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Abstract: The last two decades have seen a significant amount of interest in bilingual
language learning and processing. A number of computational models have also been
developed to account for bilingualism, with varying degrees of success. In this article,
we first briefly introduce the significance of computational approaches to bilingual lan-
guage learning, along with a discussion of the major contributions of current models,
their implications, and their limitations. We show that the current models have con-
tributed to progress in understanding the bilingual mind, but significant gaps exist. We
advocate a new research agenda integrating progress across different disciplines, such
as computational neuroscience, natural language processing, and first language acquisi-
tion, to construct a pluralist computational account that combines high-level cognitive
theories and neurobiological foundations for bilingual language learning. We outline
the contributions and promises of this interdisciplinary approach in which we view
bilingual language learning as a dynamic, interactive, and developmental process.
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Introduction

Computational methods and models have been widely used to study all natural
phenomena and human behaviors, from modeling climate change to simulat-
ing brain interactions. Language learning, as a hallmark of human ability, has
been considered as an important computational process, and therefore the un-
derstanding of this topic will also necessarily benefit from computational mod-
eling (Meltzoff et al., 2009). A large amount of computational work has accu-
mulated in the last decades, including the study of infant speech perception,
first language (L1) learning, second language (L2) representation, and bilin-
gual processing (e.g., Dijkstra et al., 2019; Li & Farkas, 2002; Saffran et al.,
1996; Xu & Tenenbaum, 2007). The computational methodologies used have
ranged from statistical learning to connectionist modeling to network analy-
ses. The recent upsurge of interest in artificial intelligence, machine learning,
and natural language processing (NLP) will only further accelerate the devel-
opment and application of computational approaches to language learning re-
search. In this article, we provide a synthesis of computational approaches with
specific reference to bilingual language learning1 and point to some exciting
new directions that the field may pursue in future research.

The Importance of Computational Modeling
The cognitive revolution that started in the 1950s was based on both tech-
nological development in computing machines and theoretical thinking about
how the human mind might work like a computer (for historic reviews, see H.
Gardner, 1987; Leahey, 2004). The key to using the computer as a metaphor
for the human mind lies in the ability of computing systems to process in-
formation (i.e., take input and use it to generate desired output). Since those
beginnings, computational approaches and methodologies have flourished in
all areas of investigation into human cognition, including the study of human
language.

A number of important features make computational models particularly
relevant in the context of language learning. First, “verbal models” that are
based on box-and-arrow representations in classical cognitive psychology the-
ories remain highly abstract and often do not lead to mechanistic accounts of
the underlying processes or principles for a given behavior (Kriegeskorte &
Douglas, 2018). Computational models force researchers to be explicit and
specific about their research, including basic concepts, assumptions, and hy-
potheses that must be implementable in quantitative and algorithmic terms
(e.g., “similarity” of two concepts and “association” between the concepts can
be measured through vector spaces). Such specificity allows researchers to test
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theoretical hypotheses more rigorously and produce predictions more explic-
itly, satisfying the replicability criterion of the scientific process (Li, 2013).

Second, computational models allow researchers to explore cognitive pro-
cesses through manipulating and testing specific variables while holding other
potentially confounding variables constant, when the natural environment of
concern may be too complex or confounding to allow for multiple variables
of interest to be separated in a systematic way. In many cases it is difficult or
impossible to directly manipulate these variables in empirical studies through
parametric variations (e.g., to orthogonally cross all levels of one variable with
all levels of another variable). In the case of language learning, for example,
it is neither practical nor feasible to control the amount of input that a learner
should receive at any given time when the researcher wants to examine the ef-
fect of input quantity only, whereas it is easy to vary and control the input to
be provided to a computational model for training, in terms of the amount of
words and sentences, as well as the characteristics of such input (e.g., length,
type, and token frequency). As another example for bilingual language learn-
ing, age of acquisition (AoA) is often confounded with L2 proficiency; for
example, in the well-known study by Kim et al. (1997), the early learners
were also more proficient in their L2, thus causing doubt about the authors’
claim that early learners were using different neural systems from late learn-
ers to handle their two languages. Computational models can systematically
tease apart AoA and proficiency, for example, by introducing the L2 at differ-
ent points in the model’s learning of the L1, having the model learn different
amount of L1 and L2, or having the model start with the L1 and L2 at dif-
ferent stages but training them with equal amount of data (Li, 2009; see later
discussion). Thus, computational modeling allows researchers to manipulate
variables of interest more flexibly and to study their interactions in a more
systematic way, making it a particularly useful tool for researchers to study
bilingual language learning with regard to manipulating the two languages in
terms of L2 versus L1 onset time, amount of L2 versus L1 input, the order of
learning in the two languages, and the frequency of items in each language.

Third, and perhaps more important for cognitive scientists, computational
approaches allow us to explain the observed outcome through probing into the
underlying processes that lead to the outcome. Researchers using verbal mod-
els of cognition often look at the relations between input (e.g., target material)
and output (e.g., outcome of learning) and draw inferences about the inter-
nal processes involved; by contrast, computational models enable the internal
representations to be examined directly, and across different stages (a “lifes-
pan”) of information processing and learning. For example, Elman (1990) used
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Li and Xu Computational Modeling

Figure 1 How computational models can shed light on cognitive theories, with an
example of using DevLex-II (Li et al., 2007; see also Figure 2 and discussion in a
later section) to model the competition model of bilingual language learning (Bates &
MacWhinney, 1982).

hierarchical clustering analysis to probe into the underlying structure that an
artificial neural network develops in the internal representation, showing that
categories such as nouns, verbs, and adjectives emerge at certain stages of
training of the network. In the case of learning an L2, understanding the inter-
nal processes is even more challenging because of the complex interplay be-
tween the two languages and the impossibility of systematically manipulating
and controlling for all potentially confounding variables. Computational mod-
els and newer methods of data analysis make accessible and visible the internal
representation and its gradual change and development (see further discussion
in later sections). Figure 1 provides an overview of the value of computational
models in shedding light on cognitive theories.

What Makes a Good Computational Model?
There are a number of criteria with which we can assess the success, utility, and
power of computational models. The following discussion addresses several
that are particularly relevant to language learning, although these are by no
means exhaustive.

Validity
A computational model for language should first have validity. This means that
the model itself should be tractable and psychologically plausible. The model
should be configured such that the relevant parameters can be correspondingly
adjusted, the size of the model is appropriate and relevant to the task, the train-
ing of the model is measurable in terms of success or failure, and the amount
of training time is as practicable as possible, when measured against the pa-
rameter and size of the model, along with considerations of the researcher’s
own timeframe and resources. Further, the model should be configured as
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psychologically reasonable for human behavior and to perform tasks that can
be matched to real learning tasks facing human learners. The validity is also
related to the degree to which the model architecture and training can make
direct contact with real-world situations in terms of the method, specific mate-
rial, and manner in which people learn and use languages, which brings us to
the next criterion.

Contact with Real Language
In many computational models, especially earlier ones, researchers use highly
simplified or “synthetic” patterns to represent linguistic material. In the so-
called “localist” representation, one unit or dimension in a vector can be flipped
on, representing one sound or one word from a language, such that “01” can
be used to represent one sound or one word and “10” another sound or word.
This method contrasts with “distributed” representation in computational mod-
els, in which multiple units can be turned on (e.g., “001” can represent one
word and “101” another word). For example, French (1998) used a local-
ist representation to represent 24 words (12 for English and 12 for French),
such that the vector contains 24 units and only one unit is turned on to indi-
cate one of the 24 words (e.g., BOY = 100000000000000000000000, GIRL
= 010000000000000000000000, MAN = 001000000000000000000000). Al-
though such representations are easy to construct and can greatly simplify the
modeling process and interpretation, it raises the issue of how accurately such
input represents the complexity of language properties. We will provide exam-
ples of how computational modelers have attempted to solve this problem in
the section on current models.

Interpretability
Simply simulating a behavior and reproducing the observed pattern from em-
pirical studies is not the goal of modern computational modeling. Researchers
need to understand the empirical patterns that have been identified and the hy-
potheses that have been formulated in the literature, and they should not be
satisfied with a model’s ability to simply reproduce the data or fit the data. As
discussed previously, computational models aim at revealing the underlying
cognitive processes and neural mechanisms that may lead to observable pat-
terns. Thus, our modeling results must be interpretable within the framework
of cognitive and linguistic theories, mechanisms, and principles. An impor-
tant point to bear in mind in this regard is that computational models need
both to be informed by empirical data and also to inform empirical studies.
To achieve this goal, researchers should make predictions as to what the data

21 Language Learning 73:S2, December 2023, pp. 17–64
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would look like under one hypothesis versus another, thereby effectively eval-
uating competing hypotheses by systematically varying the parameters, size,
configuration, and architecture of the model.

