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A B S T R A C T  

To improve the accuracy and efficiency of computation model for complex structures, the sto-

chastic model updating (SMU) strategy was proposed by combining the improved response 

surface model (IRSM) and the advanced Monte Carlo (MC) method based on experimental 

static test, prior information and uncertainties. Firstly, the IRSM and its mathematical model 

were developed with the emphasis on moving least-square method, and the advanced MC 

simulation method is studied based on Latin hypercube sampling method as well. And then the 

SMU procedure was presented with experimental static test for complex structure. The SMUs 

of simply-supported beam and aeroengine stator system (casings) were implemented to vali-

date the proposed IRSM and advanced MC simulation method. The results show that (1) the 

SMU strategy hold high computational precision and efficiency for the SMUs of complex 

structural system; (2) the IRSM is demonstrated to be an effective model due to its SMU time 

is far less than that of traditional response surface method, which is promising to improve the 

computational speed and accuracy of SMU; (3) the advanced MC method observably decrease 

the samples from finite element simulations and the elapsed time of SMU. The efforts of this 

paper provide a promising SMU strategy for complex structure and enrich the theory of model 

updating. 

1. Introduction 

In engineering simulation analysis, it is always difficult for the established model to accurately 

simulate real engineering problem. The precision improvement of simulation model has re-

sulted in the development of model updating technology [1]. Finite element model updating 

(FEMU) is one important model updating technique to reduce the error between the finite ele-

ment (FE) model and the corresponding real-structure in the light of test data. As an inverse 

optimal problem, structural FEMU method gets a rapidly development recently. Friswell [2,3], 

Peter et al. [4], studied on the FEMU in structural dynamics and adjusted structural parameters 

using a minimum variance estimator; Zapico-Valle et al., advanced a new FEMU in structural 

dynamics [5]; Ahmadian et al., developed the modeling and updating methods for large sur-

face-to- surface joints in the awe-mace structure [6]; Modak, focused on the model updating 

using uncorrelated modes [7]; Jin et al., proposed a new multi-objective approach for FEMU 

[8]. Besides, genetic algorithm is also applied to FEMU and dynamic FEMU [9,10]. From the 

above efforts, the existing updating methods are deterministic model updating which regards 
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the influencing parameters as the specific values. 

In fact, uncertainties are ubiquitous and inevitable in many aspects of geometric sizes, manu-

facture, assembling, joint stiffness design, material property, and so forth [11–13], which pro-

mote the emergence of uncertain analysis method with respect to uncertain parameters. Roy et 

al., given an overview of a comprehensive framework with respect to uncertainties [14]; Park 

et al., discussed the quantification of model uncertainty using Bayesian approach [15]; Fonse-

ca et al., completed uncertainty identification by the maximum likelihood method [16]; 

Schuëller et al., studied on the uncertainty analysis of a large-scale satellite FE model [17]. To 

improve the precision of FEMU, the relative theories and method were also developed for sto-

chastic model updating (SMU) with the consideration of random and uncertain factors [18]. 

For instance, Mares et al., investigated the theory and application of SMU [19,20]; Husain et 

al., adopted the perturbation method to study SMU [21]; Bao et al., presented a Monte Carlo 

(MC) simulation-based inverse propagation method for SMU [22]; Beck et al., focused on 

Bayesian updating of structural models and reliability using Markov Chain MC simulation 

[23]; Rui et al., proposed an efficient statistically equivalent reduced method for stochastic 

model updating [24]. 

However, for complex structure with large-scale uncertain parameters, the FEMU is unac-

ceptable due to low computational efficiency for an excess of FE simulations and superabun-

dant loop computation. It is urgent to seek a new model updating method to improve computa-

tional efficiency. One viable alternative to FE model is response surface (RS) method, which 

needs less FE calculations and holds rapid simulation of RS function, and has been employed 

to deterministic model updating without considering uncertain parameters by Ren [25,26], 

Chakraborty [27] and Fang [28]. Recently, RS method was applied to the SMU of uncertain 

parameters to select important parameters as updating variables by probabilistic analysis [29]. 

For example, Fang et al., proposed a SMU method for parameter variability quantification 

based on RS method and MC simulation [30] and also investigated the parameter variability 

estimation using stochastic RS model updating [31]; Romero et al., constructed a RS model 

for uncertainty propagation based on progressive-lattice-sampling experimental design [32]; 

besides, artificial neural network and Kriging model were investigated for RS model updat-

ing [33,34]. 

