognormally distributed with285

coefficients of variation (COV) of 0.3 and 0.2, respectively. For both parameters, the spatial286

correlation structure is represented by a squared exponential function:287

R(xi,xj) = R((xi, yi), (xj, yj)) = exp

[
−
(
|xi − xj|
θln,x

)2

−
(
|yi − yj|
θln,y

)2
]

(14)288

where θln,x and θln,y are the autocorrelation distances in x and y directions, which are taken289

as 20 m and 2 m, respectively. A typical realization of the two random fields is shown290

in Fig. 2. Before applying the proposed LHSD approach, ‘benchmark’ failure probabilities291

(Pf,MC) are developed through Monte Carlo simulation with 10,000 FLAC analyses, with292

the cross-correlation coefficients between c and φ (ρc−φ) ranging from -0.7 to 0. The LHSD293

approach, coupled with PCE, is then applied to the same settings to obtain Pf , which are then294

compared with Pf,MC and also the findings from Jiang et al. (2015). During construction of295

the PCE, the principal components are extracted according to Eq. (9), and 96% of the total296

variance is preserved with 26 to 30 principal components (developing on ρc−φ) in the current297
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study, resulting in second-order PCE with 378 to 496 terms. The â coefficients are obtained298

based on 1,000 or 1,500 realizations and FLAC analyses (n=1,000 or 1,500 depending on299

ρc−φ) (Eq. (12)), and the probability density function of FS is then reconstructed using300

the PCE, through 50,000 sets of ξ (nPC=50,000). Failure probability is calculated as the301

proportion of cases with FS< 1, out of the 50,000 cases.302

Fig. 3 shows that the proposed approach is able to reproduce the failure probabilities303

estimated by the ‘raw’ Monte Carlo simulation, despite the much smaller number of FLAC304

analyses required in LHSD coupled with PCE. These Pf are, however, higher than those305

estimated by Jiang et al. (2015) under the same material parameters and correlation features.306

This may be attributed to the fact that in their evaluation of FS, Jiang et al. (2015) adopted307

the limit equilibrium method (LEM) with circular slip surfaces; while the current study308

utilizes the strength reduction method by finite difference analyses (FDM), without any309

assumptions on slip surfaces or interslice forces. These effects are reflected both in the slightly310

lower estimates of deterministic FS and higher estimates of Pf by the current approach. In311

view of the differences between LEM and FDM, the estimates in Pf are comparable. Also,312

it is deemed that non-circular slip surface may better represent the actual failure mechanism313

for soils with significant spatial variation.314

The features of the proposed approach is further illustrated using the case with ρc−φ =315

−0.5 as an example, through six series of analyses tabulated in Table 2: (1a) LHSD with316

500 realizations of soil profiles; (1b) PCE with 500 realizations; (1c) LHSD coupled with317

PCE with 500 realizations; (2a) LHSD with 1,000 realizations and (2b) PCE with 1,000318

realizations; (2c) LHSD coupled with PCE with 1,000 realizations. Each of the six series319

of analyses are repeated 30 times, and the PCE coefficients (for 1b, 1c, 2b and 2c) are re-320

estimated for each of the 30 repetitions. An empirical standard deviation (SDe) of the Pf321

estimator is then obtained from each series of analyses. This can be compared with the322

analytical SD of failure probability (tail probability) by the raw Monte Carlo simulation:323
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SDa =

√
Pf (1− Pf )

n
(15)324

and reductions in SDe (compared with SDa) demonstrate the capabilities of the proposed325

approach in obtaining a robust estimate of Pf .326

The LHSD approach leads to a reduction of standard deviation compared with raw Monte327

Carlo Simulation. For both sample sizes, coupling LHSD with PCE (1c and 2c) will give a328

greater reduction in standard deviation compared with LHSD alone (1a and 2a). With the329

sample size n of 1,000, the reduction of standard deviation (SDe compared with SDa) using330

LHSD with PCE reaches 67%. The standard deviation of the estimator is 0.00172, and is331

similar to the standard deviation of estimator using Monte Carlo simulation with sample332

size of 10,000, which is 0.00169 as calculated by Eq. (15). Therefore, a 90% reduction of333

simulation size is possible with LHSD and PCE, while the estimation accuracy is preserved.334