Predictive Power
In addition to the ability to describe the phenomenon in question, computa-
tional models should also be able to explain the underlying processes, prin-
ciples, and mechanisms that lead to the observed input–output relations, and
further to predict, based on the descriptions and explanations, what might occur
in behavior and cognition downstream. For example, Frost et al. (2019) argued
that statistical learning models should attempt to describe, explain, and predict
empirical phenomena based on the interaction between learning/processing
principles and statistical properties. Thus, a good model should be evaluated
not only against empirical data (i.e., on how well it displays patterns observed
in empirical studies), but also against its ability to generate testable predic-
tions and new ideas, thereby inspiring future research. It has long been argued
that good computational models should not merely simulate empirical data but
should go beyond this to guide the design of experiments to collect empiri-
cal data (Li, 2013; McClelland, 2009; see further discussion of top-down vs.
bottom-up approaches below). There will be some cases where empirical data
have not been obtained or cannot be obtained; for example, one cannot go
back to a patient’s prelesion condition, and computational models may be es-
pecially helpful in creating and simulating such conditions, thereby informing
both the design and conceptualization of an empirical study. If computational
modeling of bilingualism can achieve this predictive power by testing different
conditions and generating different hypotheses, it will help to provide a forum
for inspiring new studies and novel ideas as well as formulating new theories.
We return to the limitations of current bilingual learning models in the next
section, assessing them against the above-mentioned features of what makes a
good computational model.

Current Models and Their Implications

Because the goal of this article is not to give a comprehensive review, we re-
fer readers to Li and Zhao (2018) for a review of computational models with
respect to language research in general, and Shirai (2019) for a review of com-
putational models in the field of L2 acquisition. Instead, in this section, we
discuss only a few prominent computational models to illustrate key points
about what makes them useful and pertinent for understanding bilingual lan-
guage learning. These models demonstrate, on the one hand, the importance,
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utility, and predictive power of computational models in general, and on the
other, the specific contribution such models offer to understanding the princi-
ples and mechanisms of bilingual language learning, beyond the contributions
made by verbal models of bilingualism.

Connectionism and Bilingual Models of Representation
A connectionist model, whose architecture is inspired by neural networks in the
human brain, is usually a network containing large numbers of interconnected
units or “neurons.” Connectionist models flourished in the 1980s, partly due to
the recognition that the classical cognitive theories were based on the wrong
computer metaphor, that of the digital serial processing of information (W.
A. Gardner, 1984), whereas the human brain’s information processing is mas-
sively parallel (with multiple neurons working simultaneously) and distributed
(with multiple neurons forming a particular distributed pattern in response to
given information; hence the term parallel distributed processing for connec-
tionism). In the last 30 years, connectionism has become one of the most in-
fluential theoretical frameworks and analytic approaches for understanding hu-
man language learning as well as cognitive and linguistic behaviors in general.
Table 1 provides brief explanations of basic concepts frequently used in con-
nectionist models of language. Given that our article is not a technical overview
of connectionist models, we refer readers to Goldberg’s (2017) comprehensive
introduction to neural networks in language processing.

A primary principle of connectionism is that there are multiple units—
“neurons,” or “nodes” that represent artificial neurons—interacting with one
another to support information processing. For example, in the bilingual inter-
active activation (BIA) model (van Heuven et al., 1998), there are dedicated
neurons at different levels to process visual features (e.g., vertical vs. hori-
zontal bars), letters (e.g., T), and words (e.g., Tom) in two languages. The in-
teractions are realized through the connections between a large assembly of
neurons: When the right nodes are active due to the interactions, the relevant
features, letters, or words become recognized, hence the interactive activation
mechanism. In addition to the interactions within a language, there are also
interactions across languages, simulating the effects of facilitation or interfer-
ence from one language to the other. The BIA+ model extended the original
BIA model by incorporating semantic and phonological representations in the
word identification system, linguistic and nonlinguistic context effects, and a
task-decision component, but similarly to BIA, it uses the basic interactive
activation mechanism for modeling. A recent follow-up that further extends
BIA and BIA+ is Multilink (Dijkstra et al., 2019). This model also provides a

23 Language Learning 73:S2, December 2023, pp. 17–64
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Li and Xu Computational Modeling

much larger, scalable lexicon from the bilingual’s two languages, including not
only four-letter-word lexicons but also three-to-eight-letter words from English
and Dutch. By considering the role of variables such as word frequency, word
length, orthographic similarity, and phonological neighborhood, Multilink is
poised to test and verify new empirical data from bilingual word recognition
(e.g., simulating spreading activation from multiple lexicons).

Connectionist approaches to language and bilingualism have expanded far
beyond the BIA, BIA+, and Multilink models pioneered by Dijkstra and col-
leagues since the 1990s, in part because of two directions of development: (a)
the rapid development of new architectures and algorithms of connectionism,
moving from interactive activation models to feedforward neural networks with
multiple hidden units (Rumelhart et al., 1986) and to recurrent neural networks
(RNNs) that can capture dynamic memory and information processing (Elman,
1990), and (b) new theoretical thinking about which variables are significant
for successful bilingual language learning. Below we focus on how researchers
can use the conceptual insights and learning mechanisms from connectionism
to study important issues in bilingual language learning.

Bilingual Models Involving Dynamic Changes
Whereas models of bilingual representation such as BIA provided an early
impetus to researchers in bilingualism, other models have focused on taking
advantage of connectionist architectures to examine a number of important
bilingual constructs, including L2 proficiency, AoA, and most importantly, the
interaction between a bilingual’s two linguistic systems. To understand the dy-
namic interaction between L1 and L2 in the process of learning has become a
key goal of some computational models of bilingualism, as will become clear
in this section.

Modeling the Emergence of Bilingual Lexicons
The BIA and BIA+ models were designed to account for proficient bilingual
speakers’ lexical knowledge and processing, but how different levels of profi-
ciency might modulate lexical processes was an issue not examined in these
models. Thomas (1997) developed the bilingual single network (BSN) to ad-
dress this issue. The BSN uses a three-layer neural network with the back-
propagation algorithm (Rumelhart et al., 1986) to transform a word’s orthog-
raphy (input nodes) to a word’s semantic representation (output nodes) through
the network’s hidden units. The model simulated different levels of proficiency
through different amount of training: either balanced, with equal amount of
training, or unbalanced, with the L1 being trained three times as often as the
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Li and Xu Computational Modeling

L2. An interesting finding is that the balanced training led to distinct internal
representations for the L1 and L2 in the activation patterns of the hidden units,
whereas the unbalanced training led to less clearly represented L2 words. The
BSN model thus is a simple demonstration of how feedforward connection-
ist models can capture the role of the amount of training (and “proficiency”)
in modulating the quality of bilingual lexical representation within the same
single network.

A critical notion in connectionist networks is emergentism, according to
which higher level cognitive representations emerge naturally as a result of
lower level simpler processes such as the interaction between a large num-
ber of processing neurons in a network (for a recent volume on emergentist
approaches to language, see MacWhinney et al., 2022). The simple recurrent
network (SRN; Elman, 1990) capitalizes on a task of predicting the next word
in a string of words in a sentence to reflect structural linguistic properties;
for example, “nouns” as a category can emerge in the recurrent hidden units
through the network’s learning of the statistical patterns of cooccurrence in
corpus data (e.g., occurring in the same slots in a sentence). Relying on SRN
mechanisms that were linguistically and psycholinguistically plausible, French
and colleagues developed a bilingual SRN model (BSRN; French, 1998; see
also French & Jacquet, 2004) to simulate the emergence of distinct patterns of
representation as a result of learning sentences from two languages: Sentences
from the L1 and L2 are mixed at different ratios such as bilingual learners
would be exposed to in different learning contexts, based on which the BSRN
model develops distinct linguistic categories from the two languages.

A major issue with previous models, including the BSN and BSRN, is that
they have mostly used highly simplified patterns to represent linguistic input.
As pointed out earlier, such patterns may not realistically reflect the actual in-
put and linguistic material that L2 learners are acquiring. Several studies have
considered how to realistically and faithfully represent the linguistic input or
input features, in terms of deriving computational representations from cor-
pora (e.g., Zhao et al., 2011) and from linguistic features in multiple languages
(Li & MacWhinney, 2002; Zhao & Li, 2009). Most of these efforts, however,
have focused on how to simulate L1 learning (see also Li & Shirai, 2000; Li
et al., 2007).

