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Introduction 

As the most common machine elements, rolling bearings are playing an exceptionally vital role in almost all kinds of 

rotating machinery.1,2 Rolling bearings are as such used in industries at length due to their relatively lower price and 

operational ease. The manoeuvre of rotating machinery, just like an aeroengine, is entirely dependent upon the health 

state of rolling bearings which accounts for almost 45%–55% of these equipment failures.3 The presence of bearing 

faults, such as galling, spalling, subcase fatigue or failure of the bearings due to misalignment, high extent of waviness 

and inclusions, causes a catastrophic collapse of the system, which thereby reduces the reliability and usability of me-

chanical systems.4 Thus, it becomes a requisite to implement and expand effective maintenance strategiesto minimize 

the impact of failures due to the malfunction of the rolling bearings. Herein, it is crucial to seek an effective measure 

for failure prediction and faultdiagnosis in earlier to promptly reduce and prevent rolling bearing faults.5 

Various fault diagnosis approaches of rolling bearing and their diagnostic capabilities were discussed for the past few 

decades. Before the years 2001, the earliest work on the signal processing techniques related to bearings is quite simple 

and mainly dependent upon simple time domain methods,6–11 frequency domain methods12–14 and time-frequency do-

main methods.15,16 Moreover, the signature analysis methods were ineffi-cient to minimize the effect of noises and in-

terferences due to other sources of vibration such as gears or the varying speed of the shaft.5 Modern signal processing 

approaches developed during the period 2001–2010 include wavelet transform based techniques,17–19 entropy20–22 and 

empirical mode decomposition.23,24 After the years 2011, more advanced fault diagnosis tools were developed by in-

formation fusion technique to avoid uncertainty and the shortcomings of single technique and single information, and 

thereby improve the diagnostic precision and effect. These methodologies comprise spectral kurtosis and kurtogram,25 
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wavelet-based approaches,26,27 ensemble empirical mode decom- position28,29 and so forth. In fact, the objective of 

signal processing in rolling bearing fault diagnosis is to extract the feature information of fault signals, which is called 

feature extraction, and as such to distinguish different signal caused by different kinds of faults. 

As one of the key programmes of rolling bearing fault diagnosis, actually, feature extraction directly influences diagnosis 

results. Along with ever increasing on the accuracy of fault diagnosis, feature extraction technique is increasingly valued 

and thereby leads to the prevalence of information entropy,30 and in consequence emerges various entropy methods by 

combining singular spectrum in time domain, power spectrum in frequency domain, wavelet space spectrum and wavelet 

energy spectrum in time–frequency domain, which are defined by singular spectrum entropy,31 power spectrum entropy,32 

wavelet space spectrum entropy33 and wavelet energy spectrum entropy,34 respectively. Due to the complicacy of rolling 

bearing signals of rotating machinery herein accompanying with a lot of ambient noise and other superfluous signals, the 

fault diagnosis techniques based on information entropy still confront with unavoidable questions: (a) the signal characters 

of rolling bearing faults are insufficiently reflected by the extracted information features; (b) the real fault features of roll-

ing bearings are hardly described by single type of fault signal like vibration signals35–37 or acoustic emission (AE) sig-

nals,38–40 in spite of a large amounts of works studied by single type of fault signal for the  related machinery; and (c) the 

process features of rolling bearing signals cannot be reasonably expressed and reflected in fault diagnosis so that the diag-

nostic precision is unacceptable. Therefore, it is obviously urgent to require proposing an effective method to innovatively 

address the above issues and thereby improve the effect of rolling bearing fault diagnosis. 

The objective of this article, along with information fusion method and many signals for fault diagnosis, is to propose mul-

ti-feature entropy distance (MFED) method by four information entropies, which are the information features of the vibra-

tion signals and AE signals of rolling bearing faults under different rotating speeds. The developed MFED method was va-

li- dated by the four information entropies of two types of (vibration and AE) signals for six kinds of process faults of roll-

ing bearings simulated on rotor system test rig. 