Currently RS method-based least-square method (LSM) is frequently-used and extensively 

studied, however, many shortages exist yet for the SMU of complex structure: (1) prior infor-

mation is not utilized for the existing RS methods which limit the application of RS methods, 

so that RS model-based LSM is unable  to perfectly approximate the  real-structure model 

[27]; (2) traditional MC simulation methods used widely in SMU-based RS method has no 

memory capability on random sampling for input variables. Therefore, it is possible that the 

accuracy of SMU for complex structure is unaccepted. For the first issue, based on structural 

mechanics equations and dimensional analysis principle, the improved RS model (IRSM) is 

proposed based on moving least-square method (MLSM) by takes a full consideration of the 

relationship between mathematical and physical principles, the laws of statistics and the prior 

(posterior) information, which attempts to make the RS function closer to the mechanism 

model of real-structure and then improve the precision of SMU. Additionally, MLSM remedies 

the insufficiency of LSM [27], which is towardly to establish the high-precision RS model of 

complex structure. For the second one, an advanced MC simulation with Latin hypercube 

sampling method (LHSM) is presented to extract the samples of random parameters (uncer-

tainties) which requires less samplings for fitting RS function and potentially improve compu-

ting speed owe to avoid repeated sampling for memory ability [35]. 

Dynamic measurements have been proved to be valid in providing valuable reference data for 

FEMU [3,17]. However, it is difficult to separate modeling errors from stiffness-related varia-



 

bles and mass-related variables. Static data have only related with stiffness rather than mass pa-

rameters so that the precision of static data is ensured [25]. If more response information is 

provided, the updated model built-based static data holds high-precision and high-reliability 

because the static data are easily achieved and affected by noise level [27]. Therefore, the 

structural static responses are important and necessary for a successful and reliable SMU. 

The objective of this paper is to attempt to explore a SMU strategy based IRSM-based MLSM 

and advanced MC simulation-based LHSM by using structural static responses. The proposed 

methods were applied to the SMUs of simply sup- ported beam and aeroengine stator system 

(casings) based on the measured static responses. By the SMUs, the IRSM and advanced MC 

simulation are demonstrated to be effective and reasonable in improving the precision and ef-

ficiency of the SMU of complex structure. 

In what follows, Section 2 investigates the basic theory of SMU including IRSM-based 

MLSM and advanced MC simulation. In Section 3 the SMU procedure is given. Section 4 

focuses on the SMU and validation of simply supported beam based on the proposed meth-

od. The SMU and validation of aeroengine stator system are implemented in Section 5. 

The main conclusions are given in Section 6. 

2. Basics theory for stochastic modeling updating 

2.1 Improved response surface method, IRSM 

In this subsection, the IRSM is developed based on MLSM and prior information. MLSM is 

used to search for the efficient coefficients of RS model. Prior information is applied to es-

tablish the reliable RS model. 

An advanced method for regression is MLSM, which introduces a weighted LSM that has 

various weights with respect to the position of approximation. Therefore, the coefficients 

of a RS model are functions of the location and hereby should be calculated for each loca-

tion. This procedure is interpreted as a local approximation [36]. The basic principles of 

LSM and MLSM are shown in Fig. 1. In Fig. 1, the dotted curve is obtained from classical 

LSM. Therefore, for the scattered data, only one best approximation curve can be obtained 

based on traditional LSM. Conversely, with MLSM one approximation function exists 

there at one calculation point, i.e., there is a subsequent function at each different calcula-

tion point. Therefore, for MLSM the coefficients of the RS model are not constants but are 

variables of the calculation positions. This locally weighted approximation can be per-

formed with respect to effective data near the calculation location, and the data can be 

weighted according to the distance from the calculation location. It is obvious that the 

weighted coefficients of the RS model acquired from MLSM hold higher precision than 

these from LSM, so that the structured RS model-based MLSM better approximate to real 

model or function and has higher approximation precision. Therefore, higher approxima-

tion precision is the strength of advantage of using this method. Generally, the subsequent 

functions are so-called as the weighting function. In the next moment, the numerical deri-

vation of the coefficients of the RS model with MLSM is discussed for uncertain system. 

