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A wavelet-decomposed Rayleigh-Ritz model for 2-D plate vibration analyses is proposed in this 
work. For an elastically-supported rectangular plate under Love-Kirchhoff theory, 2-D Daubechies 
wavelet scale functions are used as the admissible functions for analyzing the flexural displacement 
in an extremely large frequency range. For constructing the mass and stiffness matrices of the system, 
the 2-D wavelet connection coefficients are deduced. It is shown that, by inheriting the versatility of 
the Rayleigh-Ritz approach and the superior fitting ability of the wavelets, the proposed method 
allows reaching very high frequencies. Validations are carried out in terms of both eigen-frequencies 
and the forced vibration responses for cases which allow analytical solutions. Effects of the wavelet 
parameters on the calculation accuracy and convergence are also studied.
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1. Introduction

The structural vibration analysis covering a broad frequency range is a subject of growing
importance for numerous applications. For example, with the advent of modern
technologies in developing artificially engineered structures, exemplified by acoustic
metamaterials [Ang et al.2016], periodic structures [Zhou et al., 2015; Gao et al., 2016]
and acoustic black hole structures Zhou et al., 2017] etc., eminent technical challenges
are created, among which is the need of reaching higher frequencies with shorter
wavelengths due to the lattice effect of the structure. As demonstrated in the open
literature, major difficulties reside in the high frequency range due to the lack of accurate,
unified and numerically stable methods [Langley and Bardell, 1998]. Two bottle-necking
problems arise. First, the reducing structural wavelengths as the frequency increases
require more structural details to be considered. Classical Finite Element Methods (FEM),
however, can hardly accommodate this, since the use of a minimum number of elements
per wavelength quickly leads to a large system size and consequently tremendous
computational cost [Marburg, 2002]. Pushing the FEM to its high-frequency limit using
very high order interpolation functions is also shown to be insufficient [Bardell, 1991;
Berry et al., 1992; Carrie and Webb, 1997; Ruta, 1999]. Secondly, high-frequency
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vibration computation usually suffers from the round-off errors of the computers,
accompanied by the inevitable ill-conditioned problem. Therefore, there is a real need for
developing methods which allow the prediction of the high frequency vibrations of
structures, and the topic is technically challenging.

Among existing semi-analytical methods based on spatial discretization [Cheng and
Nicolas, 1992], Rayleigh-Ritz method using artificial spring treatment is probably the
most popular one [Cheng and Lapointe, 1995]. In Rayleigh-Ritz approach, the properties
of the basis functions significantly affect the computational efficiency, stability and
accuracy. It has been demonstrated [Zhang and Cheng, 2016] that various forms of
polynomials, constructed from Jacobi polynomials [Carrie and Webb, 1997], Legendre
polynomials [Bardell, 1991] or the natural Taylor’s basis [Berry et al., 1992], all suffer
from the ill-conditioned problems in the calculations of the high-order polynomial
coefficients due to the round-off errors of the computers. Trigonometric functions, used
as an alternative, suffer from the potential convergence problems at the boundary [Li and
Daniels, 2002] due to the well-known Gibbs phenomenon. There has been an consistent
effort in exploring ways to choose admissible functions to accommodate the need of
various physical problems [Zheng and Wei, 2013; Su et al., 2015]

Wavelets, which are proposed to be investigated in this paper, are expected to provide
a solution to overcome the above problems. Apart from their traditional use in signal
processing and analyses [Nicolleau and Vassilicos, 2014], wavelets have been used to
solve partial differential equations (PDEs) in various fields. Wavelets feature compact
support, flexible scaling and translation, and the ability to express any square integrable
functions on the real axis[Zhang and Cheng, 2015]. These unique and appealing
properties enabled their use to solve various engineering problems [Cohen, 2003] such as
the preconditioning of large discretized PDEs [Chen K., 1998; Ford and Chen, 2001;
Tran et al., 1998]; the adaptive approximation of functions to resolve isolated
singularities at a low computational cost [Chen W. S. et al., 2006; de Lautour, 1999;
Gantumur and Stevenson, 2006] and the sparse representation of the discretized integral
equations [Castrillon-Candas and Amaratunga, 2003; Tausch and White, 2003]. Most of
the past attempts, however, were made under the FEM framework [Pan et al., 2003], thus
inhibiting the shortcomings of the FEM itself. Meanwhile, wavelet functions have also
been used as the interpolation functions under the FEM/BEM framework [Geng J. et al.,
2017; Mutinda M. and Cristinel M, 2015]. FEM/BEM discretizes the structural domain
and approximates the solution using local interpolation basis functions. They all embrace
the common philosophy of the so-called local expansion.

