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ABSTRACT

Despite recent efforts to characterize the uncertainties involved with geological profiles

and soil and rock properties, there has been limited study on their spatial correlations and

how such features may be included in the engineering decision-making process. This paper

presents an integrated framework for geostatisical analyses, which incorporates the Restricted

Maximum Likelihood (REML) method with the Matérn autocovariance model. Statistical

tests are conducted including those for data normality, constant variance and outliers, which

ensure the fundamental assumptions of REML are not violated in the residual analyses of

site data, meanwhile offering simple checks for potential errors in the dataset. The proposed

approach also allows quantification of uncertainties in the subsurface profiles at the unsampled

locations. The approach is illustrated through investigations on spatial correlation features

of geological profiles at two project sites in Hong Kong. The numbers of irregularly-spaced

boreholes vary from 150 to 350 in the two cases, and the large volume of data enables the

variations in rockhead levels to be studied through the proposed framework. In addition, the

existence of geological faults in one of the sites is found to significantly affect the spatial

variability of rockhead level, as indicated by the reduced scales of fluctuation and spatial

dependence, which corresponds to increased uncertainty in areas intersected by faults.

Keywords: Site investigation, Restricted Maximum Likelihood method, Matérn covariance

structure, Residual analysis, Rockhead variation
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INTRODUCTION1

Uncertainties in soil profiles and their properties are often the cause of geotechnical2

problems encountered during construction. For example, Clayton (2001) conducted a survey3

of 28 construction projects in the United Kingdom, which revealed that many geotechnical4

problems encountered during construction stemmed from uncertainties regarding boundaries5

of the soil strata (22%) and properties of the geo-materials (20%). However, studies on the6

spatial variability or correlation of soil properties have been hampered by the lack of data.7

Christian and Baecher (2011) stated that the “unresolved problems in geotechnical risk and8

reliability” included uncertainties in the variability and spatial correlations of geotechnical9

properties.10

DeGroot (1996) compiled the results from a number of earlier studies, and reported11

the correlation distances of geotechnical properties including undrained shear strengths12

and CPT cone tip resistance. Phoon and Kulhawy (1999a,b) also reported the scales of13

fluctuation of various soil properties, without describing the details of spatial correlation14

structure. The correlation structure of geotechnical data is sometimes analyzed through the15

autocorrelation (Vanmarcke 1977; DeGroot and Baecher 1993) or by geostatistics (Matheron16

1971), as illustrated in the works by Soulié et al. (1990), Chiasson et al. (1995) and Wang17

and Chiasson (2006), etc. In these analyses, it is common for researchers to assume certain18

functional form for the autocorrelation structure (e.g., Gaussian or spherical), and then19

estimate the parameters for the assumed function (Elkateb et al. 2003; Phoon et al. 2004;20

Stuedlein et al. 2012; Firouzianbandpey et al. 2014). However, the validity of such assumption21

have not been discussed in detail. Alternatively, Bayes’ Theorem can be applied to determine22

the most probable correlation function of the spatial data through weighting their posterior23

probabilities, as illustrated by Cao and Wang (2013, 2014) and Wang et al. (2010, 2013, 2014,24

2015, 2016), who adopted the approach in characterizing underground soil stratification and25

variability of geotechnical properties.26

Contrary to the Bayesian approach, this paper presents an integrated framework which27
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ensures the available geotechnical data is best utilized in rigorous statistical analyses. For28

example, Phoon et al. (2003) stated that stationarity is an important prerequisite for29

geostatistical analyses, and proposed the use of Modified Bartlett test statistic as a basis30

to reject the null hypothesis of stationarity. However, many previous studies did not verify31

stationarity in the data. Also, a constant mean for the residuals is a necessary condition for32

stationarity, and certain fixed polynomial order is usually assumed in the detrending process33

(Stuedlein et al. 2012). For example, Liu and Leung (2015) presented the preliminary analyses34

of the spatial data of geological profiles assuming quadratic and cubic trend structures, but35

stationarity assumption was not confirmed in the analyses.36

The current study proposes a new integrated framework and procedures that incorporate37

data transform and rigorous residual analyses to ensure stationarity assumptions are satisfied,38

thereby enhancing the reliability of residual analysis. The framework also enables rational39

detrending process with the optimal polynomial order, and detection of outliers in the40

dataset which are not considered in previous attempts to characterize ground variability. The41