There are many investigations on SMUs with the emphasis on the correlation (covariance 

matrix) of input parameters by using perturbation techniques [37–39]. Especially the study 

presented by Govers and Link [39] demonstrated that the correlation of input parameters 

slightly influence the results of SMU by adjusting covariance matrix from uncertain exper-

imental modal data. In this paper, this study of SMU is presented by ignoring the corre-



 

lation of input parameters. 

For uncertain system, suppose there are n-response values yi with respect to the chang-

es of xij, which denote the ith observation of the jth dependent variable xj. Assume that the 

error term ε (the vector of the errors of response) in the model has E(ε)=0, Var(ε)=𝜎2 and 

that the {𝜺𝑖}𝑖=1,2,…,𝑛 are the uncorrelated random errors of n response values (observation) 

from experiments. 

As an alternative mathematical model to FE models for complex structure, RS method is 

used to solve a complicated and low-efficient design problem. Compared to traditional 

sensitivity based FEMU method [2–10], the RS method holds the strengths of easy im-

plementation and high computational efficiency. With RS model, the following matrix 

form can express the relationship between the responses and the variables: 

(1) 

where y is the n×1 vector of the observations where n is the number of experiments; X de-
notes the n×p matrix of the level of the independent variables in which p=k+1 is the num-
ber of parameter including the number of coefficients k (degree of freedom of regression) 
and one constant term for RS model; ε is the n×1 vector of the errors of responses; β is the 
p×1 vector of the regression coefficients. 

For uncertain system in Eq. (1), the least-squares function L(x) is defined by the sum of 
weighted errors, i.e., 

(2) 

in where ωi is the weighting of the ith response value; x is the vector of approximation lo-

cation; W(x) signifies the weighting matrix for functions at the location x. Here, note that 

W(x) is the diagonal weighting matrix of the function of the location in the MLSM and 

can be constructed by 

(3) 

where xI (I =1, 2, …, n) denotes the vector of Ith sampling (or experiment) points. 

There are several kinds of weighting functions such as constant, linear, quadratic, high-

order polynomials, and exponential functions, which are defined in Eq. (4). 



 

(4) 

here d is the distance between x and xI; ω(d) is the weighting function at the distance d; RI 

indicates the size of an approximation region. For instance, a fourth-order polynomial 

weighting function is expressed by a bell-shaped figure. The weighting function has 1 

(maximum value) at 0 normalized distance and 0 (minimum value) outside of 1 nor-

malized distance, namely, ω(0)=1,  ω(d/RI>1)=0.  Also the function decreases smoothly from 

1 to 0.  

To minimize L(x), the least-squares estimators must satisfy 

(5) 

where b is the least-squares estimator of β (or coefficient vector of RS model). Thus coeffi-

cients b(x) of the RS model can be obtained by the matrix operation: 

(6) 

In this step, it is important to note that the coefficient b(x) is a function of the location or 

position x. Note that a procedure to calculate b(x) is a local approximation, and “moving” 

processes perform a global approximation through the whole design domain. 

Most of existing RS functions like quadratic polynomials does not fully utilize prior infor-

mation. Besides, for complex structures, the classical mechanics and complexity influence the 

analysis of structure issue. On account of these facts, the authentic and reliable updated results 

can be achieved only if the modifying process of complex structural model considers the 

relationship between mathematical and physical principle, the randomness of impact factors 

and the prior information. Along with the heuristic thought, an IRSM with MLSM is pro-

posed based on the prior information with respect to the characteristics of static response. For 

instance, ① structural stiffness distribution with mechanical properties of materials (elasticity 

modulus, Poisson ratio), boundary condition and geometrical shape; ②  mass distribution 

with respect to material density, geometrical shape and lumped mass distribution; ③ loading 

characteristic defined by sizes, position and variation. The aforementioned prior knowledges 

can provide an insight reference for selecting updated parameters, establishing RS model and 

accuracy testing. Hence the significant factors and the perfect RS function are likely to be ob-

tained. The RS function-based dimensional analysis reveals three favorable strengths of specif-

ic physical meaning, easy fitting and optimization and wide application. 

When M, K and P denote the vectors of mass, stiffness and load, respectively, general-



 

ized structural static responses y(matrix) is 

(7) 

As displayed from the above analysis, the prior information and dimensional analysis princi-

ple can pledge the efficiency and reliability of the RS function of real-structure. In the con-

struction of RS function, central composite design (CCD) method is effective in the for-

mation of polynomials [28]. Thus, the CCD method is adopted for stochastic RS model up-

dating in this paper. 

