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Abstract 

The motion of two red blood cells (RBCs) in a stenosed microvessel was simulated using 

Dissipative Particle Dynamics. The effects of intercellular interaction, RBC deformability and 

the initial cell orientation on the deformation and aggregation of the RBCs and on the flow 

resistance were investigated. The RBC membrane was treated as a three-dimensional coarse-

grained network model and the intercellular interaction was modeled by the Morse potential 

based on a depletion-mediated assumption. It is shown that the flow resistance increases 

dramatically when the RBCs enter into the stenosis and decreases rapidly as RBCs move away 

from the stenosis. Particularly, for a pair of stiffer RBCs with the initial inclination angle of 

90°, the maximum value of the flow resistance is larger; while a higher flow resistance can also 

come from a stronger aggregation. For a pair of stiffer RBCs moving parallel to the main flow, 

when their positions are closer to the vessel wall at the upstream of the stenosis, the flow 

resistance increases due to the migration to the vessel center at the stenosis. In addition, for a 
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pair of RBCs with the initial inclination angle of 0°, the flow resistance from the aggregate 

formed by a pair of RBCs with a larger deformation is higher. 

Key words: Dissipative particle dynamics ∙ red blood cells ∙ intercellular interaction ∙ 

deformation and aggregation ∙ flow resistance 

1. Introduction  

Many important biological phenomena involve the aggregation of cells. During hematogenous 

metastasis, cancer cells often flow through the blood stream as aggregates. Platelets form 

aggregates to promote blood clotting [1]. RBCs tend to aggregate to form the stacks-of-coins-

like rouleaux under low shear forces and the aggregates can be reversibly broken into smaller 

aggregates or individual cells with the increase of shear forces. However, massive rouleaux can 

dramatically increase effective blood viscosity and hence impairs blood flow through small 

blood vessels such as microvessels. Experimental evidence showed that the older RBCs exhibit 

a significantly greater degree of aggregation compared to the younger ones [2]. Elevated 

aggregation is often associated with a higher risk of cardiovascular diseases, and occurs after 

myocardial infarcts, ischemic brain infarcts, in diabetes, and during sepsis [3].   

In vivo studies demonstrated that RBC aggregation is usually modified by introducing 

large proteins and/or high molecular weight polymers into the blood circulation [4]. Although 

the exact physical mechanism of aggregation is not yet clear, two molecular models based on 

bridging mechanism [5] and depletion mechanism [6] have been proposed to describe RBC 

aggregation. The former assumes that macromolecules, such as fibrinogen and dextran, can be 

absorbed onto adjacent cell surfaces and bridge them together. The depletion model attributes 

the aggregation to a lower localized protein or polymer concentration near the cell surface than 
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the surrounding medium, developing a polymer depletion layer and thus leading to a decrease 

in osmotic pressure. These models are in qualitative and quantitative agreement with 

experimental measurements of cell-cell affinity and RBC aggregation induced by two types of 

polymers, dextran and ethylene glycol. Both of the models have assumed that an attractive 

force would occur when the surfaces of adjacent cells become close, and a repulsive interaction 

would come up when the gap between the cells is sufficiently small. Bagchi et al. [1] described 

the intercellular interaction through a ligand-receptor binding model and investigated the 

dynamics of the aggregate in a shear flow. Liu et al. [7] adopted the Morse potential to represent 

the interactional energy among two adjacent cells based on depletion-mediated RBC 

aggregation model [6] and employed this model to study the de-aggregation of RBC rouleaux 

at different shear rates and analyze the transport of healthy and sickle RBCs in microvessels. 

Recently, another mechanism of mediated intercellular interaction based on free energy 

minimization was proposed by Lokar et al. [8], which described the β2-glycoprotein I (β2-GPI) 

induced electrostatic interaction between the surfaces of the two RBCs by two electrical double 

layers.  

A number of numerical studies have been carried out on the behavior of RBC aggregation 

in simple flows. Wang et al. [9] investigated the aggregation and dissociation of RBC rouleaux 

in shear and Poiseuille flows and found that the behavior of individual cells depends on factors 

such as intercellular interaction strength, shear stress and the deformability of the cell 

membrane. Li et al. [10] and Ye et al. [11] showed that the two-dimensional equilibrium 

configuration of the two RBCs in the static blood plasma and the mixed healthy and malaria-
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infected RBCs are easily to form a rouleaux. This rouleaux is hardly disaggregated in a tube 

flow due to the strong intercellular interaction at a high capillary number. Without intercellular 

interaction, Shi et al. [12] revealed that in the Poiseuille flow, the hydrodynamic viscous force, 

the RBC shape and the relative locations of cells have significantly larger effects on the 

deformation of the leading cell than that of the rear one. Although the microvessel stenosis 

induces many critical diseases, only a few studies have been conducted on the flow of RBCs 

through the stenosis in a microvessel with a diameter comparable to the size of the RBC. 

Clinical findings have shown that hypertension is associated with the luminal narrowing [13]. 