In an early effort, Li and Farkas (2002) built the self-organizing model
of bilingual processing (SOMBIP) to begin to tackle such issues in L2 learn-
ing, specifically by using input data derived from corpora of real language
(see Goodman et al., 2008). Unlike the BSN and BSRN models, which
were based on supervised connectionist learning, the SOMBIP was based on
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Li and Xu Computational Modeling

unsupervised connectionist learning using self-organizing maps (Koho-
nen, 2001, Chapter 6; see Table 1 for definitions of terms). Un-
like the BSN and BSRN, the SOMBIP uses phonological representa-
tions based on articulatory features of phonemes and semantic represen-
tations based on cooccurrence statistics in child-directed parental speech,
which gives the SOMBIP greater linguistic and developmental realism.
These two types of representation are connected with each other through
Hebbian learning (Hebb, 1949; see Table 1). The SOMBIP simultaneously
learned mixed bilingual input (216 English words and 184 Chinese words),
and the model produced patterns highly consistent with those of the BSN and
BSRN, showing distinct lexical representations for Chinese and English af-
ter learning. The model also provides a different way to assess proficiency by
having the network exposed to fewer sentences in the L2, simulating a novice
learner having limited linguistic experience. This more natural way of mod-
eling proficiency, interestingly, yielded comparable results to those from the
BSN: The “novice” network’s representation of the L2 was more compressed
and less clearly delineated, as compared with the “proficient” network.

Modeling Bilingual Learning
Although the BSN, BSRN, and SOMBIP models clearly differ from BIA mod-
els in incorporating connectionist learning principles, they are what we would
call “representation models,” rather than “learning models” in the sense that
the model simulates the learner’s L2 development to different levels of profi-
ciency over time. This was a significant gap, since learning implies develop-
mental changes across time, progressing from less knowledge to more enriched
knowledge representation at a higher level of proficiency. Simply dividing the
models into two sets (one “proficient” and the other “less proficient”), as in the
models discussed above, does not simulate developmental progression in the
learner.

Recognizing this problem, researchers developed several connectionist
models with the aim of simulating developmental changes, for example, the
developmental lexicon (DevLex) model, especially the DevLex-II model for
bilingual language learning (Li & Zhao, 2013; Zhao & Li, 2010). A key
principle that supports connectionist learning is the adjustment of connec-
tion weights (see Table 1 for this term). It is the updating of these connection
weights that accounts for changes as learning progresses, much as the brain
undergoes functional changes in the form of increased or decreased connec-
tions between certain neurons, groups of neurons, or regions. For example, in
the DevLex-II model, nodes that represent different modalities of linguistic
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Li and Xu Computational Modeling

Figure 2 Different representation structures of the first language (L1) and second lan-
guage (L2) lexicons in the developmental lexicon model DevLex-II as a function of (a)
early L2 learning versus (b) late L2 learning. Shaded areas indicate Chinese (L2) repre-
sentations (Zhao & Li, 2006) and nonshaded areas indicate English (L1) representations
(adapted from Zhao & Li, 2006).

information such as orthography and phonology are connected through Heb-
bian learning (Hebb, 1949; see Table 1). As learning progresses, the use of
the Hebbian learning rule in DevLex-II allows the model to adapt the weights
based on cooccurrence between learning patterns (see Li & Zhao, 2013, for
a discussion); for example, orthographic patterns (“CAT”) and phonological
patterns (/kæt/) that cooccur would become strongly connected, simulating the
process of acquiring the mapping between the spelling and sound of a word.
At the same time, the network would also undergo reorganization by adjusting
connection weights between the input and output layers so that the output to-
pographic structure (through neighborhood of ordered nodes) can capture the
similarity in the input; this weight updating applies to orthography, phonol-
ogy, and lexical semantics in the model (see Figure 2 of Li & Zhao, 2013,
for illustration). It is through these connectionist learning principles that com-
putational models can acquire enriched bilingual representations over time in
learning. Figure 2 provides an example based on the DevLex-II model for L2
learning.

The DevLex-II model, in contrast to the BSN, BSRN, and SOMBIP mod-
els that received bilingual inputs simultaneously, learned a large L1 and L2
vocabulary sequentially (500 words each for the L1 and L2): (a) “Early bilin-
gual language learning” involved an onset time of L2 input when only one fifth
of the L1 vocabulary was trained in the model, and (b) “late bilingual language
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learning” involved an onset time of L2 input when four fifths of the L1 vocab-
ulary was trained in the model. Figure 2 shows that AoA (early vs. late) plays
an important role in modulating the overall representational structure. In late
but not early bilingual language learning, the L2 structure is distinctly more
fragmented as a whole than the L1 structure; the L2 structure is also more com-
pressed within the L2 space, and has fuzzier representations. Detailed analyses
also indicate that the L2 shows a pattern of representation “parasitic” on L1
patterns: Small L2 chunks are dispersed and interspersed within L1 regions,
and the locations of the L2 words in the map are also dependent on the sim-
ilarity structure and categories established by the L1 words in meaning (for
the semantic map, see Figure 2 in this article) or in sound (for the phonolog-
ical map, see Figure 4 of Li & Zhao, 2013). Such representational structures
could also account for L2 learners’ difficulty in achieving efficient and effec-
tive lexical access and retrieval, given how different the representation of the
L2 lexicon is from that of the L1 lexicon.

This example illustrates how computational modeling may provide us with
insights into the dynamic interactions and competition between the L1 and L2.
A model that examines such interactions can also efficiently account for the so-
called “age effects” in bilingual language learning, because it takes into con-
sideration the learning dynamics and neural plasticity of the learning system;
see a recent formulation of this interaction in terms of emergentism and the
ecosystem (Claussenius-Kalman et al., 2021). In particular, if L2 onset occurs
at a time when L1 has been consolidated, as in late bilingual language learning,
the learned structure in L1 will constrain what can be learned, and the plastic-
ity of the network may also decrease because of the network’s commitment
to L1. For late bilingual language learning, the more consolidated the repre-
sentation of the L1, the more resistant to change (i.e., the more “entrenched”)
the learning system will become in the face of new input from a new language.
Furthermore, with a high degree of entrenchment (as in late bilingual language
learning in the simulated network), the organization of the L2 will have to tap
into existing L1 representational resources and its structure, thus exhibiting
parasitic representations.

Limitations of Current Bilingual Computational Models
Despite progress made with computational models in bilingualism as discussed
above, several major issues have limited their further development. Here we
address those issues in relation to the four criteria discussed earlier, along with
a consideration of open science practices to promote scientific communication
and progress. When these limitations can be overcome, researchers will be
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Li and Xu Computational Modeling

able to develop better models that can provide insights into bilingual language
representation and learning.

Validity
Although the current bilingual models are tractable, they often suffer from
low psychological plausibility. For example, computational models of bilingual
language processing have attempted to connect language with general cogni-
tion (e.g., language control and cognitive control mechanisms), but have so
far failed to realistically model the interaction between language learning and
general cognitive abilities. To do so requires models to simulate the interaction
among multiple domain-specific and domain-general systems (see discussion
in the later section on neural models). In addition, models should not only fo-
cus on the input and output of the two languages, but also make contact with
cognitive computation in the context of learning and the specific features in the
environment (see discussion in the later section on cognitive models).

In this connection, another important limitation of current computational
models of bilingual language representation and learning is that most models
have been either inspired by connectionist architectures (e.g., BIA and BIA+)
or implemented in such architectures (e.g., BSN and SOMBIP), as discussed
above. Although connectionist models are insightful and powerful, they remain
limited in a number of ways. For example, Ellis (2005) and Shirai (2019) have
pointed out the lack of ability of current connectionist models to simulate both
implicit and explicit learning processes. Specifically, most connectionist mod-
els have focused on implicit learning processes (input based on implicit fre-
quency) rather than explicit processes (input based on conscious knowledge).
Unlike L1 acquisition, simply comprehending incoming input is generally not
sufficient for L2 learning. Determining how future models can exploit explicit
representations, especially prior world knowledge relevant to the context of
learning, is crucial for pushing the boundaries in modeling bilingual learning.
This point is related to the later section where we argue for a pluralist perspec-
tive on computational bilingual modeling.

Contact with Real Language
In earlier sections, we discussed the importance of representing the linguistic
stimuli in an accurate and faithful manner so that models can make more direct
contact with the input that the learner is exposed to in the real world. Many
previous models have relied on localist representations, as illustrated above
with the example from French (1998). Localist representations are simple and
efficient to construct but may not accurately represent the input. Furthermore,
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models based on localist input (e.g., BIA+ or BSRN) are stationary models
that are designed to capture bilingual speakers’ lexicons in a developmental
manner, and they are therefore not able to account for the learning mechanism.