2.2 Advanced Monte Carlo simulation 

MC method is widely applied to probabilistic statistical analysis [30]. In the process of 

SMU, MC method is used to describe the uncertainty propagation between input variables 

and output response [17]. Presently, direct sampling method (DSM) is widely used in MC 

simulation. Unfortunately, the DSM loses the capability of memory for the random sam-

pling of variables, seriously influencing the efficiency of extracting samples and fitting RS 

function. Especially with the requirement of even-increasing precision for more samples, 

the computational precision becomes unacceptable. An illustration of a sample set with 

DSM is shown in Fig. 2, which has 15 samples for two random variables x1 and x2 with the 

standard uniform distribution. In Fig. 2, two sample points is too close each other. Howev-

er, as an advanced MC simulation technique, LHSM can isometrically divide random sam-

ple points as shown in Fig. 3 with the same sample number and distributions. Besides, the 

Latin hypercube has good memory capability in sampling process. Relative to DSM, 

LHSM also needs fewer simulations loops, only 20% to 40% of the computational load of 

DSM [35]. Thus, the LHSM combining the IRSM are adopted to discuss SMU in this pa-

per. 

3. Stochastic model updating procedure 

With respect to the advanced MC simulation-based LHSM and the MLSM, the SMU proce-

dure based on IRSM for complex structures is illustrated in Fig. 4, which includes six steps: 

FE analysis, design of experiment, establishment of RS model, advanced MC simulation, 

uncertainty condition and propagation, and test-simulation correlation. 

Firstly, the initial FE model is established in light of objective structure and updated pa-

rameters; 

And then the CCD method is employed to obtain the sample points of significant pa-

rameters, and then these sample points are applied to fit the improved RS model by prior 

information, dimensional analysis and MLSM. 

Thirdly, the statistical properties are obtained with the fitted RS model and advanced MC 

simulation. 

The next step performs inverse optimization. The objective functions are formed containing 

the relative errors of means and standard deviations between analytical and measured re-

sponses, respectively, i.e., 



 

i 

(8) 

where 𝑥𝑖
𝐼𝑅𝑆𝑀  and 𝜎𝑖

𝐼𝑅𝑆𝑀
 denote the ith mean and standard deviation predicted by IRSM, 

𝑥𝑖
𝑒𝑥𝑝

and 𝜎𝑖
𝑒𝑥𝑝 the ith mean and standard deviation estimated by experimental measurements. 

Therefore, the mean and covariance of updated input parameters are estimated synchro-

nously through uncertainty inverse propagation, and the output responses of simulation con-

verge towards the stochastic test data. 

Finally, the analysis of simulation and test correlation is implemented to evaluate the preci-

sion of model. 

An important aspect for the efficiency of the fit provided by the MLS approximation is the 

selection of the weights ω (x− xi) for the distance measure in Eq. (3). These weights define the 

relative importance of each component of the position x for selecting W(x) and establishing the 

moving character of the interpolation over the support points. The weights should (1) estab-

lish a normalization for the different components of x but more importantly (2) provide higher 

weights for components that have larger influence on the stochastic performance. The first task 

may be easily established by a weight inversely proportional to the variance 𝜎𝑖
2 component 

according to the variance of the support points {xi; i = 1, 2, …, n}; the scaled components 

have then unity variance. This is equivalent to a normalization of vector x. 

For the second task, the components that have greater importance on the stochastic sam-

pling process should be prioritized. This may be established by comparing the marginal 

target distributions to the marginal proposal distribution. Taflanidis et al. [40], gives the 

rule of weight selection by the relative information entropy based on information about the 

sensitivity of the sampling process with respect to each of the model parameters. In this 

paper, the approach is applied to determine the MLS weights and improve the response sur-

face approximation accuracy. In the process of fitting function weight based on this rule, 

several kinds of weighting functions such as constant, linear, quadratic, high-order poly-

nomials, and exponential functions in Eq. (4) are regarded as the models of MLSM weight 

function. Through the comparison of these models for each calculation point, an efficient 

model with the smallest error is as the general form of weight function. And then based on 

the approach, the specific weight function is quantified for each calculation point. 

