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We study a resource-sharing network where each job requires the concurrent occupancy of a subset of links
(servers/resources), and each link’s capacity is shared among job classes that require its service. The real-time
allocation of the service capacity among job classes is determined by the so-called “proportional fair” scheme,
which allocates the capacity among job classes taking into account both the queue lengths and the shadow
prices of link capacity. We show that the usual traffic condition is necessary and sufficient for the diffusion
limit to have a stationary distribution. We also establish the uniform stability of the pre-limit networks; and
hence, the existence of their stationary distributions. To justify the interchange of two limits, the limit in
time and the limit in diffusion scaling, we identify a bounded-workload condition, and show it is a sufficient
condition to justify the interchange for both the stationary distributions and their moments. This last result
is essential for the validity of the diffusion limit as an approximation to the stationary performance of the
original network. We present a set of examples to illustrate justifying the validity of diffusion approximation
in resource-sharing networks, and also discuss extensions to other multi-class networks via the well-known
Kumar-Seidman/Rybko-Stolyar model.

Keywords: stochastic processing network, proportional fair allocation, diffusion limit, stationary distribu-
tion, interchange of limits, uniform stability.

1. Introduction In classical queueing control, the optimal policy often takes the form of a

static or dynamic priority rule. The primary examples are the well-known cµ rule (static); and

the “Gittins index” rule (dynamic). The limitation of these rules is two-fold. First, the priority

rule, which commits at any time the entirety (100%) of the resource to the job class with the

highest priority, may be neither practical nor desirable in certain applications. For instance, in

many service systems, the real-time allocation of resources must observe some notion of “fairness”

among the various classes of jobs or customers. Consequently, resources are always shared, with

suitable weighting schemes to differentiate the classes, but even the lowest ranked jobs will get

some allocation. Second, the optimality of these rules are mostly limited to a single server or a

stand-alone service facility as opposed to a network of resources. In particular, the models do

not allow features such as concurrent occupancy of multiple resources that are distributed and

inter-connected in a network, what’s known as a stochastic processing network (Harrison [29, 30]).

We study a stochastic processing network called resource-sharing network (e.g., [31]), in which

each job requires the concurrent occupancy of a subset of links (servers/resources) that depends on

the class identify of the job, whereas each link’s capacity is shared at any time by jobs from various

classes that require its service. The real-time allocation of the service capacity among job classes
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is determined by a control scheme, or protocol, the so-called “proportional fair” allocation scheme,

which allocates the service capacity among job classes taking into account both the congestion

levels (queue lengths) and the shadow prices for consuming link capacities. This has been a popular

model to study congestion control on the Internet (refer to Bonald and Massoulie [3], de Veciana

et al [18], Kelly et al [37], Massoulie and Roberts [43], Mo and Walrand [45], and many others).

Mathematically, proportional fair allocation belongs to the class of so-called utility-maximizing

control — it maximizes a log-utility objective that is a function of the network state.

This type of dynamic resource control, however, makes it very challenging to evaluate the per-

formance of the network. Even in the setting of Poisson arrivals and exponential service times, in

which the queue-length process can be modeled as a continuous-time Markov chain, the transition

rate from one state to another is itself a solution to an optimization problem, making the Markov

chain a rather intractable object to analyze. Therefore, it is quite impossible to tell (unless one

resorts to simulation) what the resource control scheme achieves in terms of the system perfor-

mance over any extended period of time, although we do know in each state the protocol maximizes

a given fairness measure.

1.1. Background Research in recent years has demonstrated the effectiveness of applying

fluid and diffusion scalings to the network and investigating the corresponding limiting regime.

Specifically, the stability of resource-sharing network under the proportional fair allocation was

established via fluid models; refer to Bonald and Massoulie [3], Kelly and Williams [38] and Ye et al

[57], among others; in particular, the notion of an invariant (or fixed-point) state was developed in

[38] — if the fluid model starts in such a state it will always stay in that state. Kang et al [32] have

established the diffusion limit of the network with multiple bottlenecks (a server is a bottleneck

if its capacity equals the total nominal workload of all job classes that require its service), under

the proportional fair control scheme, but requiring the additional condition that every server in

the network has a dedicated local traffic — a job class that uses only that server and no other

servers. In [60], we have established the diffusion limit for the same network and without the local

traffic condition assumed in [32]. What we require is a substantially weaker condition, that the

constituent matrix, which maps the link occupancies (rows) to routes (columns), be full row-rank.

In both [32] and [60], the diffusion limit is characterized by the so-called dynamic complemen-

tarity problem (DCP), also known as Skorohod problem. With further conditions on the network

parameters, namely the reflection and covariance matrices satisfying the so-called skew-symmetry

condition, the diffusion limit will have a stationary distribution with a product-form density func-

tion. This has motivated us to study the stationary distribution of the diffusion limit in the gen-

eral setting. For instance, under what conditions the stationary distribution exists; and how does

the stationary distribution relate to the stationary distributions of the original network and its

diffusion-scaled, pre-limit versions.

These questions are succinctly and precisely captured in Figure 1 (also refer to similar figures

in [23, 26]). Consider a sequence of networks under heavy traffic, with each network involving the

proportional fair allocation of concurrent resources as described above. The process in question is

the workload at time t, Ŵ k(t), a vector process in the k-th diffusion-scaled network. As k →∞,
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the diffusion limit Ŵ (t) as established in [32] and [60] is represented by the left vertical side, the

side I, of the rectangle. The goal of this paper is to establish the other three sides of the rectangle.

✲

❄

✲

❄

Ŵ (t)

Ŵ k(t)

Ŵ (∞)

Ŵ k(∞)
II: t→∞

III: t→∞

I:
k→

∞

IV
:
k→

∞

Figure 1. Interchange of limits

First, we will prove the existence of the stationary distribution (i.e., as t → ∞) for both the

diffusion limit Ŵ (t) and the pre-limit Ŵ k(t); and we do so under the usual traffic condition of the

diffusion limit (plus other standard conditions required for the diffusion limit). These correspond

to the two horizontal sides, II and III, of the rectangle. Next, we will show that the stationary

distribution of the pre-limit process, under diffusion scaling (i.e., as k → ∞), converges weakly

to the stationary distribution of the diffusion limit, under a bounded workload condition. This is

represented by side IV of the rectangle. Notably, this last result affirms that under the bounded

workload condition letting t → ∞ and k → ∞, in either order, will lead to the same limit, and

hence validates the so-called interchange of limits. This is essential to justifying the diffusion limit

as a valid approximation for the stationary performance of the original or pre-limit networks.

This type of justification has been established for the generalized Jackson network by Gamarnik

and Zeevi [23], and by Budhiraja and Lee [6]. (More precisely, in this setting only side IV was a new

result, the other three sides had been previously proven.) The generalized Jackson network, being a

single-class model, has several notable advantages. The primary one is that the Skorohod problem,

which characterizes the dynamics of the pre-limit networks, is essentially the same — modulo the

scaling constants — as the one that governs the diffusion limit; in particular, the complementarity

(or, work conserving) condition holds in both. In addition, the reflection matrix is an M-matrix,

which in the single-class setting results in the Lipschitz continuity of the Skorohod mapping.

Consequently, the interchange of limits can be established under the usual traffic condition, along

with the standard technical conditions on the moments of the interarrival and service times —

conditions that are also required for the diffusion limit.

Other recent studies that justify this type of interchange of limits include: Katsuda [34, 35]

for a multi-class single-server queue, Tezcan [52] for a multi-server pool with a single job class,

Gamarnik and Goldberg [21] for the M/M/N queue, Gamarnik and Stolyar [22] for a multi-server

pool with multiple job classes, and Dai et al [13] for the many-server queues with abandonment.

The last four papers involve the Halfin-Whitt regime. Earlier related works include the following.

Kaspi and Mandelbaum [33] showed that in an irreducible closed network the scaled stationary

distribution converges to the stationary distribution of a reflected Brownian motion on a simplex;
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the boundedness of the scaled queue lengths is the distinct feature that leads to the tightness

of the stationary distributions of pre-limit networks and then the interchange of limits. Harrison

[27, 28] considered the steady-state waiting-time distributions in a sequence of tandem queueing

systems under heavy traffic, and showed that under diffusion scaling, the sequence of stationary

distributions converges weakly to the stationary distribution of the diffusion limit. His approach

made use of the explicit expression of the waiting time in terms of interarrival times and service

times. Szczotka and Kelly [51] established the same result, allowing certain dependency among the

service times. Their approach was based on a representation of the (steady-state) waiting time in

terms of a two-sided stationary extension of the sequence of interarrival and service times. Notably,

the Lindley-type of recursion that connects the waiting time to the interarrival and services times,

which is the key to the approaches in both works, is not present in networks with a more complex

configuration or with multiple job classes.

1.2. Overview of This Study In a multi-class network, such as the one we focus on here,

the main difficulty often lies in the fact that complementarity, in general, does not hold for the

pre-limit network. In fact, it only holds in an “approximate” sense as follows: a link (server) will

not be idle unless the network state (represented by queue lengths or workloads) approaches the

facet of the fixed-point state space associated with the link. (The fixed-point state space is the area

towards which the utility-maximizing allocation will drive the state process of the network, under

diffusion scaling; and this is where the diffusion limit resides.) Indeed, this is the key property one

needs to establish so as to prove the diffusion limit.