This is because when calculating Pf,MC using raw Monte Carlo simulation, the profiles are335

simply separated into two categories, namely those with FS< 1 and those with FS> 1. In336

other words, the calculated FS is not fully utilized. On the other hand, the exact FS values337

(g(ξ)) of all cases are used to construct the PCE. In addition, LHSD ensures that the samples338

are well-spread across the sample domain, which are also reflected in PCE through ξ. As a339

result, the PCE utilizes more information from each model simulation, and has extrapolating340

power for the tail region of the response. This enables a stable reconstruction of the tail341

probability, leading to more robust Pf estimates.342

It should be noted that the estimator is biased when only PCE approach is adopted343

(1b and 2b), or with a sample size n of 500 (1c). In those cases, the mean Pf are higher344

than the benchmark failure probability, and the variances of FS obtained are larger than345

the true value (around 0.0122). This means the tails of the FS distributions are flattened,346

causing overestimation of the tail probability. The overestimation is also reflected by the347

poor prediction capability of the PCE, with average Q2 of 0.371 (1b), 0.790 (1c) and 0.885348

(2b). In the case of 1c, there are 435 unknown PCE constants (M = 28) but only 500349
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data samples, which is insufficient to accurately construct the probability density of FS. The350

estimation bias can be eliminated with a larger sample size and by combining LHSD with351

PCE. In case 2c, the PCE can be properly constructed with an average Q2 above 0.95. From352

this numerical experiment, it is recommended that Q2 of the PCE should be at least 0.95353

for estimation of the tail probability.354

APPLICATION TO STRIP FOOTING ANALYSIS355

The second application involves strip footings on soils with spatially-correlated proper-356

ties. Conditioned random fields are generated using the proposed LHSD approach, and the357

subsequent analyses enable an investigation into the uncertainties of foundation performance358

considering locations of sampled points with known information. A series of design charts are359

then developed to provide practical guidelines on foundation reliability according to spatial360

correlation features of the soil and locations of available samples.361

For a rigid strip footing of width B under an applied loading q, the settlements will362

depend largely on the elastic parameters (i.e. Young’s modulus, E, and Poisson’s ratio, ν)363

and shear strength parameters (c−φ) of the soil. In addition, it is a common perception that364

that the corresponding soil parameters at depths (D) of 0.25B to 1B will be most influential365

to the footing response, considering the stress distribution under the load and the failure366

mechanism as q approaches the ultimate bearing capacity qu. For example, Osman and367

Bolton (2005) suggested that soil properties at 0.3D are most representative in simulating368

the nonlinear response of circular footings on clay. This proposition will be re-examined369

from the perspective of spatial variations in geomaterials.370

In the following sections, footings on linear-elastic soils will be analyzed, followed by foot-371

ings on soils of Tresca (cu) model and Coulomb (φ) model, with details of footing geometries,372

input parameters and their variations summarized in Table 3. In the probabilistic analyses,373

unconditioned random fields are first generated to establish the coefficients of variation for374

settlement response (COVδ), which represents the situation where no site-specific soil sam-375

ples are available. These will be compared with analyses of conditioned random fields, where376
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soil samples are available at various depths (D), and COVδ are reduced accordingly. The377

magnitudes of COVδ reductions, which can be interpreted as significance of the information,378

will be shown to vary with the footing geometries, degrees of strength mobilization, depths379

of samples and spatial variability of the parameters.380

The COVδ reductions here should not be confused with the SD reductions associated381

with Table 2. COVδ reductions in this case correspond to the reductions of performance382

uncertainty due to additional soil samples under the footings, whereas the SD reductions383

in the slope study are used to compare robustness of various approaches, defined as the384

capability to obtain similar Pf values when multiple (30) probabilistic analyses are repeated.385

Footing on linear-elastic soil386

Probabilistic analyses of strip footings on spatially variable linear-elastic soils are pre-387

sented in this section. The FLAC model is 15 m wide, 6 m deep with a strip footing of 2 m388

width on the ground surface. The footing is subjected to a vertical pressure of 500 kPa, and389

the soil-footing interface is perfectly rough. The Poisson’s ratio (ν) of the soil is taken as390

a constant of 0.3 throughout the domain, while the Young’s modulus (E) is modeled as a391

lognormal random field with a mean (µE) of 60 MPa and coefficient of variation (COVE) of392