Matérn function (Matérn 1960) is adopted to model the autocorrelation structures, owing42

to the flexibility of its functional form. Parameters of the function are optimized using a43

heuristic algorithm, known as the Differential Evolution (Storn and Price 1997), to maximize44

the log-likelihood value under the Restricted Maximum Likelihood (REML) method. The45

proposed framework can be used to evaluate the spatial variations of soil and rock strata,46

obtaining parameters such as the spatial dependence and scale of fluctuation using site-specific47

information. To illustrate the capabilities of the approach, information on the engineering48

rockhead level (moderately weathered granite) from irregularly-spaced boreholes at two sites49

in Hong Kong is analyzed to reveal their spatial variability characteristics. This study also50

discusses the impacts of the existence of geologic features, such as faults, on the variability of51

geological profiles.52

PROPOSED FRAMEWORK FOR RESIDUAL ANALYSIS53

Spatial random variables are often expressed as a combination of fixed effects and random54
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effects, also known as the deterministic trend structure and the residual effects. With x55

representing the spatial coordinates of sampled points, a general linear mixed regression56

model for spatial data, z(x), can be formulated by:57

z(x) = Xβ + ε (1)

where Xβ represents the large scale trend, with X being the deterministic component matrix58

that contains information on spatial coordinates. β is the vector of regression coefficients59

according to the corresponding trend structure (linear, quadratic, cubic, etc.). The residual,60

ε, is a combination of the correlation structure (with smooth scale variation of variance σ2
e)61

and a white noise process (with variance σ2
n), since white noise effects are assumed not to62

correlate with distance. The covariance matrix of ε is related to the correlation structure, R,63

by:64

V = Var(ε) = σ2
eR + σ2

nI = (σ2
e + σ2

n) [sR + (1− s)I]

where 0 ≤ s =
σ2
e

σ2
e + σ2

n

≤ 1 (2)

In Eq. (2), I is the identity matrix, and s is the spatial dependence which incorporates65

the nugget effect (due to white noise) into the covariance model. Previously, the correlation66

structure, i.e., individual components of R, is often assumed to follow a certain fixed function,67

such as the Gaussian, exponential or spherical function (DeGroot and Baecher 1993). In the68

current study, in order to allow flexibility in the functional form of R, the Matérn function is69

adopted as follows (Matérn 1960):70

R(hij) =
1

2ν−1Γ(ν)

(
hij
r

)ν
Kν

(
hij
r

)
(3)

where hij is the separation distance between points i and j, ν is a smoothness parameter71

ranging from 0 to infinity, r is the range parameter, Γ is the gamma function, and Kν72
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represents the modified Bessel function of the second kind with order ν.73

The Matérn function is a generalized function with its shape controlled by the smoothness74

parameter. For example, it corresponds to the exponential function when ν = 0.5, and is75

equivalent to the Gaussian function when ν approaches infinity (Minasny and McBratney76

2005). The scale of fluctuation, δ, of the Matérn function is determined by both ν and r. In77

this paper, it is taken as the separation distance where the autocorrelation, sR(hij), equals78

0.05s (Elkateb et al. 2003; Rue and Held 2005), and Fig. 1 shows the relationship between ν,79

r and δ accordingly. Also, it should be noted that some researchers proposed a different form80

for the Matérn function (Stein 1999), but the resulting estimates of scales of fluctuation are81

essentially the same.82

The framework proposed in this study consists of three key components, namely REML83

analysis with Box-Cox transformation, trend structure determination and statistical tests84

for residuals. These components, particularly the latter two, have not been considered in85

previous studies such as Haskard (2007) or existing software such as ArcGIS and geoR. Fig. 286

shows a flowchart of the framework, and the three components are discussed in the following87

sections.88

Restricted Maximum Likelihood (REML)89

To ensure stationarity of the spatial data, it is important to estimate and remove the90

trend (or fixed effects, Xβ), so that the spatial correlation features are not masked by this91

deterministic component. In some previous studies, the trend component is determined92

by regression analysis using linear or polynomial functions (Dasaka and Zhang 2012; Lark93

et al. 2006), and the residuals are then analysed and presented using method of moments94

or semivariograms. However, the semivariance estimates are not unique when the samples95

are irregularly spaced, as the semivariance can be affected by subjective decisions on the96

lag size (bin size). Also, the subsequent semivariograms are estimated through a subjective97

curve-fitting process.98

In the current study, the Restricted Maximum Likelihood (REML) method is applied to99
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simultaneously determine the trend coefficients and estimate the autocorrelation properties100

of residuals. The method does not require decisions on the bin size so it can be applied to101

irregularly-spaced sampling points. An important assumption in the development of REML102

methods is that the data follows a normal distribution, and that the variance of residuals103

is constant throughout the domain. These assumptions are often made, but rarely verified,104

in most previous studies. In the current work, the Box-Cox transformation (Box and Cox105