To show that the diffusion limit has a stationary distribution (side III), we prove that the usual

traffic condition is sufficient (and necessary) for the fluid model ŵ(t), the deterministic counterpart

of the diffusion limit Ŵ (t) (i.e., replacing the free process in Ŵ (t) by its drift), to be stable; refer to

Theorem 8(a). The stability of ŵ(t) is then connected to the stationary distribution of the diffusion

limit via the approach of Dupuis and Williams [19]; refer to Theorem 4. These results are depicted

in the bottom part of Figure 2, where Aθ < 0 is the usual traffic condition, and the arrows denote

implication relations.

Ŵ (t): stable

Ŵ k(t): stable

ŵ(t): stable

ŵk(t): uniformly stable

Aθ < 0( )

Figure 2. Relations among stability results

In fact, the stability of ŵ(t) also plays a key role in side II of Figure 1, the existence of stationary

distributions of the pre-limit networks. It turns out that the key is the uniform stability of the

pre-limit networks, or their deterministic counterparts ŵk(t) (Theorem 7). Roughly, this means,

for sufficiently large k (the scaling constant) the workload ŵk(t) associated with any such network
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k, starting with a total initial workload that is bounded (by a single unit, say), can be drained by

a time that is independent of k. We show this strengthened form of stability, too, holds under the

stability of ŵ(t). Refer to the vertical arrow in Figure 2. The key to such a result is the convergence,

ŵk(t)→ ŵ(t), the proof of which essentially follows the proof of the diffusion limit (side I in Figure

1), with the removal of randomness. The relations in Figure 2 have brought out the central role

played by the stability of ŵ(t).

A recent study by Gurvich [26] has made clear that in multi-class networks, the interchange of

limits, side IV in Figure 1, will require additional conditions (i.e., above and beyond the conditions

that lead to the stationary distributions corresponding to sides II and III ). The approach in [26]

is to relate the interchange of limits to a fluid model, and present a sufficient condition for the

interchange as requiring any solution to this fluid model to converge to the fixed-point state space

at a linear rate. Several remarks are in order. First, while it is clear that some condition is needed

to justify the interchange, characterizing the condition is highly non-trivial, and the difficulties

involved have been convincingly illustrated in [26] (as well as in our study here). Second, Gurvich

considers a class of networks under the queue-ratio service discipline, which is very different from

the type of simultaneous resource-occupancy network under proportional fair allocation that is the

main subject of our study here. (In §6, however, we show that our bounded workload condition

can also be applied to the well-known Kumar-Seidman network, which operates under a priority

service discipline.) Third, our bounded workload condition can be viewed as a relaxed version of

Lipschitz continuity, the latter is the key to justifying the interchange of limits in the single-class

generalized Jackson network (refer to Theorem 3.3 of Budhiraja and Lee [6]), but usually will not

hold in multi-class networks. Refer to more details at the beginning of §4.
Another recent study by Shah et al [48] proves the interchange of limits for the same network

model as ours, but with the additional restriction of Poisson arrivals and i.i.d. exponential service

times. Making use of the distributional (exponential) information, the authors are able to first

bound the one-step transition of a Lyapunov function (which is basically the mean drift of a Foster

criterion), and then connect to its running maximum via Doob’s maximal inequality, leading to a

uniform bound for all prelimit networks. In contrast, without the Markovian advantage associated

with the exponential (interarrival and service) times, we must deal with the sample paths directly

(as did Budhiraja and Lee [6], and earlier, Dai and Meyn [15]). In this type of sample-path approach,

requiring certain condition to ensure the uniform integrability appears to be unavoidable — refer

to similar cases in, e.g., Dai ([12], Lemma 4.5) and Dai and Meyn ([15], Lemma 5.2). Yet, in these

studies, the arrival processes themselves can serve as bounds for the workloads and directly yield

the uniform integrability; whereas in our case the diffusion-scaled arrival processes are unbounded,

thus requiring extra condition (such as our bounded workload condition).

1.3. Main Results and Contributions For ease of reading, all results (lemmas, proposi-

tions and theorems) are numbered consecutively in the order they appear. Four theorems and two

propositions constitute the main results in the paper, which are highlighted below:

• Theorem 4 in §3.1 establishes that the stability of ŵ(t) is sufficient for the diffusion limit to

have a stationary distribution. Theorem 7 in §3.2 establishes the uniform stability of fluid models
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associated with the pre-limit networks, and hence, their stationary distributions and moments of

the pre-limit networks, also under the stability of ŵ(t).

• Theorem 8 in §3.3 refines the above results for the resource-sharing network, and shows that

the usual traffic condition is necessary and sufficient for the diffusion limit to have a stationary

distribution, and sufficient for the pre-limit networks to have stationary distributions and moments.

• Proposition 11 and Theorem 14 in §4.1 justify the interchange of limits, for both stationary

distributions and moments.

• Proposition 15 in §6 verifies the bounded workload condition for the well-known Kumar-

Seidman (or, Rybko-Stolyar) network, and thus justifies the interchange of limits for that model.

Our study provides a systematic approach to justify the heavy traffic stationary distribution

as a valid approximation for a class of resource-sharing networks under proportional fair control,

and possibly for a broader range of other multi-class stochastic processing networks as well. Our

approach consists of three steps. First, identify conditions for the stability of the deterministic

version of the DCP associated with the diffusion limit, and apply the technique of Dupuis and

Williams [19] to claim the existence of the stationary distribution of the diffusion limit. Second,

establish the uniform stability of the fluid model corresponding to the pre-limit networks, and this

implies the stability of the pre-limit networks (via essentially the same proof for the diffusion limit).

Third, verify the bounded workload condition and claim the justification for the interchange of

limits.

1.4. Outline of the Paper The rest of the paper is organized as follows. We start in §2
with details of the resource-sharing network model, followed by a summary of the diffusion limit

(established in [60]), along with extensions that modify the condition on the initial states and

allow a mixed scaling, both are needed in later proofs. In §3, we study the stationary distributions

of both the diffusion limit and the pre-limit networks, and establish the fact that the stability of

ŵ(t) (or the usual traffic condition) is sufficient for both. For the pre-limit networks, as alluded

to above, the key is the uniform stability. In §4, we start with introducing the bounded workload

condition, followed by proving the tightness of the workload associated with the pre-limit networks,

and justifying the interchange of limits for both stationary distributions and moments. Three

examples are presented in §5, where we illustrate how the bounded workload condition can be

verified. In addition, a sufficient condition for bounded workload is also discussed to shed more

insight to its role. In §6, we demonstrate that our approach has the potential to extend to other

multi-class networks. In particular, we verify the bounded workload condition for the well-known

Kumar-Seidman network, which, operating under a priority service discipline, lies outside of the

resource-sharing network model. Concluding remarks are summarized in §7.
To facilitate the flow of exposition, we take a modularized approach: there is a separate appendix

for each of the main sections, where we collect longer proofs as well as secondary technical results.

Specifically, each of the appendices, B∼D, serves one of the sections, §2∼§4, exclusively, i.e., results
in one appendix are not used in any other ones. Additional preliminary or technical results that

supplement those in §2 and are used in subsequent sections or cross-referenced in other appendices

are collected in Appendix A.
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Defining
Fluid models equations Limits of

ŵk(t) (56-59) Ŵ k(mt)/m as m→∞ (Lemma 5)

ŵ(t) (39-44) Ŵ k(mkt)/mk as k→∞ (Proposition 3)

ŵk(t) as k→∞ (Lemma 6)

W̄ k(t) as k→∞ (Proposition 16)

w̄(t) (130-132) W̄ k,jk(t) as k→∞ (Lemma 24)

w̄k,jk (t) as k→∞ (Lemma 25)

Table 1. Fluid models and associated equations

For easy reference, in Figure 3 we summarize the relations among the theorems, propositions

and lemmas that lead to the main result, the interchange of limits in Theorem 14. (Secondary

technical results are not included in Figure 3.) Moreover, in Table 1, we list the three fluid models

used repeatedly in our approach, along with their defining equations. Simply put, the fluid models,

ŵk(t) and ŵ(t), are deterministic counterparts of the diffusion-scaled workload process Ŵ k(t) and

its limit Ŵ (t); and the third fluid process, w̄(t), is used mainly in the technical proofs. The various

ways to reach these fluid models (as limits of scaled workload processes) are summarized in the

last column of the table.

T14

P13T4 T7(b) P2(T1)

P12

P11

L10(c) L10(d)

L9(a) L9(b)

require bounded workload
assumption (72)

L9(c) L10(a) L10(b)

L5 T7(a) P3(b)

L6

Figure 3. Dependency tree of theorems(T), propositions(P) and lemmas(L)

2. The Resource-Sharing Network, Preliminaries and Extensions The network model

under study (as in [60]) consists of a set of servers (or “links”) L; and a set of job classes, R, with

each class corresponding to a “route” – a subset of links. Denote ℓ ∈ r if link ℓ is part of route r.

To be processed in the network, each class r job requires the simultaneous occupancy of all the
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links involved in the route. For the rest of the paper, we shall use the terms “link” and “server”

interchangeably, and likewise for “route” and “class”.

Denote R = |R| and L = |L|; and let A = [aℓr]ℓ∈L,r∈R be a non-negative matrix of dimension

L×R. Assume A has a full row-rank of L; hence, L≤R. Denote its ℓ-th row as Aℓ, a row vector.

All other vectors below are column vectors. The superscript, T , of a matrix or vector denotes its

transpose. A special case is when A is an incidence matrix, with aℓr = 1{ℓ∈ r}. That is, each row-ℓ

of A identifies (with an entry 1) all the routes that link ℓ is part of, whereas each column-r of A lists

all the links that route r will traverse. The general case of allowing aℓr to take on non-negative real

values extends the scope of the model, for instance, to the setting of multi-path routing, where each

route is a source-destination pair that can be connected via multiple paths, i.e., multiple subsets

of links; refer to [32, 36].