Vahidkhah and Fatouraee [14] demonstrated that increasing the intercellular adhesion strength 

can lead to the formation of cell aggregates after the RBCs pass through the stenosis. Xu et al. 

[15] revealed that ten RBCs with stronger intercellular interaction strength might result in 

higher flow resistance at the stenosis. Due to the high computational cost, most of the existing 

studies are limited to two-dimensional simulations. In fact, when the width of a two-

dimensional channel is equal to the diameter of a circular tube, the hydraulic diameter for the 

former is nearly two times of the latter. For laminar flows, as the Darcy friction factor is 

inversely proportional to the hydraulic diameter, the smaller hydraulic diameter in circular tube 

leads to a larger flow resistance. .  

Therefore, in this study, we focus on the motion of two three-dimensional deformable 

RBCs in a stenosed microvessel. Firstly, the numerical method, dissipative particle dynamics, 

and the spring-network based RBC model coupled with the cell aggregation model are 

introduced in detail. Next, the equilibrium shapes of the RBC-rouleaux exerted by the 
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intercellular interaction with different strengths under a quasi-steady condition are numerically 

investigated and compared with the previous work. Then the deformation and aggregation of 

two RBCs passing through the stenosis are simulated and the effects of intercellular interaction 

strengths, cell mechano-properties and initial orientations of RBCs on the flow resistance are 

discussed. Lastly, summary and conclusions are presented. 

2. Mathematical formulation and numerical model  

2.1 Dissipative Particle Dynamics (DPD)  

DPD is a mesoscopic particle-based simulation method introduced by Hoogerbrugge and 

Koelman [16], connecting the molecular and continuum scales. The DPD system can be 

thought of as a coarse-grained molecular dynamics model, where each particle represents a 

molecular cluster rather than an individual atom. It can access to larger time and length scales 

than what in the molecular dynamics. The DPD particle of mass im , position ir and velocity iv

interacts with its neighboring particle j through three forces: conservative ( C
ijF ), dissipative 

( D
ijF ), and random ( R

ijF ) forces given by   
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where ijijij r/= rr̂  , jrrr −= iij
  and jiij vvv −=  . The coefficients   and   reflect the 

strength of dissipative and random forces, respectively. In addition, Dω and Rω are distance-

dependent weight functions, and ijξ  is a normally distributed random variable with zero mean, 

unit variance, and jiij ξξ =  . All forces are truncated beyond the cutoff radius cr  . The 

conservative force is given by  
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where ija  is the conservative force coefficient between particles i  and j . 

The random and dissipative forces form a thermostat and must satisfy the fluctuation-

dissipation theorem in order for the DPD system to maintain the equilibrium temperature T

[17]. This leads to:  
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A generalized form for the weight functions has been proposed by Fan et al. [18]. 
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The viscosity of a simple DPD system consists of two parts: one is the contribution from 

the diffusion motion of particles and another is from the dissipative forces [19]. Following the 

Groot and Warren’s method, the radial pair distribution function g(r)=1.0 is assumed, which 

simplifies analysis and leads to the approximate results comparable to those derived by using 

a more sophisticated technique. The dissipative part of the viscosities is dominant and denoted 

by 
Dμ . For the above weight function, the expression can be obtained 
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where mnρ =   and n is the number density of the simulation system , the mass of one 

dissipative particle m is 1. The kinetic contribution to the viscosity is 
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As 50.=s was adopted in this study, the approximate expression for the viscosity is, 
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The time evolution of velocities and positions of particles is determined by the Newton's 

second law of motion  
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where extF  is the external force acting upon on the particle i, including the membrane force 

due to the cell deformation, the intercellular interaction force and the body force. 

The above equations of motion are integrated using the modified velocity-Verlet 

algorithm[19] 
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where )Δ(~ tti +v  is the prediction of the velocity at time tt Δ+  and λ  is an empirically 

introduced parameter, which accounts for the additional effects of the stochastic interactions, 

and is set to 0.65. The velocity is first predicted to obtain the force and then corrected in the 

last time step. 

2.2 3-D coarse-grained network model for the RBC membrane 

It has been suggested that an elastic energy stored in the membrane components has a minimum 

when the RBC is in discocyte state and that local components of the membrane are not 

constrained in the biconcave resting shape [20-22]. Therefore, a healthy unstressed RBC has a 

biconcave equilibrium shape with the minimum energy and is described by 
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where 7.82=0D  mm is the average diameter, 0.0518=0a  , 2.0026=1a  , and 4.491=2 −a  . The 

membrane network structure is generated by triangulating the unstressed equilibrium shape 

described by Eq. (10). The membrane is discretized into a number of triangle elements formed 

by a series of vertices. The coordinates of vertices are regarded as the initial positions of the 

membrane particles. Figure 1 shows the network model of a RBC, the vertices are connected 

by wormlike springs. 