0.15. The autocorrelation of E is assumed to follow a squared exponential function (Eq. (14)),393

with the horizontal autocorrelation distance much larger than the domain scale (θln,x=200m).394

This assumption is made since Al-Bittar and Soubra (2014) observed that for B = 2 m, the395

footing settlements (δ) becomes insensitive to changes in θln,x once θln,x > 10 m; meanwhile396

θln,x for soil properties are often found to be an order of magnitude higher than θln,y, ranging397

from 10 m to over 80 m (Phoon and Kulhawy 1999a; DeGroot 1996).398

In other words, this study focuses on the influence of θln,y on the footing performance399

(δ), and the importance of sample depth D on the overall reduction of uncertainties (COVδ).400

To create a basis for comparison, the LHSD approach is coupled with PCE to first simulate401

500 unconditioned random fields, which represent scenarios where no samples are available402

under the footing. In the analyses, 97% of the total variance is preserved by extracting403
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principal components from the unconditioned spatial autocorrelation matrix of E. The404

principal components are then used to construct PCE of the second order, from which COVδ405

of unconditioned cases are obtained. The COVδ for conditioned cases are evaluated using a406

similar procedure, except that Eqs. (7) and (8) are applied to simulate conditioned random407

fields with various sample depths. Also, Q2 is larger than 0.95 in all subsequent analyses.408

Fig. 4 shows the reductions in COVδ comparing the unconditioned random fields with409

conditioned cases, considering different sample depths (D/B) and B/θln,y ratios. Apart from410

the base case described earlier (B = 2 m, µE = 60 MPa,COVE = 0.15), three more sets of411

probabilistic analyses have been performed, with double model scale (i.e. B = 4 m and412

double domain size), reduced mean stiffness (µE = 30 MPa) and increased stiffness variation413

(COVE = 0.4), respectively. Although they entail different B/θln,y ratios, all the resulting414

data points are lined up along the corresponding D/B lines, which demonstrates the validity415

of normalization employed in Fig. 4.416

A larger reduction in COVδ represents better value of the sample as the uncertainties417

in δ are reduced to a greater extent through knowledge of E at that point. Therefore,418

according to Fig. 4, the most significant sampling points are at depths of 1B, 0.5B and419

0.25B, depending on the ratio between footing width and vertical autocorrelation distance.420

Two crossover points are observed at B/θln,y = 1 and B/θln,y = 2.75. With large values of421

θln,y (B/θln,y < 1), the soil properties are relatively uniform. For example, with sample depth422

D = B = θln,y, the sample is representative of the properties from the ground surface to a423

depth of about 2B, which covers the region where most of the internal work is dissipated in a424

linear-elastic strip footing analysis. This explains why the sampling depth is most effective at425

D = B in such cases. On the other hand, with a relatively small value of θln,y (B > 2.75θln,y),426

the properties are highly variable, and the shallow region (e.g. a shallow, highly compressible427

layer) can become more influential to the overall footing settlement. Therefore, the optimal428

sampling depth is at D = 0.25B. In the transition where B < θln,y < 2.75B, the optimal429

sampling depth is at D = 0.5B. Moreover, Fig. 4 shows that the maximum reduction in430
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COVδ depends heavily on θln,y, ranging from around 20% when θln,y = 0.2B, up to 80%431

when θln,y = 2B. As θln,y increases, the conditioning power of the sample point becomes432

more significant, which means the regions around the sample are less uncertain, and hence433

more substantial reductions in COVδ can be achieved.434

As mentioned earlier, the curves shown in Fig. 4 are insensitive to the footing size, µE and435

COVE. It provides general guidelines on the optimal sampling depth and the corresponding436

percentage reduction in COVδ. Although the value of θln,y cannot be determined with a437

single sample at the site, it may be reasonably assumed based on understanding of the local438

geology, or published information from the literature (Phoon and Kulhawy 1999a; DeGroot439