For each class r, denote the interarrival times between consecutive jobs as ur(i), and denote the

amount of work (service requirement) each job brings to the network as vr(i), i= 1,2, · · · . Assume

the interarrival times and work requirements possess finite second moments. In particular, since we

need to deal with systems that do not necessarily start empty, we reserve ur(1) and vr(1) to denote,

at time zero, the residual time and work until the next arrival and the next service completion,

respectively. Furthermore we assume that {(ur(i), vr(i)), i≥ 2} are i.i.d. with mean (λ−1
r , νr) and

variance (σ2
a,r, σ

2
s,r). Denote the offered traffic load (or, traffic intensity) as ρ= (ρr)r∈R, with

ρr = λrνr. (1)

Note that λr > 0 and νr > 0 (hence, ρr > 0) for all r ∈R.

The state of the network is n= (nr)r∈R, where nr denotes the total number of class r jobs that

are present in the network. One job (if any) from each class is processed at any time, while other

jobs in the same class waiting in a buffer and will be served on a first-come-first-served basis.

Hence, this is a head-of-the-line processor-sharing discipline (with the additional feature of service

capacity allocation detailed below). In some applications, the network model allows full processor-

sharing – the server capacities are shared among all jobs present in the network (e.g., [46]). In the

case of Poisson arrivals and exponential service times, these two models are equivalent – the state

processes evolve following the same probabilistic law. Otherwise, our results below do not extend to

the full processor-sharing case, which requires keeping track of the residual interarrival and service

times, and hence different approaches are needed, such as those associated with measure-valued

processes (e.g., Gromoll and Williams [24, 25]).

Each server ℓ ∈L has a given capacity, cℓ, which is shared among job classes. The allocation of

the service capacities takes place in each state, denoted by Λ(n) = (Λr(n))r∈R, where Λr(n) is the

capacity allocated to class r when the network state is n. The actual time needed to complete a job

then depends on its service requirement and the capacity allocated to it. Specifically, for the i-th

class r job mentioned above, provided it is being processed in state n, then the amount of work

vr(i) associated with it is depleted at rate Λr(n), translating to a service time of vr(i)/Λr(n). Let

Γ denote the set of all feasible allocations:

Γ = {γ = (γr)r∈R : Aγ ≤ c, γ ≥ 0}. (2)
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We assume the proportional fair allocation is followed, i.e., given the weights βr > 0 (r ∈R), Λ(n)

is the solution to the following optimization problem:

max
γ∈Γ

∑

r∈R

βrnr log(γr). (3)

In the solution, Λr(n) is unique only for nr > 0. When nr = 0, let Λr(n) = 0, i.e., allocate nothing

to class r if the there is no class r present in the network.

The two primitive processes that drive the above network are the delayed (i.e., including the

residuals) renewal processes associated with the job arrivals and the work or service requirements

the jobs bring into the network: E(t) = (Er(t))r∈R and S(t) = (Sr(t))r∈R, t≥ 0, where

Er(t) =max

{

i :
i
∑

j=1

ur(j)≤ t

}

and Sr(t) =max

{

i :
i
∑

j=1

vr(j)≤ t

}

. (4)

With the residuals (ur(1), vr(1))r∈R removed, the renewal processes are denoted:E0(t) = (E0
r (t))r∈R

and S0(t) = (S0
r (t))r∈R, t≥ 0, where

E0
r (t) =max

{

i− 1 :
i
∑

j=2

ur(j)≤ t

}

, and S0
r (t) =max

{

i− 1 :
i
∑

j=2

vr(j)≤ t

}

. (5)

The two derived processes that characterize, along with the two primitive processes, the dynam-

ics of the network are the queue-length process N(t) = (Nr(t))r∈R and the (cumulated) service-

allocation process D(t) = (Dr(t))r∈R, t≥ 0:

Nr(t) = Nr(0)+Er(t)−Sr(Dr(t)), (6)

Dr(t) =

∫ t

0

Λr(N(s))ds. (7)

Note that Sr(Dr(t)) represents the total number of class-r service completions by time t.

For much of the analysis below, we find it more convenient to focus on the nominal workload

(or workload for short), rather than the queue length, associated with each route:

Wr(t) = νrNr(t), t≥ 0, r ∈R. (8)

Similarly, we shall write the generic workload as w = (wr)r∈R, with the convention wr = νrnr,

throughout below. Note Wr(t) as defined above is more precisely the amount of capacity required

to serve all class-r jobs that are present in the system at time t, and thus a proxy of the actual

workload (cf. Harrison [31]),

We follow the standard approach (e.g., [6, 12, 23, 26]) to construct a Markov process represen-

tation of the network by appending to the workload the residual interarrival times and service

requirements (at each time instant). Denote U(t) = (Ur(t))r∈R and V (t) = (Vr(t))r∈R, t≥ 0, where:

Ur(t) =

Er(t)+1
∑

i=1

ur(i)− t, Vr(t) =

Sr(Dr(t))+1
∑

i=1

vr(i)−Dr(t). (9)

That is, at any given time t, for class r, Ur(t) is the remaining time before the next arrival, and

Vr(t) is the remaining service requirement for the job that is in service. (If there is no class r job
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at the time, Vr(t) is the service requirement for the arriving class r job.) Note, at time t= 0, we

have Ur(0) = ur(1) and Vr(0) = vr(1), the residuals at time zero introduced above. Hence, below

we shall refer to Ur(t) and Vr(t) as “residuals” (at t) as well. Then, Ξ(t) = (W (t),U(t), V (t)) is

a strong Markov process, taking values on the nonnegative orthant of the 3R-dimensional real

space, denoted by X (cf. [12, 17, 34]). Clearly, the dynamics of the Markov process Ξ(t) will be

completely determined when the initial state is given. Below, we will often consider many copies of

the same network, each starting from a different initial state. To highlight the dependence on the

initial state, we will append it to the argument of the corresponding Markov process and workload

process. Hence, instead of Ξ(t) and W (t), we will write Ξ(t;x) and W (t;x), with x = Ξ(0) ∈ X
being the initial state.

The above Markov representation of the network is necessary for much of the proofs below, which

rely heavily on the theory of Markov processes. It would be useful, however, to keep in mind that

in the special case of Poisson arrivals and exponential service times, the workload W (t) per se is

already a Markov process, instead of the more elaborate Ξ(t). Focusing on this special case, as the

reader may choose to do below, has the advantage of getting directly to the main ideas, without

the interference of all the technicalities involving the appended states U(t) and V (t).

To describe the diffusion limit, we introduce a sequence of networks, indexed by k. Each of the

networks is like the one introduced above, having the same parameters A, βr, cℓ, and the same

allocation Λ(n) (hence with their indices k omitted); but they may differ in their arrival rates and

mean service times, which are also indexed by k (such as λk
r , ν

k
r , σ

k
a,r, σ

k
s,r, and ρkr = λk

rν
k
r ). We

assume the existence of the following limits of key parameters, as k→∞:

(λk
r , ν

k
r , σ

k
a,r, σ

k
s,r)→ (λr, νr, σa,r, σs,r) and k(ρkr − ρr) = k(λk

rν
k
r −λrνr)→ θr, r ∈R. (10)

As a direct consequence of the last convergence, we have ρkr → ρr. From now on, we shall specifically

regard λr, νr and ρr as the limits defined above, rather than the generic parameters for a particular

network as originally introduced.

The limiting regime under diffusion scaling requires a heavy traffic condition, which we now

specify. A link ℓ is called a bottleneck (link), if Aℓρ=
∑

r∈R aℓrρr = cℓ, i.e., the total traffic load on

that link is equal to its capacity (asymptotically). Below, for ease of exposition, we shall assume

that all links in the network are bottleneck links, and hence, the following heavy traffic condition:

Aℓρ= cℓ, ℓ∈L. (11)

This all-bottleneck condition will allow us to avoid excessive notation in keeping separate accounts

for the non-bottleneck links and non-bottleneck routes; the latter involve non-bottleneck links only

and typically have zero workload in the limiting regime. On the other hand, all results below extend

readily to networks with both bottleneck links and non-bottleneck links, following the steps similar

to those outlined in [60].

Recall, we require the primitives of the network, the interarrival times and service requirements,

to possess a finite second moment. Now we have a sequence of networks, we need to strengthen this

condition so that it holds uniformly for all the networks. To avoid technicality, we assume that the
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network sequence is driven by the same primitives except the initial arrival and service times; that

is, assume for all k,

λk
ru

k
r(i) = λ1

ru
1
r(i) and (νk

r )
−1vkr (i) = (ν1

r )
−1v1r(i), i≥ 2, r ∈R. (12)

For a given p > 2, assume all interarrival times and service requirements have bounded p-th

moments:

E

∑

r∈R

[(u1
r(2))

p+(v1r(2))
p]<∞. (13)

(Note that to guarantee the convergence in Theorem 1 below, it suffices to have p= 2; requiring

p > 2 is for justifying the interchange of limits later.)

In addition, for r ∈R, we assume that

P{u1
r(2)≥ a}> 0 for any a> 0; (14)

and that for some integer j ≥ 2 and some nonnegative function p(x) satisfying
∫∞

0
p(s) > 0, the

following inequality holds:

P

{

a≤
j
∑

i=2

u1
r(i)≤ b

}

≥
∫ b

a

p(x)dx, for any 0≤ a< b. (15)

These are technical assumptions required for the ergodicity of pre-limit networks later in Theorem

7. They also appeared in prior works, e.g., [12, 5].

To characterize the diffusion limit below, we follow the same approach in [60] to introduce the

fixed-point state space and related matrices. Let B = diag(br)r∈R, with br = ρrνr/βr, which is an

R-dimensional diagonal matrix. Associated with the heavy traffic condition is the fixed-point state

space, denoted as

W = {w :w=BATπ, π= (πℓ)ℓ∈L ≥ 0}, (16)

which is an L-dimensional polyhedral cone in the positive orthant of the R-dimensional real space.