1964) is performed on the raw dataset, z∗, to ensure these assumptions are satisfied. The106

transformed dataset, z, can be represented by the following equation:107

zi =


(z∗i + λ2)λ1 − 1

λ1(gm(z∗ + λ))(λ1−1)
if λ1 6= 0

(gm(z∗ + λ)) log (z∗i + λ2) if λ1 = 0

(4)

where λ is a vector with all the terms equal to λ2, which is a parameter used to ensure108

z∗i + λ2 > 0. λ1 is estimated by minimizing the residual sum of squares (RSS) of z, and gm(·)109

denotes the geometric mean of the vector z∗ + λ.110

Details of the REML approach have been described in Cressie and Lahiri (1996) and Lark111

and Cullis (2004). In short, the autocorrelation structure can be obtained by maximizing the112

following log-likelihood function with respect to θ:113

L(θ|y) = −n− p
2

log (2π)− 1

2
log |V| − 1

2
log |W| − 1

2
yTV−1Qy (5)

where W = XTV−1X and Q = I−XW−1XTV−1. θ represents the unknown quantities in the114

autocorrelation structure, i.e., s, ν and r in Eqs. (2) and (3). In Eq. (5), n is the number of data115

points, and p is the number of coefficients in the trend structure. y = (I-X(XTX)−1XT )z,116

which is the matrix of filtered dataset with the trend components filtered out. Therefore, the117

covariance estimates of REML are independent of the trend estimates.118

The determination of θ can be treated as an optimization problem, aiming to obtain the119

set of {s, ν, r} parameters that maximize the log-likelihood function. In the current work,120
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this is achieved using the Differential Evolution algorithm (Storn and Price 1997). This is121

conceptually similar to other evolutionary algorithms, which is not prone to converging at122

local maxima, and has recently been applied in a number of engineering problems.123

Once the covariance structure is determined, the trend coefficients, and subsequently the124

predicted residuals, can be estimated using generalized least squares (GLS):125

β̂ = (XV−1XT )−1XV−1z (6)

126

ε̂ = z −Xβ̂ (7)

The predictions at unsampled locations, ẑ(x0), and the corresponding prediction variance,127

σ2
z(x0), can be estimated based on the Best Linear Unbiased Prediction (BLUP) technique128

(Atkinson et al. 2008; Santra et al. 2012):129

ẑ(x0) = X0
T β̂ + KTV−1ε̂ (8)

130

σ2
z(x0) = diag(K0 −KTV−1K + MT (XV−1XT )−1M) (9)

where X0 is the deterministic component matrix of prediction. K represents the covari-131

ance matrix between observations and predictions, i.e., K = cov{z(x), z(x0)}, K0 =132

cov{z(x0), z(x0)T} and M = X0 −XV−1K.133

It should be noted that the predictions and associated variance evaluated by Eqs. (8) and134

(9) correspond to values in the ‘transformed’ space, under Box-Cox transformation. While135

ẑ(x0) can be back-transformed to the original space through Eq. (4), back-transformation of136

the prediction variance can be approximated by multiplying σ2
z(x0) with a factor Φ (Cressie137

1993). For unsampled location i:138

Φi = (λ1gm(z)λ1−1(λ1gm(z)λ1−1(X0β̂)i + 1)
1
λ1

−1
)2 (10)
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As will be shown in the following case study, the distributions of prediction variances in139

the transformed and back-transformed (original) spaces are broadly similar.140

Regression diagnostics for REML141

Normality142

The Box-Cox transformation (Eq. (4)) minimizes the recovered residuals but does not143

guarantee normality – the approach assumes that the transformed data has the highest144

likelihood to be normally distributed when RSS value of z is minimized. It is therefore145

necessary to perform diagnostics for normality to ensure the assumption of REML is not146

violated.147

Traditional diagnostics for normal errors in regression typically utilize ordinary residuals,148

based on uncorrelated linear mixed model. The residuals after GLS process, however,149

are correlated spatially, according to the autocovariance model effects. Therefore, the150

GLS residuals need to be converted to recovered residuals before executing the normality151

diagnostics. The current study applied the Kolomogrov-Smirnov (KS) test to diagnose the152

normality of residuals (Smirnov 1939; Jensen and Ramirez 1999). The KS test evaluates153

the maximum deviation between the cumulative distribution of the recovered residuals and154

that of a theoretical normal distribution. The PN value is defined as the tail probability for155

this deviation to be small enough for the data to be considered normally distributed. In the156

current study, a PN value exceeding 0.05 is considered to satisfy the normality assumption.157

Constant variance158

After removing the deterministic trend component (Xβ), the residuals (ε) are assumed to159

be stationary in the REML formulation, which implies a constant variance across the domain.160

However, the validity of this assumption has rarely been verified in previous applications of161

geostatistical methods.162

The Breusch-Pagan Test (Breusch and Pagan 1979) is frequently used in statistics to163

verify the constant variance assumption. During the test, a regression is conducted on the164

squared residuals with the explanatory variables (i.e. across the spatial coordinates in this165
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case), and it checks whether a trend exists in the variance. The null hypothesis, H0, is defined166

by all regression coefficients of the variances being zero. The PC value is defined as the tail167

probability for the regression coefficients to be considered insignificant. In the current study,168

a PC value exceeding 0.05 corresponds to acceptance of H0, and the data is considered to169

satisfy the constant variance assumption.170

The original Breusch-Pagan test is based on residuals obtained from ordinary least squares171

(OLS), where spatial correlation is absent. To apply this test to the general linear mixed172

model, the spatial correlation effect has to be removed from the residuals. This is achieved in173

the current study by multiplying the negative square root of the covariance matrix to the174