 

Fig. 1 The network model of a RBC 

The total energy of the network consists of the in-plane elastic energy, the bending energy, 

the surface area energy, and the volume energy [23-25]. In our previous study[26], this model 

was used to simulate the deformation of a tumor cell passing through a narrow slit. The in-

plane elastic energy for the WLC-POW model is given by  
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where )1,0(/ max = llxl
 , 

maxl   is the maximum spring extension, which is equal to 2.2 times 

equilibrium spring length for the WLC model, p is the persistence length, 
Bk is Boltzmann 

constant and T is temperature of the system. 
pk is a POW force coefficient and m is a specified 

exponent, which is set to 2 [27]. 
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The bending energy is concentrated at the element edges according to the bending 

potential 

  −−=
adjacents triangle all

ibendbending θθkE )cos(1 0
                       (12) 

where bendk  is the bending modulus; iθ is the instantaneous angle formed between the outer 

normal vectors of two adjacent triangles  ,   sharing the ith edge; 0θ  is the spontaneous 

angle. 

The area and volume conservation constraints are presented as follows: 
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where 
tot

areak ， areak   and volumek   are constraint constants for the global area, local area, and 

volume; tN is the number of the triangle elements; A and V are the instantaneous membrane 

area and the cell volume, respectively; 
totA0  and 

totV0  are their respective specified total area 

and volume values. jA , 0A are the instantaneous and initial local areas.  

The elasticity of the network is based on a linear analysis of a two-dimensional sheet of 

springs built with equilateral triangles. The linear shear modulus of the WLC-POW model is 
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where 0l  is the equilibrium spring extension. 

 The linear area compression modulus is defined as 

area

tot

area kkGK ++= 2                             (16) 
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The Young’s modulus Y for the two-dimensional sheet can be expressed as a function of 

the shear and area-compression moduli as follows 

GK

KG
Y

+
=

4
                                   (17) 

The relationship between bending modulus bendk   and the macroscopic membrane 

bending rigidity ck  is derived for the case of a spherical shell with the Helfrich bending energy, 

which is expressed by: 

cbend kk
3

2
=                                 (18) 

2.3 RBC aggregation model 

To analyze the RBC aggregation, we adopted the depletion model proposed by Liu et al. [7]. 

In this model a Morse potential function )(r  is used to model the interaction energy 
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where r is the distance between two plane elements of the opposing RBCs directly facing each 

other, 0r is the zero force length, eD is the intercellular interaction strength, and  is the scaling 

factor controlling the interaction decay behavior. Therefore, the total interaction energy [11] of 

a triangulated cell is expressed by 

  jkkjj
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where jkr  is the local distance between the jth and kth triangles located in cells 1 and 2 

respectively. jn  and kn  are the outward unit normal vectors to the those curved elements, 

jI  and kI  stand for the unit vectors parallel to the line joining the centers of two cells and 

directed toward each other, which are based on the DLVO (Derjaguin-Landau-Verwey-
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Overbeek) theory [28] to describe the interaction energy between two curved surfaces.
 jA is 

the area of jth triangle of cell 1. The interaction force acting on the membrane particle i on the 

surface of cell 1 is given by: 
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The intercellular interaction force is simply illustrated as a weak attractive force at a far 

distance, but a strong repulsive force at a near distance. In the numerical model, in order to 

save the computational cost, a cut-off distance 
agg

cr is defined as a zero force separation 

threshold and set to be 3.52, exceeding which the intercellular force is assumed to be zero.    

2.4 Model and physical unit scaling  

The scaling procedure [27] has been presented, which relates the model’s non-dimensional 

units to the physical units. In order to keep the simulation system consistent with the real system, 

the physical properties should be mapped onto the dimensionless properties in the model. The 

length scale is adapted as: 
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where the superscript M and P denote “model” and “physical”. The energy scale is provided as 

follows, 
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The force scale is defined by  
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The scaling between the model and physical times is defined as follows 
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3. Results and Discussion  

In the present study, the blood plasma is considered as an incompressible Newtonian fluid and 

the cytoplasm has the same density as the blood plasma. The modeling parameters are listed in 

Table 1. The number density of the fluid particles in simulation system is set to be 6 and the 

membrane for each cell consists of 640 particles. No-slip boundary condition is applied at the 

wall and to simulate a pressure-driven flow, periodic boundary condition is imposed between 

the entrance and the exit of the channel or the stenosed microvessel.  