Using a Euler-Bernoulli beam, our previous work [Zhang and Cheng, 2016]
demonstrated the efficacy of a wavelet-decomposed Rayleigh-Ritz method (WDRM) for
high-frequency vibration analyses of 1D structures. It has been shown that the localized
compact support properties of the wavelets lead to a sparse representation of the system
matrices. Along with their exceptional fitting ability and the tactic treatment of the
structural boundary using artificial springs, the WDRM approach exhibits tremendous
computational advantages and allows reaching extremely high frequency range in 1D
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cases. As compared to the conventional FEM/BEM method, expansion of the
displacement over the entire structural span can be referred to as global expansion
method.

This paper extends the previous work on 1D structure to 2D planar cases. Among
other technical aspects, the handling of the 2D Daubechies wavelet scale functions
presents particular challenges. To the best of our knowledge, very few papers attempt the
high frequency plate analyses, with the exception of the work [Beslin and Nicolas, 1997]
in which structural modes in what can be regarded as the mid-frequency range were
investigated. The use of 2-D Daubechies wavelets as the global basis for plate problems
has not yet been investigated up to now. The objective of this paper is twofold: 1). to
demonstrate the efficacy of the wavelet-decomposed method in dealing with the high
frequency vibration problems of plates; and 2). to solve the problem of the connection
coefficients of 2-D Daubechies wavelet scale functions. The later becomes challenging
due to the strong oscillation nature of the Daubechies wavelets and the lack of the closed-
form expressions.

The outline of the paper is as follows. Section 2 describes the theoretical modeling
framework. 2-D Daubechies wavelet scaling functions are briefly recalled and the
calculation method of the 2-D connection coefficients are presented. Numerical results
are given and discussed in Sec. 3. Whenever possible, comparisons with analytical results
are carried out for validations and assessment. The convergence properties of the
algorithm on relation to the parameters of the wavelet functions are investigated. Both
free and forced vibration analyses cover a large frequency band, containing typically
thousands of structural modes.

2. Theory

2.1. Plate model

Consider a flat rectangular plate shown in Fig. 1a, bounded along its edges by 0x  ,
x a and 0y  , y b . The elastically-supported plate is assumed to be isotropic,
homogeneous and subjected to small displacement assumptions, allowing the decoupling
of the bending and in-plane motions when undergoing out-of-plane vibrations. For
illustration purposes, the Love-Kirchhoff theory is used. Note the use of other more
accurate plate theories considering shear effect and the rotational energy should not pose
any particular technical difficulties. The displacement field for the plate writes:

   , , , , , ,w wu v w z z w x y t
x y

  
     

(1)

The x and y coordinates are normalized by

/ ,        /x a y b   (2)

The transverse displacement, w is expressed as



4 Su Zhang & Li Cheng

       
1 1

, ,
M N

mn m n
m n

w q t f ft   
 


(3)

where  mf  and  nf  are the assumed admissible functions and  mnq t the time-
dependent unknowns to be determined.

Fig. 1(a) Model of a rectangular plate Fig. 1(b) Artificial springs along the boundary

The plate are elastically supported by a set of artificial translational and rotational
springs, which are continuously and uniformly distributed along its edges with different
stiffnesses ( ik in N/m for the translation and

i
k in N/rad for the rotation with 1, 2,3, 4i  ),

shown in Fig. 1b. Adjusting the stiffness values of the springs allows the representation
of various boundary conditions [Langley and Bardell, 1998]. For example, simply-
supported boundaries can be obtained by using a sufficiently large ik and a zero

i
k .

Rayleigh-Ritz procedure requires the construction of various energy terms of the
system. Lagrange's equations can then be applied to find the stationary state of the
Hamiltonian with  mnq t as the generalized coordinates:

0  , ( 0,1, 2, ,  and 0,1, 2, , )
(t) (t)mn mn

d L L m r n s
dt q q
  

      
 

 (4)

where L is the Lagrangian of the system expressed as:

k pL E E W   (5)

where the kinetic energy kE , potential energy pE , and the work W done by the external
excitation force write:

2
1 1

0 0
dd

2k
wE
t

ab       
(6)
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where  is the density, and  3 2/12 1D Eh   is the flexural rigidity.