From (3), it is clear that W contains all states in which Λr(n) = ρr (for nr > 0); and indeed this is

the space where the diffusion limit (described below) resides. Define an R× (R−L) matrix H:

ABH = 0 and HTBH = I. (17)

Define G=AT (ABAT )−1. Then, we have

ABG= I and GTBH = 0. (18)

Any R-dimensional vector w (workload or else) can be decomposed uniquely as

w=BGy+BHz, with y=Aw, z =HTw, (19)

or alternatively,

w=BATπ+BHz, with π=GTw, z =HTw. (20)
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Moreover, it can be observed that

w ∈W if and only if GTw≥ 0, HTw= 0. (21)

For any state w, we can measure its distance from the fixed-point (fp) state space W as follows:

dfp(w) =
∑

ℓ∈L

(−gTℓ w)
+ +

R−L
∑

m=1

|hT
mw|. (22)

Clearly, w is a fixed-point state if and only if dfp(w) = 0.

The Markov process associated with the k-th network is Ξk(t) = (W k(t),Uk(t), V k(t)), and it

follows the dynamics in (6-9) with the index k suitably appended.

Apply the standard diffusion scaling (along with centering) to the primitive and derived pro-

cesses:

(Ê0,k
r (t), Ŝ0,k

r (t)) =
1

k

(

E0,k
r (k2t)−λk

rk
2t,S0,k

r (k2t)− (νk
r )

−1k2t
)

,

(Êk
r (t), Ŝ

k
r (t)) =

1

k

(

Ek
r (k

2t)−λk
rk

2t,Sk
r (k

2t)− (νk
r )

−1k2t
)

,

(Ξ̂k
r(t), N̂

k
r (t), Ŵ

k
r (t)) =

1

k

(

Ξk
r(k

2t),Nk
r (k

2t),W k
r (k

2t)
)

.

Then, we can rewrite the dynamics in (6-8) as follows:

Ŵ k(t) = diag(ν)N̂k(t) = Ŵ k(0)+ X̂k(t)+ k[ρt− D̃k(t)] (23)

= Ŵ k(0)+ X̂k(t)+BGŶ k(t)+BHẐk(t);

D̃k(t) =

∫ t

0

Λ(N̂k(s))ds; (24)

X̂k
r (t) = νk

r

(

Êk
r (t)− Ŝk

r (D̃
k
r (t))

)

+ k(ρkr − ρr)t, for r ∈R; (25)

Ŷ k(t) = kA[ρt− D̃k(t)] = k[ct−AD̃k(t)], is non-decreasing in t≥ 0, for ℓ∈L; (26)

Ẑk(t) = kHT [ρt− D̃k(t)]. (27)

The process, D̃k
r (t) =Dk

r (k
2t)/k2, is a fluid-scaled process. Note that to obtain (24), we have used

the the radial homogeneity property of Λ(n): Λ(αn) = Λ(n) for any constant α> 0; and the second

equality in (23) follows from applying the decomposition in (19) to the term k[ρt− D̃k(t)]. Denote

X̂k(t) = (X̂k
r (t))r∈R.

All the processes above, primitive or derived, belong to the D-space, the space of functions that

are right continuous with left limits (RCLL). Below, we study the weak convergence (or convergence

in distribution, denoted as “⇒”) of the diffusion-scaled processes. To this end, strictly speaking,

we need to work with the Skorohod metric ([1]). However, since all the limiting processes involved

are continuous processes (Brownian motions), it is convenient (and indeed equivalent) to continue

treating the D-space as endowed with the more familiar uniform metric and uniform convergence

on compact set (u.o.c. convergence).

For the derived processes, denote their limits as follows:

Ŵ (t) = (Ŵr(t))r∈R, X̂(t) = (X̂r(t))r∈R, Ŷ (t) = (Ŷℓ(t))ℓ∈L, Ẑ(t) = (Ẑm(t))
R−L
m=1.
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The existence of these limits is part of the next theorem. Furthermore, the limiting processes are

characterized by the following DCP:

Ŵ (t) = Ŵ (0)+ X̂(t)+BGŶ (t)+BHẐ(t) (≥ 0), for t≥ 0; (28)

GTŴ (t)≥ 0, for t≥ 0; (29)

Ŷℓ(t) is non-decreasing in t≥ 0, Ŷℓ(0) = 0, ℓ∈L; (30)
∫ ∞

0

Ŵ (t)TG dŶ (t) = 0; (31)

HTŴ (t) = 0, for t≥ 0; (32)

Ẑ(0) = 0; (33)

where Ŵ (0) ∈W is the (given) initial state and X̂(t), the “free process,” is a Brownian motion

with drift (vector) θ= (θr)r∈R specified in (10), and covariance (matrix)

Υ= diag(σ2
r)r∈R, with σ2

r = ν2
r (λ

3
rσ

2
a,r + ρrν

−3
r σ2

s,r) = λrν
2
r (λ

2
rσ

2
a,r + ν−2

r σ2
s,r). (34)

Theorem 1 (Diffusion Limit [60]) Suppose the heavy-traffic condition in (11) is in force; and

under the diffusion scaling, the initial workloads converge to some (random) fixed-point state, while

the (time-zero) residuals vanish:

Ŵ k(0)⇒ Ŵ (0)∈W, (35)

|Ûk(0)|+ |V̂ k(0)|= 1

k
(|uk(1)|+ |vk(1)|)→ 0, a.s. (36)

Then, the following weak convergence holds when k→∞:
(

Ŵ k(t), X̂k(t), Ŷ k(t), Ẑk(t)
)

⇒
(

Ŵ (t), X̂(t), Ŷ (t), Ẑ(t)
)

,

with the limit characterized by the equations in (28-33).

Note the above diffusion limit theorem serves as the starting point of our study of the other

three sides in Figure 1. In this regard, prior results leading to this theorem are relevant to this

study as well, and these are detailed in Appendix A. Here we highlight several key points:

• Uniform attraction: The fluid model w̄(t) (see Table 1), converges to a fixed point state as

t → ∞ (Proposition 18). Intuitively, w̄(t) is the deterministic version of the a critically loaded

network, where the offered traffic for each server matches its capacity. The uniform attraction is

the key property ensuring state-space collapse, i.e., the fixed-point state space W is of a lower

dimension (L) than the original state space (of dimension R).

• Complementarity and oscillation inequality: As mentioned in the introduction, there is a reflec-

tion force at the boundary of the fixed-point state space W (Lemma 19); consequently, comple-

mentarity holds in an “approximate” sense, which is key to establishing the above diffusion limit.

Complementarity is also required here to invoke the oscillation inequality (Lemma 21, or originally,

Proposition 7.1 of [32]) to establish the boundedness (or tightness) of the pre-limit networks.

To proceed further, i.e., to establish the stationarity (sides II and III in Figure 1) and to validate

the interchange of limits (side IV), we need variations of the above diffusion limit theorem, which

we present next, along with pointers to exactly where they will be used later.
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For the convergence to hold along the full sequence of k, it is necessary to assume the initial

condition in (35); specifically, the limit Ŵ (0) must be a fixed-point state so that (29) and (32)

are satisfied at t= 0. As remarked by Bramson [4] (also see [42, 50]), this initial condition can be

relaxed (to reach a weaker conclusion). The next proposition illustrates such a variation: instead of

assuming the convergence in (35), we assume the sequence of initial states (including the residuals)

is tight. The result will be used in the proof of Theorem 14.

Proposition 2 Suppose the heavy-traffic condition in (11) is in force; and the sequence of initial

states {Ξ̂k(0)} is tight. Let {tk0} be any sequence of times such that tk0 → 0 and ktk0 →∞ as k→∞.

Then, for any subsequence of k, there exists a further subsequence, denoted by K, such that the

following weak convergence holds when k→∞ along K:
(

Ŵ k(tk0 + t), X̂k(tk0 + t)− X̂k(tk0), Ŷ
k(tk0 + t)− Ŷ k(tk0), Ẑ

k(tk0 + t)− Ẑk(tk0)
)

⇒
(

Ŵ (t), X̂(t), Ŷ (t), Ẑ(t)
)

,

where the limit follows the specifications in (28-33). Furthermore, we have

Ŵ k(tk0)⇒ Ŵ (0)∈W, as k→∞ along K; (37)

and, for any M ≥ 0,

limsup
k→∞,k∈K

P{κw|Ξ̂k(0)| ≤M} ≤ P{|Ŵ (0)| ≤M}; (38)

where κw is a constant that depends only on network parameters (as specified in Proposition 18(a)).

Another variation of the diffusion limit theorem concerns a modified scaling. Let {mk} be any

sequence that increases to infinity, i.e.,

mk →∞ as k→∞.

We then apply the fluid scaling, i.e., with both time and space further scaled by mk, to the

diffusion-scaled processes:

1

mk

(

Ŵ k(mkt), X̂
k(mkt), Ŷ

k(mkt), Ẑ
k(mkt)

)

.

