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Abstract 

The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell 

extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used 

Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. 

The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and 

surrounding fluid. The effects of the cell elasticity, cell shape, nucleus and slit size on the cell transmigration 

through the slit were investigated. Under a fixed driving force, the cell with higher elasticity can be elongated more 

and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes 

jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to 

ellipsoidal shape and increasing the cell surface area by merely 9.3% can enable the cell to pass through the narrow 

slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell 

passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases 

during entrance but increases during exit of the slit, which is qualitatively in agreement with the experimental 

observation. 
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1. Introduction 

Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the 

detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood 

and/or lymphatic circulations. During hematogenous metastasis (through blood), the emigration of tumor cells from 

the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, or adhesion to the 

endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier 

termed as extravasation (Reymond et al. 2013; Strell and Entschladen 2008; Wirtz et al. 2011). Cell adhesion to 

vessel wall has been investigated both computationally and experimentally (Rejniak 2012; Yan et al. 2012). 

However, little is known about how adherent tumor cells physically penetrate the vascular wall.  

Microvessel walls mainly consist of endothelial cells. There are four primary pathways observed in the 

microvessel wall by using electron microscopy: intercellular clefts, transcellular pores, vesicles and fenestrae 

(Sugihara-Seki and Fu 2005). The inter-endothelial cleft is not only widely believed to be the main pathway for 

water and hydrophilic solute transport under normal physiological conditions but also suggested to be the pathway 

for the transport of tumor cell across microvessel walls in disease. Endothelial cells of some tumor vessels overlap 

one another, have luminal projections, and give rise to abluminal sprouts. The size of the intercellular openings is 

less than 2µm in diameter (McDonald and Baluk 2002). For a tumor cell transmigration of the endothelial 

monolayer, it was observed clearly that there are three states it has to experience: adhesion, transmigrating and 

transmigrated, as shown in Fig. 1 (Fan and Fu 2015). By using confocal microscopy (Fan and Fu 2015), we have 

observed the transmigration of a malignant breast tumor cell through the endothelial monolayers, as shown in Fig. 2. 

In this observation, the transmigration occurs at the bi-joint between endothelial cells. From the biochemical and 

molecular biological investigations, an endothelial retraction is currently a favorable model for tumor cell 

transendothelial migration (Miles et al. 2008; Voura et al. 1998). Next, tumor cells undergo dramatic shape changes, 

driven by a significant rearrangement of the cell cytoskeleton (Sugihara-Seki and Fu 2005). Also, invasive cancer 

cells can disrupt the endothelial barrier through regulating the biomechanical properties of endothelial cells (Mierke 

2011, 2012). In addition, it is found that metastatic cancer cells are softer than their normal or benign counterparts, 

which may facilitate cancer cell extravasation from the blood stream (Cross et al. 2007; Suresh 2007). To 

understand how tumor cells undergo large elastic deformation during penetrating the vascular wall, it is necessary 

to analyze this process from the mechanical point of view.  

 



 

 

 

Fig. 1 Schematic diagram of tumor cell extravasation including three states: adhesion, transmigrating and transmigrated. EC represents 

endothelial cell and TC represents tumor cell (revised from Fan and Fu, 2015) 

 

Fig. 2 Tumor cell (red, labeled “T”) transmigration through the junction between two endothelial cells (labeled “E”). The green lines 

are the EC borders.Blues are cell nuclei. (From Fan and Fu, 2015, with permission) 

The passage of cell through a narrow channel, slit or small pore has attracted much attention since 1980s. 

