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Abstract—By scrutinizing local propagation characteristics of damage-modulated guided 

waves (GWs), an in-situ health diagnosis technique, targeting in-service engineering structures, 

is developed. This technique characterizes structural damage quantitatively, regardless of its 

quantity, and consequently evaluates structural integrity in a real-time manner. A 

self-contained system is accordingly configured to materialize this technique, which integrates 

modularized components through a PXI bus, for active GW generation, multi-channel data 

acquisition, central control, signal post-processing, and results presentation. Monitoring results 

are presented in pixelated images by virtue of a diagnostic imaging algorithm, facilitating 

comprehension of the overall structural health status intuitively, promptly, and automatically. 

In conjunction with the system, a sensing technique, based on a concept of “decentralized 

standard sensing”, is demonstrated, which has a capacity of constructing a sensor network with 

convenience and flexibility. An optimal benchmarking strategy in accordance with signal 

correlation is formulated to compensate for the adverse ambient influence (e.g., temperature 

fluctuation) in rugged measurement conditions. Experimental validation is carried out to verify 

the technique and the system by evaluating mock-up damage in planar and tubular structures 

quantitatively, showing superior detectability, sensitivity, and accuracy. Notably, its 

expandable nature allows the system to be tailor-made towards diverse real-world applications, 

and enhances the universality, flexibility and compatibility of the developed diagnosis 

technique. 

Index Terms—measurement units, waveguide theory, monitoring, nondestructive testing, 

signal processing 
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I.  INTRODUCTION 

Structural health monitoring (SHM) has been a subject of intensive scrutiny over the years, and 

continued endeavors in this connection have led to a diversity of technique deployments which 

are based on different principles and mechanisms. Of various SHM strategies, those exploiting 

guided waves (GWs) have exhibited prominent competency in striking a commendable 

compromise among resolution, practicality and detectability [1]–[7], by taking advantage of the 

merits of GWs such as the ability to quickly and three-dimensionally interrogate a relatively 

large area with only a few transducers, the capacity to access hidden components, and the high 

sensitivity to different types of damage, as well as the excellent excitability and receivability. 

GW-based SHM has now been on the verge of maturity for real-world applications [8], [9], 

with superior potential to provide continuous, automated online integrity evaluation for 

engineering assets and structures in a cost-effective manner. 

 

Even so, it is envisaged that the majority of the past and existing efforts towards development 

and implementation of GW-based SHM have cast particular focuses on mechanism study, 

methodology establishment, damage modeling, algorithm development, and periphery issues 

such as signal processing and sensor network optimization, with a nature of theoretical 

derivation, numerical simulation or experimental validation. For validation of a developed 

approach, isolated and incoherent measurement devices, such as function generator and 

oscilloscope, are usually employed for GW generation and acquisition. The demonstrated 

effectiveness is, in many cases, limited to simple cases in well-controlled laboratorial 

environment, in which the scales of specimens and the numbers of sensors are far fewer than 

those in reality. In the contrary, real-world engineering assets and structures to be monitored 

are often large in dimension, entailing a great number of sensors to cover an extended 

inspection region; measurement noise and uncertainties may corrupt captured GW signals 
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considerably, mask damage-associated signal features, and impose intricacy in signal 

interpretation; stringent constraints on the weight and volume penalties from instrumentation 

may be applied, especially under the circumstances in which aircraft or spacecraft structures 

are concerned. All of these have posed great challenges on development and deployment of 

application-oriented SHM methodologies. 

 

With recent technical advances and breakthroughs in sensor technology, instrumentation and 

measurement, manufacturing, electronic packaging and material sciences, the practicability of 

GW-based SHM has been consolidated substantially, reflected by the emergence of several 

well-packaged techniques and systems. As a pioneer dedicated to prompting GW-based SHM 

applications, Acellent Technologies Inc., in partnership with Stanford University, has patented 

a sensing technique called SMART Layer® (initials of Stanford Multi-Actuator-Receiver 

Transduction Layer) and an electronic diagnostic unit named SMART SuitcaseTM [10], [11]. 