Clearly, the net effect of this new “mixed scaling” is that the (original) processes in question, say,

the workload W k(t), is compressed more (than the square root of the time scale). Interestingly, the

limiting regime under this mixed scaling appears to be a mixture of the fluid limit and the diffusion

limit. Specifically, it follows the DCP in (28-33), but with the (unreflected) Brownian motion X̂(t)

replaced by its drift term θt:

ŵ(t) = ŵ(0)+ θt+BGŷ(t)+BHẑ(t) (≥ 0), for t≥ 0; (39)

GT ŵ(t)≥ 0, for t≥ 0; (40)

ŷℓ(t) is non-decreasing in t≥ 0, ŷℓ(0) = 0, ℓ∈L; (41)
∫ ∞

0

ŵ(t)TG dŷ(t) = 0; (42)

HT ŵ(t) = 0, for t≥ 0; (43)

ẑ(0) = 0. (44)
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Note that given the initial state ŵ(0) ∈W, the above is a deterministic DCP. Like its stochastic

counterpart, ŵ(t) also evolves within the fixed-point state spaceW following the observation in (21).

The next proposition has two parts, corresponding to Theorem 1 and Proposition 2, respectively,

under the mixed scaling. The results will be used in establishing Lemma 10. (Proofs of the two

propositions can be found in Appendix B.2 and Appendix B.2.)

Proposition 3 Suppose the heavy-traffic condition in (11) is in force.

(a) Assume the initial state under the mixed-scaling converges to some fixed-point state:

1

mk

Ŵ k(0)⇒ ŵ(0)∈W,

1

mk

(|Ûk(0)|+ |V̂ k(0)|) = 1

kmk

(|uk(1)|+ |vk(1)|)→ 0, a.s.

Then, the following weak convergence holds when k→∞:

1

mk

(

Ŵ k(mkt), X̂
k(mkt), Ŷ

k(mkt), Ẑ
k(mkt)

)

⇒ (ŵ(t), θt, ŷ(t), ẑ(t)) ,

where the limit follows the specifications in (39-44).

(b) Assume that the sequence of initial states {Ξ̂k(0)/mk} is tight. Let {tk0} be any sequence of

times such that tk0 → 0 and ktk0 →∞ as k → ∞. Then, for any subsequence of k, there exists a

further subsequence, denoted by K, such that the following weak convergence holds when k→∞
along K:

1

mk

(X̂k(mk(t
k
0 + t))− X̂k(mkt

k
0))⇒ θt, and

1

mk

(

Ŵ k(mk(t
k
0 + t)), Ŷ k(mk(t

k
0 + t))− Ŷ k(mkt

k
0), Ẑ

k(mk(t
k
0 + t)− Ẑk(mkt

k
0))
)

⇒ (ŵ(t), ŷ(t), ẑ(t)) ,

where the limit follows the specifications in (39-44). Furthermore, we have

1

mk

Ŵ k(mkt
k
0)⇒ ŵ(0)∈W, as k→∞ along K; (45)

and, for any M ≥ 0,

limsup
k→∞,k∈K

P{κw|Ξ̂k(0)/mk| ≤M} ≤ P{|ŵ(0)| ≤M}; (46)

where κw is a constant that depends only on network parameters.

3. Stationary Distributions and Uniform Stability This section is devoted to establish-

ing the results depicted in Figure 2. It is divided into three parts: first, the result in the bottom

side (excluding the parentheses) in the figure; second, the top side; and third, the parentheses.

Note the first two parts may apply to more general settings as we will discuss later (in §6); whereas
the third part, the stability of ŵ(t) being equivalent to the usual traffic condition, is specific to the

resource-sharing network.
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3.1. Stability of the Diffusion Limit To establish the existence and uniqueness of the

stationary distribution of the diffusion limit Ŵ (t) in Theorem 1, we follow the approach developed

in Dupuis and Williams [19] (Theorem 2.6, in particular). By this approach, the key is to establish

the stability of the DCP in (39-44), which is the deterministic version of the DCP in (28-33). We

shall refer to the deterministic DCP in (39-44) as stable, if there exists a time T such that for any

solution with |ŵ(0)| ≤ 1, we have ŵ(t) = 0 for all t≥ T .

Theorem 4 If the deterministic DCP in (39-44) is stable, then the diffusion limit Ŵ (t) in Theorem

1 is positive recurrent and has a unique stationary distribution.

Proof. We first transform the two DCP’s mentioned above into the standard format in [19]. Letting

ŴG(t) =GT Ŵ (t), along with (18), turns the DCP in (28-33) into:

ŴG(t) = ŴG(0)+GT X̂(t)+ (GTBG)Ŷ (t), for t≥ 0; (47)

ŴG(t)≥ 0, for t≥ 0; (48)

Ŷℓ(t) is non-decreasing in t≥ 0, Ŷℓ(0) = 0, ℓ∈L; (49)
∫ ∞

0

Ŵ T
G (t) dŶ (t) = 0. (50)

Similarly, letting ŵG(t) =GT ŵ(t) in (39-44) leads to:

ŵG(t) = ŵG(0)+GTθt+(GTBG)ŷ(t), for t≥ 0; (51)

ŵG(t)≥ 0, for t≥ 0; (52)

ŷℓ(t) is non-decreasing in t≥ 0, ŷℓ(0) = 0, ℓ∈L; (53)
∫ ∞

0

ŵT
G(t) dŷ(t) = 0. (54)

Note that the reflection matrix GTBG in (51) is a P -matrix and hence a completely-S matrix; refer

to Kang et al. ([32], Lemma 7.1) and Ye and Yao ([60], Proposition 4). Following Theorem 2.6 of

[19], if the solution to this last DCP is stable (i.e., there exists a time T such that for any solution

with |ŵG(0)| ≤ 1 such that ŵG(t) = 0 for all t≥ T ), then, the corresponding diffusion limit ŴG(t)

is positive recurrent and has a unique stationary distribution.

From the condition of the theorem (DCP in (39-44) is stable), we know that the deterministic

DCP in (51-54) is indeed stable. Consequently, the process ŴG(t) is positive recurrent and has a

unique stationary distribution; and hence, so does Ŵ (t), following the equivalent relations:

ŴG(t) =GTŴ (t) and Ŵ (t) =BG(ABAT )ŴG(t). (55)

(Note that the equivalence holds for ŵ and ŵG as well and that GTBG= (ABAT )−1.) �

Note in the above proof, we have applied a simplified version of Theorem 2.6 of [19]. The original

version in [19] states (in the context of our model) that the diffusion limit ŴG(t) is positive recurrent

and has a unique stationary distribution if any solution to the DCP in (51-54) is attracted to the

origin, i.e., there exists a time T <∞ such that for all t≥ T , we have |ŵG(t)| ≤ ǫ for arbitrarily

small ǫ > 0. Clearly, this attraction to origin is implied by our simpler stability condition (the DCP

in (51-54) is stable), and on the other hand, it also implies the latter according to Stolyar [49] and

Ye and Chen [56]; in other words, these two versions are equivalent.
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3.2. Uniform Stability of Pre-Limit Networks It turns out that the DCP in (39-44)

ensures not only the positive recurrence of the diffusion limit Ŵ (t) (as stated in Theorem 4), but

also the positive (Harris) recurrence of the pre-limit networks Ξ̂k(t). Establishing the latter result

is the objective of this subsection. Refer to Figure 2. Our approach is to establish the uniform

stability of the fluid models ŵk(t) associated with the pre-limit networks. Specifically, we show in

Theorem 7 that there exists a time t0 (independent of k), such that starting with any initial state

||ŵk(0)|| ≤ 1, we have ŵk(t) = 0 for t≥ t0 and for all k sufficiently large. This is accomplished in

several steps detailed below.

First, analogous to the DCP in (39-44), which provides characterization for the stability of Ŵ (t),

Lemma 5 below says that a fluid model corresponding to the k-th (diffusion-scaled) network in

(23-27) is characterized by the following equations:

ŵk(t) = ŵk(0)− k ·diag(ρk)
(

te∧ ūk(1)

k

)

+ k

(

d̄k(t)∧ v̄k(1)

k

)

+ kρkt− kd̄k(t)

= ŵk(0)− k ·diag(ρk)
(

te∧ ūk(1)

k

)

+ k

(

d̄k(t)∧ v̄k(1)

k

)

+ k(ρk − ρ)t+BGŷk(t)+BHẑk(t); (56)

d̄k(t) =

∫ t

0

Λ̄(n̂k(s))ds; (57)

ŷk(t) = k[ct−Ad̄k(t)], is non-decreasing in t≥ 0; (58)

ẑk(t) = kHT [ρt− d̄k(t)]. (59)

In the above, e denotes a vector of all unit components; the convention ŵk
r (t) ≡ νrn̂

k
r(t) applies;

and Λ̄(n) is defined as

Λ̄r(n) =

{

Λr(n) if nr > 0,
ρr if nr = 0.

(60)

(Note the “hat” and “bar” designations in the above processes, such as ŵk(t) and d̄k(t), are in line

with the scalings of their stochastic counterparts, such as the diffusion-scaled process Ŵ k(t) and

the fluid-scaled process D̃k(t).)

Lemma 5 Consider the k-th (diffusion-scaled) network as depicted in (23-27), for any fixed k.