Freund (2013) numerically investigated the flow of red blood cells (RBCs) through a narrow slit and observed that 

the cells infold in the slit due to high velocity or high cytosol viscosity, which might provide a mechanism for 

jamming. Omori et al. (2014) revealed that the transit time increases nonlinearly with the viscosity ratio when 

RBCs pass through a thin micropore. Wu and Feng (2013) explored malaria-infected RBCs transit through 

microchannel in terms of the cell deformability. Li et al. (2014) and Quinn et al. (2011) simulated a single RBC 

flowing through a narrow cuboid channel using dissipative particle dynamics and found that the cell deformation 

and transit time depend on cross-sectional geometry and cell size. These studies on RBC passage through a 

confined geometry provide important insights into a tumor cell’s journey through the inter-endothelial cleft. As for 

the studies on tumor cell transmigration, cell deformation in microfluidic device offers effective measurement 

means to quantify cell mechanical properties in vitro (Chaw et al. 2007; Leong et al. 2011). It is found that the 



 

 

surface area of cancer cells increases by more than 3 fold during the cell deformation through 10 µm microgap 

(Chaw et al. 2007). Moreover, high-resolution time-lapse microscopy was employed to investigate the dynamic 

nature of tumor cell extravasation in an in vitro microvascular network platform. The findings showed that the 

tumor cell extrudes firstly through the formation of a small opening (~1-2 µm) between endothelial cells and the 

opening grows to form a pore ~8-10 µm in diameter to allow for nuclear transmigration (Chen et al. 2013). Finally, 

the numerical study on the circulating tumor cells passing through a 3D micro-filtering channel shed lights on the 

importance of channel geometry on deformability-based cancer cell separation (Zhang et al. 2014). 

Since cell deformability plays an important role in passing through the slit, we are particularly interested in the 

effects of changes in the cell elasticity and cell surface area on the behavior of cell passing through narrow slit in 

this study. We firstly described the spring-based network cell model and briefly introduced the numerical 

method—Dissipative Particle Dynamics (DPD). Then we reported the deformation of a cell through a narrow slit 

and presented results for cell passing through the slit with different sizes. The effects of cell elasticity, cell shape, 

slit size and cell nucleus on cell transit were discussed. Lastly, the conclusions drawn from this work were made.   

2. Physical model and numerical method  

2.1 Cell membrane model  

A spring-based network model was first proposed and further developed as discrete description of RBCs at the 

spectrin protein level by Boey et al. (1998) and Li et al. (2005). On the basis of this, Pivkin and Karniadakis (2008) 

developed a systematic coarse-graining procedure to reduce the number of degrees of freedom dramatically. This 

coarse-grained model was improved by Fedosov et al. (2010), yielding accurate mechanical response. This 

spring-based network model has been employed to simulate the deformation and margination of white blood cells 

(Fedosov and Gompper 2014), which have similar process of extravasation as tumor cells. The total energy of the 

network is defined as 
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where 
ir represents the vertex coordinates and the in-plane elastic energy is given by  
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Each edge in the network is a spring consisting of two potentials—a worm-like model with elastic energy 

WLCE  and a power function potential with energy PE , as follows: 
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where )1,0(/ max = llxl , l is the instantaneous spring length, maxl  is the maximum spring extension, which is 

equal to 2.2 times (Fedosov et al. 2010) equilibrium spring length for the WLC model, p is the persistence length, 

Bk is Boltzmann constant and T is temperature of the system, which is equal to 310K. 
pk is a spring constant and 

m is a specified exponent, here we set it to 2 (Fedosov et al. 2010). 

The bending energy is given by 

  −−=
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where bendk  is a bending modulus; 
 is the instantaneous angle formed between the outer normal vectors of 

two adjacent triangles  ,   sharing the common edge; 0  is the spontaneous angle. 

The area and volume conservation constraints are 
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where tot

areak , areak  and volumek  are constraint constants for global area, local area, and volume; 
totA and V are 

the instantaneous membrane area and the cell volume; 
totA0

 and 
totV0

 are their respective specified total area and 

volume values. A, 0A are the instantaneous and initial local areas.  