Distributed representations may be more difficult to implement, but could
be a better choice if the goal is to capture the similarities among sounds or
concepts (e.g., for simulating effects such as similarity-based phonological or
semantic priming). We previously mentioned the efforts that have been made
to represent the input in greater detail than in earlier models through the use
of distributed representations based on distributed statistics and faithful to
language-specific properties. The faithful representation of input in compu-
tational models has become somewhat less of an issue in recent years, partly
because of the rapid development of NLP models such as Word2vec, a vector
space model of word representations (Mikolov et al., 2013), and other kinds of
vector space modeling, which can automatically generate large-scale represen-
tations of linguistic items based on a large-scale corpus of speech or text.

Interpretability
Most computational models so far are designed to simulate a given bilingual
phenomenon or pattern based on empirical data, but how these simulations
provide theoretical insights beyond those offered by verbal models is often
unclear. The advantages of modeling should be reflected not only in the flex-
ibility of manipulation of variables of interest, but also in the ability of the
models to adjudicate between competing theories and hypotheses. Currently,
most computational models of bilingualism have been limited in this regard
and have primarily served a confirmatory function of supporting given the-
oretical frameworks (which were based on empirical data in the first place).
Exploring how computational models can generate new theoretical hypotheses
or even inspire entirely new theoretical perspectives in the study of bilingual
language learning is a significant direction for future research.

Predictive Power
Earlier computational models not only used simplified input, but also had sim-
plified architecture with limited predictive power, and were often criticized
as “toy models” by researchers opposed to the modeling enterprise. As com-
putational modeling becomes more sophisticated and available computational
power increases, the size of the model (e.g., the number of nodes or “process-
ing units” and their connections) and the size of the input and output have both
grown exponentially. This ability to scale up the power of our current compu-
tational models has implications for understanding bilingual language learning
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and processing. Li and Grant (2019) pointed out that the new Multilink model
of Dijkstra et al. (2019) was able to account for a lexicon size of thousands of
words, which is a significant improvement over previous models that handled
dozens of words (e.g., French, 1998) or hundreds of words (e.g., Zhao & Li,
2010). Exploring how bilingual models can improve predictive power by taking
advantage of the increasing computational power available and the increasing
complexity of modeling (e.g., deep learning models; see the later section on
neural models) will be a challenge in the coming years.

Open Science and Data Sharing
Modern research requires computational modeling to embrace the open sci-
ence approach to further scientific progress in all domains of research (see dis-
cussion in the next section). Toward this end, many researchers share their com-
putational models, programs, source codes, research protocols, original data,
and metadata, and many open science platforms have been established (e.g.,
TalkBank, OpenNeuro, Github, Huggingface; see Appendix S1 in the Support-
ing Information online; see also the Open Science Framework at https://osf.io).
So far, researchers developing computational models of bilingualism have
not embraced this open science practice for data and code sharing. Modelers
should heed the call by Addyman and French (2012) to make every effort to
provide user-friendly interfaces and tools to nonmodelers, so that many more
researchers of language science can use and test computational models, and
can do so without fear of the technical hurdles posed by programming codes,
simulating environments, and other modeling architectural concerns.

Toward Pluralist Bilingual Learning Models

Bilingual language learning is a complex process that involves multiple
domain-specific and domain-general systems. The process not only deals with
the input and output of the two languages, but also requires dynamic interac-
tions among biological plasticity, cognitive computation, and the learning en-
vironment. As a result, there is an urgent need to broaden the scope of current
bilingual models, employ pluralist learning mechanisms, and combine various
computational algorithms and theories to advance the understanding of bilin-
gual language learning.

In a critical review of cognitive computational neuroscience, Kriegesko-
rte and Douglas (2018) advocated an overarching goal of integrating both
neural and cognitive models in our research efforts and cross-disciplinary
collaborations. The neural models have been focused on using biologically
plausible computational components to describe and explain cognitive pro-
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Li and Xu Computational Modeling

cesses, whereas the cognitive models incorporate cognitive mechanisms and
principles that are abstracted away from the detailed biological structures and
their computational processes. Although both approaches have made signifi-
cant progress in the past, the field is in dire need of integrative models that
can not only provide precise descriptions of important issues at hand (as im-
plementable computational models have been designed to do), but also offer
top-level theoretical guidance in how to develop and design task-performing
models, so that we not only describe but also explain and predict human brain
patterns and the relevant behavior.

The above perspective is directly relevant to our discussion of the modeling
of bilingual language learning. Bilingual models need to extend their explo-
rations of both neural and cognitive processes. Although the utility and appli-
cations of computational models for bilingual language learning are clear, our
discussion above indicates that the major advances have been made only within
the realm of connectionist modeling. Those developing connectionist models
in bilingual research tend to focus on neural processes with the aim of im-
plementing biologically plausible artificial neural networks. The limitations of
those connectionist models in accounting for bilingual language learning and
representation are also clear, as we pointed out earlier. Cognitive approaches
such as Bayesian modeling and multimodal learning, although emerging as
important for explaining monolingual L1 acquisition, have not been ap-
plied in bilingual L2 learning research. Despite our earlier criticism of the
box-and-arrow models based on high-level cognitive theories (that they do not
lead to mechanistic accounts and are out of touch with current neuroscience
models), we recognize that theory-driven cognitive perspectives can neverthe-
less be important for developing theoretical insights (Kriegeskorte & Douglas,
2018).

In this section, we will first review a few relevant neurocognitive theories
from empirical research into bilingual language learning. With those theories
as an anchor, we will then indicate new directions in light of the framework laid
out by Kriegeskorte and Douglas (2018) for neural and cognitive processes.
Although these authors developed their framework for the new field called
cognitive computational neuroscience, their overall argument applies to our
perspective here equally well.

Neural and Cognitive Theories of Bilingual Language Learning
Age of Acquisition and Proficiency
AoA and L2 proficiency have been extensively examined in both empirical and
computational work in bilingualism. It has been generally observed that the
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ability to learn a L2 declines when the AoA is late (for a review, see Hernandez
& Li, 2007), although large individual variation exists in late AoA. In general,
it is more challenging for a late learner to achieve high ultimate proficiency in
a L2 (Flege et al., 1999). The emergentist accounts, such as the competition
model (MacWhinney & Bates, 1989) and the sensorimotor integration hypoth-
esis (Hernandez & Li, 2007; Hernandez et al., 2005), posit cascading effects of
early learning on late learning and a competitive interplay between L1 and L2
(cf. our earlier discussion of L1 entrenchment and parasitic L2 representation).
Such accounts are in stark contrast to biologically based explanations such as
the critical period hypothesis (Lenneberg, 1967).

L2 proficiency is often confounded with AoA, and the roles played by these
two variables remain unclear, as does their relative importance. Behavioral
work suggests that proficiency, not AoA, determines naming latencies in lexi-
cal tasks when L2 acquisition occurs early in life (Hernandez & Reyes, 2002;
Kohnert et al., 1999). Some neuroimaging work suggests that AoA effects on
neural activity diminish or disappear when early and late learners are equated
on L2 proficiency (Perani et al., 1998; Wartenburger et al., 2003). Hence, con-
siderable evidence suggests that proficiency has a crucial role in L2 processing
and may be at least partially independent from AoA (see review in Hernan-
dez & Li, 2007). Recent research has recognized the possibility that AoA and
L2 proficiency may play different roles in L2 learning and processing (Hakuta
et al., 2003; Wartenburger et al., 2003; Weber-Fox & Neville, 1996). Some
neuroimaging work has found that tasks involving syntactic processing showed
larger AoA effects, whereas tasks involving semantic processing were largely
constrained by proficiency (Wartenburger et al., 2003). Therefore, it is likely
that AoA plays a role in syntactic processing whereas proficiency plays a role
in semantic processing. The challenge is to find ways of using computational
modeling to illuminate the computational mechanisms underlying such differ-
ences (see Hernandez & Li, 2007, for a review).

Bilingual Representations
Understanding how L2 learners represent and organize two languages has
long been a fundamental area of research in bilingualism. The competition
model proposes a theoretical framework in which distinct language modules
emerge from the competitive interplay between two languages (Hernandez
et al., 2005). Related to this issue is the question of whether L1 and L2 rep-
resentations are distinct or distributed in neural substrates (see Li, 2009, for a
discussion). Earlier evidence supported shared neural basis but with different
computational demands between the L1 and L2 (Perani & Abutalebi, 2005).
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Li and Xu Computational Modeling

However, more recent studies using more advanced neuroimaging analyses,
such as multivoxel pattern analysis, have found distinct distributed patterns,
with the two languages represented by interleaved (partially overlapping) but
functionally independent neural populations (Xu et al., 2017); such evidence
further suggests the importance of revisiting the issue from an emergentist de-
velopmental perspective (Claussenius-Kalman et al., 2021).