This unit is capable of interacting with up to 64 networked piezoelectric elements allocated in 

SMART Layer® to generate and capture GW signals. Moreover, fiber-optic sensors can be 

integrated into SMART Layer® to receive GW signals generated by piezoelectric elements, 

thus forming a hybrid sensor network [12]. As a commercial product, the SMART SuitcaseTM, 

however, is not expandable by users. In contrast to this, an open data bus-driven SHM scanning 

platform has recently been developed [13]. As a key feature of the technique, the system can be 

customized with various modules based on needs. Making use of a tomography-based 

detection algorithm, Wavemaker™ Pipe Screening System (Guided Ultrasonics Ltd.) and 

Teletest® (Plant Integrity Ltd.) are two fully commercialized SHM systems for detecting 

damage in pipelines [14], [15]. These two systems are used with a circumferential transducer 

belt comprising a certain number of piezoelectric elements, to be clamped onto the pipe at one 

end of a section, for activating cylindrical GWs and subsequently collecting the echoed signals, 
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whereby damage along the pipeline can be located by calibrating the reflection coefficient of 

damage-scattered GWs. Both systems are able to quickly pinpoint external or internal 

corrosion, as well as axial and circumferential cracking, in a section of a pipeline with a length 

up to 25 m in both directions, regardless of the service conditions of the pipeline—buried, 

insulated, or filled with fluid [16]–[18]. 

 

Aimed at generating and acquiring GWs efficiently, microcontroller-based electronic devices 

have been developed. As a recent development trend, wireless-based data transmission is being 

increasingly introduced [19]. Representatively, PAMELA SHMTM [20] is a light and compact 

phased array transducer unit with twelve piezoelectric wafers. Notably, the acquired GW 

signals can be transmitted through an Ethernet or a wireless network embedded. A piezoelectric 

transducer has been integrated with a commercial transceiver module from ZMDI (Dresden 

Germany), to configure a sensor node [21]. This module features a microcontroller to handle 

arbitrary GW generation, analog-to-digital conversion, data acquisition, synchronization and 

filtering, with a wireless data transmission capacity. In another instance, transducers 

encompassing optical fibers have been invented for data transmission, as well as power supply, 

to monitor wind turbine blades, using either GWs or acoustic emission [22]. All of these 

systems and devices have provided significant advances for deploying desired yet practical 

GW-based SHM techniques, to accommodate diverse engineering applications. 

 

Oriented to real-world applications, an in-situ structural health diagnosis technique, targeting 

in-service engineering assets and structures, is established in this study, and deployed via a 

self-contained modularized system. The technique scrutinizes local propagation characteristics 

of damage-modulated GWs (e.g., wave scattering, mode conversion and energy dissipation), 

on which based the damage can be characterized quantitatively, and consequently the structural 
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integrity can be evaluated in a real-time manner. In conjunction with the use of an active sensor 

network based on a concept of “decentralized standard sensing”, the system integrates 

modularized units of active GW generation, multi-channel data acquisition, switch control, 

central control, post-processing and results presentation, through a PXI bus. As illustrated in 

[13] and [23], a PXI system exhibits demonstrated universality, flexibility and compatibility, 

making use of its expandable nature. Supplemented with a diagnostic imaging algorithm, the 

system presents monitoring results in pixelated images, facilitating intuitive, rapid, and 

automatic online SHM. Experimental validation is conducted to validate the technique and the 

system through identifying mock-up damage in typical engineering structures. 

 

This paper is organized as follows: Section 2 discusses the theory and principle of the proposed 

in-situ structural health diagnosis approach, as well as an optimal benchmarking strategy to 

compensate for ambient influence. Section 3 recapitulates the infrastructure of the configured 

system and its key modules; the concept of “decentralized standard sensing” is also recounted. 

Section 4 embraces a series of experimental validation. 