Nodal forces are derived from the total energy as follows: 
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2.2 Cell mechanical properties 

The elasticity of the network is based on the linear analysis of a two-dimensional sheet of springs built with 

equilateral triangles (Dao et al. 2006). The linear shear modulus of the WLC-POW model is 
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where 
0l  is the equilibrium length of the spring. 

The linear area compression modulus (Fedosov et al. 2010) is defined as  

area

tot

area kkK ++= 02                             (10) 

The Young’s modulus Y for the two-dimensional sheet can be expressed through the shear and 

area-compression moduli as follows 
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The Poisson’s ratio ν is given by 
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Based on the incompressibility assumption we set 
0+ area

tot

area kk , so 04→Υ  and 1→ . The 

dimensionless parameters 1000/ 0 == KGD
and 1000/ 0 == volumeV kG ensure that membrane area and cell 

volume variation within 1% (Ye et al. 2014) during the cell deformation, respectively. 

The relationship between bending modulus bendk  and the macroscopic membrane bending rigidity ck  is 

derived for the case of a spherical shell in the Helfrich bending energy (Helfrich 1973), as follows: 
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2.3 Dissipative particle dynamics (DPD) method 

DPD as a mesoscopic simulation technique has been used widely for computing the flow of complex fluids (Fan et 

al. 2006; Soares et al. 2013; Warren 2003). Introductions to DPD method have been presented in detail in previous 

studies (Espanol 1995; Groot and Warren 1997; Hoogerbrugge and Koelman 1992). In brief, each DPD particle i 

represents a soft lump of atoms and interacts with surrounding particles, denoted by j with three simple pairwise 

additive forces: conservative (repulsive) force,
C

ijF , dissipative (friction) force, 
D

ijF , and random (Brownian) force, 

R

ijF .  
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where 
ijijij r/=ˆ rr , jrrr −= iij  and 

jiij vvv −= . The coefficients   and   define the strength of 

dissipative and random forces, respectively. In addition, 
D  and 

R  are weight functions, and 
ij  is a 

normally distributed random variable with zero mean, unit variance, and 
jiij  = . All forces are truncated beyond 

the cutoff radius cr , which defines the length scale in the DPD system. The conservative force is given by  
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where 
ija  is the conservative force coefficient between particles i  and j . 

The random and dissipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem in 

order for the DPD system to maintain equilibrium temperature T . This leads to:  
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The choice for the weight functions is as follows  
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where the value of exponent affects the viscosity of the DPD fluid, lower values typically result in a higher 

viscosity (Fan et al. 2006).  

The conservative force reflects the compressibility of the fluid, the dissipative force mainly captures the 

viscosity of the fluid and the random force ensures that the fluid temperature remains constant. 

When the cell model is immersed into the DPD fluid, the total force exerted on a membrane particle is given 

by 
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While for a fluid particle, the total force is expressed by 
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where xf is the value of body force along x direction. The mass of the individual particle is set to 1 and particle 

motion is governed by Newton’s equations of motion:  
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The above equations of motion were integrated using the modified velocity-Verlet algorithm (Espanol 1995; 

Groot and Warren 1997; Hoogerbrugge and Koelman 1992) 
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where )(~ tti +v is the prediction of the velocity at time tt +  and  is an empirically introduced parameter, 

which accounts for the additional effects of the stochastic interactions, and is set to 0.65. The velocity is first 

predicted to obtain the force and then corrected in the last step. 

DPD parameters used in the simulations of interactions among particles representing inner fluid (Si), external 

fluid (So), cell vertices (C) and walls (W) are shown in Table 1. 

Table 1 DPD parameters used in the simulations 

Interaction a γ rc 

So-So, So-W 20.0 18 1.0 

Si-Si  20.0 54 1.0 

C- Si, C-So, C-W 20.0 54 1.0 

2.4 Model and physical units scaling  

The scaling procedure has been presented (Fedosov et al. 2010), which relates the model’s non-dimensional units to 

physical units. In order to keep the simulation system consistent with the real system, the physical properties should 

be mapped onto the dimensionless properties in the model. The length scale is adapted: 
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where the superscript M and P denote “model” and “physical”. The energy scale is provided as follows 
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The force scale is defined by  
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The scaling between model and physical times is defined as follows 
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where P is the physical fluid viscosity, the surrounding fluid and cytoplasm are considered as incompressible 

Newtonian fluid.  