   
1

, , tW f t w  


 




   
(8)

The symbol  in Eq. represents the number of forces applied to the system and
 , , t   the application point of each of them.

Assuming that the transverse motion is harmonic and inserting the w expressions Eq.
into Eqs. and, and then into Eq., classical eigenvalue problem and forced vibration
problem are formed as

   2
ijmn mn ijmn mnK q M q       (9)

 2 {F}ijmn ijmn mnK M q          (10)

where [M] and [K] are the mass and stiffness matrices, respectively, with
0,0 0,0
,m ,nijmn i jh JaM Ib (11)

   
2 2

2,2 0,0 0,0 2,2 2,0 0,2 0,2 2,0 1,1 1,1
, , , , , , , , , ,2 2 2 1ijmn i m j n i m j n i m j n i m j n i m j n

D b aK I J I J v I J I J v I J
ab a b

    
         

    
(12)

     
1

ij i jF F t f f  


 





(13)

in which
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       
1 1, ,

, ,0 0
d ,         di m i m j n j nI f f J f f               (14)

where the indices  and   , 0,  1,  2   denote the order of the derivatives.

The above integrals can be calculated using Gaussian quadrature method with an
appropriate number of integration points for the function in the integrand of each integral.
The resulting values of the integrals, once calculated, can be stocked into a file for the
generation of the stiffness and mass matrices.

2.2. Wavelet decomposition

2.2.1. 2-D Daubechies wavelets scaling functions

1-D Daubechies wavelets scaling functions are governed by a set of L (an even integer)
coefficients { :  0,1, , 1jh j L  } through a two-scale relation as:

1

0

( ) (2 )
L

j
j

x h x j 




 
(15)

where the coefficients jh are the wavelet filter coefficients whose values can be found in
the literature [Daubechies, 1992]. 2-D wavelet scaling functions can be constructed as a
tensor product of the 1-D functions as [Mallat, 1999]:

( , ) ( ) (y)x y x    (16)

where  is the kronecker symbol.

2.2.2. Basis construction

1-D wavelet basis, as discussed in a previous work [Zhang and Cheng, 2016], writes
/ 2( ) 2 (2 )m m

j x x j   (17)

To determine a suitable range of j , all the terms between the normalized expansion
domain [0, 1] should be included into the expansion set. However, substituting Eq. into
Eq. requires the calculation of Eq.. As the wavelet scale function is a compact support
function, when Eq. equals to zero, the mass and stiffness matrices M and K defined by
Eq. and Eq. are singular and the problem becomes underdetermined. Therefore, the
expansion set Eq. should be carefully chosen as below to avoid such occurrence:

/ 2( ) 2 (2 ), 2, , 2 1m m m
j jx x j L       (18)

In the present 2-D situation,
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The total number of the decomposition items is  2
2 2m L  . For illustration

purposes, a typical 2-D Daubechies scaling function basis is shown in Fig. 2, with L=8,
m=2, j=-6, …,3, k=-6 ,…,3.

Fig. 2 2-D Daubechies scaling function selection criteria

2.2.3. 2-D connection coefficients

Substituting the tensor form of the 2-D wavelet scaling function, Eq., into Eq., the mass
and stiffness matrices, Eq. and Eq., are converted to

0,0 0,0hab  M I I (20)

   

1 2

3 4

2 2
2,2 0,0 0,0 2,2

2 2
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3 4 2 2
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(21)

where

   { 0 0 }, 2, 1, , 2 1, 2, 1, , 2 1m m
i j i L L j L L              φ  

   { 1 1 }, 2, 1, , 2 1, 2, 1, , 2 1m m
i j i L L j L L              φ  

   { 0 0 }, 2, 1, , 2 1, 2, 1, , 2 1m m
i j i L L j L L               φ  
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   { 1 1 }, 2, 1, , 2 1, 2, 1, , 2 1m m
i j i L L j L L               φ  

 
1

,F  


 




F φ
(22)

Then

       , T
1 2

1

0
d ,       φ φI

(23)

Here the 2-D connection coefficients, , I , are converted to the tensor product of 1-D
connection coefficients. Substituting Eq. into Eq., one gets

 
 

 
 

         

1, 2 2
, 0

2

0

2 2 2 2 d ,

2 d
m

m mm m
i j

m

I i j

x i x j x

 

  





    







           

  



 (24)

The function form of    x i  is the differential of the 1-D Daubechies wavelet scaling
functions, which can be obtained through a recursive scheme as detailed in our previous
work [Zhang and Cheng, 2016]. , I can then be calculated by Gauss integration.