 

II.  THEORY AND PRINCIPLE 

A.  SHM Strategy based on Active GWs 

Distinct from bulky waves, GWs are of a highly dispersive and multimodal nature. Without 

loss of generality, consider a thin planar structure with a thickness of 2h (“thin” herein refers 

to the premise that the planar dimensions of the structure is far greater than that of its 

thickness; and in the meantime the wavelengths of the propagating GWs are of the same 

order of h), where GWs in the structure take the modality of Lamb waves. Theoretically, the 

dispersive and multimodal nature of Lamb waves can be ascertained by solving the 

Rayleigh–Lamb equations, which read, for symmetric and anti-symmetric modes, 
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respectively [3], as 

         
2

2 2 2cosh sinh 4 sinh cosh 0k q ph qh k pq ph qh   , (for symmetric modes)     (1a) 

          0sinhcosh4coshsinh 2222  qhphpqkqhphqk , (for anti-symmetric modes)   (1b) 

where 222

lkkp   and 222

tkkq  , where k signifies wavenumber, with kl and kt being the 

wavenumbers of the longitudinal and shear wave modes, respectively. Solutions to (1) depict a 

series of dispersion curves, manifested as different propagation velocities for different modes, 

subjected to the algebraic product of both the excitation frequency and h. As a consequence of 

wave dispersion and co-existence of multi-mode, the wave packet spreads out temporally and 

spatially, making the extraction and interpretation of GW signal features a highly challenging 

task. 

 

Targeting an in-situ health diagnosis approach for in-service engineering structures, an active 

GW-based SHM strategy is developed. The essence of the strategy embraces five cardinal steps 

in a hierarchical sequence, as illustrated schematically in Fig. 1: 

1) a certain number of GW transceivers (e.g., piezoelectric patches) are surface-mounted on 

or internally embedded in the structure to be monitored, configuring a distributed sensor 

network, with each of them generating GWs (probing GW signals) in turn while the rest 

acquiring GWs in the meantime. Signals with narrowband waveforms are usually excited 

at prudentially selected frequencies, so as to minimize the effect of wave dispersion. Mode 

selection techniques (e.g., mode tuning [24]) can further be employed to strengthen a 

desired wave mode dominant over the others, achieving optimized recognizability of the 

characteristic wave packet; 

2) the probing GW signals propagate omni-directionally in the structure. Interaction between 

the probing GW signals and structural damage, if any, leads to wave scattering and mode 

conversion; 
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3) appropriate signal processing treatments are applied to screen measurement noise, 

uncertainties and other interferences, and subsequently to extract GW features which are 

associated with damage and structural health status (e.g., time-of-flight (ToF) [25]–[27], 

wave reflection/transmission coefficients [28]–[30], energy dissipation [31], [32], mode 

conversion [33], [34], time reversibility [35], [36], signal correlation [37], and wave 

nonlinearities (e.g., high-order harmonic generation) [38]–[43]); 

4) extracted GW signal features via different sensing paths in the sensor network are fused for 

qualitative or quantitative damage assessment using pre-developed models and detection 

algorithms (i.e., the correlations between GW features and damage parameters); and 

5) based on Step (iv), the overall structural integrity is further evaluated. 

 

In the proposed SHM strategy, the detection algorithm addressed in Step (iv) lies on such a 

premise—a GW signal captured via a sensing path (called “current signal” hereinafter) on a 

damaged structure may deviate from an earlier signal collected via the same path when the 

structure is deemed “healthy” or pristine (comparatively named “baseline signal”). Notably, 

such a deviation is associated with the distance between the damage and the sensing path, and 

there are multiple ways to interpret this deviation and relate it to damage location. For example, 

in a sparse transducer network as illustrated in Fig. 2, deviations may appear in the form of 

damage-scattered wave packets in the current signal, because the damage may scatter incident 

waves from the actuator, which takes more time to arrive at the sensor than the direct arrival 

from the actuator to the sensor. By comparing the current signal with regard to its baseline and 

finding the ToF of this damage-scattered wave packet, and knowing the velocity of the probing 

waves, it is possible to locate the damage by plotting an elliptical or an ellipse-like locus with 

the two transceivers forming the sensing path being the foci. If more sensing paths are 

available, the location of the damage can be more accurately determined. In another method 
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using signal correlation, if the damage locates right on or close to a particular sensing path, the 

deviation can be significant, leading to a relatively weak correlation between the current and 

baseline signals; in contrast, the deviation would be trivial if the damage is far away from that 

sensing path, presenting a relatively strong correlation between two signals. Thus, both the ToF 

of damage-scattered waves and the correlation between current and baseline signals can serve 

as a quantitative indicator to damage location, with regard to a sensing path via which the 

signals are acquired. As demonstrated [3], these algorithms, along with several others listed in 

Step (iii), have their own advantages with respect to particular damage parameters, and can be 

independently or jointly employed for damage characterization, which are all considered in the 

development of a robust yet flexible SHM strategy in this study. 