The scaling between model and physical body force is expressed 
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where n is the number of density in the simulation system, in this study we set n = 6. The density of the 

surrounding fluid, ρ, is set to be 103 kg/m3. Simulation (in DPD units) and physical (in SI units) parameters for 

fluid and cell membrane are shown in Table 2. 

 
Table 2.Simulation (in DPD units) and physical (in SI units) parameters  

Parameters Simulations Physical 

cell diameter (D) 9.0 9.0×10-6m 

Young’s modulus (Υ ) 8.073-80.073 0.416~4.16 m/N (Cross et al. 2007) 

bending rigidity (kc) 0.47~47 J101.2~101.2 1820 −−   (Fedosov et al. 2010) 

temperature (T) 0.0828 310K 

external fluid viscosity (
o ) 20 sPa101 3  −  (Fushimi and Verkman 1991) 

cytoplasma viscosity (
i ) 60 sPa103 3  −  

Density (ρ) 6 
33 m/kg101  

body force ( xf ) 0.286 88.29m/s2 

3. Results and discussion 

3.1  Model geometry and parameter values 

The geometry of the model slit is schematically depicted in Fig.3. The slit has a rectangular cross section of width 

wc, length of 2 µm and height of 14 µm. The spherical cell with diameter of 9 µm is located at x= -5.6 µm initially. 

The computational domain is triply periodic as labeled and the origin of the coordinate is located in the center of 

the slit. The vessel walls are regarded as rigid bodies and the cell nuclei are not taken into consideration for 



 

 

simplicity. In order to simulate a pressure-driven flow through the slit, a uniform body force is applied to the fluid 

particles located at x ≥ 15μm. The pressure gradient in the region around the slit is not constant, which voids the 

validity of application of the uniform body force in that area. In order to control the density fluctuations of the fluid 

near the wall boundaries, an adaptive boundary condition is adopted, which has been applied on the measurement 

of red blood cell large deformation in a microfluidic system (Li et al. 2014). To prevent the particles from 

penetrating into the solid wall and the cell membrane and ensure no-slip condition, bounce-back reflection is 

enforced on them. It should be pointed out that due to the soft potential in DPD, the body force driven flow passing 

through obstacle usually results in a vacuum area in the downstream. The conservative force deriving from this soft 

potential tries to capture the effects of the “pressure” between different particles. Because of the soft interaction 

between fluid particles, the “speed of sound” in the DPD fluid is low (Pan et al. 2013) and consequently the Mach 

number is very high even at very low Reynolds number, resulting in a significant compressibility effect. The “speed 

of sound” in DPD fluid at constant temperature (Espanol 1995) has been derived as 

15/
42

cB anrTkpc +== . An alternative approach to avoid the density rarefaction after the cell is to 

employ a large conservative coefficient (Ye et al. 2014), thus the “speed of sound” can be enhanced to ensure the 

Mach number less than 0.3. The fluid particles in Fig. 4 are found to be distributed uniformly.

(a) 

 

(b) 

 

Fig. 3 Schematic illustration of a spherical cell near a slit at initial time from the front view (a) and the left side view (b) 

An important non-dimensional parameter, the capillary number is introduced, which represents the ratio 

between the flow viscous traction force and the elastic resistance of the membrane. A local capillary number can be 

defined as 

        
Υ

U
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where 
0  is the viscosity of the plasm, a characteristic velocity