Let {mi; i= 1,2, · · · } be a sequence of numbers such that mi →∞ as i→∞; and let {xi ∈ X ; i=

1,2, · · · } be a sequence of initial states such that |xi| ≤mi for all i. Then, for any subsequence of

positive integers, there exists a further subsequence, denoted by I, such that the following (a.s.)

convergence holds as i→∞ along I,
1

mi

Ξ̂k(0;xi) =
1

mi

(

Ŵ k
r (0), Û

k
r (0), V̂

k
r (0)

)

→
(

ŵk
r (0), ū

k
r(1), v̄

k
r (1)

)

,

and

1

mi

(

Ŵ k(mit), D̃
k(mit), Ŷ

k(mit), Ẑ
k(mit)

)

→
(

ŵk(t), d̄k(t), ŷk(t), ẑk(t)
)

u.o.c. of t≥ 0,

where the limit is Lipschitz continuous and is a solution to the fluid model in (56-59), with initial

condition

|ŵk(0)|+ |ūk(1)|+ |v̄k(1)| ≤ 1.
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The above lemma is a variation of Proposition 4.2 of [57], the only new feature being the residuals

ūk(1) and v̄k(1), which can be dealt with in the same way as in the proof of Proposition 16 in

Appendix A (the supplement to §2). Hence, the proof of the lemma is omitted. Note that Λ̄(n) is not

necessarily in Γ for an arbitrarily given state n≥ 0. Yet, for any solution to (56-59), Λ̄(n̂k(t)) must

belong to Γ at any time t, at which point all processes involved (i.e., ŵk(t), ŷk(t), ẑk(t), d̄k(t)) are

differentiable. Indeed, these processes are differentiable almost everywhere since they are Lipschitz

continuous.

Second, The next lemma connects the stability of ŵ(t) to the uniform stability of ŵk(t). Note

that the u.o.c. convergence in the lemma parallels the weak convergence in Proposition 3(b). The

proof of the lemma is in Appendix C (which is similar to the proof of Proposition 3(b), given the

previously established properties such as the uniform attraction, complementarity and oscillation

inequality.)

Lemma 6 Consider a sequence of ŵk(t) characterized by (56-59) with |ŵk(0)+ ūk(1)+ v̄k(1)| ≤ 1.

Let {tk0} be a sequence of times such that tk0 → 0, and ktk0 →∞ as k→∞. Then, for any subsequence

of k, there exists a further subsequence K such that the following holds, as k→∞ along K,

ŵk(tk0 + t)→ ŵ(t) u.o.c. of t≥ 0,

where ŵ(t) is a solution to the DCP in (39-44) with |ŵ(0)| ≤ κw, where κw is a constant that

depends only on network parameters (as specified in Proposition 18(a)).

Finally, given Lemmas 5 and 6, we establish the uniform stability of the fluid models ŵk(t) and

the stationarity of the pre-limit networks Ŵ k(t) in the following theorem.

Theorem 7 Consider the sequence of networks in Theorem 1, and assume that the DCP in (39-

44) is stable.

(a) (Uniform Stability) There exists a time t0 > 0 such that for any sufficiently large k, any solution

ŵk(t) to the fluid model in (56-59) with |ŵk(0)| ≤ 1 satisfies the following,

ŵk(t) = 0, t≥ t0. (61)

(b) Consequently, for any sufficiently large k, Ξ̂k(t) is positive recurrent and has a unique stationary

distribution, denoted by π̂k; and the stationary workload has a finite (p− 1)-th moment, i.e.,

Eπ̂k |Ŵ k(0)|p−1 <∞. (62)

Proof. Let K be any subsequence of k such that

ŵk(tk0 + t)→ ŵ(t) u.o.c. of t≥ 0,

where the sequence of times {tk0} and the limit ŵ(t) follow the specifications in Lemma 6. As the

DCP in (39-44) is stable, for its solution ŵ(t) there exists a time t′0 such that ŵ(t) = 0 for t≥ t′0.

Hence, the above u.o.c. convergence implies

ŵk(tk0 + t)→ 0 u.o.c. of t≥ t′0; (63)
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with the convergence holding for the full sequence of k since the choice of the subsequence K is

arbitrary.

Pick any δ > 0. We claim that there exists an index k0 such that, for any k ≥ k0 and for any

solution ŵk(t) to (56-59) with |ŵk(0)| ≤ 1, the following inequality holds,

|ŵk(t′0 + δ)| ≤ 1

2
. (64)

Otherwise, we can find a subsequence K′ of k and some solutions ŵk(t) with |ŵk(0)| ≤ 1, such that

for k ∈K′, we have

|ŵk(t′0 + δ)|> 1

2
,

which contradicts (63).

Having established the inequality in (64), it is then routine to prove the conclusion in (61), with

t0 = 2(t′0+ δ), following the proof of Theorem 6.1 in [49] (or the proof of Theorem 2.3 in [56]).

The stability of ŵk(t) (k ≥ k0) just established, along with Lemma 5, then directly implies the

positive recurrence of the Markov process Ξ̂k(t), as well as the existence and uniqueness of its

stationary distribution. The finiteness of the (p− 1)-th moment of the stationary workload in (62)

follows from Theorem 4.1(ii) of Dai and Meyn [15] Note that although the results in [15] are

presented in the context of traditional multi-class queueing networks, they extend to more general

stochastic processing networks (including our model here), where jobs within each class receive

services in the first-come-first-served order and the number of jobs in service is bounded at all

times. �

The stability property in Theorem 7(a) is said to be uniform because a single time t0 applies

uniformly to all sufficiently large k. It does imply the second part of the above theorem, namely the

positive recurrence of Ξ̂k(t), and the finite moment of the stationary workload. More importantly,

it will be used in the next section (specifically, Lemma 10) when we justify the interchange of

limits.

3.3. Resource-Sharing Network under the Usual Traffic Condition We now turn to

the part in parentheses in Figure 2, namely, the results in Theorem 7 can be connected directly to

the usual traffic condition for resource-sharing networks.

First, observe that the usual traffic condition here takes the form Aθ < 0. To see this, from

Aρ= c, the heavy traffic condition in (11), along with (10), we have

k(Aρk − c) =A[k(ρk − ρ)]→Aθ. (65)

Thus, Aθ < 0 implies, for sufficiently large k,

Aρk =

(

∑

r∈R

aℓrρ
k
r

)

ℓ∈L

< c, (66)

which is, of course, the usual traffic condition. Note, however, Aθ < 0 is slightly stronger than the

above condition; specifically, it is not implied by the latter unless the gap from c is no smaller than

order 1/k. For example, if Aρk = c− 1/k2, then, Aθ= limk→∞ k(Aρk − c) = 0. Ignoring this minor

gap, we shall simply refer to Aθ < 0 as the usual traffic condition throughout below.
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Theorem 8 (a) The usual traffic condition

Aθ < 0, (67)

is necessary and sufficient for the deterministic DCP in (39-44) to be stable.

(b) Aθ < 0 is a necessary and sufficient condition for the diffusion limit Ŵ (t) in Theorem 1 to be

positive recurrent and to possess a unique stationary distribution.

(c) Aθ < 0 is a sufficient condition for the conclusion in (b) of Theorem 7, i.e., for any sufficiently

large k, Ξ̂k(t) is positive recurrent and has a unique stationary distribution, and the stationary

workload has a finite (p− 1)-th moment.

Proof. To establish the stability of the DCP in (39-44) under the condition Aθ < 0, as stated in

part (a) of the theorem, we shall make use of the following so-called “S-condition” (due to Stolyar

[49]): given |ŵ(0)|=1,

inf
t≥0

|ŵ(t)|< 1, (68)

which is shown in [49], Theorem 6.1, to be equivalent to the stability of the DCP governing ŵ(t).

First, suppose Aθ < 0 holds. Note that by applying the oscillation inequality in Lemma 21 (in

the Appendix), any solution to the DCP in (51-54) is Lipschitz continuous. Hence, the solution

is differentiable almost everywhere for t≥ 0. Let f(t) = ŵ(t)TB−1ŵ(t)/2. Then, taking derivative

with respect to t, we have

ḟ(t) = ŵ(t)TB−1 ˙̂w(t) = ŵ(t)TB−1
[

θ+BG ˙̂y(t)+BH ˙̂z(t)
]

= ŵ(t)TB−1θ,

where the second equality follows from (39), and the last equality from (42) and (43).

We claim that if |ŵ(0)|= 1, then the equivalent condition for stability in (68) holds. Suppose

to the contrary, we have |ŵ(t)| ≥ 1 for all t≥ 0. Consider any regular time t≥ 0. Since ŵ(t) ∈W
according to (21), we can write ŵ(t) =BATπ for some π= (πℓ)ℓ∈L ≥ 0. Hence, |ŵ(t)|= |BATπ| ≥ 1,

which implies

|π| ≥ κ1 > 0 (69)

where κ1 depends on B and A only. This, along with the condition in (67), leads to

ḟ(t) = (πTAB)B−1θ= πTAθ≤max
ℓ′

(Aℓ′θ)
∑

ℓ∈L

πℓ ≤max
ℓ′

(Aℓ′θ)κ1 < 0. (70)

Moreover, since |w(0)|= 1, we have

f(0) =
1

2
w(0)TB−1w(0)≤ maxr br

2
. (71)

Putting together (71) and (70), we must have f(t) < 0 for some t > 0, which contradicts the

quadratic form of f(t).

Therefore, the DCP governing ŵ(t) is stable, which implies that Ŵ (t) is positive recurrent and

has a unique stationary distribution, following Theorem 4.
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Conversely, suppose Aθ < 0 does not hold, i.e., Aℓ′θ≥ 0 for some ℓ′ ∈L. Then,

Aℓ′ŵ(t) =Aℓ′ŵ(0)+Aℓ′θt+ ŷℓ′(t)≥Aℓ′ŵ(0).

Therefore, the DCP cannot be stable. Moreover, for the diffusion limit Ŵ (t), we have from (28),

Aℓ′Ŵ (t) =Aℓ′Ŵ (0)+Aℓ′X̂(t)+ Ŷℓ′(t).

According to the minimality on the (one-dimensional) reflected Brownian motion (RBM) (e.g.,

Chapter 6 of [8]), the RHS above is bounded from below by an RBM driven by the free process

Aℓ′X̂(t). (Note that Aℓ′Ŵ (t) and Ŷℓ′(t) need not satisfy the complementarity condition.) Since the

lower-bounding RBM has a nonnegative drift (Aℓ′θ≥ 0), it cannot be positive recurrent, and thus

neither is the diffusion limit Ŵ (t).