3. Numerical results and discussions

The following sections consider a rectangular steel plate with different boundary
conditions. Again, it is relevant to reiterate that the validity issue of the Love-Kirchhoff
assumption in the high-frequency range is well known and beyond beyond the scope of
the present paper. The illustration of the computation accuracy of the proposed method
through comparison with a simple benchmark problem having exact solutions is the
major focus here.

3.1. Low-order eigenvalue validations

The eigen-frequency problem described by Eq. is first considered for low-order modes.
Three different boundary conditions are investigated using the same notations in Leissa
[Leissa, 1973]. For example, corresponding to the four edges at 0x  , 0y  , x a ,
y b , C-S-C-F denotes clamped, simply-supported, clamped and free boundaries,

respectively. For each type of boundary conditions, results are tabulated, by including the
first four natural frequencies of the plate for three different aspect radios
( / 2 / 5,  1,  5 / 2a b  ), along with the results from other work in the literature. The
support length L and the resolution m of the wavelet scale function used in the
calculation are also quoted for each case. For the convenience of comparison with results
from the literature [Bardell, 1991; Leissa, 1973], a non-dimensional frequency parameter
is defined as:

2= /a D  (25)
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where  is angular frequency and a is the length of the rectangular plate.
Firstly, the accuracy of the WDRM is checked when all four edges of the plate are

completely free (F-F-F-F). In this case, the plate boundary conditions are fully accounted
for in the original matrix equation with no stiffness values being assigned to the springs.
The eigenvalue problem yields three zero frequency parameters (as expected) which
correspond to the rigid-body translation and rigid-body rotations. The subsequent non-
zero frequency parameters are shown in Table 1.

Table 1. Frequency parameters for a F-F-F-F plate: L=18, m=4

/a b Mode No. Leissa Bardell WDRM

2/5 4 3.463 3.433 3.428

5 5.288 5.278 5.275

6 9.622 9.541 9.540

7 11.437 11.329 11.324
1.0 4 13.489 13.468 13.465

5 19.789 19.596 19.593

6 24.432 24.270 24.269

7 35.024 34.801 34.799
5/2 4 21.643 21.454 21.374

5 33.050 32.989 32.964

6 60.137 59.629 59.602

7 71.484 70.804 70.789

As can be seen, for all first four frequencies, WDRM, Lessia’s work [Leissa, 1973] and
Bardell’s work [Bardell, 1991] provide very close results. It should also be noted that the
WDRM generates the smallest values for each natural frequency, suggesting a higher
accuracy then the other two.

Table 2 Frequency parameters for C-C-C-C plate: L=18, m=4

/a b Mode No. Leissa Bardell WDRM

2/5 1 23.65 23.64 23.64

2 27.82 27.81 27.80

3 35.45 35.44 35.41

4 46.70 46.81 46.67
1.0 1 35.99 35.99 35.99

2 73.41 73.39 73.39

3 73.41 73.39 73.39

4 108.22 108.22 108.21
5/2 1 147.80 147.78 147.75

2 173.85 173.80 173.78

3 221.54 221.50 221.33

4 291.89 292.53 291.65
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Table 3 Frequency parameters for C-S-C-F plate: L=18, m=4

/a b Mode No. Leissa Bardell WDRM

2/5 1 22.54 22.49 22.49

2 24.30 24.27 24.26

3 28.34 28.32 28.32

4 35.35 35.31 35.36
1.0 1 23.46 23.38 23.38

2 35.61 35.56 35.55

3 63.13 62.89 62.85

4 66.81 66.77 66.68
5/2 1 28.56 28.49 28.48

2 70.56 70.31 70.32

3 114.00 113.91 113.79

4 130.84 130.53 130.61

Then, plates with C-C-C-C and C-S-C-F boundary conditions are investigated. The
first four frequency parameters are presented in Tables 2 and 3, respectively for the two
boundary cases. Once again, the comparison shows the same tendency as explained
before and an excellent agreement is observed with the work of Leissa [Leissa, 1973] and
Bardell [Bardell, 1991]. Meanwhile, the WDRM yields consistently lower frequencies for
all cases compared with their counterparts reported in [Leissa, 1973] and [Bardell, 1991].