1996). Also, Fig. 4 is established through linear-elastic analyses, and is therefore more440

relevant to footing designs with high factors of safety. In the following sections, plasticity441

will be introduced in the analyses as the footings are loaded to a factor of safety of 2.0.442

Footing on Tresca (cu) soil443

This section investigates the uncertainties in footing performance on spatially variable444

soils idealized as Tresca material. The footing size, model boundaries and spatial character-445

istics of soil Young’s modulus are identical to the base case in the previous section, but the446

Poisson’s ratio is set as 0.499 for total stress analyses. The undrained shear strength (cu) is447

perfectly correlated with the Young’s Modulus, with a constant E/cu ratio in the soil domain448

(i.e. COVcu =COVE = 0.15). Two sets of probabilistic analyses are performed with mean449

cu values (µcu) of 120 kPa and 200 kPa, resulting in E/cu ratios of 500 and 300, respectively.450

In both cases, the applied loading is assigned such that the ‘deterministic’ factor of safety,451

based on ultimate bearing capacity of qu = (2 + π)µcu, equals 2.0.452

Similar to the linear-elastic case, the significance of sampling depth D can be assessed by453

comparing the COVδ obtained from unconditioned and conditioned random field simulations.454

Fig. 5(a) presents the results for different B/θln,y ratios, which also shows that under the455

same deterministic FS, the reductions in COVδ is insensitive to the individual µcu value (or456

E/cu ratio) adopted. COVδ is, however, sensitive to the variations of cu. Fig. 5(b) shows457
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the analyses with COVcu =COVE = 0.4, and the resulting curves of COVδ reductions are458

substantially different. The significance of sample depth from 0.25B to B is greatly enhanced459

with a large variation in cu, while sample depth at 2B becomes even less important.460

The discrepancies between Fig. 5(a) and (b) may be explained by first considering a461

footing on uniform Tresca material, where the slip surface lies between the ground surface to462

depths of approximately 0.7B at bearing failure. Similarly for spatially variable soils, these463

depths are also observed to be more dominant as plasticity is developed. Fig. 6 shows the464

plastic zones developed under the footing in two example FLAC analyses with the same µcu.465

With a weaker shallow layer, plastic zones are concentrated near the ground surface, whereas466

the profile with stronger shallow layer is associated with only a small number of (or no) plastic467

zones. With a larger variation in cu, there is a higher probability of plasticity developing in468

the shallow layer even with a deterministic FS of 2.0, since this FS is evaluated only based469

on the mean shear strength. Therefore, the information of cu at shallow depths (0.25B to470

B) becomes more important, causing the corresponding curves to shift up in Fig. 5(b). On471

the contrary, the significance of deeper samples (2B) appears to diminish further.472

Footing on Coulomb (φ) soil473

In this section, the soil is modeled as a Coulomb material, with spatially varying friction474

angle (φ) and Young’s modulus (E), while ν = 0.3 and is a constant. Unlike the previous475

case for cu material, perfect correlation is rarely adopted between φ and E, meanwhile COVφ476

is typically smaller than COVE at the same site. Therefore, in the current study, cross-477

correlated, conditioned random fields (Eqs. (6) and (8)) are generated for E and φ, with478

cross-correlation coefficient ρφ−E = 0.5, COVφ = 0.05 and COVE = 0.15. φ is assumed to be479

lognormally distributed with mean value µφ = 35°. The footing size and model boundaries480

remain the same as previous cases. Fig. 7 shows an example of the residuals for simulated481

profiles of E and φ, where both profiles pass through the sample point at the designated482

depth (D/B = 0.5), with positive cross-correlation between the residuals.483

Adopting a similar strategy as before, Fig. 8 shows the reductions in COVδ for conditioned484
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random fields, at different sampling depths D and B/θln,y ratios. In all these analyses, the485

footing is loaded to a deterministic FS of 2.0, with qu = 0.5γBNγ (Nγ is the bearing capacity486

factor, taken as a function of µφ). One set of additional analyses is performed with µφ = 30°,487

and the results show that COVδ is insensitive to µφ under the same FS. While the general488

pattern of Fig. 5(a) and 8 are similar, the reduction in COVδ appear to be slightly lower for489