Table 1 Simulation parameters 

Parameter Simulation Physical values 

Blood plasma density ( ρ ) 6 [29] 

Blood plasma viscosity ( μ ) 102.5 sPa102.1 3  − [29] 

Temperature (T) 0.08486 310K 

Membrane shear modulus (G) 94~906 [30] 

Membrane bending modulus 

( bendk ) 
4.565 J1032 19−. [27] 

Intercellular energy density ( eD ) 1.976~88.92 [9, 10] 

Scaling factor ( β ) 3.84 [31] 

Zero force distance ( 0r ) 0.49 [31] 

Time step ( tΔ ) 0.0005 ms51073.8 −  
Global area constraint 

constant( tot

areak ) 
 

 

Local area constraint 100  

33 m/kg100.1 

m/N60~3.6 

2m/J5.4~1.0 

1m84.3 −

m49.0 

4105 m/N1035.3 3−

m/N7.6 
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constant( areak ) 

Volume constraint constant( volumek )   

Cut-off radius( cr ) 1.25  

 

3.1 Validation 

To validate the aggregation model combined with three-dimensional network membrane model, 

two biconcave-shaped healthy RBCs with intercellular forces were placed in a three-

dimensional channel. The fluid domain is 20×20×20 3μm , and the initial distance between the 

centers of the two RBCs was μm1.3 . In order to compare with the previous numerical results, 

the viscosity ratio of cytoplasm to the plasma is set to 1. Figure 2 illustrates the equilibrium 

cell shapes of three-dimensional RBC rouleaux in the static blood plasma under different 

intercellular interaction strengths, (e) 
2μJ/m0=eD ; (f) 

2μJ/m10.=eD ; (g) 
2μJ/m1=eD ; (h) 

2μJ/m54.=eD  and the results were compared with Wang et al. [9] and Li et al. [10], as shown 

in Figs. 2a, b, c and d.  

When there is no cell-cell adhesion, cell keeps its initial biconcave shape. Once the 

intercellular interaction force is applied on the adjacent cells, the RBCs move toward each other 

until the attractive force and the repulsive force reach equilibrium state. The equilibrium 

configuration was obtained when the intercellular interaction force was balanced with the 

membrane constraint forces which control the cell deformation. If intercellular interaction 

strength is strong enough, the contact surfaces of the two cells become flat and the distance 

between the contact surfaces remains nearly zero force distance. The shape of noncontact 

surfaces of two cells varies with the intercellular interaction strength. The cells display concave 

4105 m/N1035.3 3−

m25.1 
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shapes at weak intercellular interaction strength ( 2μJ/m10.=eD ), flattened shapes at moderate 

intercellular interaction strength ( 2μJ/m1=eD ), and convex shapes at strong intercellular 

interaction strength ( 2μJ/m54.=eD ). The contact area increases with the intercellular 

interaction strength that is due to the fact that at the high intercellular interaction strength, the 

intercellular interaction force can overcome the constraint force and change the cell shape. In 

addition, it can be observed that the present results are in a good agreement with two-

dimensional equilibrium configuration of RBC rouleaux reported by Wang et al. [9] and Li et 

al. [10]. 

    

    

Fig. 2 Equilibrium configuration of RBC rouleaux at different intercellular interaction strengths. (a) and (e) 

2μJ/m0=eD ; (b) and (f)
 

2μJ/m10.=eD ; (c) and (g)
 

2μJ/m1=eD ; (d) and (h)
 

2μJ/m54.=eD . 

Solid lines and black dot lines in (a), (b) and (d) represent the simulation results reported by Wang et al. 

[9] and Li et al. [10] respectively. Dash line in (c) is reported by Wang et al. [9]. (e)-(h) are the present 

simulation results. 

3.2 Fluid flows without RBCs in a straight microvessel and a stenosed microvessel 
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In this section, we first performed the simulation of a Poiseuille flow in a straight tube with 

50μm in length and 12μm in diameter. In the DPD model, a uniform dimensionless body force 

125.1=yf  was applied to the solvent particles in the flow direction. Such an applied force is 

equivalent to the pressure gradient 
yfρLP =/Δ  , where PΔ  is the pressure drop over the 

tube length L and ρ  is the suspension’s mass density. The fluid viscosity according to its 

approximate expression equation (7) can be calculated as 102. In order to make a comparison 

with the macro-Poiseuille flow model, the analytic solution for the profile of flow velocity 

along the diameter of cross section is given by μrRfρrv yy 422
/)()( −= . Figure 3 compares 

the simulation result with the analytic solution in the macro-Poiseuille flow model. It can be 

found that the velocity distribution is in good agreement with the theoretical values. So the 

Reynolds number is 210./ == μDuρRe m , where mu  is the mean velocity of the flow. It is 

larger than the typical value ( 030.=Re ) for the arterioles with a diameter of 15μm and is one 

to two orders of magnitude higher than the values for the venules and capillaries [3]. In fact, 

the calculated physiological Re is based on the mean flow velocity and the bulk viscosity of 

blood at 45% hematocrit. Under the fixed pressure drop, the mean flow velocity decreases by 

more than 50% at the hematocrit of 45% in comparison with that for the flow in the absence of 

RBCs [32] while the bulk viscosity of blood at 45% hematocrit is nearly 3 times that of the 

plasma. Therefore, the Re  for the flow without RBCs in the present study may be nearly 6 

times larger than that for the blood flow at 45% hematocrit under the same pressure drop, which 

is approximate to the Re  for the arterioles 1251.=yf  assures 210.=Re ..  
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Fig. 3 Velocity profiles for the Poiseuille flow in a straight microvessel driven by a body force 

1251.=yf  

Next, the fluid flow in the absence of RBCs in a microvessel with a stenosis under the 

same flow condition as the Poiseuille flow in the straight microvessel was simulated. Here, the 

stenosis is 8μm long and has a minimum diameter of 8μm. Figure 4 illustrates the distribution 

of velocity vectors and contours for the cross section of the flow without RBCs in a stenosed 

microvessel. It shows that the flow velocity reaches its maximum in the stenosed zone and 

there is no separation in the downstream region of the stenosis at such a low Reynolds number.  