3.2. High order eigenvalues and convergence study

A simply-supported plate (S-S-S-S) is studied, due to the existence of analytical solutions.
The geometrical and material parameters of the plate are: 1ma  , 1mb  , 0.003mh  ;
Young’s modulus 112.1 10 PaE   ; Poisson ratio 0.3  ; and density

37800kg/m  .As an example, the aspect radio /a b is restricted to 1. The translational
stiffness terms of the boundary springs are set as 1 2 3 4 1E12k k k k    N/m and

1 2 3 4
0k k k k       . Convergence studies show that further increases in ik or

i
k

would not lead to noticeable changes in the calculated results.
Convergence and error analyses are carried out. It should be noted that the derivative

order of the Daubechies wavelet scaling functions requires the use of a minimum support
length L . Theoretically, the maximum differential order of the Daubechies wavelet
functions is  2 2L  . In the present plate case, the differential order in the equation of
motion is four. Therefore, the minimum L should be ten. Satisfying this criterion, Fig. 3
shows the eigenfrequencies calculated by the WDRM using L=14, L=16 and L=18,
respectively, with a fixed resolution m=7, in comparison with the analytical solutions.



Wavelet Decompositions for High Frequency Vibration Analyses of Plates 11

Fig. 3 Eigenfrequencies using different wavelet support lengths L=14 (dashed line), L=16 (dotted line) and L=18
(dashed-dotted line) with the wavelet resolution m being fixed at 7, in comparison with analytical ones (solid line).

To quantify the accuracy, a relative error is defined for each eigen-frequency as

WDRM 100%exact exactf f f    (26)

where exactf is the exact frequency value and WDRMf the numerically calculated one by
the WDRM.

The relative error for the same calculation cases (L=14, L=16 and L=18, with m=7) is
shown in Fig. 4. Both Figs. 3 and 4 show a consistently good accuracy of the calculation
for all cases, typically covering the first 2000 modes (Fig. 4). Errors start to increase for
higher-order modes. If the calculation error is capped at 1%, L=14, L=16, and L=18 with
m=7 allow the correct prediction of the first 2300, 2800 and 3500 modes, respectively
(Fig. 4). The corresponding basis terms used are 19600, 20614 and 20736 respectively.
Obviously, the calculation accuracy, along with the frequency coverage, increases with
the support length.

When varying the resolution parameter m, the relative error is shown in Figs. 5 and 6.
As can be seen from Fig. 5, m needs to be increased for the same support length L for
more modes to be correctly calculated. More specifically, when m=4, about 70 eigen-
frequencies can be obtained under 1% error. This number increases to about 200 when
m=5; and 300 when m=6, respectively. For relatively small m values, the improvement in
terms of frequency coverage is rather gentle. Further increasing m, Fig. 6 shows that,
when m=7, about 3400 eigen-frequencies can be obtained under 1% error. This number
increases to about 15000 when m=8. Therefore, the effect of the resolution parameter m
is obvious. When m increases up to a certain value, the accuracy of the WDRM is
improved in a significant manner. Note that, for the sake of convenience, the lower order
modes, with their error values all below 1%, are not shown in Fig. 6.
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Fig. 4 Relative error using different wavelet support lengths L=14 (dashed line), L=16 (dotted line) and L=18
(solid line) with the wavelet resolution m fixed at 7.

Fig. 5 Relative error using different wavelet resolutions m=4 (dotted line), m=5 (dotted) and m=6 (dashed) with
the wavelet support length L fixed at 18 from 1st mode to 1000th mode.

Fig.6 Relative error using different wavelet resolutions m=7 (dotted line) and m=8 (solid) and with the wavelet
support length L fixed at 18 from 1000th mode to 20000th mode.
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Another phenomenon is noteworthy from Figs. 5 and 6. Although the accuracy
generally increases with m, it does not mean that a larger m is necessarily better for any
specified mode sequence range. To show the phenomenon more clearly, a tendency line
on the relative error curves is plotted in Fig. 5. For the mode sequence from the 1st to
about the 15th, the most accurate result is obtained using m=4. From the 16th to the 200th

modes, the smallest relative error is obtained using m=5. The same phenomenon can be
again observed in Fig. 6, in which m=7 gives the most accurate prediction accuracy for
the mode sequence from the 1000th to about the 2000th. A plausible explanation is that,
different mode involves different structural wavelengths. There should exist some
correlations between the structural wavelength range of the modes and the wavelet
resolution m. If the calculation is to be conducted by targeting a particular range, a
smaller m may generate better accuracy for the lower-order modes. Higher-order modes,
however, requires the use of a larger m.