Cognitive Control
One common observation is that words in both languages become active in
parallel when bilinguals use either of their two languages (Dijkstra & van
Heuven, 1998; Kroll et al., 2013), suggesting a mechanism of cognitive control
in place to help bilinguals avoid constant confusion (Green, 1998; see also the
BIA+ model that has incorporated such a mechanism, Dijkstra & van Heuven,
2002). A large amount of literature has been devoted to studying cognitive
control in bilingualism, either independently or in connection with the hypoth-
esis that bilinguals have cognitive advantage over monolinguals (Bialystok,
2009; Bialystok et al., 2005). A new perspective on the bilingual cognitive
advantage (e.g., DeLuca et al., 2019) treats bilingualism as a spectrum rather
than a unitary concept or phenomenon, which is consistent with the dynamic
emergentist perspective discussed above (see Li & Dong, 2020, Chapter 2,
for a recent review). Further, the question of how domain-general cognitive
control abilities impact bilingual language learning is also frequently raised in
research (Woumans et al., 2019; see Wen et al., 2017, for a review of the role of
working memory). Domain-general cognitive capacities include but are not
limited to executive function, attention, working memory, and nonverbal IQ,
and have both behavioral and neural correlates in individual differences in
bilingual language learning (e.g., Yang et al., 2015; Yang & Li, 2019). For ex-
ample, learners with high procedural but low declarative memory scores were
able to learn simple but not complex rules (Ettlinger et al., 2014). Sheppard
et al. (2012) also showed that the brain networks of more successful L2 learn-
ers exhibited greater global efficiency, an index considered to be positively
associated with working memory capacity.

Learning Context
Whereas traditional bilingual language learning relies on associating L2 with
L1 via translation or rote memory, social interactions and embodied experience
can help to prevent L2 from becoming parasitic on L1. Recent neurocognitive
studies have provided early evidence for the positive effects of social learn-
ing of L2. Learners in real or simulated social interactions have shown more
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embodied and nativelike neural representations (Jeong et al., 2010), greater
learning efficiency (Hsiao et al., 2017), and less susceptibility to L1 inter-
ference (Linck et al., 2009). According to the social learning account (Li &
Jeong, 2020), the parasitism of L2 on L1 can also be attributed to different
learning contexts for the two languages. Studies in bilingual language learning
and pedagogy have begun to examine how to leverage digital technologies to
enhance social learning and social interaction, putting the context for L2 learn-
ing on a par with that of L1 learning in the natural environment (for reviews,
see Li & Jeong, 2020; Li & Lan, 2021; Verga & Kotz, 2017). In this direc-
tion, researchers are also investigating how social learning, as compared with
translation-based learning, might enable the L2 learner to develop stronger,
more connected and integrated neural networks that can support better audio-
visuo-spatial processing, multimodal integration, motor simulation, enriched
semantic representation, and enhanced long-term memory retention (Jeong
et al., 2010, 2021; Legault et al., 2019; Verga & Kotz, 2017).

Given the above discussion of core issues and theoretical hypotheses from
neurocognitive studies and also the limitations of the current models (as dis-
cussed previously), it is clear that the current bilingual computational models
have limited power in their explorations of both the neural and cognitive pro-
cesses involved. For example, although theories posit important and perhaps
distinct roles for AoA and proficiency in bilingual learning, few of the current
computational models have considered both AoA and proficiency and how they
affect learning differently. Understanding of bilingual representations may be
hampered by the lack of faithful input representation in many bilingual models.
Few studies have also incorporated nonlinguistic processing into their compu-
tational models, even though there is evidence of a tight interaction between
cognitive control and bilingual processing (Green & Abutalebi, 2013).

Any computational account of bilingual language learning needs to be
guided by theoretical considerations of how learning gives rise to the bilin-
gual brain and to bilingual cognition and behavior. Thus, it will be crucial for
computational models to incorporate both biologically plausible mechanisms
and high-level cognitive principles of language and cognition, to which we now
turn.

Neural Models
Computational models can be constructed by building biologically plausi-
ble computational components to implement high-level functions. A number
of major initiatives (e.g., the European Brain Initiative) have adopted such
an approach toward computational modeling of the brain for the future (see
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Kriegeskorte & Douglas, 2018). Despite arguments about whether computa-
tional models should or can completely resemble human brains (Firestone,
2020), an increasing amount of literature has shown that some neural mod-
els can behave similarly to humans in some tasks, at both the biological level
(Cadieu et al., 2014; Yamins et al., 2014) and the representational level (Ten-
ney et al., 2019). For example, BERT, a powerful pretrained sentence encoder
in NLP, has revealed layer-by-layer linguistic abstractions (Tenney et al., 2019)
similar to those found in human language processing.

Alongside models’ potential to be biologically plausible, learning theories
can also benefit from pursuit of a neurobiological path. One central issue about
learning is whether it can be independent of any symbolic system. Fodor and
Pylyshyn (1988) argued that connectionist neural models cannot capture lin-
guistic productivity and compositionality. On the other hand, many attempts
have been made to enhance the productivity and compositionality of neural
models (e.g., McCoy et al., 2020; see Linzen & Baroni, 2021, for a review);
such attempts shed new light on the fundamental structure of human cognition
and language.

Given current progress and the examples briefly introduced above, it is
evident that bilingual modeling has not yet fulfilled its potential in taking
the neurobiological research path. Both biological plausibility and the ability
to simulate real cognitive functions need further improvement. A recent
review by Pulvermüller et al. (2021) has summarized five types of biologically
constrained neural models: localist, auto-associative, hetero-associative, deep
neural, and whole-brain networks. Whereas most bilingual models have in-
volved the first three types (Dijkstra et al., 2019; Dijkstra & van Heuven, 2002;
Li & Farkas, 2002), deep neural networks (DNNs) and whole-brain networks
are recent types that have greater power and biological plausibility not yet
explored in bilingual computational models. Interestingly, a recent empirical
study by Goldstein et al. (2022) showcased the shared computational principles
for human brain’s processing of language and for DNNs, in that both rely on
contextual embeddings to represent words, which, in natural contexts, involves
continuous predictive and surprisal evaluation processes. In the following sec-
tions, we discuss these two types of neural models, highlighting their connec-
tion to the biologically grounded L2 acquisition theories we discussed earlier.

Deep Neural Networks
A neural network model with three or more hidden layers will be considered
deep, given its ability to perform complex and nonlinear computations (see Le-
Cun et al., 2015, for a review). A DNN model is characterized by the following
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features: (a) distributed representations, in which knowledge is represented by
activations spread over a large set of neurons, and different concepts are func-
tionally represented by different but overlapping and interleaved neurons; (b)
data-driven implicit learning mechanisms, allowing the model to automatically
discover the representations and intricate structures in the raw data, with little
help from human engineering; and (c) multiple levels, each transforming repre-
sentations from one level to a higher and more abstract level, in many ways re-
sembling information processing in the human brain (Christophel et al., 2017;
LeCun et al., 2015).

These three characteristics of a DNN make it a realistic and biologically
plausible framework for examining bilingual language learning, given empiri-
cal findings that (a) brain representations of L1 and L2 are distributed in neural
substrates (Li, 2009; Xu et al., 2017); (b) bilingual language learning is sensi-
tive to L2 input and can take place in the absence of explicit guidance or aware-
ness (Rogers et al., 2015; Williams, 2005; see Andringa & Rebuschat, 2015,
for a review); and (c) neural representations of both L1 and L2 have shown hi-
erarchical patterns (Ding et al., 2016; Liberto et al., 2021), from smaller units
to progressively more abstract ones (e.g., from words to phrases to sentences,
and from phonemes to phonotactics to semantic meanings).

Astonishing progress has been made with recent DNNs, and some of
them are even reaching near-human performance in certain language process-
ing tasks (Devlin et al., 2019). Long short-term memory networks (LSTM
networks; see Table 1 for a definition) enable the memory component to main-
tain information over time and thus facilitate language processing by integrat-
ing contextual information and information retrieved from memory. The atten-
tion mechanism provided in the transformer (Vaswani et al., 2017; see Table 1
for the terms) has further improved learning efficiency and outcomes by zoom-
ing in on the information most relevant to the language processing task.