 

 

 

 

 

 

 

 



 

4. Numerical example 

4.1 Simply-supported beam structure 

The SMU of a simply-supported beam is executed to verify the effectiveness of the 

proposed method. The simply supported beam is shown in Fig. 5. Wherein, length 

l=0.3 m, elastic modulus E=206 GPa, density ρ=7.800 kg/m3 and Poisson ratio μ=0.3 

were selected as input parameters. A static force (P=2500 N) enforces the middle (point 

C) of the beam, which causes the maximum vertical displacement at point C. Ow-

ing to the fact that numerical measurement (numerical solution) is more effective 

to validate the developed method, the maximum vertical displacements ymax is taken 

as the response of SMU. 

4.2 Improved RS modeling of the beam 

Subject to a vertical downward force P in Fig. 5, in the view of theoretical mechan-

ics the maximum vertical displacement ymax at the point C (x=l/2) is obtained 

(9) 

The width b∈[4 mm, 20 mm] and height h∈[30 mm, 50 mm] were selected as the updated 

parameters and the maximum displacement ymax was regarded as the response. The CCD 

method is used to get the sample points of these parameters. With quadratic polynomials, 

the establishment of IRSM is as follows:  

Firstly, with MLSM, the quadratic polynomial RS function with and without cross item 

are regressed as 

(10) 

(11) 

where x1 and x2 are b and h, respectively. 

For the simply-supported beam, the geometric parameters of width b and height h only 

effect the inertia moment I  which is the only parameter effecting the stiffness distribution of 

the beam when the elasticity modulus E is determined. In light of dimensional analysis prin-

ciple, the IRSM of the simply-supported beam is assumed as 

(12) 

To further simplify the IRSM, the Napierian logarithm of Eq.  (12)  was denoted by 
⌢
f 



 

 (13) 

Suppose 

 (14) 

subsequently, the IRSM is rewritten as 

 (15) 

By the MLSM with the aid of CCD method, the IRSM is fitted as 

 (16) 

Due to Eqs. (14) and (12) is written as 

(17) 

To check the accuracy of traditional RS methods with cross item (Eq. (10), RSM1) and 

without cross item(Eq. (11), RSM2) as well as IRSM (Eq. (16), based on the same design 

variables and sample points, the computed results of three RS methods are listed in Table 1 

referencing to the numerical solutions from Eq. (9). To validate the generalization and ro-

bustness of IRSM, 5 groups of samples obtained from Eq. (9) were used to evaluate the 

output responses of three RS methods, as shown in Table 2. The error comparison of tradi-

tional RS methods and IRSM is revealed in Fig. 6. Besides, the RS nephograms of numeri-

cal simulation, RSM1, RSM2 and IRSM are illustrated in Fig. 7, in which displacement re-

sponse denotes the maximum response of the beam. 

4.3 Stochastic model updating of uncertain parameters 

The geometric parameters b and h were assumed to follow the Gaussian distribution as 

shown in Table 3. 15 groups of stochastic testing samples and 5000 simulating samples for 

b and h were extracted and the mean and standard deviation of response were gained in Ta-

ble 3. Based on the advanced MC simulation and MLSM, the SMU-based IRSM was im-

plemented instead of the FEM to converge towards the stochastic numerical values with in-

verse uncertainty propagation. The updated results are also summarized in Table 3. The 

simulation histories and histogram of initial and updated response ymax are illustrated in Fig. 

8. To evaluate prediction precision, the probability density curves of the numerical testing, 

initial and updated displacements are shown in Fig. 9. 



 

4.4 Discussions 

From Table 1, the maximum displacement response ymax based on the traditional RS meth-

ods are close to numerical solutions where the maximum and minimum errors are 2.75% 

and 0.16% for RSM1 and 8.55% and 0.09% for RSM2, re- spectively. However, the con-

siderable improvement has been achieved by using IRSM because all the errors are less 

than 0.01%, which highly proves the accuracy and reliability of IRSM. As shown in Table 

2 and Fig. 6, all the predicting errors of IRSM are still less than 0.01% when the parameters 

b and h are out of the bounds of design variables, which also fully proves the robustness and 

prediction capability of IRSM. However, the traditional RS methods (RSM1 and RSM2) 

are not able to accurately predict the response. As shown in Fig. 7, the IRSM is very simi-

lar to numerical solutions while the traditional RS methods hold large difference. 