GLS residuals:175

ε∗ = V− 1
2 ε̂ = P O− 1

2 PT ε̂ (11)

where ε∗ is Pearson residuals for constant variance test, ε̂ is predicted residuals calculated by176

Eq. (7), P is the square matrix containing the eigenvectors of covariance matrix V, and O is177

the diagonal matrix containing the eigenvalues of V. The Breusch-Pagan test is then applied178

to ε∗ of the uncorrelated model.179

Detection of potential outliers180

Outliers are data points that vary significantly from the neighboring points in the spatial181

context, and can be indications of peculiarities or errors in the dataset which influence182

geostatistical analyses. For example, Lark (2000) stated that the maximum likelihood183

method was susceptible to asymmetry caused by outliers. There are multiple methods for184

detection of outliers, and this is achieved by two approaches in the current study. The first185

approach examines the distribution of residuals (ε̂) in the spatial domain, and the data points186

with residuals exceeding ±1.96 times their standard deviation (
√
σ2
e + σ2

n) are identified as187

potential outliers. This represents the 95% inter-percentile range assuming the residuals188

follow a normal distribution, and those outside this range may be considered ‘extreme’ values189

of deviations from the trend.190
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The second approach evaluates the Cook’s distance (Cook 1977) of each data point, which191

is an indicator of its influence to regression results. The Cook’s distance is based on the192

difference between regression coefficients estimated with all the observations, i.e., β̂; and193

coefficients estimated without a particular observation i, i.e., β̂(i) (Haslett and Hayes 1998).194

This difference is often termed DFBETA, and is referred to as D herein for simplicity.195

A large value of Dji suggests that the i th data point is influential in determining the j th196

regression coefficient, which may indicate an outlying data point. Dji can be estimated by:197

Dji =
β̂j − β̂j(i)√

Var(β̂)jj

=
Bji ε̃i√
Var(β̂)jj

where B = W−1XTV−1

ε̃ = [I diag(E)]−1 E z

E = V−1 −V−1X W−1XTV−1 (12)

where diag(E) is a vector consisting of the diagonal components of E. Dji measures the198

change of the j th individual regression coefficient when the i th observation is deleted, scaled199

by the variance of β̂, which is Var(β̂) = W−1, and the subscript jj indicates the j th diagonal200

element of Var(β̂). Therefore, the Di vector summarizes the changes in all regression201

coefficients resulting from deleting the ith observation.202

The Cook’s distance is defined as the average of the squared Dji components, which is203

proportional to the squared length of the Di vector. For example, the Cook’s distance for204

the i th observation point can be expressed as:205

Ci =
1

p

p∑
j=1

D2
ji =

1

p

p∑
j=1

 β̂j − β̂j(i)√
Var(β̂)jj

2

=
(β̂ − β̂(i))T (β̂ − β̂(i))

p Var(β̂)jj
(13)

where p is the number of regression coefficients. Belsley et al. (2005) suggested 2/
√
n as the206

cutoff value for Dji for outlier diagnostics. Correspondingly, the cutoff value for Ci can be207

taken as (2/
√
n)2 = 4/n (Nieuwenhuis et al. 2012). In other words, an observation point i is208
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classified as an outlier if Ci > 4/n.209

The necessity and implementation of the two approaches for outlier detection will be210

illustrated through the NTK case study described in later sections.211

Determination of polynomial order of trend structure212

The REML approach, together with GLS, allow determination of the trend coefficients β̂.213

However, the polynomial order of the trend structure (i.e. the size of β̂ vector) is often a214

subjective decision of the analyst. A higher order trend will fit the data better and hence215

reduce the residuals and their variance. On the other hand, an ever-increasing trend flexibility216

may lead to overfitting of the data, which means random noise and errors are included in the217

statistical model, sacrificing its predictive power. Previous researchers have proposed the218

Akaike’s information criterion (AIC) (Akaike 1974) and the Bayesian information criterion219

(BIC) (Schwarz 1978) as a means for model selection, both of which compare the changes220

in log-likelihood value with respect to the number of associated model parameters. More221

recently, Beck (2010) proposed the Bayesian system identification approach which evaluates222

the expected information gain for individual model class. In the current study, the proposed223

framework incorporates objective criteria to determine the optimal polynomial order for the224

trend structure, balancing the needs for regression diagnostics, the significance of the high225

order coefficients and the predictive power of the model.226

Significance of trend coefficients227

The current work adopts statistical hypothesis testing to assess the significance of trend228

coefficients, in order to avoid overfitting of data. The basic idea is to test whether the highest229

order trend coefficients are statistically different from zero, by calculating the Wald statistics230

which are tested against the F-distribution. Two competing hypotheses are defined as: null231

hypothesis H0 – all highest order regression coefficients are zero; and alternative hypothesis232

H1 – at least one regression coefficient is nonzero, so that H1 is the complement of H0. A233

PF value can be computed by comparing the Wald statistics to a F (m,n-p) distribution,234

where m is the number of the highest order coefficients. The highest order coefficients are235
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statistically significant with the acceptance of H1, indicated by a PF value smaller than 0.05.236