In the L1 literature, modeling work using DNNs has yielded broad impli-
cations for L1 learning theories. Contemporary DNNs can acquire a surprising
amount of linguistic knowledge at both surface and abstract levels, such as
the representations of lexical semantics (Bojanowski et al., 2017) and abstract
sentence structure (Gulordava et al., 2018). However, such linguistic abilities
are susceptible to variability due to training and testing parameters, and still
fall significantly short of human competence in linguistic productivity (see
Lake et al., 2017, for a review). McCoy et al. (2020) found that a tree-based
DNN, compared to a traditional sequence-based one, developed a stronger and
more humanlike generalization ability. Such progress has ignited a broader
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and deeper discussion about the mechanisms that underlie human language
processing and learning.

The architectures and algorithms employed in modern DNNs can also of-
fer rich insights into bilingual language learning. Previous research has ap-
plied RNNs to the modeling of bilingual code-switching speech (Tsoukala
et al., 2017, 2019, 2021), but more work needs to be done in the field of
bilingual language learning to fulfill the potential of various types of DNN.
For example, because the memory system in LSTM networks makes those
models particularly good at maintaining relevant information while forget-
ting the irrelevant (Tato et al., 2018), one could use them to model bilin-
gual language learning and the influence of memory. The attention mecha-
nism in the transformer could be used to study the influence of attention on
L2 learning and the attention mechanisms involved in processing. Although
the implications of DNNs for bilingual language learning are still unclear,
their use for neural machine translation is worth exploring given their ca-
pability of dealing with the interaction between two languages, which might
mimic bilingual learning and processing. As of today, transformers are partic-
ularly adept at machine translation, suggesting that they may also hold great
potential for understanding bilingual language learning (for current state-of-
the-art translation models, see Edunov et al., 2018, and Liu et al., 2020;
for a critical review of translation, see Saunders, 2022). Such integration
would also overcome the limitations of connectionist models as discussed ear-
lier, and enhance the power of computational models in simulating implicit
and explicit processes and in connecting language, memory, and cognitive
control.

Whole-Brain Networks
The human brain is a dynamic and complex system with numerous brain re-
gions interconnected and interactively communicating with each other (Bull-
more & Sporns, 2009; Karuza et al., 2016). The great importance of adopting
a holistic view of learning has been brought to attention recently (Karuza et al.,
2016; Mattar et al., 2016). Neuroscience researchers have highlighted the im-
portance of several key networks in human learning and cognition, including
the default mode network, the central executive network, and the salience net-
work (Bressler & Menon, 2010; Raichle, 2010). The idea behind whole-brain
networks is to view learning as a global system rather than a set of isolated
processes, and to use brain network construction and network science to cap-
ture dynamic interaction and network topology. Construction of brain networks
involves assembling relational data from neuroimaging measurements into a
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network. The network science approach quantitatively characterizes the topo-
logical structure of a network. Table 2 illustrates some concepts and measures
used in whole-brain network studies (for a detailed review of brain network
science, see Mattar et al., 2016, and Bassett & Sporns, 2017).

The whole-brain network approach has been applied in language studies
to characterize neural organization for language processing. With community
detection analysis (see Table 2 for an explanation of communities), Chai
et al. (2016) found a modular structure of language representation in En-
glish L1 speakers, where the connections within hemispheres were stronger
than those between hemispheres. One application of whole-brain network
analysis in bilingual language learning is to study the relation between brain
functional connectivity and L2 attainment. For example, Yang et al. (2015)
showed that the effective connectivity (see Table 2) of the brain network at
the beginning of learning predicted success in L2 Chinese tone learning, and
that such relations were modulated by variables including L2 proficiency
and auditory processing abilities (Yang & Li, 2019). However, the appli-
cation of whole-brain networks in bilingualism can be further broadened.
Bilingual models can harness the network science approach to study brain
changes caused by learning a new language (see Li & Grant, 2016, for a
review). Given evidence that bilingual representation changes with L2 profi-
ciency (e.g., Wang et al., 2020, whole-brain network analysis might be well
suited to capturing differences between L1 and L2 speakers and proficiency-
based whole-brain changes, thus providing a global map of how bilingual
learners acquire and represent multiple languages (e.g., see Zhang et al.,
2020).

Cognitive Models
Cognitive models, from box-and-arrow cognitive hypotheses to specific com-
putational implementations, can be abstracted away from brain data while di-
rectly contacting cognitive theories and human behavior. Although the neu-
ral models discussed above can provide constraints for computational theo-
ries, we also need cognitive models to enable progress on higher level cog-
nitive processes such as attention, memory, and language, and most neuro-
science models still fall short of accounting for features of the human mind
such as abstract language representations. One example is the one-shot learn-
ing challenge. Lake et al. (2015) reported that a Bayesian model, but not a
DNN, achieved human-level performance in one-shot learning of new visual
concepts, showing an ability to generalize after learning just one sample (but
see Brown et al., 2020, and Perez et al., 2021, for new insights and ongoing
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debates in DNN research). In Lake et al.’s study, the key to success in one-
shot learning might be the Bayesian model’s ability to capture the principles
of causality, compositionality, and learning to learn, suggesting that the induc-
tive bias might be a critical component determining learnability and learning
efficiency. This example illustrates the importance of cognitive models; their
contributions to understanding learning could be complementary to insights
from neural network models.

Within the L2 literature, there are as yet few attempts to use cognitive
computational approaches (but see the earlier discussion of BIA models). We
argue that computational modeling should bring high-level cognitive mod-
els into the research agenda and should widen its scope by integrating cog-
nitive theories from bilingual language learning with neurobiological mod-
els. In this section, we present three cognitive computational frameworks:
Bayesian statistical learning, multimodal learning, and network science mod-
eling. As acquiring an L2 requires both learning itself and the learner’s in-
teraction with the learning context, we will highlight the potential of using
Bayesian statistical learning for characterizing the learning mechanism, and
multimodal learning for the interaction with the L2 learning context. Finally,
we will return to the network science approach, but this time considering it
from a perspective independent of neural mechanisms, aimed at scaling up
the power of L2 computational models with both local patterns and global
architectures.

Bayesian Statistical Learning
The Bayesian framework is grounded on the assumption that learners use back-
ground knowledge to make statistically optimal inferences from incomplete
data (Perfors et al., 2011; Tenenbaum et al., 2011). According to Tenenbaum
et al. (2011), Bayesian inference is for answering the question of how abstract
knowledge guides inference from incomplete data. Bayesian inference allows
for efficient learning and reasoning based on prior knowledge, which explains
why a Bayesian model could sometimes outperform a neural network model
when learning from a small sample (Lake et al., 2015).

The general Bayesian rule assigns a probability to a hypothesis based on
prior knowledge of conditions that might be related to the hypothesis (see Per-
fors et al., 2001, for details). Suppose that a child heard a novel word fep while
seeing three objects: a table, a plate, and an apple. The probability of a hy-
pothesis that fep means the object “apple” could be determined by the child’s
prior knowledge that the apple, unlike the table and the plate, is edible, and
the situation that the child’s parent was calling the child when there was food
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Li and Xu Computational Modeling

on the table. Inductive computations resembling Bayesian rules have been ob-
served in many cognitive domains (e.g., Cheng & Almor, 2017, 2019; Feldman
et al., 2009; Frank et al., 2009; Steyvers et al., 2006; Xu & Tenenbaum, 2007).
For example, Xu and Tenenbaum (2007) found that the way in which adults
and children learn new words could be well explained and predicted using a
Bayesian framework.

Whereas the Bayesian approach has been frequently used to understand
L1 acquisition (Feldman et al., 2009; Frank et al., 2009; Xu & Tenenbaum,
2007), few in the L2 field have made similar attempts (but see Zinszer et al.,
2018, for an example). However, understanding bilingual language learning
from the Bayesian perspective is both theoretically and empirically plausible.
First, it is commonly believed that L2 learning also involves statistical learning
(Ellis, 2002, 2005; Hamrick, 2014), where rational statistical inference could
be made from the learning input. Zinszer et al. (2018) showed that modification
of a monolingual Bayesian model with a different prior probability to weaken
the mutual exclusivity bias (i.e., a belief that one object can only have one
label; Markman & Wachtel, 1988) could be used to simulate word learning in
bilingual children, suggesting a significant role for the Bayesian framework in
bilingual learning research. Second, two recent studies (Cheng & Almor, 2017,
2019) reported L2 biases during the processing of within-sentence coreference,
with beliefs about pronoun use differing from those of native speakers; these
biases were successfully captured by the Bayesian model, further attesting to
the important role of Bayesian inference in bilingual processing.