In what follows, section ‘Basic theory and methodologies’ discusses the MFED method with the auxiliary presentation on 

four information entropies and gives the basic thought of the process diagnosis of rolling bearing faults based on the 

MFED method with vibration and AE signals. In section ‘Rolling bearing faults simulation experiment’, rolling bearing 

simulation experiments are investigated to collect the failure data of rolling bearings. Process fault diagnoses of rolling 

bearing based on the MFED method are studied including the diagnoses with single type of vibration or AE signal and two 

kinds of signals (vibration and AE signals), and the validation of the robustness of the MFED method as well in section 

‘Rolling bearing fault diagnosis with MFED method’. Section ‘Conclusion’ summarizes some conclusions on this study. 

Basic theory and methodologies 

To perform the fault diagnosis of rolling bearings, this section is to discuss the feature extraction method with infor-

mation entropy theory, MFED method and the basic thought of the process feature extraction and diagnosis of rolling 

bearing faults in this article. 

Information entropy theory 

Information entropy is used to measure the uncertainty of system. Remarkable chaotic system has large information en-

tropy value while orderly system corresponds to small information entropy.30 

When a measurable set H garners the Lebesgue space M with the measure µ (µ(M) = 1), which is denoted as the incompat-

ible set (Ai ∩ Aj = 0, i ≠ j) with a limited partitioning A = {Ai}, we gain 

(1) 

the information entropy E of the set A is defined as  

(2) 

where µ(Ai) is the measurement of the ith sample Ai, i = 1, 2,…,n. 

By the delay embedding technique, an arbitrary signal {xi}(i = 1, 2,…, n) is mapped to an embedded space to obtain 

the m × n matrix, denoted by B, that is 
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 (3) 

where m is the length of the embedded space and n is the number of samples. 

With the singular value decomposition in time domain, the singular values {𝜎𝑖}𝑖=1
𝑚  of the matrix B are gained. Based on in-

formation entropy thought, the singular spectrum entropy (SSE) Ess of the signal is defined as 

 (4) 

where pss,i is the ratio of the ith singular spectrum to the whole spectrum.31 

SSE describes the measure of the disorder or randomness of signals in time domain by singular values, which is used to re-

flect the time domain features of signals in this study. 

When X(𝜔) in frequency domain is the discrete Fourier transform of a time domain signal {xt}, its 

power spectrum is as follows 

(5) 

Due to the conservation of energy on the transformation from time domain to frequency domain,32 namely 

(6) 

s = {s1, s2,., sn} may be regarded as the partition of original signal {xt} in line with the basic thought of 

information entropy; hence, the power spectrum entropy (PSE) Eps is defined by 

 (7) 

where pps,i is the ratio of the ith power spectrum to the whole spectrum.32 

PSE expresses the measure of the disorder or randomness of signals in frequency domain by discrete Fourier 

transform from time domain. The PSE method is adopted to reflect and extract the frequency domain features 

of signals in this article. 

The limited energy of time domain function f(t) is conserved by the wavelet transform from time domain to 

frequency domain, which follows 
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 (8) 

where 𝐶𝜓 is the admissible condition of the wavelet function; e(a) is the energy of the function f(t) (wavelet energy spec-

trum) on the scale a; 𝜓(∙) is the wavelet mother function and Wf (a,b) is the amplitude of wavelet transformation on scale a. 

The objective of wavelet transform is to isometrically map the one-dimensional (1D) signal into two- dimen-

sional (2D) space. Thus, the energy distribution matrix of signal on 2D wavelet space is as follows 

 (9) 

Through the singular value decomposition of the matrix W similar to SSE, the singular values are gained 

and denoted by {𝑣𝑖}𝑖=1
𝑛 . The singular values {𝑣𝑖}𝑖=1

𝑛  may be considered as the feature partition of origi-

nal time domain function f(t). Therefore, in the light of the heuristic idea of information entropy, the wavelet 

space spectrum entropy (WSSE) Ews of the signal is expressed33 as follows  

 (10) 

where pws,i is the ratio of the ith feature spectrum to the whole spectrum. 

WSSE is the measure of the disorder or randomness of signals in time domain and frequency domain by 

wavelet transform from time domain to frequency domain and then singular value decomposition on the 

energy distribution matrix of signal. Thus, the entropy method is applied to capture one time –frequency 

domain features of signals in this investigation. 