0

2
8 cxwfU = . In the following results to be 

presented, a fixed body force 
2m/s29.88=xf is applied to drive the flow. According to the optical measurements 

of cell deformability by a microfluidic optical stretcher, cancer cells were found to stretch approximately five times 

more than normal cells, and metastatic cells were found to stretch about twice as much as non-metastatic cancer 

cells (Lincoln et al. 2004). The elasticity modulus of tumor cells from cancer patients was measured and yielded 

average value of about 0.5kPa (Cross et al. 2007). The atomic force microscopy indentation study found that the 

average Young’s modulus for malignant breast cells ranged from 300 Pa to 600 Pa at different loading rates (Li et 

al. 2008). As the cell membrane is only about 7 to 9 nanometers thick, which is much smaller than the diameter of 

the cell, the Young’s modulus for two dimensional sheet-based cell membrane model was approximately by the 

average cell stiffness multiplied by the membrane thickness (Hou et al. 2009). So Young’s modulus ranges from 

2.1µN/m to 5.4µN/m and Ca lies between 0.123 and 0.336. The Reynolds number 0 ce UwR = varies from 

0.002384 between 0.00565 and the Mach number computed by cUMa /= lies between 0.077 and 0.137 in current 

study. 

(a)

  

(b) 

 
(c)

 

(d) 

 

Fig. 4 Cross section of a deformed spherical cell passing through the slit (wc=8 μm) for body force fx = 88.29 m/s2 exerted on the fluid 

particles located on x > 15 μm and x < -15 μm (a) t = 7.275 ms, (b) t = 16.975 ms, (c) t = 26.675 ms , (d) t = 38.315 ms. The model 

consists of four types of particles: wall particles (black), fluid particles (blue), membrane particles (red), and cytoplasm particles 

(green) 

Figure 4 visualizes the cell deformation during passing through the narrow slit. Since initially a cell has a 

diameter of 9 μm, which is larger than the slit width, the cell would experience compression deformation. As the 



 

 

cell enters the slit, the front end of the cell membrane is gradually stretched along the flow direction while the rear 

side maintains its sphericity, as shown in Fig. 4a. When the cell reaches the center of the slit, it is elongated to the 

longest, as can be seen in Fig. 4b. During exiting from the slit, the cell gradually recovers its initial spherical shape, 

see Fig. 4d. 

To investigate the numerical convergence with respect to spatial resolution, cell passage through the narrow 

slit (wc=8μm) for three resolutions, n= 3, 6, 9 have been compared. As shown in Fig. 5a, the cell centroid 

trajectories for n=6 and n=9 agree with each other very well, but there is a large discrepancy for n=3. We have 

further checked the cell elongation index, which is defined in the following section, and the difference between n=6 

and n=9 are not very large. Therefore, n=6 is chosen for all calculations. 
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Fig. 5 (a) Cell centroid trajectories and (b) the elongation indexs for three resolutions, n= 3, 6, 9 during passing through the 

narrow slit (wc=8µm) 

3.2 Effects of the cell membrane elasticity 

In this section, the effect of Young’s modulus as an important factor to the elasticity of a cell is examined, with 

values varying from 0.416µN/m to 4.16µN/m which enclose the values from the measurement (Hou et al. 2009). 

Figure 6a shows the distance between the cell front, rear end and their respective initial positions. It can be seen 

that the cells with different elasticity experience the same trend of motion. As the cell enters into the slit, the line 

chart begins with a steep slope in the displacement of front end and this gradually decreases, which is qualitatively 

in agreement with experiment (Lincoln et al. 2004). Also, the dashed line represents the distance between the exit 

and the initial position of cell rear end in Fig. 6a. Once the displacement of the rear end exceeds the dashed line, it 

means that the cell passes the slit completely and the time spent is defined by the transit time. The displacement of 

the front end is slightly greater than that of rear end initially but then it is exceeded by the latter, which means the 



 