Given the above, a promising direction for future research is to understand
the statistical learning mechanisms of L2 learning from a cognitive Bayesian
perspective. Bayesian learning theories assume that the human mind builds
mental models of the world, and that these models can then be used to learn
new concepts in a generative and productive way (Tenenbaum et al., 2011).
The mental models of an L2 learner would clearly include knowledge of the
L1. Given previous work examining how consolidation of L1 might influence
L2 learning (as discussed earlier), future research could use the Bayesian ap-
proach to establish the dynamic interplay between L1 and L2 involving key
variables such as AoA and L2 proficiency. For example, the entrenchment of
L1 knowledge, usually strengthened with increasing AoA, might serve as prior
knowledge for facilitating or interfering with L2 learning (Hernandez & Li,
2007). Hence, a Bayesian interpretation of L1 transfer as a function of AoA
can be established. Early bilinguals would not experience interference from
L1, because the knowledge of the two languages accumulates simultaneously;
however, L2 learners with a later AoA might have stronger prior biases arising
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Li and Xu Computational Modeling

from L1, causing misbeliefs when interpreting L2 input. On the other hand, it
is likely that some existing knowledge of L1 allows learners to make correct
predictions about L2 input and hence enhances learning efficiency, reflecting a
positive L1 transfer.

Unlike AoA, which affects L2 knowledge as a function of how en-
trenched L1 knowledge is, L2 proficiency primarily reflects the status of L2
knowledge construction. To achieve similarly high proficiency, early learn-
ers might proceed by constructing L1 and L2 knowledge simultaneously,
whereas late learners might need to accumulate L2 knowledge from scratch
when L1 knowledge is already in place. Therefore, L2 learners with a late
AoA will require more effort to overcome the strong prior biases from
the L1 in order to attain high proficiency. A Bayesian model can offer an
explicit way to instantiate the distinct mechanisms of AoA and L2 profi-
ciency through simulating the specific procedures of constructing L1 and L2
knowledge.

Multimodal Learning
As mentioned earlier, there has recently been an increasing appreciation of the
role of the learning environment in the L2 literature. A significant part of lan-
guage learning relies on the social environment with which learners actively in-
teract (Kuhl, 2004; Li & Jeong, 2020). Social learning theories received earlier
attention in L1 acquisition, both empirically and computationally (e.g., Ross
et al., 2018; Smith et al., 2016; Yu & Ballard, 2007; Yurovsky et al., 2013),
and therefore computational modeling of L2 social learning may benefit from
advances in L1 work.

Yu and Ballard (2004) developed a statistical model to simulate, in an in-
tegrated fashion, multimodal word learning with speech input, embodiment
experience, and the learning environment. During training, they asked a real
person to perform everyday tasks while verbally describing their actions.
Meanwhile, various sensors were attached to the person to track their senso-
rimotor experiences. Therefore, the model received input from speech modal-
ities, such as phonology and meaning, and nonspeech modalities, such as vi-
sual perception and body movement. In an evaluation, the model showed con-
siderably high accuracy in word–meaning association tasks, suggesting that
a multimodal learning system can derive perceptually grounded meanings of
words from observing users’ everyday activities. In another study (Yu & Bal-
lard, 2007), a statistical model learned word–meaning associations from adult–
child communication data presented in audio and video recordings. The results
showed that the multimodal model that incorporated social communication in-
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Li and Xu Computational Modeling

formation (e.g., joint attention) outperformed the baseline model that did not
contain such information. Thus, language input and nonlinguistic social cues
work in tandem to contribute to language acquisition.

The development of social learning theories in the L2 learning field can
benefit from using multimodal learning models such as those discussed. For
example, the model trained with body movements (Yu & Ballard, 2004) can
be used to test the role of embodied experience in bilingual language learning
(Jeong et al., 2010); the cues provided by joint attention (Yu & Ballard, 2007)
can be adapted for studies of L2 learning through social interactions (Hsiao
et al., 2017; Jeong et al., 2010; Linck et al., 2009; Verga & Kotz, 2017). As
being immersed in L2 can inhibit interference from L1 (Linck et al., 2009),
a multimodal learning model can be used to examine what social cues in an
immersion context inhibit L1 access and why. Work on L2 social learning is
still at an early stage of progress, and joint efforts from empirical and com-
putational studies in cognitive science, neuroscience, and education will be
essential to the understanding of its mechanisms (see Li & Lan, 2021, for a
recent discussion).

Network Science Approach
Besides being used in the biologically driven whole-brain network (discussed
in a previous section), the network science approach is also under the spotlight
of theory-driven studies in language and cognition (Chan & Vitevitch, 2009;
Hills et al., 2009; Karuza et al., 2016; Sizemore et al., 2018; Vitevitch, 2019;
Xu et al., 2021). Unlike whole-brain network models that link different brain
regions, theory-driven network science models characterize local patterns and
global structures of the high-level cognitive system (see Karuza et al., 2016,
for a review).

The network science approach has offered new insight into language learn-
ing. Hills et al. (2009) considered networks with different growth principles
to simulate the construction of the child learner’s semantic network and tested
which network could better predict the child’s AoA of words. One network
tested was the preferential attachment model, which assumes that the more
connected are the known words to which a new word is related, the more likely
it is that the new word will enter the lexicon. The other network tested was the
preferential acquisition model, which assumes that the more connected a new
word is to other words in the learning environment, either known or unknown,
the more likely it is that the new word will enter the lexicon (see Figure 3 for
a simplified illustration). They found that the preferential acquisition network
outperformed the preferential attachment network, suggesting that a word is
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Li and Xu Computational Modeling

Figure 3 An illustration of the preferential attachment model (a) and the preferential
acquisition model (b) (adapted from Hills et al., 2009). A, B, C, and D represent known
words in the lexicon, whereas nodes N1, N2, and N3 represent words to be learned. The
greater the growth value, the more likely that the word will be learned. The preferential
attachment model (a) predicts that N1 would have a higher chance of being learned,
because it is connected to node A, which has the most connections (i.e., to B, C, and
D) in the lexicon. The preferential acquisition model (b) predicts that N3 would have a
higher chance of being learned, because it has the highest number of connections with
other nodes (i.e., with N1, N2, and D).

more likely to enter a child’s lexicon if it is well connected to other words
in the learning environment. With topological analysis of the child’s semantic
network, Sizemore et al. (2018) found word learning to be a process of gap
forming and filling. In the child’s semantic network, earlier acquired words left
sparse space where later acquired words could enter and fill gaps (Figure 4),
much like a process of filling the holes in Swiss cheese (see Li et al., 2007,
for computational modeling of this process). Sizemore et al.’s study instanti-
ates how higher order connectivity patterns between words can constrain the
development of semantic feature representations during language learning.

The network science approach has been recently explored (Tiv et al., 2020;
Xu et al., 2021) in bilingual processing but not in bilingual language learn-
ing. Tiv et al. (2020) established networks separately for the L1 and L2 to map
conversational topics that bilinguals use in each language. A comparison of
the structures of L1 and L2 networks showed that the L1 network is greater in
size (i.e., number of nodes; see Table 2 for terms)2 and density (i.e., number
of edges in a network out of the total number of possible edges), suggest-
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Li and Xu Computational Modeling

Figure 4 An illustration of a gap-filling network. Earlier acquired words left sparse
space where later acquired words could enter and fill the gap (adapted from Sizemore
et al., 2018). In this example, the feature-based connections between balloon, bear,
cheese, and banana left a gap within the semantic network, which was later filled in
with the new word bus.

ing that bilinguals’ communication topics are broader and more diversified in
L1 compared with L2. Xu et al. (2021) employed one unified semantic net-
work to examine the bilingual lexicon and semantic representation in natural-
istic speech. The authors trained a Word2vec model (Mikolov et al., 2013) on
a spontaneous code-switching speech corpus and then obtained the semantic
similarity between words to determine network edges. Although bilinguals of-
ten mix the two languages in naturalistic conversations, the authors still found,
by using community detections, separate modular representations of words in
different languages in the semantic network. These findings are consistent with
earlier connectionist modeling results (cf. our earlier discussion of the patterns
in French, 1998; Li & Farkas, 2002; Thomas, 1998). The study offers a holis-
tic view of the organization and dynamic competition (MacWhinney, 2012;
MacWhinney & Bates, 1989) of the bilingual lexicon.