According to wavelet transform, when the wavelet spectrum of signal f(t) on n scales is explained by e = 

{e1, e2,…, en} similar to PSE, {e1, e2,…, en} can be regarded as the partition of signal energy. Thus, wave-

let energy spectrum entropy (WESE) Ewe is34 

(11) 

where pwe,i is the ratio of the ith wavelet energy spectrum to the whole wavelet energy spectrum. 

WESE indicates the measure of the disorder or randomness of signals in time–frequency domain by wave- let 

transform and the partition of wavelet energy spectrum on original signal. WESE values are employed to re-

flect other time–frequency domain features of the signal. 

MFED method with vibration and AE signals 

When each type of entropy on SSE, PSE, WSSE and WESE is regarded as one feature of signal, the space 
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comprising four entropies is a four-feature space. Therefore, one fault point m in four-feature space is 

composed of four entropies (Ess, Eps, Ews and Ewe), which vary in a small range. The mean of the varying 

values on one kind of information entropy of this type of fault is the centre of this information entropy. The 

centre is called information entropy point.41–43 When the jth kind of information entropy Eij has k values for 

the ith type of fault, the information entropy point E-ij of the jth information entropy Eij on the ith fault is 

expressed as 

 (12) 

where p (p = 1, 2,., k) is the pth value in the jth information entropy Eij on the ith fault; k is the total 

number of the jth information entropy Eij on the ith fault. 

Thus, for the jth kind of entropy of the ith type of fault, its information entropy distance di on one unknown 

fault is defined by the distance between the jth kind of entropy value Eaj of this unknown fault and the in-

formation entropy point E-ij of the jth kind of information entropy in the ith type of fault in four- feature 

space, that is 

 (13) 

where i is the ith category of fault; j (j = 1, 2, 3, 4) expresses the jth entropy category (SSE, PSE, WSSE 

and WESE). 

For as such many kinds of entropies used in reflecting the features of signals by information entropy distance, 

we call this method as MFED method. The size of MFED shows the proximity degree of an unknown fault 

to the ith fault, namely, the small MFED di indicates the large probability of the unknown fault belonging to the 

ith fault, and vice versa. Therefore, the fault diagnosis of the unknown fault is conducted by the minimum value 

of the entropy which is the minimum entropy error (or difference) between the unknown fault and the corre-

sponding fault. It should be noted that the diagnosed fault (unknown fault) must have one corresponding 

fault type in the selected referencing types of faults when MFED method is applied to fault diagnosis. 

The MFED approach is promising in the use of one kind of vibration or AE signal in fault diagnosis.35–40 

Sometimes, multiple types of signals are simultaneously required, however, to master the characters of faults 

more accurately. Under the circumstances, based on the thought of the MFED method, the four MFED val-

ues of each fault from one kind of signals may be regarded as the feature indexes of the fault signals. If  all the 

four MFED values of one fault from many kinds of signals are calculated as the feature indexes of the fault 

according to fall into place, the MFED of this fault is gained based on multiple kinds of signals. When Pij is 

the jth parameter (entropy category) of the ith fault, the MFED di of the jth type of information entropy Eaj 

of an unknown fault point 𝝀a and the jth entropy value 𝐸ij of the information entropy point 𝝀i of the ith 

fault is as follows 

(14) 

where 𝜃 is the number of the feature indexes of fault signal. 

When vibration and AE signals are considered synchronously, there are eight feature indexes to reflect this 

fault in the light of the idea of MFED method for multiple kinds of signals. This method is called MFED- 

method-based vibration and AE signals. 

For the process signals under different rotating speeds, the MFED values of all rotational speeds and all 
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types of information entropies are calculated. Therefore, we can sketch MFED graphs under different rota-

tional speeds and different fault modes to judge the fault type of unknown fault. Besides, the unknown 

fault may be diagnosed by the minimum value of the sum of MFED data under different rotating speeds. 