 

B.  Compensation for Ambient Effects 

It is however envisaged that the accuracy and precision of the above proposed damage 

characterization algorithms may be confined during practical implementation. That is because 

the baseline signals are pre-acquired under specific conditions, which, owing to adverse 

ambient effects (e.g., temperature fluctuation), may vary in continuous measurement, therefore 

presenting discrepancies, more or less, in the signals captured via the same sensing path at 

different moments even in the absence of damage (i.e., outdated benchmarking). The 

discrepancy due to adverse ambient effects is different from damage-induced deviations in 

signals. 

 

To circumvent outdated benchmarking, the proposed SHM strategy is revamped compensating 

for possible ambient effects. After update, the compensated baseline signal bC is calculated as  

Cb mb                                                                 (2a) 

where 
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                                                (2b) 

In the above, bτ is a lagged version of the original baseline signal with respect to a which has 

counteracted the possible time shift due to ambient effects, with τ being the time lag at which 

the cross correlation of a and bτ reaches its maximum. Operation ,  denotes the correlation 

between two signals. m is a scaling factor, namely the ratio of ,a b  to ,b b  , which is 

solely attributed to ambient effects, so that the scaled, time-shifted baseline signal bC 

completely eliminates possible discrepancies due to ambient effects. Upon compensation, the 

baseline signal is paired to its corresponding current signal as if it were measured under a 

consistent condition. In this sense, any phase shift or amplitude change due to ambient effects, 

rather than damage, is eliminated in the benchmark. 

 

C.  Diagnostic Imaging 

In applications, it is always desirable to visualize structural damage in images such that 

comprehension of the overall structural integrity can be reached in a quick and, most 

importantly, intuitive manner. Methodologies leading to presentation of damage detection 

results in images are collectively called diagnostic imaging [32], [44]–[47], exemplified by 

tomography, thermography, and shearography. In these well-defined imaging techniques and 

tomography in particular, image construction is often at the expense of using a large number of 

distributed transceivers (or a few but manipulated at numerous spatial positions for acquisition 

of a large quantity of GW signals), and this might incur intensive labor and monetary cost. 

Dissimilar to these traditional approaches, a probability-based diagnostic imaging (PDI) is 

developed in this study, in conjunction with the use of a sparse active sensor network 

comprised of only a few spatially distributed sensors. The PDI attempts to describe a damage 

event in a two-dimensional binary color-scale image (each pixel corresponding exclusively to a 
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spatial point in the inspected area of the structure), and the value borne by a pixel (called field 

value) is linked to the probability of damage occurrence at the spatial point corresponding to 

that pixel. Rather than using deterministic parameters to define a damage event (e.g., 

coordinates of damage location, or size of damage), PDI presents diagnostic results in terms of 

probability of damage presence, appropriately addressing the underlying substance of “damage 

prediction” – an exercise of “predicting” an event with uncertainties and therefore the results 

should ideally be delivered in accordance with “probability”. 

 

In PDI, depending on the algorithms used for signal feature extraction and damage localization, 

the field value at each pixel is defined differently. By way of illustration, consider a sensor 

network with n sensing paths operated in pulse-echo mode. The ToF-based algorithm is applied 

with the field value S at pixel (i, j) defined as 

 
       

2 2 2 2

1

,

a a s s
n

r r r r

r r

r

i f x j f y i f x j f y
S i j A D

v

 
           

  
 
 

 ,     (3) 

where, for the rth sensing path as illustrated in Fig. 2, Ar is a weight coefficient assigned to the 

path for imaging, Dr(t) is the damage-scattered signal as a function of time, obtained by taking 

the energy/amplitude profile of the difference between the current and compensated baseline 

signals (using a time-frequency analysis such as wavelet transform). ( a

rx , a

ry ) and ( s

rx , s

ry ) are 

the coordinates of the actuator and sensor forming the rth path respectively. The term inside the 

parentheses calculates the time it takes for probing waves to travel from the actuator to the pixel 