As shown in Table 3 and Fig. 8, the updated input parameters are closer to the numerical 

test values as well as the output response ymax better agree with the test values, comparing 

with the initial RS model. As revealed in Fig. 9, the probability density curve of the initial 

displacement significantly differs from test value. However, the probability density curve 

of updated displacement is quite similar to the test response. Therefore, the updated RS 

model is better coinciding with the test results than the initial model. 

To sum up, the above conclusions full verifies the precision and validity of IRSM. In addi-

tion, it is shown that the accuracy of the fitted RS model is greatly influenced by the char-

acteristics of structure, which requires considering the relationship of mathematical and 

physical principle, the statistical law and the prior information. 

5. Stochastic model updating of aeroengine stator system 

5.1 FE model and static testing of aeroengine casings 

The SMU of aeroengine stator system is to be finished to further validate the IRSM and ad-

vanced MC simulation. The stator system of an advanced turbofan engines was selected as the 

object of SUM. The stator system consists of many components with different function and 

materials as shown in Fig. 10, including intermediate casing, high pressure com- pressor cas-

ing, extension casing, combustion casing, turbine casing, bypass outside casing, afterburner 

diffuser and after- burner cylinder, and so forth. These casings are assembled together with 

bolted joints to transfer force, moment and energy from turbine to compressor. It is difficult to 

simulate the real mechanical characteristics of these bolted joints that are a major error 

source. To reduce the error, it is necessary to establish an accurate FE model of aeroengine 

stator system and update this model by adopting SMU technology and uncertainties. In the 

FE model of casing in Fig. 11, the spring elements are employed to represent the bolted joints, 

and 8 independent variables k1–k8 are chosen as updating parameters which are the connection 

stiffness among different casings. Based on static testing, the 8 updating parameters, follow-

ing the Gaussian distribution, were achieved where their initial mean and standard deviation 

(Std.) are given in Table 4. The static stiffness of 4 important sections (B, C, D and E) on 

aeroengine stator system were measured to estimate the accuracy of the initial FE model 

where the means and standard deviations of the 4 output responses are obtained in Table 5 by 

repetitive measurements on a set of nominally identical structures. 

5.2 Improved RS modeling and stochastic model updating 



 

5.2.1 Improved RS model of output responses 

8 Independent variables (k1–k8) and 4 important measured values on different sections are 

regarded as input parameters and output responses. Based on the CCD and advanced MC 

method, 50 samples were extracted to build the RS functions with the MLSM for the re-

sponses of different sections, by considering the randomness of 8 parameters. 

5.2.2 Uncertainty quantification analysis 

Through the SMU of aeroengine stator system with the hybrid optimization and advanced 

MC method, the updated results for the initial and updated parameters are obtained for 8 

stiffness and 4 displacements as shown in Tables 4 and 5, respectively. The corresponding 

histograms of the initial and updated output responses are shown in Fig. 12, 

As seen in Tables 4 and 5, the updated mean and standard deviation of 4 static responses 

(B, C, D, and E) converge towards the stochastic test values. The errors of responses large-

ly reduce where the maximum errors of means and standard deviations diminish to 3.47% 

and 14.9% from 30.68% and 129.9%, respectively. As demonstrated from Fig. 12, the discrep-

ancy between the initial and updated output responses further lessen and the responses 

obey the Gaussian distribution. 

5.3 Verification of the proposed IRSM and advanced MC simulation 

To validate the effectiveness of the proposed IRSM and advanced MC simulation, 

the FE model, traditional RS method and IRSM are adopted to execute the SMUs of 

4-point displacements on aeroengine stator system with static testing sam-ples by 

using the computer with 16 code CPUs (2.66 GHz) and RAM 32 GB. The results of 

analytical comparison with the test data and initial model are located in Fig. 13 and 

the computing time of the point response B with three ap-proaches is shown in Ta-

ble 6. It is noted that the FEM of aeroengine stator sys-tem includes 179,717 ele-

ments and 311,421 nodes and each static calculation of FE model costs about 265 s. 

The number of required samples denotes the num-ber of samples the fitting RS 

models need. Fitting time is the time-consumption of establishing RS models. Simu-

lated time indicates the elapsed time of 5000 simulation on the established RS mod-

el. Total time is the sum of fitting time and simulated time. 