Assuming that a process rotational speed comprises l speed points for process faults, the total MFED value 

for the unknown fault belonging to the ith fault under different rotational speeds is as follows 

(15) 

where 𝑑𝑖
𝑟  is the MFED value on rth rotating speed point, expressed by 

(16) 

where 𝐸𝑎𝑗
𝑟  is the jth type of information entropy value of unknown fault on rth rotating speed point; 𝐸𝑖𝑗

𝑟  is the jth 

type of information entropy value of the ith fault on rth rotating speed point, obtained by equation (12). 

The fault diagnosis method based on MFED with multiple types of signals and multi-speed is called as the 

MFED method with multiple types of signals for process fault diagnosis. The basic thought of the MFED 

method with AE signal and vibration signal for process fault diagnosis is illustrated in Figure 1.  

Basic thought of process fault diagnosis on rolling bearings based on MFED method 

Regarding the above discussion ,  the basic diagnosis process based on MFED method for an unknown 

fault of rolling bearing is structured in Figure 2. The fault diagnosis of rolling bearing comprises of rotor simula-

tion experiment, collection of fault signals, extraction of signal features and fault diagnosis. Herein, fault sig-

nals contain vibration and AE signals which are from six faults of rolling bearing (ball fault, inner race fault, 

outer race fault, inner ball fault, inner–outer fault and normal) from multi-channel multi-speed sampling on 

rotor simulation test rig. Signal features are the MFEDs of vibration and AE signals for an unknown 

fault signal from four information entropies. 

Rolling bearing faults simulation experiment 

In this article, rotor system test rig adopted is a double rotor system as shown in Figure 3(a), which can run 

with positive and negative rotational speeds. An intermediary bearing connects the two rotors. The testing 

system contains vibration testing system and AE testing system. Herein, the testing system of vibration signals 

in this rotor system test rig is LMS Test Lab system as shown in Figure 3(b), which includes signal collecting 

device, signal amplifier, speed regulator, speed display and computer. The testing system of AE signals is 

SAEU2S system as shown in Figure 3(c), which comprises hardware setup, analysis and sampling control,43 

in which the related parameters of this system are set as shown in Table 1. 

In the test system of vibration signals, the used sensors are PCB acceleration sensor (model no.: 333H30), which 

measures the acceleration of rolling bearing vibration from 0 to 3000 Hz.43 The sensors in the test system of AE 

signals are piezoelectric sensor (model no.: SR150 M), measuring frequency from 0 Hz to 500 kHz. The two 

types of sensors are used to acquire the signals of the rolling operation. 

Six typical faults (ball fault, inner race fault, outer race fault, inner ball faults, inner–outer faults and nor-

mal) were simulated to obtain fault data on rotor system test rig under multi-rotating speeds and multi- measur-

ing points in which the cylindrical roller bearing (model no.: NU202) is regarded as the test bearing.43 Ten sen-

sors are mounted on the casing and bearing. Herein, six acceleration sensors are used to monitor the vibration 

signals on the X-, Y- and Z-directions of casing and pedestal, as illustrated in Figure 4(a). The four voltage sen-

sors are to check the AE signals on the X- and Y-directions of casing and pedestal, as shown in Figure 4(b). The 

signal data are sampled by the interval speed of 100 r/min from 800 to 2000 r/min. Therefore, 78 groups of vi-

bration signals and 52 groups of AE signals are acquired for up or down rotation speed. Based on the basic prin-

ciples of four information entropies, the values of four information entropies for vibration and AE signals are 

calculated, which are used to accomplish the fault diagnosis of rolling bearing with MFED method. 
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Rolling bearing fault diagnosis with MFED method 

Rolling bearing fault diagnosis by MFED method with single kind of signals 

Based on four information entropy methods (SSE, PSE, WSSE and WESE) and equation (12), the entropy 

values of vibration and AE signals for six kinds of rolling bearing faults are shown in Table 2. Based on the 

testing data for six faults under different rotational speeds from rolling bearing experiments and MFED method 

in equation (13), the diagrams of MFEDs are gained for the six faults as shown in Figure 5. Regarding equa-

tion (15), the total MFEDs of each unknown faults for vibration signals and AE signals are listed in Table 3 

where the minimum total MFEDs are the bolded data in the same signal in same columns. 