(i, j), and then to the sensor (assuming the wave is always scattered by possible damage there). 

f is the resolution of the constructed diagnostic image such that (i·f, j·f) specifies the location of 

the pixel with units. In order to convert S (i, j) into a meaningful probability value, the field 

values can then be normalized by their global maximum. If multiple damage-scattered wave 

packets are identifiable in the current signal, it is possible to locate multiple defects using this 
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algorithm with reasonably high accuracy (assuming each defect contributes one unique 

scattered wave packet). This capability is explicitly illustrated by the developed technique and 

system in the experiment later (detailed in Section IV.A and Fig. 12(b)), where two defects are 

delineated simultaneously in the diagnostic image using Eq. (3), including their respective 

locations, shapes and sizes. 

 

In the meantime, if pitch-catch mode is used instead, the field value at each pixel is defined by 

mapping the level of difference between the current and baseline signals from each sensing 

path to that pixel, as 
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 ,    (4) 

where Br is a weight coefficient for recuperating a GW signal by offsetting its attenuation in 

magnitude over propagation distance of the rth path, and dr is the difference between the current 

signal and the compensated baseline signal, or alternatively, one minus the correlation 

coefficient between the two signals, either of which can reflect the correlation between the 

current and the compensated baseline signals, upon eliminating all adverse ambient effects.  

 

It is noteworthy that a typical image constructed using (4) often shows a narrow band of 

elevated field values (high probability of damage presence) along a sensing path, if part of the 

damage is on the path or very close to it, whereas pixels in other regions of the image have very 

low field values. This means the field value defined by (4) is highly inert to distant damage. 

Such a trait creates the possibility of detecting multi-damage within the inspection region using 

different paths in pitch-catch mode as well, because a particular sensing path can only sense 

damage in its vicinity. However, the resolution of detecting multiple defects using (4) might not 
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be as good as that of the ToF algorithm, given the sparse sensor layout, thus requiring larger 

separation between two damage spots.  

 

III.  MODULARIZED SYSTEM FOR IMPLEMENTATION 

A.  Key Modules and Communication Interfaces 

In prevailing studies with experimental nature, isolated and incoherent measurement devices 

such as ultrasonic probes, arbitrary function generators and oscilloscopes, are usually 

employed for GW generation and acquisition, and signal features are identified by the 

individuals—a procedure involving subjective discretion. Applicability of developed 

approaches is often limited to simple structures in well-controlled laboratorial environment. To 

implement the proposed SHM strategy towards engineering assets and structures with 

substantive dimensions, a modularized system is configured by virtue of a virtual instrument 

technique. As illuminated in Fig. 3, the core framework of the self-contained system consists of 

five pivotal modules: (i) active sensor network, (ii) GW generation (with power amplifier), (iii) 

multi-channel data acquisition (with signal conditioner), (iv) switch control, and (v) central 

control and post-processing. Five modules are integrated through a PXI (PCI extension for 

instrument) bus, for mutual communication and data synchronism via their respective 

interfaces: 

 

1) Active Sensor Network based on “Decentralized Standard Sensing”: a single sensor, 

regardless of its type, acquires signals fairly locally and likely provides inadequate information 

to depict the overall structural integrity. A number of spatially distributed sensors are 

networked to configure a sensor network. By “communicating” with each other cooperatively, 

all networked sensors holistically and collectively perceive changes in the structure, meanwhile 

rendering redundancy of data acquisition. In this study, an active sensor network technique is 
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developed in accordance with a concept of “decentralized standard sensing” (DSS). DSS 

addresses a twofold feature: mutual independence of individual sensors in perceiving GW 

signals including subsequent signal processing; and a standardized sensor formality for 

cost-effective, yet flexible deployment of sensor networks, especially for large-scale structures, 

so that deliberate positioning of each sensor can be avoided to save time and efforts. Inspired by 

DSS, a standardized sensing element (SSE) is developed and fabricated by immobilizing a 

circular miniaturized piezoelectric lead zirconate titanate (PZT) wafer (with a customizable 

radius between 3 and 15 mm) onto a polyimide film via a printed circuit, as seen in Fig. 4. 