Despite a lack of network science research in bilingual language learning,
previous relevant work in L1 acquisition (Hills et al., 2009; Sizemore et al.,
2018) and bilingual processing (Tiv et al., 2020; Xu et al., 2021) points to its
potential to benefit bilingual language learning theories. For instance, in lexical
development, since bilingual language learning involves a dynamic interaction
between words in the two languages (as discussed earlier), the network sci-
ence approach provides a basis for addressing issues such as (a) how L1 words
may constrain the acquisition and organization of L2 words, (b) how acquiring
L2 lexical items may in turn affect the organization of L1 words, (c) whether
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there are individual differences in the patterns of learning L2 words, and (d)
whether the different learning patterns can predict ultimate attainment in L2.
Answers to some of these questions would also enable connections with other
empirical and computational modeling approaches (e.g., the work discussed in
the section on current models). For example, one could apply the three growth
mechanisms in Hills et al. (2009) or the gap-filling mechanism introduced by
Sizemore et al. (2018) to track changes in L1 versus L2 lexicons.

In regard to issue (a) above, considering the parasitism of L2 on L1 (Her-
nandez et al., 2005), it is likely that the preferential attachment mechanism
could better account for L2 word learning than the preferential acquisition
mechanism (Hills et al., 2009); an L2 word might be more likely to enter the
lexicon if the word is more connected to L1 words in the lexicon (see Li, 2009,
for argumentation). In regard to issue (b), some L2 words may in turn fill the se-
mantic gap left by L1 words to facilitate semantic representations and word re-
trieval, since studies have reported the benefit of using two languages together
in production compared to staying within the L1 (e.g., Kleinman & Gollan,
2016). In regard to issue (c), individual learners may differ in learning patterns
such that gifted L2 learners may adopt the preferential acquisition mechanism,
whereas less successful learners may rely more on the preferential attachment
mechanism due to stronger parasitism of the L2 on the L1 in these learners.
In regard to issue (d), preferential acquisition may result in greater L2 attain-
ment, as it helps learners construct a more integrated and independent knowl-
edge representation of the L2. One can even further ask whether the enhanced
access to the L2 when learners were immersed in the L2 environment (Linck
et al., 2009) occurs because features in the environment can better support the
preferential acquisition of words. Examples of such approaches would enable
us to extend the scope of network science application, especially from static
and cross-sectional data to longitudinal data that incorporate dynamic changes
in bilingual language learning (Hills et al., 2009; Sizemore et al., 2018). Com-
putational modeling of bilingual language learning should thus combine mul-
tiple methods to make use of the network science approach with the greatest
possible vigor (Li & Grant, 2019).

Integrating Neural and Cognitive Approaches
Just as it is important to investigate the bilingual brain and bilingual cogni-
tion empirically, it is imperative to consider how best to bridge the gap be-
tween neuroscientific and high-level cognitive paths of computational model-
ing (Griffiths et al., 2010; Kriegeskorte & Douglas, 2018; McClelland et al.,
2010). Without an understanding of neural implementations, the formulation
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of cognitive theories would become a purely intellectual exercise. On the other
hand, without an understanding of how high-level cognition is organized, neu-
ral implementations can become completely reductionist. To characterize the
interplay of the bilingual mind and brain, we should aim at constructing an in-
tegrated computational account by combining cognitive theories and biological
foundations for bilingual language learning.

Here we advocate that this integration can be achieved through a pluralist
investigation into the shared and distinct features of diverse learning models in
terms of their competition and compatibility (see Mitchell, 2002, for a philo-
sophical discussion on pluralism). Competitive pluralism highlights exclusiv-
ity, according to which different theories should be pitted against each other so
that some can be accepted and others rejected, whereas compatible pluralism
allows diverse and mutually compatible models to account for different aspects
or dimensions of a phenomenon in light of the complexity of nature.

From a competitive pluralism perspective, investigating the competition
between different neural or cognitive models may advance the understanding
of bilingual language learning. For example, a connectionist and a Bayesian
account may have incompatible premises on bilingual learning. The former
assumes an emergence of knowledge structure via learning, whereas the latter
assumes the availability of structured knowledge for efficient learning with
inductive bias. In a long-standing debate on general learning theories between
advocates of the two approaches (e.g., Griffiths et al., 2010; McClelland et al.,
2010), Bayesians challenged the sampling efficiency of connectionist learning
models, whereas connectionists questioned Bayesians’ prior specification of
hypothesis space and its psychological plausibility. As the debate continues,
the field makes progress in understanding learning through the comparison
and competition between the two types of models.

In contrast to the above, it is also useful to embrace the perspective that
different models can be compatible and complementary such that neither ap-
proach can handle the full complexity of learning alone. For example, research
on the “Bayesian brain” attempts to bridge cognitive and neural levels through
implementing Bayesian inference in a biologically plausible way or empow-
ering neural nets with top-down predictions (Ali et al., 2021; Deneve, 2008;
Ma et al., 2008). For lexical-semantic representation, there have been promis-
ing attempts to link whole biological brain networks with word-embedding
models, that is, DNN models for the semantic representation of words (e.g.,
fastText, Bojanowski et al., 2017; BERT, Devlin et al., 2019; Ramakrishnan
& Deniz, 2021; Ruan et al., 2016). Cognitive theories of social multimodal
learning have also been drawn on in research on DNNs or deep learning in
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general. Many studies have explored the theoretical and empirical benefits of
combining information from multiple modalities in improving the performance
of deep learning (e.g., Ngiam et al., 2011; Reed et al., 2016; Wang et al., 2019).

It is clear from the above discussion that both competitive and compati-
ble pluralism perspectives are important. Although it is debatable whether the
competitive or the compatible approach is desirable for computational mod-
eling, underlying both perspectives is the requirement that researchers pursue
and understand diverse models with the greatest vigor. However, current bilin-
gual models are often limited in diversity and depth. As we discussed earlier,
most of the existing bilingual models have adopted a connectionist framework,
and many modeling architectures date to the 1980s and 1990s. They are in
dire need of enhancement in terms of their validity, contact with real language,
interpretability, and predictive power, especially in light of the rapid develop-
ments in computational modeling methods and applications. At the same time,
computational approaches inspired by cognitive theory have been largely ig-
nored in the current models, which hampers the theoretical contribution that
computational modeling aims for. If the pluralist approach that we advocate
here is adopted, this should lead to the emergence of novel computational mod-
els that contribute significantly to the understanding of the mechanisms and
processes of bilingual learning and representation.

Concluding Remarks

Computational approaches have much to offer to the understanding of bilin-
gual language learning, because they force explicit hypothesis specification
and generate testable internal representations, reliability, and experimental ma-
nipulability. We have shown that current models have contributed to progress
in understanding the bilingual mind, but that a significant gap exists between
the promise offered by theoretical constructs and the explanatory and predic-
tive power achieved so far. Current bilingual models are often limited in terms
of oversimplified knowledge representation and architecture, and a lack of con-
tact with the complexity of learner experience and the learning environment.
For connectionist neural models, an enhancement of biological plausibility and
predictive power is sorely needed to overcome the challenges ahead. At the
same time, theory-driven cognitive approaches can provide important insights
in theories of bilingual language learning, yet they have been largely ignored
in the current models.

In this article, we have advocated a new research agenda for computational
modeling in bilingual learning, through linking progress across different disci-
plines, such as computational neuroscience, NLP, and L1 acquisition, to con-
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struct an integrated computational account combining cognitive theories and
biological foundations for bilingual learning. Those constructing bilingual lan-
guage learning models should widen the scope of these models and take ad-
vantage of the progress and rapid advances in other fields. As highlighted by
Kriegeskorte and Douglas (2018), the neural and cognitive paths of computa-
tional modeling are the extremes of a continuum rather than a dichotomy. The
two paths have a common goal of explaining “how our brains give rise to our
minds” (Kriegeskorte & Douglas, 2018, p. 1152; this is also an exciting avenue
of future computational research in bilingual learning. Our approach outlined
here resonates strongly with a recent call for placing language in an integrated
system of understanding and communicating (McClelland et al., 2020); that
is, exploring the full range of multisensory (auditory, visual, tactile) contexts
in which language is used and represented, rather than treating language as an
isolated linguistic system. Future challenges for researchers will include build-
ing bridges to enable computational models to integrate behavioral, cognitive,
neuropsychological, and neuroimaging findings to arrive at a converging pic-
ture of language learning. Cross-disciplinary joint work in bilingual language
learning, as in other modern scientific domains, is not a luxury but a necessity
for success.

Final revised version accepted 17 May 2022

Notes

1 In this article, we will use the term “bilingual language learning” rather than
“second language learning” or “second language acquisition,” to highlight the fact
that learning an L2 inevitably involves interaction with the L1 in the bilingual mind.

2 As the whole-brain network and the network science approach at the cognitive level
share the same graphic analysis, readers can refer to Table 2 for basic terms
mentioned here (node, edge, community).
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