Before executing statistical hypothesis testing, it is important to ensure the data follow a237

normal distribution, hence the necessity of the above-mentioned regression diagnostics.238

Leave-one-out cross validation239

The predictive power of a model can be evaluated through assessing the accuracy of its240

estimates by the “leave-one-out cross validation” method, which is performed by removing one241

observation at one time from the dataset, and then predicting its value using the remaining242

data (Haslett and Hayes 1998; Haslett 1999). During this process, the trend coefficients243

(β) and variance parameters (σ2
e + σ2

n) may change with removal of each data point. The244

spatial correlation model, however, is assumed to remain constant, so there is no attempt to245

re-evaluate the correlation structure using REML. In this study, the cross validation scores,246

Scv, is formulated based on the stacked vector for prediction errors, ε̃, as below:247

Scv =
(ε̃)T ε̃

n
(14)

Scv defined herein can be interpreted as the average of squared prediction error at each248

borehole location under leave-one-out-cross validation. The advantage of this approach is249

that it does not require data partitioning, and hence minimizes perturbation to the data.250

It therefore provides an asymptotically unbiased estimate of the prediction errors, and is251

attractive for the purposes of model selection (Cawley and Talbot 2003).252

IMPLEMENTATION OF THE INTEGRATED FRAMEWORK253

Incorporating the components discussed in previous sections, the proposed framework254

ensures that the assumptions of REML are satisfied in geostatistical analyses of the data.255

Meanwhile, it allows objective determination of the order of trend polynomial and identification256

of potential outliers in the dataset. The predictive power of the model is also assessed through257

the leave-one-out cross validation method. While Fig. 2 shows the flowchart outlining the258

framework, its implementation can be summarised as follows:259
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1. The analysis starts with a linear trend structure (order i = 1). The autocovariance structure260

(V) and trend coefficients (β̂) are estimated by REML (with Box-Cox transformation)261

and GLS. Normality and constant variance checks are performed on the residuals.262

2. A polynomial order i is rejected if either the normality or constant variance conditions is263

violated. The analysis is then repeated with a (i + 1)th order polynomial for the trend264

structure (i = i+ 1).265

3. If both normality and constant variance conditions are satisfied for the residuals, i becomes266

a potential candidate. The significance of trend coefficients, PF (i), and cross validation267

scores, Scv(i), will be evaluated for polynomial order i.268

4. Meanwhile, the same analyses will be performed also on (i + 1)th order polynomial to269

obtain PF (i+ 1) and Scv(i+ 1). If PF (i+ 1) indicates non-significant polynomial order or270

Scv(i) < Scv(i+ 1), then i is the optimal order for the trend structure.271

5. If PF (i+ 1) indicates a significant polynomial order, with Scv(i) > Scv(i+ 1) and normality272

and constant variance conditions are satisfied, then order i+ 1 replaces i as the potential273

candidate (i = i+ 1), and Step (4) onwards will be repeated.274

6. Once the optimal polynomial order is determined for the trend structure, the V and β̂275

estimates become final. Outliers in the dataset are also determined.276

CASE STUDIES277

Study regions and site descriptions278

The proposed integrated framework is applied to analyze the spatial variability of engi-279

neering rockhead levels at two project sites in Hong Kong, namely the Ngau Tau Kok (NTK)280

site and the Cheung Wang Estate (CWE) site. Borehole information at the two sites was281

obtained from geotechnical investigation reports of previous government projects in the areas,282

which were archived in the Civil Engineering Library maintained by the Civil Engineering and283

Development Department of the Hong Kong Government. For both cases, the boreholes are284

irregularly spaced across the site, and the focus of the analysis is on the level of moderately285
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decomposed granite, referred to as Grade III material (GEO 1988) and commonly taken as286

the rockhead level in the local practice.287

Table 1 summarizes the sampling information for the two cases, including the areas of288

the project sites and the sample sizes (i.e., number of boreholes). In addition, previous289

geotechnical investigation had revealed the existence of a geological fault across the site of290

CWE. To understand the effects of faults on spatial variability features, two sub-regional291

blocks were extracted from CWE, with the fault crossing Block 1 but not Block 2. Details of292

the analyses will be presented in the following sections where the benefits of the proposed293

framework are also illustrated. It should be noted that the proposed approach will not replace294

conventional geotechnical investigation techniques in identifying rockhead level or existence of295

fault zones. However, it provides ‘added value’ to existing borehole information by revealing296

the spatial characteristics and uncertainties regarding these geological features.297

NTK study site298

The NTK site is located in the eastern part of Hong Kong, where data from 150 boreholes299

have been collected over an area of 650 m × 450 m. Spatial variations on the level of300

engineering bedrock, i.e., Grade III moderately weathered granite at the site, are analyzed301

using the proposed framework outlined in previous sections. To illustrate the importance of302

residual diagnostics, and to elucidate the effects of assumptions on trend structures, Table 2303

compares the analyses with different polynomial orders for the trend, with and without the304