φ soil. Fig. 8 also includes analyses with ρφ−E = 1.0, and shows that for practical purposes,490

the influence of different ρφ−E values is minimal.491

In many practical situations, the mean shear strength parameters (µcu or µφ) of soils are492

not constant with depth. Such effects on footing response are also evaluated in this study, by493

adopting depth-dependent shear strength profiles in the probabilistic analyses. In general,494

the associated COVδ reductions are largely similar to those of constant µcu or µφ soils. More495

details are provided in Fig. S1 and Table S1 in the Supplemental Data File.496

PRACTICAL GUIDELINES ON ESTIMATION OF SITE-SPECIFIC COVδ497

Making use of findings from Figs. 4, 5 and 8, a set of design charts and guidelines498

are established for quick estimates of COVδ for strip footings, based on project-specific499

foundation geometry, depth of soil samples or in situ tests and spatial correlation features500

of the associated properties. The procedures can be described as follows:501

1. Deterministic estimates of footing settlement (δd) can be obtained by µcu or µφ and µE,502

using common design procedures.503

2. The mean settlement from probabilistic analyses (µδ) can be inferred from the ratio of504

µδ/δd. Based on analyses from this study, the ratio is approximately 1.02 for COVE = 0.15505

and 1.12 for COVE = 0.4, with details shown in Fig. S2 of the Supplemental Data File.506

3. The ‘unconditioned’ COVδ depends on the COVE, COVcu or COVφ for soils at the site,507

and can be estimated from Fig. 9, which is developed by compiling the results of uncon-508

ditioned random field analyses described earlier.509

4. With soil sample under the footing, the ‘conditioned’ COVδ can be estimated by inter-510

polation from Figs. 5, 8 and S1, since most footings are designed with FS> 2.0. The511
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standard deviation, or confidence level of δ can then be assessed with COVδ and µδ.512

An interesting feature of the significance of sampling can be revealed by comparing the513

current study with results by Al-Bittar and Soubra (2014), who conducted probabilistic514

analyses for unconditioned random fields underneath the footing. One of their cases involved515

θln,x = ∞, which is comparable to the current study. With COVE = 0.15 and B/θln,y ratio516

of 2, the COVδ obtained by Al-Bittar and Soubra (2014) and the current study are 8.16%517

and 8.22%, respectively, showing good comparisons between the two approaches. Further,518

the analyses by Al-Bittar and Soubra (2014) show that COVδ increases monotonically with519

θln,y, and the same trend is observed in the unconditioned random field analyses herein,520

as presented in Fig. 9. However, Fig. 9 also shows that under a conditioned random field521

(with COVcu =COVE = 0.15), not only is COVδ reduced, their trend is also substantial522

altered. With small B/θln,y ratio (i.e. large θln,y), the soil is more uniform and COVδ is523

greatly diminished through additional knowledge from the soil sample, while large B/θln,y524

ratios indicate more variable soils and the significance of the sample is less pronounced.525

Some limitations of the presented design charts and guidelines should be noted. They are526

developed based on random fields with either constant mean values of modulus and shear527

strength parameters, or monotonic variations of these parameters (Table S1). As with any528

design charts, they should be applied with proper engineering judgement, especially when:529

• the geological profiles display strong layering effects (e.g. presence of particularly weak530

seams), where geotechnical properties vary abruptly with depth; or531

• the trends of mean stiffness or shear strength parameters differ significantly from previous532

assumptions. For example, surface dessication often increases the overconsolidation ratio,533

and hence the shear strength, of clayey soils near the ground surface. In these cases, cu534

may reduce with depth near the surface but increase with depth beyond a certain point.535

Under these conditions, the COVδ estimates may be different from those presented in536

earlier sections. The design charts and guidelines may be treated as first-pass assessments537
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of the performance uncertainty, while detailed probabilistic analyses should be conducted by538

the proposed LHSD-PCE approach for more accurate estimates.539

CONCLUSION540

This paper presents the LHSD-PCE approach, which is capable of achieving similar accu-541

racy compared with raw Monte Carlo simulations, but with much smaller numbers of model542

simulations. The approach is formulated for random field analyses with cross-correlated543

parameters and conditioning that arises from availability of soil samples. Probabilistic anal-544

yses of slopes and strip footings are performed, the latter of which reveals the significance545

of various sampling depths beneath the footing. In most cases, sampling depths of 0.25B to546