Rolling bearing fault diagnosis with MFED method by vibration and AE signals 

As shown in section ‘Rolling bearing fault diagnosis by MFED method with single kind of signals’, the 

MFED- method-based single type of signal is revealed to be imprecise in distinguishing process faults from 

Figure 5, although the types of unknown faults can be identified by the minimum total MFEDs (bolded da-

ta) with single kind of signals in Table 3. The reason is that it is difficult to fully reflect the process characters 

of faults by single vibration or AE signals. To overcome this issue, we improve the process diagnosis 

method–MFED method based on the combination of vibration and AE signals. 

Process fault diagnosis of rolling bearing with vibration and AE signals. From the analysis of information entropy, vibra-

tion and AE signals contain four information entropies, respectively. If eight information entropies for the vi-

bration and AE signals of rolling bearing under multi-speed are regarded as the characteristic parameters, based 

on equation (14), the MFEDs under different rotating speeds are shown in Figure 6. 

To satisfy the application of practical engineering, these diagrams are turned into MFED data and the total 

MFED values by superposing the MFED data of all rotation speeds by adopting equation (15), which is 

called as a judgement of rolling bearing fault diagnosis for each fault of unknown faults. The results are listed 

in Table 4. In line with MFED method, the unknown fault belongs to the fault with the minimum value in 

each column in Table 4. As shown in Table 4, the MFED method is demonstrated to be effective in iden-

tifying the fault category with minimum value (bolded numbers) in each column, to which the unknown faults 

belong simply, intuitively and clearly. 

Precision validation of rolling bearing fault diagnosis. To further support the validation of MFED method, four sets 

of test data were gained under the same simulation conditions of six faults of rolling bearing from 800 to 2000 

r/min. Each group of the vibration and AE data was processed to gain the corresponding total MFED data by 

the MFED method. The results obtained are shown in Table 5. The bolded data are the minimum values in each 

column which demonstrated that the unknown fault belongs to the fault in the corresponding line. 

 

Robustness validation of MFED method 

In the real-work environment of rolling bearings, the (vibration or AE) signals generated from bearing 
faults are always disturbed by noise signals and outliers. To highlight the effectiveness of MFED method in 
rolling bearing fault diagnosis with noise and outliers, the robustness of the proposed MFED method was 
checked by adding Gaussian white noise to the vibration and AE signals of rolling bearing faults. First, 
based on the rotor simulation test rig, 20 groups of signals under different rotational speeds (800 and 2000 
r/min), including vibration and AE signals, for each fault of rolling bearings, were collected as fault data. 
The number of collected process data for six faults of rolling bearings is 120 groups. And then these sig-
nals (120 groups) were overlapped by Gaussian white noise with mean value 0 and variance 5 to acquire the 
fault signals with noise. Finally, based on the fault diagnosis programme with the developed MFED meth-
od similar to section ‘Rolling bearing fault diagnosis with MFED method by vibration and AE signals’, 120 
groups of signals with/ without the noise signal were diagnosed for six rolling bearing faults. The results are 
listed in Table 6. 

 
Discussion 

From the process fault diagnosis of rolling bearings with MFED method, some results are drawn as follows: 

As illustrated in Figure 5, unknown fault belongs to the fault with the closest curve of feature entropy distance 

to horizontal axis. Therein, the MFED between the unknown fault and the fault is smallest. However, the 

fact of curve overlapping in Figure 5 shows that the fault category cannot be accurately judged by single 

type of fault signals, although the categories are judged in Table 4. Thus, one alternative is to apply MFED 

method with multi-speed and multi-point data to diagnose the faults from vibration and AE signals. 

As revealed from Figures 5–6, the same fault has the same trend in the curves of the MFEDs with single signal 
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(AE or vibration signal) and the MFED with AE and vibration signals for all unknown fault. In addition, 

the overlapping in these curves has been obviously improved by the MFED method with vibration and AE sig-

nals. And thereby the curve of unknown fault is significantly separated from other fault signals because the 

MFED method with vibration and AE signals better reflects signal feature than single vibration or AE signals. 