Diverse sensor networks can be constructed conveniently and quickly, by flexibly allocating a 

certain number of SSEs at strategic locations. Either surface-mounted onto or embedded into a 

structure, a SSE is managed to have a thickness of only 0.2 mm, contributing little weight and 

volume penalty and therefore minimizing the impact of sensor integration on the integrity of 

the host structure. Being a standalone functional unit, a SSE can be independently prefabricated, 

stored, and integrated into a sensor network. During signal processing, a SSE is independent of 

the rest in the network at-a-time, opposing against traditional network processing algorithms 

involving batch processing of measurements collected from multiple sensors (a process 

otherwise known as “centralized sensing and processing”), emphasizing a decentralized signal 

processing architecture. The decentralized sensing and processing present remarkable 

advantages compared with a centralized one, particularly given partial of the sensor network 

becomes mal-functional. This endows the developed diagnosis method with enhanced 

robustness when manipulated in rugged measurement conditions. 

 

2) Active GW Generation Module: with a communication interface shown in Fig. 5(a), this 

module comprises a NI® PXI-5412 arbitrary waveform generator (AWG) with a sampling rate 

of up to 100 MS/s, and a linear power amplifier. It generates tailor-made probing GWs in 
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narrowband waveforms at an arbitrary frequency in a range of 0–2.5 MHz. A narrowband 

waveform confines the incident wave energy around a particular frequency. The 

AWG-generated probing GW signals are amplified by the linear power amplifier before 

applied on each SSE. 

 

3) Multi-channel Data Acquisition (DAQ) Module: with a communication interface displayed 

in Fig. 5(b), this module consists of a NI® PXI-5105 digitizer and a charge amplifier. It offers 

eight independent channels with a sampling rate of up to 60 MHz per channel simultaneously. 

One of the eight channels is pre-set as the default trigger channel with customizable trigger 

settings, to be used for sampling synchronism. Frequency-domain analysis function and 

low-pass filters are integrated in this module for preliminary signal analysis. 

 

4) Switch Control Module: with a user interface in Fig. 5(c), the core component of this module 

is a NI® PXI-2529 high-density matrix switch. It selects SSEs in a sensor network, to form 

desired sensing paths. A relay operating time between 1 and 3.4 ms of this module enables the 

system to catch instantaneous GW signals. Each switch array in the module provides a capacity 

of linking up to 32 SSEs to the GW generation module and the DAQ module. On top of that, 

this module also switches the role of a SSE between active GW actuator and passive GW 

receiver ˗ once a SSE functions as a GW actuator, the rest SSEs would act as sensors to capture 

GW signals. Considering that the number of SSE in a practical sensor network can be much 

greater than that of the signal acquisition channels that the DAQ module can offer, a time 

division multiplexing method is applied to this switch module, requesting only two acquisition 

channels at-a-time. 

 

5) Central Control and Post-processing Module: all the functional modules briefed in the 

above are commanded via a central control module, which additionally provides a series of 
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integrated digital signal processing (DSP) to be applied on captured GW signals including 

Hilbert transform, correlation calculation, time reversal, and time-frequency analysis 

(short-time Fourier transform, Wigner-Ville distribution and wavelet transform). These 

integrated signal processing options can be recalled to minimize the interference from 

measurement noise and uncertainties, enhance signal-to-noise ratio, extract essential yet 

concise GW characteristics, and fuse information from the whole sensor network. Consequent 

to signal processing, this module further constructs diagnostic images using the algorithm 

defined by (3). By way of illustration, displayed in Fig. 5(d) is a typical diagnostic image in 

which the diagnostic results are displayed three-dimensionally, with the color scale calibrating 

the possibility of damage presence at each pixel. The central control and post-processing is 

supported by an in-house software package programmed on NI® LabVIEW® platform. The 

software package is managed in a three-layer architecture, as illuminated in Fig. 6: the 

man-machine interface (MMI) to deal with all system inputs and deliver diagnostic results 

(alarming if damage detected), the physical layer to drive all involved hardware in the system, 

and the application layer to support all module interfaces. Via this package, the five cardinal 

steps enumerated in Section 2.1 are fulfilled for real-time health diagnosis and monitoring. 