Box-Cox transformation. It should be noted that the proposed framework already incorporates305

the selection criteria without the need to individually examine and compare each separate306

analysis. The main purpose of Table 2 is to shed insights through the comparisons and allow307

meaningful discussions on the significance of the proposed framework.308

For illustration purposes, two series of analyses were performed, the first with Box-Cox309

transformation of the raw data of rockhead level, and the second without. For each series,310

the order of trend structure was varied from i = 1 (linear trend) to i = 4 (quartic trend) in311

the REML analyses. Normality and constant variance tests were then conducted based on312
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the recovered residuals and Pearson residuals, respectively, with PN and PC values exceeding313

0.05 indicating satisfaction of these conditions, as described earlier.314

Table 2 shows that normality condition is in fact satisfied in all cases. However, without315

Box-Cox transformation of the data, the condition of constant variance is not satisfied with316

any trend structure. In other words, the REML (or other geostatistical) analyses are not317

representative in those cases as the variance (σ2
e + σ2

n) changes across various locations of the318

domain. This issue will be discussed again in later sections on trend structure selection.319

According to the proposed framework, the cubic trend structure (i = 3) was adopted320

since its residuals satisfied the normality and constant variance tests, and it produced better321

prediction than the 4th order polynomial based on the leave-one-out cross validation scores.322

With this optimal trend structure, the autocovariance structure for rockhead variations is323

estimated by REML and shown in Fig. 3(b). The estimates by method of moments are324

also provided for comparison purposes, and the two methods produce similar results of325

autocovariance structures.326

Using Eqs. (8) and (9), predictions can be made at unsampled locations and the cor-327

responding prediction variances (uncertainties) can be quantified, as shown in Fig. 3(c).328

The prediction variance (σ2
z) may be interpreted as the confidence level in the estimated329

rockhead levels at unsampled locations, which varies spatially across the site according to the330

autocorrelation structure and locations of existing boreholes. It contains contributions from331

both uncertainties in deterministic trend structure and the corresponding residual effects. In332

general, the prediction variance is low near sampled locations and increases with distance333

away from boreholes. Such contour can provide guidance to determine the locations of334

additional sampling points (if necessary), in order to achieve a specific level of confidence in335

the predictions.336

To illustrate the validity of σ2
z estimates, the leave-one-out cross validation method is again337

applied, where the prediction error (ε̃) at location x is normalized by σz(x), estimated with338

z(x) removed from the dataset. Fig. 3(d) shows the histogram of such normalized prediction339
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errors for all observation points, which broadly follows the standard normal distribution340

curve. This implies that σ2
z provides reasonable estimates on the prediction uncertainties at341

unsampled locations. While Figs. 3(c) and (d) show the results in the transformed space,342

similar patterns are observed for the back-transformed prediction variance by Eq. (10), and343

the associated normalized prediction errors, as presented in Figs. 3(e) and (f).344

Influence of trend structure determination345

Table 2 shows that the autocorrelation structure is highly influenced by the polynomial346

order of the trend structure. In the current study, the optimal trend is selected with347

considerations on the residual diagnostics, significance of trend coefficients (PF ), and leave-348

one-out cross validation scores (Scv), which shows whether over-fitting of the data has349

occurred.350

In general, a high order trend tends to match the existing observation points (z) more351

closely, therefore reducing the magnitudes of residuals (ε) and their variances. Closer352

examination on Table 2 also reveals that higher polynomial orders are associated with smaller353

scales of fluctuation (δ) and spatial dependence values (s). This is because with an increasing354

polynomial order i, the trend structure becomes more flexible and the effective range of355

residuals becomes shorter. Also, with increasing i, the smooth scale variation (σ2
e) is reduced356

due to better ‘fitting’ of the existing data. Meanwhile, the white noise effects (σ2
n) are357

also reduced since high order polynomials tend to ‘absorb’ some of the random noise in358

measurements. As σ2
e decreases at a greater rate than σ2

n, the s value also reduces with359

increasing i.360

To further illustrate the importance of residual diagnostics in trend order determination,361

Fig. 4 compares the diagnostics of recovered residuals under linear and cubic trends. The362

histograms of recovered residuals show that normality conditions are satisfied for both trend363

orders. With a sufficient sample size, the complexity of trend structure does not seem to364

affect the normality of residuals.365

On the contrary, constant variance tests based on the two trend structures produce366
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different results, with the cubic trend–but not the linear trend–satisfying constant variance367

conditions. Plots of Pearson residuals along the north-south (N-S) and east-west (E-W)368

directions are shown in Fig. 4. With a linear trend structure, the magnitudes of residuals369

gradually diverge along both the N-S and E-W directions, implying that a potential trend370

is still hidden in the residuals which masks the correlation features of the data, even after371

filtering the linear trend component. On the other hand, the Pearson residuals under cubic372

trend structure uniformly distribute around the zero axis along the two directions, indicating373

that no significant trend exists among the residuals. The REML analyses are therefore374

representative since σ2
e + σ2

n can be considered as constant throughout the study domain or375

project site.376

Potential outliers at NTK site377

In the current study, outliers are defined as the data points with large deviations from378

the trend (based on their residuals), and those that significantly influence the trend structure379