 

cell is stretched first and then shrinks. Obviously, with the decrease of modulus, it takes less time for the cell to 

pass through the slit, which can be seen in Fig. 6a. The malignant breast cancer cells was found to have a Young’s 

modulus which is 1/1.8-1/1.4 that of their non-malignant counterparts (Lincoln et al. 2004). The study on the 

deformability of breast cancer cells has shown that the non-malignant cells have longer entry time than the 

malignant counterparts through the microchannel, where the entry time is defined as the time taken for the cell to 

deform and enter completely into the microchannel (Lincoln et al. 2004). In order to characterize the deformation of 

the cell, elongation index is introduced. It is the ratio of the cell elongated length (Lx) in the flow direction to its 

initial diameter (D). In Fig. 6b, the cell elongates first and then shrinks gradually, which is corresponding to the 

displacements of rear end and front end. Apparently, it is faster to recover its original sphere shape and easier to 

deform for a softer cell. 
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Fig. 6 Cell displacement along flow direction (a) and the elongation index (b) during passing through the narrow slit (wc=8µm) at 

different values of the Young’s modulus
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Fig. 7 Centroid trajectories of cells passing through the narrow slit (wc=8µm) at different values of bending rigidities with 

m/N16.4 =  



 

 

A bending modulus for the breast cancer cell membrane was calculated to be 1.35×10-19 J (Guo et al. 2004), 

which is in the same order as that for the red blood cell membrane. Based on the investigation on the transit of cells 

with different bending rigidities through the slit, it takes longer time for the stiffer cell to transit through the slit, but 

there is almost no difference in the trajectories of cell centroid when the bending rigidity reduces by an order 

magnitude, as can be seen in Fig. 7. So the bending rigidity has little effect on the cell transit time. Based on the 

ratio between the bending forces to membrane spring forces expressed by 
2/ΥRkbend= , where R is the cell 

radius, it reaches the order of 10-3 so that the deformation due to bending forces is negligible compared to the 

deformation caused by elastic force. 

Overall, under the condition of cell surface area-preserving, Young’s modulus is only related to shear modulus 

determined by the wormlike chain spring forces and plays a key role in the membrane elasticity.  

3.3 Cell entry into the narrow slits with decreasing size  

With the decrease in the slit size, the cell enters more slowly and protrudes less and less into the slit, then it 

becomes blocked, just as shown in Fig. 8, the two dash lines indicate the positions of cell centroid entry and exit. 

Compared with the entry into the slit with a width of wc  = 6 µm, the cell in the slit with wc = 7 µm moves faster 

and produces a longer protrusion. In fact, for a fixed pressure drop, the narrower the slit is, the lower the Ca. The 

supplied body force is not large enough to produce sufficient viscous traction force to deform the cell in face of the 

resistance from the confinement of the narrower slit.  
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Fig. 8 Centroid trajectories of cell passing through slits with different sizes 
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Fig. 9 The protrusion length comparison for blocked cells in the slit (wc = 6µm) at different values of Young’s modulus 

As the elasticity affects largely the cell deformability, cells with different values of the Young’s modulus 

squeezing into the slit of 6 µm width are compared in Fig. 9. It illustrates the steady-state shape of the cell after 

obstruction. The length of protrusion is indicated by lt, the distance between the cell front end and the entry of the 

slit. As seen from Fig. 9, reducing the elasticity modulus by 10 times can double the protrusion length, but still 

doesn’t enable the cell to pass the narrow slit. 

3.4 Effects of the cell shape 

The cell surface-to-volume ratio is a determinant of the static deformability of the cells. Cancer cells exhibit 

various kind of shapes, including round, oval elongated and clusters (Park et al. 2014). The shape transformation 

from sphere to flat ellipsoid largely increases the surface-to-volume ratio. In this subsection, spherical and 

ellipsoidal cell with the same volume and mechanical properties passing through the narrow slit (wc = 6µm) are 

compared in terms of the deformation. The effects of initial orientation of ellipsoidal cell on its transit through the 

slit are investigated. Information about different cell shapes is listed in Table 3.  