Given the conclusion in (a), the conclusion in (c) follows from Theorem 7(b) immediately. (Alter-

natively, specific to the resource-sharing network, we can invoke the results in [15, 57] to claim the

conclusion in (c) under the usual traffic condition in (66) directly.) �

4. Interchange of Limits The uniform stability in Theorem 7(a) turns out to be a key step

in establishing our next main result, side IV in Figure 1. We will first introduce a bounded workload

condition, which guarantees the bounded p-th moment of the workload processes. Along with the

uniform stability property, the bounded p-th moment condition leads to the uniform p-moment

stability of workloads. These properties then lead to the tightness of the stationary distributions

and finally, the interchange of limits.

First, the key condition to justify the interchange of limits:

Bounded Workload Condition. There is a constant κ > 0 such that for any index k and any

time t≥ 0 (and any sample-path), the following condition holds,

sup
0≤s≤t

|Ŵ k(s)| ≤ κ

(

|Ŵ k(0)|+ sup
0≤s≤t

|X̂k(s)|
)

. (72)

To motivate the above condition, let’s compare it against the Lipschitz continuity (of the Skoro-

hod mapping) in the single-class generalized Jackson network, which is a key ingredient in justifying

the interchange of limits for that model; refer to [6] (the inequalities in (25,28), in the proof of

Theorem 3.3 in particular). Write the “free” process” in (25), X̂k(t), as X̂k(t) = Âk(t)+ θkt, where

Âk(t) is approximately a driftless Brownian motion and θk := k(ρk − ρ)→ θ. Then, similar to the

case of generalized Jackson network, the Lipschitz continuity, should it hold in the resource-sharing

network, would require that the distance between the workload process in the pre-limit network

Ŵ k(t) and its associated fluid model ŵk(t) be dominated by the distance between their correspond-

ing free processes X̂k(t) and θkt. (Ignore the initial residuals for simplicity.) The latter distance

being |Âk(t)|, this would lead to (provided Ŵ k(0) = ŵk(0)):

|Ŵ k(t)− ŵk(t)| ≤ κ|Âk(t)|,

where κ a constant. As ŵk(t) = 0 when t is sufficiently large (and independent of k, guaranteed by

uniform stability), we have

|Ŵ k(t)| ≤ κ|Âk(t)|,
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where the p-th moment of the bound on the right hand side grows in the order of tp/2. However,

in most multi-class networks, Lipschitz continuity will not hold. Thus, in contrast, the bounded

workload condition proposed above stipulates,

|Ŵ k(t)| ≤ κ|Ŵ k(0)|+κ sup
0≤s≤t

|Âk(s)+ θks|,

and we will show shortly in the next lemma that the p-th moment of this bound grows in the

order of tp. Viewed this way, the bounded workload condition can be regarded as a relaxed version

of Lipschitz continuity; and in the rest of this section, we show the interchange of limits can be

justified under this relaxed condition.

4.1. Key Estimates We start with the following lemma, which summarizes some of the direct

implications of the bounded workload condition. The proof of the lemma is deferred to Appendix

D.1.

Lemma 9 Assume the bounded workload condition in (72).

(a) (Bounded p-th Moment) Consider the sequence Ξ̂k(t), with |Ξ̂k(0)| ≤M for some M > 0. The

following holds for some constant κ,

E sup
0≤s≤t

|Ŵ k(s)|p ≤ κ(M p+1+ tp); (73)

and consequently (redefining κ), for any 0≤ q ≤ p,

E sup
0≤s≤t

|Ŵ k(s)|q ≤ κ(M q +1+ tq). (74)

(b) (Uniform Integrability) Let {mi; i = 1,2, · · · } be a sequence of number such that mi →∞ as

i→∞; and let {xi ∈X ; i= 1,2, · · · } be a sequence of initial states such that |xi| ≤mi for all i. Then,

for any given t ≥ 0, and a fixed, sufficiently large k, {|Ŵ k(mit;x
i)/mi|p} is uniformly integrable

(w.r.t. i).

(c) (Uniform Integrability) Let {mk} be a sequence of numbers such that mk → ∞ as k → ∞,

and assume that the sequence of initial states satisfies |Ξ̂k(0)| ≤mk. Then, {|Ŵ k(mkt)/mk|p} is

uniformly integrable (w.r.t. k).

With the uniform stability and integrability results (Theorem 7(a) and Lemma 9), we are ready

to establish the uniform p-th moment stability (Proposition 11) and holds the key to establishing

the tightness of the stationary distributions associated with {Ŵ k(t)}. But first, we present a lemma,

which provides key insights to this moment stability property, and serve as intermediate steps in

the proof of the property as well.

Lemma 10 Under the usual traffic condition in (67), there exists a time t0 such that the following

conclusions hold.

(a) Let {mi; i= 1,2, · · · } be a sequence of number such that mi →∞ as i→∞; and let {xi ∈X ; i=

1,2, · · · } be a sequence of initial states such that |xi| ≤mi for all i. Then, for any sufficiently large

k, the following holds (with probablity one), as i→∞,

1

mi

Ŵ k(mit;x
i)→ 0 u.o.c. of t≥ t0.



Ye and Yao: Diffusion Limit of Fair Resource Control

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

(b) Let {mk} be a sequence of numbers such mk →∞ as k →∞; and assume that the sequence

of initial states {Ξ̂k(0)} satisfies |Ξ̂k(0)| ≤mk. Then, the following holds (with probability one) as

k→∞,
1

mk

Ŵ k(mkt)→ 0 u.o.c. of t≥ t0.

Suppose furthermore the bounded workload condition is satisfied. Then, the followings also hold.

(c) Assume {mi} and {xi} as in conclusion (a). Then, the following holds for sufficiently large k,

lim
i→∞

E
1

mp
i

∣

∣

∣
Ŵ k(mit;x

i)
∣

∣

∣

p

= 0 for t≥ t0.

(d) Assume {mk} and {Ξ̂k(0)} as in conclusion (b). Then, the following holds,

lim
k→∞

E
1

mp
k

∣

∣

∣Ŵ k(mkt)
∣

∣

∣

p

=0 for t≥ t0.

Parts (a) and (b) of the above lemma can be established by applying the uniform stability in

Theorem 7(a) to the limits in Lemma 5 and Proposition 3(b), respectively. For part (c), note that

the interchange of the expectation and the limit is justified by the uniform integrability in Lemma 9

(b), and then the conclusion follows from part (a). Part (d) is similarly proved by invoking Lemma

9 (c), along with part (b). The full proof of parts (a,c,d) is omitted, and that of part (b) is provided

in Appendix D.2 for reference.

Proposition 11 (Uniform p-th moment stability) Under the usual traffic condition in (67) and

the bounded workload condition in (72), there exists a time t0 and a sufficiently large index k0

such that the following holds for all t≥ t0,

lim
|x|→∞

sup
k≥k0

E
1

|x|p
∣

∣

∣
Ŵ k(|x|t;x)

∣

∣

∣

p

=0. (75)

Proof. Let t0 be the same as in Lemma 10, and consider any time t ≥ t0. Suppose (75) is not

true; then, there exists an ǫ0 > 0 and a sequence of initial states {xi ∈ X : i= 1,2, · · · } satisfying

limi→∞ |xi|=∞ such that

sup
k

E
1

|xi|p
∣

∣

∣
Ŵ k(|xi|t;xi)

∣

∣

∣

p

> 2ǫ0. (76)

Corresponding to each xi, choose an index in the sequence k, denoted by ki, such that

E
1

|xi|p
∣

∣

∣
Ŵ ki(|xi|t;xi)

∣

∣

∣

p

> ǫ0. (77)

We claim that {ki} cannot be bounded. Otherwise, at least an index, say k′, repeats in the

sequence for infinite times; and clearly, this contradicts to Lemma 10(c). Without lost of generality,

assume ki →∞ as i→∞. Then, the bound in (77) contradicts to Lemma 10(d). �

It would be useful to note here that our approach is built upon various pathwise stability results

leading to the pathwise convergence in Lemma 10(a,b). However, the uniform p-th moment stability

(amoment convergence, as stated in Proposition 11 above), is required to prove the tightness and to
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justify the interchange of limits, the main results in the next subsection. To bridge the gap between

these two modes of convergence, the uniform integrability stated in Lemma 9(b,c) is required;

and that’s why we introduced earlier the bounded workload condition, a pathwise condition that

generates a growth in the power of p as described in Lemma 9(a) and thereafter ensures the needed

uniform integrability.

4.2. Tightness and Interchange of Limits First, the estimate in the following proposition

connects the key properties established in the previous subsection, specifically the bounded p-th

moment and the uniform p-th moment stability of workload processes, to the tightness and the

convergence of the stationary distributions in question. The estimate is concerned with a return

time: For any time length δ > 0 and any compact set C ⊂X , denote the return time to C after an

initial period of δ as,

τk
C(δ) = inf{t≥ δ : Ξ̂k(t)∈C}.

Proposition 12 Under the usual traffic condition in (67) and the bounded workload condition

in (72), there exist positive constants κ and δ, and a compact set C ⊂X such that the following

bound holds for any initial state x∈X ,

sup
k

E

∫ τkC(δ)

0

(1+ |Ξ̂k(t;x)|p−1)dt≤ κ(1+ |x|p). (78)

Given Lemma 9(a) and Proposition 11, the proof of the above proposition is a slight modification

of those for Theorem 3.4 of [6] and Proposition 5.3 of [15]; hence, it is omitted.