(based on their Cook’s distances). By implementing the proposed integrated framework, eight380

outliers are identified with the optimal (cubic) trend structure.381

Figs. 5(a) and (b) show the locations of outliers identified by the two approaches. Four382

outliers (No. 1 − 4) are identified based on the Cook’s distances, and Fig. 5(c) shows the383

magnitudes of the residuals for two of them, compared to their neighboring points. When384

examining the residuals, significant differences can be observed between the outliers and385

their neighbors, which explain their substantial influence on the regression coefficients and386

hence large values of Cook’s distances. However, such influence may not be obvious by387

only examining their corresponding raw data values. This shows that although outliers are388

associated with significantly different residuals, they may not be easily detected when the389

sample size is large, such as in the NTK site with 150 borehole records.390

A potential deficiency of this approach is that the Cook’s distances can be affected by the391

leverage effect: a data point near the edge of the sampling domain tends to demonstrate a392

higher influence on the regression coefficients than those near the central region. To supplement393
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the Cook’s distance method, the residual values are also examined in the current study,394

and those exceeding ±1.96 times their standard deviation are also considered as potential395

outliers (Fig. 5(d)), as they represent ‘extreme’ values outside the 95% inter-percentile range396

(assuming normal distribution). It should be noted that among those data points, two clusters397

are identified at NTK, where groups of boreholes spatially close to each other have similar398

values of residuals. They may be manifestations of local rockhead variations that are not399

captured by the large-scale trend, instead of results of measurement errors. The proposed400

framework thereby allows such details to be revealed so that engineers and geologists can401

focus on a small number of potential outliers to ensure accuracy and consistency of the402

dataset.403

In addition, Table 2 shows that the number of potential outliers are affected by the404

adopted trend structure. In general, with a higher order polynomial, the trend involves405

greater flexibility and hence a larger number of ‘influential’ data points may be identified406

as outliers. In many cases, the data points identified as outliers using the low order trend407

are also outliers under higher order trend structure. The current approach is established to408

automatically identify these statistical influential or extreme points, so they can be reviewed409

again by engineers or geologists to determine whether they indeed contain measurement410

errors or mistakes.411

CWE study site and effects of faults412

The second study site is located at the Cheung Wang Estate (CWE) on the Tsing Yi413

Island in Hong Kong. A total number of 321 borehole records were obtained within an414

area of 800 m × 500 m, and the variations of Grade III moderately weathered granite was415

studied. At the CWE site, a geological fault has been reported from previous geotechnical416

investigation. Effects of the fault on the spatial variability of rockhead level are also evaluated417

in the current study.418

Geological faults often form discontinuities in the rockhead level, which may have significant419

implications on the design and construction of an engineering project. As shown in Fig. 6(a)420
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and (c), one NW-SE fault cuts through the western part of the CWE site. To understand421

the influence of the fault, two sub-regional blocks were extracted from the CWE site, with422

the same sample domain size and similar sampling densities. The borehole locations and423

partition scheme of the blocks are also illustrated in Fig. 6(a). Block 1 is designed to be424

intersected by the fault, while Block 2 is deemed to be free of its influence.425

Table 3 compares the spatial variation features of the two blocks. At the CWE study site,426

the fault is associated with reductions in scale of fluctuation (δ) (about 50%) and in spatial427

dependence (s) (about 20%) , which imply higher levels of uncertainties in the rockhead428

levels. The differences in the two autocorrelation structures and prediction variances are429

also shown in Figs. 6(b) and (d), respectively. Intuitively, the existence of geological faults430

or other discontinuities at the site will increase the uncertainty in the subsurface profiles.431

Analyses by the proposed framework provide a quantitative evaluation of such effects, which432

may then be coupled with risk analyses by reliability methods.433

DISCUSSIONS434

The framework proposed in the current study ensures that spatial correlation analyses435

performed on geotechnical data satisfy the fundamental assumptions of REML and are436

statistical sound. A key feature of the framework is the methodological and objective437

determination of the optimal trend structure. As shown in Table 2 and discussed by Lark438

and Webster (2006), residual analyses can be substantially affected by the choice of trend439

structure. The proposed framework involves holistic considerations on the significance of440

trend coefficients and variance distributions of the residuals, which lead to rational decisions441

on the trend component in the analyses.442

The proposed framework also offers simple and automatic detection of potential outliers443

or errors in the dataset, through the Cook’s distances of the data points and distribution444

of their residuals. Automatic detection of outliers is especially beneficial in the case of a445

large dataset, where anomalies may not be easily identified manually. The potential outliers446

identified using the current approach can be reviewed again by engineers or geologists, who447
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can then determine whether they indeed involve measurement errors or human mistakes.448