  

Fig. 4 The distribution of velocity vectors and velocity magnitude contours for the cross section of the 

flow without RBCs in a stenosed microvessel  
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3.3 Two RBCs in a stenosed microvessel 

In this section, two healthy RBCs moving in a stenosed microvessel was simulated and 

compared with their counterparts in the straight microvessel. The initial distance between the 

two RBCs was set to be 3.1μm, as shown in Fig 5a, and the intercellular interaction strength is 

0.5μJ/m2 to produce an attractive force. The membrane shear modulus for the healthy RBC is 

6.3μN/m. The viscosity of hemoglobin solution was measured by Cokelet and Meiselman [33], 

yielding a range of 3~10×10-3Pa•s for the physiologically relevant concentration of hemoglobin. 

Here, the RBC is filled with a fluid of the viscosity of 6×10-3Pa•s similar to the RBC cytosol 

which is a hemoglobin solution. Since the motion, deformation and aggregation of two RBCs 

are complex processes depending on the hydrodynamic viscous force, the intercellular 

interaction force and the elasticity of the membrane, it is thus necessary to introduce some 

dimensionless groups: IGCaRe and , . Re  is the Reynolds number. GuμCa m /=  is the 

capillary number, implying the relative importance of the hydrodynamic viscous forces to the 

membrane shear deformation, and it is calculated as 320.=Ca  in the straight microvessel. 

The dimensionless group GDG eI /= determines the relative importance of the intercellular 

interaction to the membrane shear deformation. 

(a) 

  

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 5 Deformation and motion of two healthy RBCs in a straight microvessel at t = 0.0, 21.5, 41.5, 61.5, 

81.5, 197.5 
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In the straight microvessel, as the viscosity ratio is larger compared to the numerical 

studies conducted by Ye et al. [11], all the cells deform gradually from the concave shape to 

the parachute shape initially, as shown in Figs. 5a~5e. The deformation of the two RBCs are 

increasingly affected by the hydrodynamic viscous force instead of the aggregation force, 

indicating that the RBC aggregates cannot be formed when subjected to a weak intercellular 

interaction force, as shown in Fig. 5f. The leading cell experiences larger deformation than the 

rear one in the flow. When the two RBCs flow in the stenosed microvessel, they are 

significantly stretched when passing through the stenosis, as illustrated in Figs. 6c-6e. Since 

the flow velocity in the stenosed area increases quickly, the capillary number grows 

considerably. However, after the stenosis, the RBCs tend to recover from parachute type to 

concave shape with the decrease in the flow velocity. 

(a) 

 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 6 Deformation and motion of two healthy RBCs flowing in a stenosed microvessel at t = 0.0 (a), 21.5 

(b), 41.5 (c), 61.5 (d), 81.5 (e), 247.5 (f). 

To evaluate the effects of stenosis and RBCs on the flow, the relative flow resistance R 

was introduced, which is defined by  

 
D

D

RBC

f

f
R

0

=                                (26) 
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where Df  is the Darcy’s friction factor which is defined as DuρμRef m

D /64/64 ==  for 

laminar flow in a circular tube, and the subscripts “RBC” and “0” denote flow with RBC and 

without RBC, respectively. Figure 7 presents the trajectories of two RBCs and the evolution of 

relative flow resistance when two RBCs move in the stenosed microvessel. In addition, the 

time-averaged flow resistance for the flow without RBCs in the presence of stenosis and the 

flow with RBCs in a straight microvessel were also plotted in Fig. 7, respectively. The 

instantaneous relative flow resistance increases greatly when the leading RBC enters into the 

stenosis and reaches its first peak when the leading RBC arrives at the center of the stenosis. 

Following that, it experiences a dramatic downward trend because the leading RBC is leaving 

from the stenosis while the trailing one has not entered into the stenosis completely. Until the 

leading RBC leaves away thoroughly, the flowing resistance drops to its valley value. Then its 

second peak occurs when the trailing RBC gets to the center of the stenosis. After both of the 

two RBCs pass through the stenosis, the flow resistance falls nearly to the average value for 

the blood plasma flow in the stenosed microvessel. Moreover, it also indicates that the 

narrowing due to the stenosis results in a significantly increase in the flow resistance. 