1B are the most influential, depending on the spatial correlation features and adopted FS547

in deterministic analysis. The investigation also leads to development of a series of design548

charts and practical guidelines, which allow researchers and practitioners to quickly estimate549

the uncertainty of foundation performance without performing the probabilistic analyses.550
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APPENDIX I. Ψ FUNCTIONS IN POLYNOMIAL CHAOS EXPANSION554

Ψβ is a set of zero mean, independent (orthogonal) random polynomials constructed using555

ξi. For a second order PCE (p = 2), Ψβ are given by:556

For β = 0 : Ψ0 = 1557

For β = 1, 2, . . . ,M : Ψβ = ξi (i = 1, 2, . . . ,M)558

For β = M + 1, . . . , P − 1 : Ψβ = ξi1ξi2 − δi1i2 (i1 = 1, . . . ,M ; i2 = i1, . . . ,M) (16)559

where δi1i2 represents the Kronecker delta.560
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As an example, Table 4 is extracted from Ghanem and Spanos (1991), which shows the561

formulations when M = 3. In this study, only PCE of second order have been adopted. The562

construction of PCE for higher orders have been discussed by Al-Bittar and Soubra (2014).563

SUPPLEMENTAL DATA564

Effects of depth-dependent shear strength profiles on COVδ, and the ratio between prob-565

abilistic and deterministic settlement estimates, including Table S1 and Figs. S1 and S2, are566

available online in the ASCE Library (www.ascelibrary.org).567
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TABLE 1. Soil properties and spatial correlations in slope stability analyses

Property Adopted value

Shear modulus (G) 30 MPa

Poisson’s ratio (ν) 0.35

Unit weight (γ) 20 kN/m3

Cohesion - Mean (µc) 10 kPa

- Coefficient of variation (COVc) 0.3

Friction angle - Mean (µφ) 30°
- Coefficient of variation (COVφ) 0.2

Horizontal autocorrelation distance (θln,x) 20 m

Vertical autocorrelation distance (θln,y) 2 m

Cross-correlation coefficient (ρc−φ) -0.7, -0.6, -0.5, -0.4

-0.25, -0.1, 0
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TABLE 3. Strip footing geometries, stiffness, strength and variability parameters
adopted in LHSD-PCE analyses of constant µcu and µφ cases

Parameter Linear-elastic soil Tresca (cu) soil Coulomb (φ) soil

Footing width (B) 2 m, 4 m 2 m 2 m

Elasticity parameters µE 30 MPa, 60 MPa 60 MPa 60 MPa

(E, ν) COVE 0.15, 0.4 0.15, 0.4 0.15, 0.4

ν 0.3 0.499 0.3

Shear strength µcu - 120 kPa, 200 kPa -

parameters COVcu - 0.15, 0.4 -

(cu, φ) µφ - - 30°, 35°
COVφ - - 0.05

ρE−φ - - 0.5, 1
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TABLE 4. Polynomial chaoses (Ψβ) and variances with p = 2 and M = 3 (adapted
from Ghanem and Spanos 1991)

β
Order of the

Ψβ E[(Ψβ)2]
Polynomial Chaos, p

0 p = 0 1 1

1 p = 1 ξ1 1

2 ξ2 1

3 ξ3 1

4 p = 2 ξ21 − 1 2

5 ξ1ξ2 1

6 ξ1ξ3 1

7 ξ22 − 1 2

8 ξ2ξ3 1

9 ξ23 − 1 2
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According to Eq. (3), the rank statistic in the two dimensions are:

r
(1)

 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and r
(2)

 = {2, 6, 10, 5, 7, 3, 4, 9, 1, 8}  

FIG. 1. Conversion from original sample u to LHSD sample v (based on Packham and
Schmidt 2010)
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FIG. 2. Typical realizations of random fields of cohesion and friction angle, with cross-
correlation coefficient of −0.5
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distributions with depth
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