 

B.  System Integration 

All modules are integrated on a PXI bus platform (NI® PXIe-1071) to configure a compact 

diagnosis system, and encapsulated by a specifically designed aluminum alloy framework, as 

seen in Fig. 7. In contrast to traditional, separated lab devices used for similar purposes, the 

integration of multiple functionalities into a single unit enables the system to be deployed in 

more practical scenarios while achieving high compatibility among individual functional 

modules. As another key feature of this integrated system, its expandable and open nature, at 

the same time, allows the system to be tailor-made towards diverse real-world applications, 



17 

thus enhancing the universality and flexibility of the approach in engineering practices. More 

modules can be integrated into the system for further development and expansion, depending 

on the monitoring tasks and the scales of the structures to be monitored. Benefiting from the 

standard data bus and compatible communication interfaces, the system can also be 

conveniently integrated with other commercially available measurement systems. 

 

Following an initial self-diagnosis for each module, the system identifies the coordinates of 

every SSE in the sensor network, creates sensing paths using switch control module, and 

carries out GW generation and acquisition automatically, and finally delivers diagnostic results. 

Such a diagnosis exercise is performed repeatedly for a continuous health monitoring, with an 

adjustable interval between two repeats (default value: 20 seconds). A schematic flowchart 

illuminating the system operation is shown in Fig. 8. 

 

IV.  EXPERIMENTAL VALIDATION 

In order to systematically validate the developed diagnosis technique and the configured 

system, a series of experiments is conducted, by characterizing mono- and multi-mock-up 

damage in typical engineering structures including planar and tubular structures. The mock-up 

damage (added mass) was affixed to the structures through a firm adhesive layer, to guarantee 

phenomenal GW scattering. For the applicability of the developed approach in engineering 

practices, one can refer to another work of the authors [6], in which this developed system was 

tailored for health monitoring and damage detection of bogie structures of high-speed trains 

operated along the Beijing-Shanghai high-speed railway. 
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A.  Planar Structure 

An aluminum plate (6061-T6, density: 2711 kg/m3, and Young’s modulus: 71 GPa), measuring 

600 mm × 600 mm × 2 mm, was surface-affixed with an active sensor network comprising 

eight SSEs as seen in Fig. 9(a) (coordinates of individual SSEs in the network are listed in 

Table 1(a)), whereby 28 monitoring paths (in the formality of pulse-echo or pitch-catch) were 

in principle created. The sensor network was then instrumented with the system. Hanning 

window-modulated five-peak sinusoidal tone bursts at a central frequency of 200 kHz were 

generated by the GW generation module, and applied in turn on each SSE upon amplification 

to 60 V, to excite the fundamental symmetric Lamb wave mode as the probing GW signal. This 

particular narrowband excitation form and its frequency were selected after frequency tuning 

(by consulting wave dispersion curves in the plate), aiming to reduce the dispersion effect and 

enhance the recognizability of individual wave packets as mentioned earlier. A typical GW 

signal captured by the DAQ module is shown in Fig. 9(b). 

 

First, the scenario of mono-damage was examined in which the mock-up damage was located 

at (-75 mm, 10 mm) (origin of the coordinate system at the center of the plate). Interestingly, as 

the bonding strength between the mock-up damage and the structure increased with gradual 

solidification of the adhesive layer over time, the damage-scattered GW waves were observed 

to be intensified progressively, presenting continuous enhancement in detection accuracy, as 

seen in Fig. 10(a). An adjustable threshold was further applied on all the field values to 

strengthen the identification result, which was a preset percentage of the maximum field value 

of the image, and any field value that was less than the threshold was forced to approach zero. 