Particularly, the presence of stenosis leads to the increase of approximate 30% in the flow 

resistance by comparing the flow of RBCs in the stenosed and straight microvessels. 
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Fig. 7 Trajectories of two RBCs in a stenosed microvessel and the corresponding instantaneous relative 

flow resistance, where Yc represents the mass center of the RBC along the flow direction. 

3.4 Effects of RBC membrane elasticity and intercellular interaction strength 

Experimental evidence [30] showed that the elastic shear modulus of the malaria infected RBCs 

at the ring, trophozoite and schizont stages ranges from 15 to 60 . The effects of the 

membrane elasticity and the weak aggregation interaction on the deformation of the two RBCs 

with 
2μJ/m50.=eD were investigated by comparing the deformation of a pair of RBCs with 

three different elastic shear moduli G=6.3μN/m, 25μN/m and 60μN/m and the same bending 

modulus J1032 19−= .bendk . The deformation index (DI) is introduced to measure the degree 

of cell deformation. As the membrane particles near the axis move faster than those near the 

wall, the difference of the axial velocity on the membrane causes the cell elongation. So DI is 

defined as the ratio between the axial length and radial width of the cell. 

m/N
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Fig. 8 (a) Evolutions of deformation indexes of two RBCs; (b) Variations of the y-component intercellular 

aggregation force Int

yF with time t acting on two RBCs; (c) Evolutions of the distance between the centroids 

of two RBCs along the flow direction; (d) Trajectories of two RBCs with the shear modulus 6.3μN/m, 

25μN/m
 
and 60μN/m

 
respectively, in a stenosed microvessel and the corresponding instantaneous relative 

flow resistance  

In Fig. 8a, in the straight microvessel, the DI of the leading RBC is greater than that of 

the trailing one and its increase rate for the leading cell is larger than that for the trailing one 

before t = 50, but after this time, the DI of the leading cell increases slightly and the trailing 

one deforms extensively. This is due to the weak attractive forces (Fig. 8b) between the two 
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RBCs, which results in a growing intercellular distance (Fig. 8c). Consequently, the 

deformation is mainly affected by the hydrodynamic viscous force. Next, the deformation 

indexes of the two RBCs for different shear moduli in a stenosed microvessel were compared 

in Fig 8a. Before the leading RBC enters into the stenosis, there is a slight difference in the 

deformation index for different pairs of RBCs with different shear moduli. However, when 

passing through the stenosis, both of the two RBCs exhibits enhanced deformation and 

decreasing the membrane deformability weakens the RBC deformation. The deformation 

indexes for both the leading RBC and the trailing one are up to their maximum when they 

arrive at the narrowest section of the stenosis separately. Owing to the reduced flow velocity 

in the downstream of the stenosis, the RBC has a lower deformation index than that in the 

straight microvessel after it leaves away from the stenosis. It should be noted that the presence 

of stenosis increases the intercellular distance, especially for a pair of highly deformable RBCs. 

That means the formed incomplete aggregates before the stenosis may be broken when 

traveling through the stenosis. In addition, the stiffer pair of RBCs experiences weak 

deformation, indicating the RBC projected area on the cross section is comparatively large. 

Once the ratio of the RBC projected area to the stenosed area on the cross section perpendicular 

to the flow direction becomes larger due to the decreasing membrane deformability, a 

significant increase can be seen in the instantaneous relative flow resistance, as plotted in Fig. 

8d. Specifically, decreasing the RBC membrane deformability by nearly 10 times can cause an 

increase of approximately 25% in the maximum flow resistance occurred when the RBC 

approaches the stenosis. 
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As the RBCs pass through the stenosis separately under the condition of 
2μJ/m50.=eD , 

it is necessary to investigate how the aggregate affects the flow resistance when it gets through 

the stenosis. Therefore, the migration of two healthy RBCs in a stenosed microvessel for three 

different values of intercellular interaction strength, 2μJ/m18050 ,.,.=eD , corresponding to 

159012700790 .,.,.=IG   respectively, was studied in terms of the evolution of the flow 

resistance. Increasing the intercellular interaction strength to 2μJ/m80. and 
2μJ/m1  promotes 

the formation of a rouleaux before the stenosis and the higher De makes closer aggregation. 

The intercellular interaction force is strong enough to inhibit the dissociation of the rouleaux 

when it passes through the stenosis, as shown in Fig.9. The flow resistance experiences only 

one peak when the pair of RBCs as a rouleaux travels across the stenosis (see Fig. 10). Also, 

the peak value of the flow resistance caused by the rouleaux is larger than that brought by two 

individual RBCs. In addition, the stronger cell-cell interaction can lead to higher flow 

resistance at the stenosis of the microvessel.  

(a) 

 

(b) 

 

Fig. 9 Snapshot of the two RBCs passing through the stenosis for (a) GI = 0.127 and (b) GI = 0.159 
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Fig. 10 Trajectories of two RBCs in the stenosed microvessel and corresponding instantaneous relative 

flow resistance for GI = 0.079, 0.127 and 0.159 respectively 

3.5 Effects of initial RBCs orientation  

In this section, the initial RBC orientation was taken into account to investigate its effect on 

the aggregation of the two RBCs and the flow resistance. First of all, the initial RBC inclination 

angle is defined by the angle between the main flow direction and the major axis of the RBC. 