Table 3 Geometrical properties about different shapes of cells 

Case 

  

V(µm3) 381.5 381.5 



 

 

R(µm) Rx = Ry = Rz =4.5 Rx =2.835, Ry = Rz =5.67 

A(µm2) 254.34 278 

∆A/A0 0 9.3% 

A/V(1/µm) 0.667 0.730 

 
In order to characterize the cell deformation, the expression of local strain has been introduced in the previous 

study (Chen et al. 2013). Based on this definition, the average deformation γi for the membrane particle i is 

expressed as follows: 
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where Ni represents the number of springs which is connected by particle i, lij and lij,0 are the instantaneous and 

spontaneous lengths of springs respectively. The local deformation contour for each membrane particle is plotted in 

Fig. 10. When the spherical cell protrudes the slit, its forefront suffers large deformation but the rear end doesn’t 

nearly deform. The middle part of the cell located in the slit retains to be stretched with local γ reaching 80% after 

blockage, as shown in Fig. 10a. But for an ellipsoidal cell, the deformation depends on its initial orientation. When 

its seminor axis is parallel to y axis at initial time, the cell can pass through the slit easily, which can be seen in Fig. 

10b, as the length of seminor axis is comparable to the slit. When the cell enters the slit, its front end is stretched 

initially. With the increase in protrusion length, the extruded part of cell expands and middle part maintains to be 

stretched while the rear end almost keeps its original shape. After exiting from the slit, the forefront of the cell is 

stretched largely while the rear end is compressed. But if the cell rotates 90° around z or x axis at initial time, the 

size of cell is nearly double the slit width. Therefore, the cell should compress itself when traversing the narrow slit, 

which produces large deformation. As its centroid reaches the center of the slit, the extruded part expands largely 

and local γ can attain 70%, while the exposed part has not been squeezed into the slit shrinks and even some 

wrinkles appear on the membrane, as can be seen in Fig. 10c and Fig. 10d. When the cell exits from the slit, it 

enfolds within the slit. After passing through the slit, the expanding part gradually shrinks and the shrinking one 

expands slowly.  
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Fig. 10 Snapshots of the cell deformation for different relaxed shapes through the narrow slit (wc=6µm) from the front view (the upper 

row) and the top view (the lower row) separately. A/V is 0.667 in (a), 0.730 in (b), (c) and (d). (b), (c) and (d) represent that the 

seminor axis of the cell is parallel to y, x and z axis respectively

In fact, before transmigrating through the slit between two endothelial cells, a tumor cell has to adhere to the 

endothelium. Then the adherent spherical cell would spread out into a flat shape before extravasation (Albelda et al. 

1994; Dewitt and Hallett 2007; Stoletov et al. 2010; Zhu et al. 2000). This shape change enables tumor cells 

transmigrate through a much narrower slit. Next, effect of initial orientation on ellipsoidal cell transit time is 

investigated. Firstly, the transit time, entry time and exit time are defined as 
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and 

0=cxt  is the time when the cell centroid approaches the middle of the slit. Figure. 11 

compares the cell transit time, entry time and exit time for three different orientations. For all cases, the entry time 

is longer than the time spent on exit from the slit. It takes less time to pass through the slit for the cell with initial 

seminor axis parallel to flow direction. This may because that the cross-section of the cell perpendicular to the flow 

direction is largest compared to the other two cases. The initial layout that the seminor axis is parallel to z axis has 

the longest transit time and enlarges the difference between entry time and exit time, due to the fact that the cell 

needs longer time to deform itself to adapt to the slit when entering into the slit. To conclude, initial orientation 

plays an important role in the ellipsoidal cell transit through the narrow slit 
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Fig. 11 The transit time, entry time and exit time of the ellipsoidal cell for the three kinds of initial orientations: A, B and C represent 

that the seminor axis of the cell is parallel to y, x and z axis respectively 

A quantitative observation of tumor cell deformation using microfluidic device pointed out that during the 

transition through the microgap, the cancer cell (15-18 µm) deformed from a spherical to ellipsoidal shape and the 

cell’s surface area increased by 8.8- and 3.7-fold across the 3µm and 10µm gaps respectively (Chaw et al. 2007; 