In the present case with L=18, m=6, the CPU time is about 620s for the whole
calculation. Generally speaking, the CPU time is related to  2

2 2m L  according to
Eq. , which is the size of the mass and stiffness matrices.

In Fig. 7, the first four mode shapes of the S-S-S-S plate using the WDRM with L=18
and m=7 are presented. It can be seen that, despite the seemingly strong oscillation
feature of the wavelets, the lower-order mode shapes are well constructed in a continuous
and smooth manner.

(a) Mode 1, (b) Mode 2,

(c) Mode 3, (d) Mode 4,

Fig. 7 The first four mode shapes calculated by the WDRM
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(a)

(b)

Fig. 8. Mode shape of the 2592nd mode of the S-S-S-S plate using the WDRM. (a) 3-D view; (b) Top
contour view.
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(a)

(b)

Fig. 9. Mode shape of the 2822nd mode of the S-S-S-S plate using the WDRM. (a) Partial 3-D view;
(b) Top contour view.
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As another extreme example, two arbitrarily chosen high-order mode shapes (the 2592nd

at 36741Hz and the 2822nd at 39619Hz) of the S-S-S-S plate using the WDRM is
depicted in Figs. 8 and 9, respectively, together with the corresponding top views. Note
that, for the 2822nd mode, only a small portion of the plate (1/5 in each directions) is
shown in the 3D view in order to better illustrate details. It can be seen from these figures
that these high-order mode shapes are also well predicted with fine details and
smoothness even near the edges, demonstrating the strong ability of the wavelet-
decomposed model in coping with structural details.

3.3. Forced vibrations

The forced vibration response of the S-S-S-S plate is investigated to further verify the
accuracy of the proposed method. The geometrical and material parameters of the plate
remain the same as before. System damping is ignored. A unit excitation force is applied
at an arbitrarily chosen point at (0.1m, 0.2m). The displacement of the plate at another
arbitrarily chosen location (0.75m, 0.6m) is calculated and shown in Fig. 10, in a
frequency range from 10Hz to 10kHz. Calculations use L=18 and m=7. The analytical
solution [Rao, 2007] is used as the reference, in which one million modes were used. In
all three frequency bands, low in Fig. 10(a), middle in Fig. 10(b) and high in Fig. 10(c),
the displacement responses calculated by the WDRM are found to be in nice agreement
with the analytical solutions, demonstrating again the remarkable accuracy of the method,
even for very high frequencies.

(a)
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(b)

(c)
Fig. 10 Displacement amplitude at (0.75m, 0.6m) in three different frequency bands: (a) from 10Hz to 1kHz,
(b) from 1kHz to 5kHz, (c) from 5KHz to 10KHz.

4. Conclusions

2-D Daubechies wavelet scaling functions are used under the general framework of
Rayleigh-Ritz method for analyzing the high-frequency bending vibrations of plates.
Upon constructing the 2-D Daubechies wavelet scaling functions and establishing the
calculation scheme for the associated 2-D connection coefficients, a wavelet-decomposed
Rayleigh-Ritz plate model is developed. By embracing the flexibility of the global
methods and the accuracy of local methods, and exploiting the versatility of the Rayleigh-
Ritz approach and the unique features of the wavelets, the proposed method exhibits
extraordinary computational advantages and allows reaching extremely high frequencies
with conventional computational facilities. Typically, upon properly choosing the
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wavelet parameters, the plate vibration, in both free and forced regimes, can be accurately
simulated, covering roughly fifteen thousand plate modes. Typical errors of the
calculated natural frequencies are capped at 1%. Numerical analyses also allow shedding
light on the relationship among the accuracy, convergence of the calculations and the
wavelet parameters, namely the support length L and the resolution m. In general, the
calculation accuracy increases with the support length. The effects of the resolution,
however, are less systematic, which seem to be dependent on the range of structural
wavelength considered.
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