The initial inclination angle θ for both of the RBCs was set to 90° in the last section, which can 

generate a relatively high flow resistance, but here it was varied to 0°. The simulation of a pair 

of healthy RBCs with the intercellular interaction strength of 2μJ/m50.=eD   and the 

intercellular distance of μm13.=−ccL passing through the stenosed microvessel was carried 

out firstly. The cells are 20mm away from the center of the stenosis at the initial time. As shown 

in Fig. 11, there is no rouleaux formed before the stenosis and even the cells are forced to 

approach each other when they are passing through the stenosis. This is due to two reasons. 
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One is that the intercellular interaction force is relatively weak, another is that there is no 

sufficient time to form aggregates due to the increased velocity at the stenosis. Subsequently, 

the intercellular distance becomes increasingly large and the two cells flow dispersedly after 

they leave away from the stenosis because of the divergent fluid velocity vectors. In terms of 

the deformation of the RBCs, as the RBCs flow parallel to the main flow and the flow velocity 

increases significantly in the stenosis, little deformation is observed and only stretching 

deformation occurs when they are flowing in the stenosis.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 11 Case 1: Deformation and aggregation of two RBCs with 
2μJ/m50.=eD for the initial 

intercellular distance μm13.=−ccL in a stenosed microvessel at different time steps: (a) t=0; (b) t=36.5; 

(c) t=57.5; (d) t=96.5; (e) t=126.5; (f) t=156.5 

 

However, when the intercellular interaction strength is increased by a factor of two, the 

aggregate is formed before the stenosis (Fig. 12b~c) as the noncontact surfaces of the two 

RBCs have converted from the concave to the flat. There exists an empty gap (the dark red 

regions of the RBCs) between the two RBCs, so a complete aggregate has not been achieved 

before it passes through the stenosis. The aggregate undergoes stretching deformation owing 
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to the geometrical effect of the stenosis, as illustrated in Fig. 12d. After the stenosis, the 

divergent velocity vectors facilitate the aggregate deformation from ellipsoidal shape to a near 

spherical shape (Fig. 12e), which is consistent with the two-dimensional findings provided by 

Vahidkhah and Fatouraee [14]. With the increase in the contact time, the empty gap between 

the two RBCs is shortened gradually and the noncontact surfaces of the RBCs deform to the 

concave shape. As a decreased flow velocity occurs downstream the stenosis as shown in Fig. 

4, the hydrodynamic viscous force is weaker compared with the intercellular interaction force 

so that the aggregate cannot be broken into the individual cells. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  

 

(f) 

 

Fig. 12 Case 2: Deformation and aggregation of two RBCs with 
2μJ/m1=eD for

 
the initial intercellular 

distance μm13.=−ccL in a stenosed microvessel at different time steps: (a) t=0; (b) t=36.5; (c) t=57.5; (d) 

t=87.5; (e) t=108.5; (f) t=138.5 

Next, the initial distance between the two RBCs was enlarged to 6.2μm while De remains 

to be 2μJ/m1 . The weak attractive force cannot promote the formation of rouleaux before the 

stenosis (Figs. 13b~c) due to the initial large intercellular distance. Although a strong attractive 

force is generated between the two RBCs when they pass through the stenosis, there is no 

enough contact time for them to form the aggregate even if they are forced to approach each 

other (Fig. 13d). After they move away from the stenosis, the deformation behavior of the two 
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cells are nearly same as in the first case in this section, by comparing Figs. 13d~e and Figs. 

11d~e. 

Fig. 13 Case 3: Deformation and aggregation of two RBCs with 
2μJ/m1=eD for

 
the initial intercellular 

distance
 

μm26.=−ccL in a stenosed microvessel at different time steps: (a) t=0; (b) t=26.5; (c) t=43.5; 

(d) t=77.5; (e) t=97.5; (f) t=116.5 

In the last simulation, the intercellular interaction strength for the two RBCs that are 

6.2μm apart from each other initially was set to be 2μJ/m54. . The results are presented in Fig. 

14. Similar results are obtained in the initial time steps as shown in Fig. 13. When the two cells 

get into the stenosis simultaneously, the front parts of the cells are closer to each other 

compared with the last case due to the strong cell-cell attractive force, as observed in Fig. 14d. 

As time progresses, two cells attach to each other and form a steady rouleaux which is hardly 

separated by the hydrodynamic viscous force, as shown in Fig. 14e~f. 