Chaw et al. 2006). The cell membrane would confront with the resulting increase in surface tension as it deforms 

across a narrower slit and its deformability affects its survivability. In addition, for undeformed leukocytes, there 

are many folds and wrinkles on the membrane, which provide more than 80% excess surface area (Dewitt and 

Hallett 2007; Schmidschonbein et al. 1980). Likewise, a physically unrestrained circulating cancer cell is assumed 

to have a pleated surface and the membrane unpleating could occur and the cell surface area would increase largely 

when cells enter capillaries (Weiss et al. 1988). Therefore, transformation from spherical to flat ellipsoidal shape 

can increase cell deformability largely and facilitates the cancer cell extravasation.        



 

 

3.5 Effect of nucleus on cell transit across the slit 

The above-mentioned results are based on the deformation of cell without nucleus. In this subsection the ellipsoidal 

cells with and without nucleus passing through the narrow slit (wc = 4µm) are investigated. The seminor axis of cell 

is parallel to the y axis initially. The nucleus is assumed to have a spheroidal shape with diameter of 3μm and 

Young’s modulus 41.6μN/m. In order to enable the cell to pass through the narrower slit, the external body force 

increases three times. 

Figure 12 plots the trajectories of the ellipsoidal cells with and without nucleus. Admittedly, under the same 

condition, the cell without nucleus can completely pass through the slit while having the nucleus blocks the 

contraction. The nucleus with weaker deformability indirectly constrains the membrane deformation when cell 

enters into the slit, which further leads to the cell blockage. Therefore, to a certain extent, the presence of nucleus 

reduces the deformability of the cell when its size is comparable to the slit.  
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Fig. 12 Trajectories of the ellipsoidal cell with and without nucleus passing through the narrow slit (wc = 4µm). 

Blue represents cell nucleus 

4. Conclusion 

In this study, a cell passing through a narrow slit was numerically investigated using Dissipative Particle Dynamics 

(DPD) combined with a spring-based network model for the cell membrane. The effects of the cell elasticity, cell 

shape as well as the slit size on the cell passage through the slit were discussed. It was found that although the 

elasticity as an important factor to deformability affects cell transit across the slit, reducing the elasticity modulus 



 

 

by 10 times cannot enable a spherical cell to pass the slit with the width 2/3 of its diameter. However, transforming 

the cell from a spherical into ellipsoidal shape, with the surface area increased only by 9.3%, the cell can pass the 

slit. Also, the effect of initial orientation of ellipsoidal cell on its passage through the slit including cell deformation 

and transit time has been investigated. The findings showed that it takes less time for the cell with larger 

cross-section perpendicular to the flow direction. Furthermore, the effect of nucleus on cell transit through the slit 

with 4µm in width was examined. It demonstrated that when the cell nucleus is comparable with the slit size, it 

would slow down the cell passage and even lead to cell blockage. In conclusion, the cell shape and surface area 

increase plays a more vital role than the cell elasticity in improving cell deformability, which facilitates the cell to 

pass through the narrower slit. Moreover, the nucleus indirectly reduces the deformability of cell during cell 

passage through the slit when its size is comparable to the slit. 

Nevertheless, several limitations of the model in this study should be mentioned. Firstly, tumor transmigration 

is a complex process including the interaction between endothelial cells, blood cells and tumor cell, which has not 

been considered in this study. Secondly, the slit geometry is simple while in reality the inter-endothelial cleft is 

irregular and flexible, which has a great effect on tumor cell transmigration. Finally, for simplicity, the blood vessel 

wall is regard as rigid. The effect of vessel wall elasticity on the cell transit across the slit should be investigated in 

the future research.       
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