Using the BLUP technique (Eqs. (8)) and (9)), contours of the prediction variances can449

be produced to quantify the level of confidence in predictions at unsampled locations. This450

can form a useful guidance to determine necessity and/or locations of additional sampling.451

In addition, the predicted properties and prediction variance from BLUP can be used to452

construct a conditional random field (Li et al. 2016; Lo and Leung 2016), to be adopted453

for probabilistic geotechnical models by Random Finite Element Method (RFEM)(Fenton454

and Griffiths 2003; Griffiths et al. 2009). By quantifying the spatial uncertainty around the455

observed data points, predictions of the probabilistic models can be more precise than those456

using an unconditional random field.457

It should be noted that the presented case studies involve large numbers of boreholes458

(150 to 350), and the current study aims to fully utilize such information to demonstrate459

the proposed framework and reveal spatial correlation features of the rockhead profile. This,460

however, does not imply that the approach is only applicable to such sample sizes. While461

any statistical analysis will improve with a large sample size, the proposed method will462

also produce more robust results in smaller dataset than traditional method of moments or463

maximum likelihood methods, due to the rigorous consideration of stationarity requirements,464

detrending and detection of outliers.465

To illustrate the robustness of the proposed framework, Block 1 of the CWE case is taken466

as an example where 100 subsets are extracted, each containing 50% of data points randomly467

chosen from the original dataset. These 100 subsets are analysed using both the proposed468

framework and the approach in Liu and Leung (2015), which consists of REML but not the469

other key features of this study such as data transformation, regression diagnostics, trend470

order determination and outlier detection. Fig. 7 compares the statistics of the two series471

of analyses, and shows that the proposed framework produces closer estimates of spatial472

dependence and scale of fluctuation compared to results from the complete dataset, and are473

associated with smaller variances which indicate more robust analyses. In addition, the cross474
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validation scores are generally lower under the proposed framework. Fig. 7(d) also shows475

an analysis on one subset using the method of moments with different lag sizes. Traditional476

method of moments does not include simultaneous determination of the large scale trend, so477

in this case the trend is adopted from REML analysis. Even so, estimates by the method of478

moments are shown to be dependent on subjective decisions on lag size and curve-fitting for479

the spatial correlation parameters.480

CONCLUSION481

This paper presents an integrated framework for geostatistical analyses, incorporating the482

REML method with the Matérn autocovariance model, to estimate the spatial correlation483

features of rockhead levels. The approach is a robust technique which includes efficient484

determination of optimal trend structure and identification of spatial outliers, meanwhile485

ensuring the basic premises of REML, including assumptions on normality and constant486

variance of residuals, are satisfied across the study region.487

The framework is demonstrated through analyses on the spatial variations of Grade III488

rockhead levels using borehole data from two sites in Hong Kong. As illustrated in the CWE489

case, geological faults can have significant influences on the spatial variability features of490

rockhead levels. In particular, the scale of fluctuation and spatial dependence reduce with491

existence of faults, which corresponds to higher spatial uncertainty. It is recommended that492

sub-regional analyses be performed separately whenever local geological features are identified493

at the project site.494
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TABLE 1. Domain scales and sample sizes for two cases

Case study Area of domain Sample size

NTK 650 m × 450 m 150

CWE
Block 1 (with fault) 360 m × 400 m 172

Block 2 (no fault) 360 m × 400 m 149
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TABLE 2. Comparisons of spatial correlation analyses for NTK site

Trend Spatial Scale of Constant Normality Trend No. of Cross

Case order dependence fluctua- variance test coefficients potential validation

(i) (s) tion (δ) test (PC) (PN ) test (PF ) outliers score (Scv)

1 0.93 308 m 0.0010(N) 0.3041(Y) 0.0183(Y) 1 27.49

NTK 2 0.89 227 m 0.0102(N) 0.7123(Y) 0.2226(N) 4 28.42

(transformed) 3 0.75 125 m 0.2700(Y) 0.7250(Y) 2.71×10−6(Y) 8 31.95

4 0.58 70 m 0.5995(Y) 0.3459(Y) 3.30×10−10(Y) 10 33.50

1 0.94 273 m 0.0005(N) 0.5540(Y) 0.0088(Y) 5 28.48

NTK 2 0.90 215 m 0.0008(N) 0.5908(Y) 0.2384 (N) 8 29.29

(raw data) 3 0.74 128 m 0.00001(N) 0.3063(Y) 8.17×10−6(Y) 10 32.99

4 0.65 96 m 0.0004(N) 0.2752(Y) 2.11×10−6(Y) 15 35.44
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TABLE 3. Effects of geological faults on spatial correlation features

CWE sub- Optimal Scale of Spatial

regional block trend order fluctuation (δ) dependence (s)

Block 1 (with fault) 2 (quadratic) 74 m 0.53

Block 2 (no fault) 2 (quadratic) 143 m 0.64
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FIG. 3. (a) Rockhead level; (b) Autocovariance structure; (c,d) Prediction variance
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