The results demonstrate that the accuracy and effect of rolling bearing fault diagnosis are markedly im-

proved by the proposed MFED method. 

From Tables 4–5, it is demonstrated that each unknown fault in the four groups of rolling bearing fault data 

are accurately diagnosed by the MFED method, which further confirms the feasibility and availability of the 

proposed MFED method with high precision. As shown in Table 6, when the fault signals of rolling bearings 

were not disturbed by noise, the correct identification number of fault samples is 116 and the corresponding di-

agnostic precision is 0.967. Nevertheless, the correct number of fault samples is 114 and its diagnostic preci-

sion is 0.95 when the signals are with noise. Comparing with the diagnosis results without noise, the correct 

samples and precision of fault diagnosis with noise only reduce by 2 and 0.017, respectively. The results indi-

cate that the proposed MFED method holds strong robust- ness and capacity of resisting disturbance (anti-noise 

capacity) in the fault diagnosis of rolling bearings and is promising to be applied to the condition monitoring 

and fault diagnosis of complex turbomachinery just like an aeroengine, working on severe environment. 

Conclusion 

The objective of the efforts is to propose the MFED method for the process fault diagnosis of rolling bear-

ing with single and coupling faults, by integrating four information entropies (SSE in time domain, PSE in 

frequency domain, WSSE and WESE in time–frequency domain) and two kinds of signals (vibration and AE 

signals), respectively. Through this investigation, some conclusions are summarized as follows: 

1. Information entropy is able to reflect the uncertainty of signal and the process of signal variation. 

2. The diagnostic result based on many kinds of signals is superior to that based on single type of signal in 

the process fault diagnosis of rolling bearing by the MFED method. 

3. MFEDs effectively reflect the process characters of rolling bearing fault signals under different rotation-

al speeds. 

4. The MFED approach can distinguish the fault types of rolling bearings with high precision compre-

hensively and intuitively and is proved to be a promising diagnostic approach, for catering to the in-

creasing characteristic parameters and feature information as well. 

5. The proposed MFED method is demonstrated to hold strong robustness and capacity of resisting dis-

turbance (anti-noise capacity) in the process fault diagnosis of rolling bearings. 

6. By integrating many types of signal information, the advanced approach, MFED method, is promising 

to accurately monitor and estimate the operation status of turbomachinery working in the extreme en-

vironments with messy noises. 
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Figures  

 

Figure 1. The basic thought of the MFED method with AE signal and vibration signals for process fault diagnosis. 

 

 

Figure 2. Flow chart of rolling bearing faults diagnosis with MFED-method-based vibration and AE signals. 
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Figure 3. Simulation system of rotor test rig for six faults: (a) rotor simulation test rig, (b) vibration testing system and (c) AE testing 

system. 

 

Figure 4. Distributions of vibration sensor and AE sensor: (a) vibration sensor distribution and (b) AE sensors distributions. 
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Figure 5. MFED graphs of six unknown faults for vibration and AE signal under multi-speed: (a) unknown fault 1 (ball fault), 

(b) unknown fault 2 (inner race fault), (c) unknown fault 3 (outer race fault), (d) unknown fault 4 (inner ball faults), (e) unknown fault 

5 (inner–outer fault) and (f) unknown fault 6 (normal). 
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Figure 6. MFEDs of unknown faults with vibration and AE signals: (a) unknown fault 1 (ball fault), (b) unknown fault 2 (inner-race fault), 

(c) unknown fault 3 (outer-race fault), (d) unknown fault 4 (inner-ball fault), (e) unknown fault 5 (inner-outer fault) and (f) unknown fault 6 

(normal) 
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Tables 

 

Table 1. Related parameters of AE data acquisition system.  

 

Table 2. Four entropy values of vibration and AE signal for rolling bearing typical faults.  

 

 

Table 3. Diagnostic results of unknown faults with MFED method and single signals.  

 

 

Table 4. Diagnostic results of first unknown faults data by MFED method with two types of signals.  
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Table 5. Diagnostic results of unknown faults by MFED method with two types of signals.  

 

 

Table 6. Robustness validation of MFED method in rolling bearing fault diagnosis.  

 

 