(a) 

 

(b) 

 

(c) 

 

(d) (e)  (f) 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  

 

(f) 
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Fig. 14 Case 4: Deformation and aggregation of two RBCs with 
2μJ/m54.=eD for

 
the initial 

intercellular distance
 

μm26.=−ccL in a stenosed microvessel at different time steps: (a) t=0; (b) t=26.5; 

(c) t=43.5; (d) t=77.5; (e) t=97.5; (f) t=131 

Finally, the time variation of the relative flow resistance and the centroid positions of the 

two RBCs for the above four cases were compared in Fig. 15. Noticeably, the pair of RBCs as 

an aggregate formed upstream (Case 2) move faster than the other cases because the aggregate 

moves almost along the centerline of microvessel. Fig. 15 shows that the flow resistance 

reaches its highest point when the two RBCs form the aggregate within the stenosis as shown 

in Fig. 14 (Case 4). However, for Case 2 where the aggregate forms upstream, the flow 

resistance is the smallest since the aggregate migrates with a larger velocity. Furthermore, by 

comparing the aggregate passing through the stenosis with initial inclination angle θ=90° and 

θ=0°, it seems that the aggregate flowing parallel to the main flow with little deformation 

causes less flow resistance when it reaches the stenosis. 
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Fig. 15 Trajectories of two RBCs in a stenosed microvessel and corresponding instantaneous relative flow 

resistance for case 1: μm130790 .,. == −ccI LG ; case 2: μm131590 .,. == −ccI LG ; case 3: 

μm261590 .,. == −ccI LG  and case 4: μm267140 .,. == −ccI LG . The solid symbol represents 

the bottom RBC and the hollow one represents the upper RBC.  

4. Conclusions  

In summary, the behaviors of RBC deformation and aggregation in a stenosed microvessel 

under a quasi-steady condition were investigated numerically by using dissipative particle 

dynamics. A spring-based network cell model was employed to represent deformable 3D RBC 

membrane. The plasma was regarded as incompressible Newtonian fluid. And a Morse 

potential function based on depletion-mediated RBC aggregation model was used to 

characterize the aggregation of cells.  

Firstly, the aggregation model was verified by comparing the results of equilibrium 

configurations of rouleaux formed under the quasi-steady condition and the action of different 

cell-cell interaction strengths with the previous 2D simulation results. The findings showed that 
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the contact surfaces between two cells deform from a concave shape to a flat shape at a higher 

intercellular interaction strength while the non-contact surfaces remain the concave shape at a 

weak cell-cell adhesion strength. With the increase in the intercellular interaction strength, they 

become flat and even convex at high interaction strengths. These are qualitatively similar to 

the previous numerical results of Wang et al. [9] and Li et al. [10]. 

Then, the motion of two RBCs in a stenosed microvessel was simulated. Three types of 

the RBC shape can be distinguished. When the RBCs with initial inclination angle of 90° pass 

through the stenosis, parachute shape and asymmetric slipper shape occur at the initial and later 

stages respectively. But when the RBCs move along the main flow direction, only extension 

deformation can be observed when they traverse the stenosis. The increased flow velocity at 

the stenosis enlarges the distance between the two RBCs with weak intercellular interaction 

strength for the inclination angle of 90°. For the inclination angle of 0°, there is no sufficient 

time for the rouleaux formation at the stenosis when the intercellular interaction is not strong 

enough. Both of the two RBCs passing through the stenosis separately have a higher 

deformation index at the stenosis due to the higher capillary number, especially for the softer 

ones. 

Moreover, the relative flow resistance, as a measurement of the effect of the RBC 

behaviors on the blood flow, was calculated and analyzed. The presence of stenosis and RBCs 

causes a significant increase in the average flow resistance. The flow resistance increases 

considerably when the RBCs enter into the stenosis and decreases rapidly when they leave 

away from the stenosis. For a pair of RBCs with the inclination angle of 90°, the flow resistance 
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is significantly higher for the stiffer RBCs. The stronger intercellular interaction can also lead 

to an increased flow resistance. For a pair of RBCs with the inclination angle of 0°, when RBCs 

at upstream of the stenosis are far away from the center of the microvessel, the flow resistance 

is relatively large. The aggregate formed at the stenosis under a higher intercellular interaction 

induces a greater flow resistance. The rouleaux formed by a pair of RBCs with the inclination 

angle of 90° induces larger flow resistance through the stenosis compared to that formed by a 

pair of RBCs with the inclination angle of 0°. 

Although the present study provides a basis for the future investigation on the flow 

behaviors of multiple interactive RBCs, which compose the real blood, there are some 

limitations. First, the so-called zero-force distance in the Morse potential is about 13nm [6], 

which is much smaller than the value we used in the model as it may lead to a high 

computational cost. Second, only axisymmetric parachute shape and asymmetric slipper are 

considered for the flow of two RBCs with an initial inclination angle of 90°. The snaking and 

tumbling RBCs predicted by Fedosov et al. [34] in the cylindrical microchannel as well as the 

elongated shape in capillary flows [35] are excluded in current study, which occurs at a lower 

shear rate.  Based on the current analysis of two RBCs passing through a microvessel stenosed 

microvessel, the blood flow consisting of multiple deformable RBCs in a stenosed microvessel 

would be one of our future studies.   
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