5.4 Discussions 

As shown from Fig. 13, the probability density curves of the 4 initial output re-

sponses are significantly different from the test responses. However, the probability 

density curves of the 4 updated output responses quite approximate to the test re-

sponses, which full validate that the proposed IRSM and advanced MC simulation 

hold high accuracy in the SMU of complex structure. The reason is that the MLSM 

improves the precision of established RS model, and the application of prior infor-

mation further makes the constructed RS model closer to the real structural char-

acters as well. 

As known in Table 6, (1) the establishment of IRSM only needs 31 FE simulations, 

far less than (84 samples) traditional RS method. The conclusion supports the ef-

fectiveness of Latin hypercube sampling method (LHSM) in building RS model; 



 

(2) due to fewer fitting samples, the fitting time of IRSM only costs 8.215×103s 

while the traditional RS method needs 2.226×104s, which fully reveals the fast 

regression capability of MLSM in shaping RS model; (3) the simulated time of RS 

model for IRSM is much less than that of traditional RS method, which demon-

strate the high efficiency of the IRSM in large-scale simulations of complex struc-

ture and it is also verified by the total computing time; (4) it is also illustrated that 

the SMU-based RS method holds higher simulating speed and efficiency than FE 

model. 

From the SMUs of simply-supported beam and aeroengine static system, the SMU 

strategy of combining IRSM-based MLSM and advanced MC simulation with 

LHSM holds high computational efficiency and precision in the SMU of complex 

structure. 

6. Conclusions 

The objective of this effort is to explore a stochastic model updating (SMU) strategy 

with fusing the improved response surface model (IRSM) and advanced Monte Carlo 

(MC) simulation for complex structure based on static test data and uncertainties. 

Firstly, the IRSM was proposed based on moving least-square method (MLSM) and 

prior information. And then the advanced MC simulation method was presented with 

Latin hypercube sampling method (LHSM). The SMUs of simply-supported beam and 

aeroengine stator system were implemented to validate the proposed methods. Some 

conclusions are summarized as follows: 

(1) The explored SMU strategy holds high computational efficiency and accuracy in the 

SMU of complex structure, which provides a promising way to establish accurate 

computational model. 

(2) The proposed IRSM is high precision and cost-effective in the establishment and sim-

ulation of improved RS model due to the memory ability of MLSM, and the adoption 

of prior information and uncertainties as well. 

(3) The advanced MC simulation method is likely to extract effective samples, reduce the 

number of required samples and simulated time. 

(4) The reliable model of aeroengine stator system is achieved, which is towards to im-

prove the simulation and computation research of SMU. 

(5) The SMU procedure is provided for the model updating of other structure and com-

ponents. 

The study of this paper enriches and develops the model updating theory and method. 

The application proposed SMU technology needs to further be validated in other fields. 
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Figures 

 

Fig.1. Basic principles of LSM and MLSM. 

 

 

Fig. 2. Sample set generated with DSM. 



 

 

Fig. 3. Sample set generated with LHSM. 

 



 

 

Fig. 4. SMU procedure of IRSM with CCD method, advanced MC simulation and MLSM. 



 

 

Fig. 5. Numerical simply-supported beam. 

 

 

Fig. 6. Error comparison for traditional RS methods and IRSM. 



 

 

Fig.7. RS nephograms of different RS methods.  



 

 

Fig.8. Simulation histories and histogram of initial and updated output responses.  

 

 



 

 

Fig. 9. Numerical, initial and updated probability density curve of output responses. 

 

 

Fig. 10. Structure of an aeroengine stator system. 

 

 

 

 



 

 

Fig. 11. FE model of aeroengine stator system. 

 



 

 

Fig. 12.  Stochastic distribution of initial and updated output static responses.  



 

 

Fig. 13.  Test, initial and updated probability density curve of output responses. 

 

 

 

 

 

 

 

 

 

 



 

Tables 

 

Table 1. Comparison of numerical solutions with the maximum displacement responses of traditional 

RS methods and IRSM.  

 

 

 

Table 2. Comparison of prediction ability of numerical solutions and three RS methods.  

 

 

 

Table 3. Distributions of input parameters and output response for test, initial values and updated val-

ue.

 

 

 

 



 

 

Table 4. Initial and updated means and standard deviations of 8 input stiffness parameters. 

 

 

Table 5. Test, initial and updated means and standard deviations of 4 output displacement parame-

ters. 

 

 

 

Table 6. Computing time of three methods for SMU of point B response on aeroengine stator system.  

 

 

 

 

 

 

 