With such a threshold, shown in Figs. 10(b) and 10(c) are the ultimate diagnostic image 

presented in two  and three dimensions, respectively, using all pulse-echo sensing paths 

rendered by the sensor network. Although these two types of presentation does not differ from 
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each other for plates, the visualization in three dimensions illustrates the system’s capability for 

damage presentation for 3D structures, which is discussed in the next section. As can be seen, 

the ultimate diagnostic images are capable of characterizing the damage successfully, including 

its location, size and approximate shape, well matching the reality. Furthermore, as the 

configured sensor network with eight SSEs provides both pulse-echo and pitch-catch sensing 

paths, the diagnostic results using all pitch-catch sensing paths in the same sensor network are 

shown in Fig. 11 for comparison, showing similar detection accuracy comparable with that 

when pulse-echo sensing was used (Fig. 10). 

 

This validation can be taken a step further by examining multiple mock-up damage spots, 

which were positioned at (10 mm, 75 mm) and (10 mm, -75 mm) simultaneously. The 

diagnostic results using pulse-echo measurement are exhibited in Fig. 12(a). Compared with 

the mono-damage scenario, two damage spots caused more intricate wave scattering, leading to 

intensified reflections from structural boundaries and creating pseudo-damage nearby. 

Nevertheless, the system was still able to quickly and accurately characterize the two damage 

spots with pulse-echo sensing paths, as shown in Fig. 12(b), when the threshold was applied.  It 

is noteworthy that, using the pulse-echo measurement, the minimum separation between two 

detectable defects, in theory, equals the algebraic product of the wave velocity and the 

minimum time separation discernible between two identifiable damage-scattered wave packets 

(where each defect scatters a unique packet). Conservatively, one can take the entire width of 

the excited tone burses as the minimum time separation (i.e., the two packets are just 

completely separated in time). In this specific scenario, given a 5-cycle excitation signal at 200 

kHz, the minimum separation between two defects is circa 130 mm or even smaller if a 

pulse-echo measurement used.  
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For further discussion, diagnostic results using pitch-catch measurement are also shown in Fig. 

13. Although changes in the area where the two mock-up defects were adhered can still be 

observed, the diagnosis is less efficient in delineating exactly the multi-damage with the current 

number of SSE. Such inefficiency can be attributed to the higher requirement of minimum 

separation between multiple defects in pitch-catch mode. This has entailed the use of both 

pulse-echo and pitch-catch sensing paths, to fully reap their respective merits. 

 

B.  Tubular Structure 

A tubular structure (stainless steel 304, density:  8030 kg/m3, and Young’s modulus: 193 GPa), 

1000 mm in length, 108 mm in radius and 4 mm in thickness, was surface-affixed with an 

active sensor network comprising twelve SSEs, as shown in Fig. 14 (Table I(b) for respective 

coordinates), which offer 66 monitoring paths in principle. Similar to the previous case, after 

frequency tuning, Hanning window-modulated five-peak sinusoidal tone bursts at a central 

frequency of 320 kHz were generated to excite the fundamental symmetric Lamb wave mode 

as the probing signal. A mock-up damage spot was adhered on the outer surface of the tube at 

(-90 mm, 5 mm) (origin of the coordinate system at the center of the unfolded tube). The 

diagnostic results are presented two- and three-dimensionally in Fig. 15, using pitch-catch 

sensing paths. With pitch-catch sensing paths only, the ultimate images clearly and accurately 

highlight the location, size and approximate shape of the damage (note for convenience of 

results presentation, the tube is unfolded with regard to its axis for two-dimensional 

presentation). 

 

V.  CONCLUDING REMARKS 

An in-situ health diagnosis approach is developed for in-service engineering structures by 

exploring local propagation characteristics of actively generated GWs scattered by damage. 
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Supported by in-house software and used in conjunction with an active sensor network based 

on a concept of DSS, this technique is deployed via a self-contained system with integrated 

modules including active GW generation, multi-channel DAQ, switch control, central control 

and post-processing (signal processing and interpretation, information fusion, and results 

presentation). Adverse ambient influence (e.g., temperature fluctuation) during continuous 

monitoring is compensated by an optimal benchmarking algorithm. The system was then 

validated experimentally, by characterizing structural damage and evaluating the overall 

structural health status intuitively, promptly, and automatically. The open platform of the 

system based on a PXI bus endows the system with enhanced universality, flexibility, and 

compatibility, allowing users to expand the system to accommodate diverse real-world 

applications. 
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