Next, recall that in Theorem 7, π̂k denotes the unique stationary distribution of Ξ̂k(t). Let π̂k
1

denote the stationary distribution of Ŵ k(t), the first component of Ξ̂k(t); and π̂1 be that of Ŵ (t).

Proposition 13 Under the usual traffic condition in (67) and the bounded workload condi-

tion in (72), the sequence of stationary distributions, {π̂k}, is tight on X . Furthermore, we have

supk Eπ̂k |Ξ̂k(0)|p−1 <∞ (which strengthens the conclusion in (62)).

Proof. First, the following result can be found from the proof for Theorem 3.2 of [6] along with

Theorem 3.5 of [6] (also Proposition 5.4 of [15]): For any given constant δ > 0, and compact set

C ⊂X , define

Vk(x) = E

∫ τkC(δ)

0

f(Ξ̂k(t;x))dt, x∈X ,

where f(x) ≥ 0, x ∈ X , is any given function such that the above expectation exists. Suppose

supk Vk(x) is finite for all x and uniformly bounded on C. Then, there exists a constant κ such

that the following bound holds for all k:

Eπ̂kf(Ξ̂k(0)) =

∫

X

f(x)π̂k(dx)≤ κ. (79)

Now, let f(x) = 1+ |x|p−1. Then, the finiteness and uniform bound conditions on Vk(x) in the

above can be justified by Proposition 12, with δ and C also specified in Proposition 12. From
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(79), we have the following uniform bound for the stationary moments of the networks: for some

constant κ,

Eπ̂k |Ξ̂k(0)|p−1 ≤ κ for all k.

The above bound (with p−1≥ 1) also implies the tightness of the sequence of stationary distribu-

tions {π̂k}. �

Finally, we establish the interchange of limits in the following theorem.

Theorem 14 Under the usual traffic condition in (67) and the bounded workload condition in

(72), the following weak convergence of stationary distributions holds,

π̂k
1 ⇒ π̂1, as k→∞. (80)

In particular, since π̂1 is the stationary distribution of Ŵ (t) as t → ∞, the interchange of the

limits, t→∞ and k→∞, illustrated in Figure 1 (sides III and IV) is valid. Furthermore, for any

m∈ [0, p− 1),

Eπ̂k
1

|Ŵ k(0)|m → Eπ̂1
|Ŵ (0)|m, as k→∞. (81)

Proof. Once Proposition 13 is proven, the weak convergence, π̂k
1 ⇒ π̂1, follows from a rather

standard argument, similar to the one in Gamarnik and Zeevi [23] (see also [6, 26, 34, 35]), which

we outline below for completeness.

First, recall that Theorem 7 (b) (or Theorem 8 (c)) guarantees the existence of the stationary

distribution π̂k for sufficiently large k. Following Proposition 13, the sequence {π̂k} is tight, which

implies that {π̂k
1} is also tight ([1], page 65). This, in turn, implies that for any subsequence of

k, there exists a further subsequence K1 such that {π̂k
1} converges weakly along K1 to a limiting

distribution, which we (tentatively) denote as π̃1.

Next, we initialize the process Ξ̂k(t) in its stationary distribution π̂k; and since {π̂k} is tight,

Proposition 2 can be applied to the sequence of networks in K1. Hence, there exists a subsequence

K2 ⊂ K1 such that {Ŵ k(tk0 + t);k ∈ K2} (with tk0 specified in Proposition 2, and t ≥ 0 being any

given time) converges weakly to a limit Ŵ (t), as characterized in (28-33). Due to our choice of

initialization, Ŵ k(tk0 + t) is equal in distribution to Ŵ k(0), for each k ∈K2. Hence, as k→∞, the

limit Ŵ (t) follows the same distribution as that of Ŵ (0), namely, π̃1. Consequently, Ŵ (t) follows

the distribution π̃1 for all t≥ 0, which implies that π̃1 must coincide with the unique stationary

distribution π̂1 guaranteed by Theorem 4 (or Theorem 8(b)). In summary, we can conclude that

π̂1 is the weak limit of any convergent subsequence of {π̂k
1}. Therefore, the full sequence {π̂k

1}
must converge weakly to π̂1. (Note that we cannot assume, a priori, that the limiting distribution

π̃1 takes on values solely in the fixed-point state space W. Therefore, Theorem 1 does not apply

directly to the sequence of networks initialized in {π̂k}. Proposition 2 fills the gap instead.)

Lastly, the convergence in (81) is a direct consequence of the convergence in (80) and the “fur-

thermore” part in Proposition 13. �

5. Verifying the Bounded Workload Condition With the results in the last section, to

justify the interchange of limits is reduced to verifying the bounded workload condition. Here we
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first give three illustrative examples, and then present a sufficient condition for bounded workload.

Among the three examples, the first one has a reflection matrix that is an M -matrix and the DCP

satisfies the complementarity condition; the second example does not have an M -matrix, and the

third one fails the complementarity. The bounded workload condition, however, can be verified in

all three cases.

5.1. M-Matrix and Complementarity Consider the sequence of resource-sharing networks

in Theorem 1, with two additional conditions.

• M -matrix: GTBG is an M -matrix (e.g., [2]); in particular, it is a matrix with positive diagonal

entries and non-positive off-diagonal entries and its inverse is a non-negative matrix.

• Complementarity: In addition to the specifications in (23-27), the complementarity condition

as described in (31) also holds for the k-th (pre-limit) network. Specifically, the k-th network

satisfies the following DCP (given the transformation Ŵ k
G(t) =GTŴ k(t)),

Ŵ k
G(t) = Ŵ k

G(0)+GT X̂k(t)+GTBGŶ k(t) for t≥ 0; (82)

Ŷ k
ℓ (t) is non-decreasing in t≥ 0, Ŷ k

ℓ (0) = 0, ℓ∈L; (83)

Ŷ k
ℓ (t) cannot increase at t, if Ŵ k

G,ℓ(t)> 0, ℓ∈L. (84)

If we add to the above DCP the non-negativity condition:

Ŵ k
G(t)≥ 0, for t≥ 0; (85)

then, it becomes the standard Skorohod problem that defines the reflected Brownian motion (RBM)

with the reflection matrix GTBG being an M -matrix, and the free process (un-reflected Brownian

motion) being (GTŴ k(0) +GT X̂k(t)). It is known (e.g., Theorem 7.2 of [8]) that this Skorohod

problem has a unique solution, which we denote as Ŷ ∗,k and Ŵ ∗,k.

However, the non-negativity in (85) need not hold for the DCP in (82-84). In other words, when

the free process drags Ŵ k
G down to the negative region, the reflection process Ŷ k increases, but

not enough to keep Ŵ k
G above zero. This is in contrast with Ŷ ∗,k, which increases hard enough to

maintain the non-negativity of Ŵ ∗,k
G . Consequently, we have

Ŷ k(t)≤ Ŷ ∗,k(t), for t≥ 0. (86)

(Refer to the proof of Lemma 2.1 in [7].) Since Ŵ k,∗
G and Ŵ k

G are driven by the same free process,

we have

Ŵ ∗,k
G (t)− Ŵ k

G(t) =GTBG[Ŷ ∗,k(t)− Ŷ k(t)] (87)

Multiplying both sides by ABAT = (GTBG)−1, and taking into account (ABAT )GT =A, we have

AŴ ∗,k(t)−AŴ k(t) = Ŷ ∗,k(t)− Ŷ k(t)≥ 0. (88)

Applying the oscillation inequality in Lemma 21, we can dominate the oscillation of Ŷ ∗,k(t) by

that of the free process (GTŴ k(0)+GTX̂k(t)). (Alternatively, we can apply the stronger Lipschitz

continuity of the Skorohod mapping for RBM; refer to, e.g., Theorem 7.2 of [8].) Hence, we have

sup
0≤s≤t

|AŴ k(s)| ≤ sup
0≤s≤t

|AŴ ∗,k(s)| ≤ κ′

(

|Ŵ k(0)|+ sup
0≤s≤t

|X̂k(s)|
)

, t≥ 0; (89)
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which implies the bounded workload condition in (72) for the constant κ= κ′/amin, where amin =

min{aℓr : aℓr > 0}.

Figure 4. A network in which one class occupies all servers

As a concrete example, the above two conditions hold for the network in Figure 4. It consists

of a set of L servers and the same number of job classes, R=L; each of the first L− 1 class uses

a single server, while the last class L requires simultaneous occupancy of all servers. Note, the

capacity of every server ℓ, with the exception of the last one, is shared among two classes r = ℓ

and L. The last server serves the last class L only (which also uses every other server). The heavy

traffic condition reads: ρL = cL and ρℓ+ρL = cℓ for ℓ=1, · · · ,L−1; i.e., all servers are bottlenecks.

The incidence matrix of this network example is

A=















1 0 0 1
0 1 0 1

. . .

0 0 1 1
0 0 0 1















L×L

.

It is straightforward to derive the following,

ABAT =















b1 + bL bL bL bL
bL b2 + bL bL bL

. . .

bL bL bL−1 + bL bL
bL bL bL−1 +bL















, G=

















1
b1

0 0 − 1
b1

0 1
b2

0 − 1
b2

. . .

0 0 1
bL−1

− 1
bL−1

0 0 0 1
bL

















,

GTBG= (ABAT )−1 =

















1
b1

0 0 − 1
b1

0 1
b2

0 − 1
b2

. . .

0 0 1
bL−1

− 1
bL−1

− 1
b1

− 1
b2

− 1
bL−1

∑L

ℓ=1
1
bℓ

















.
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Clearly, GTBG is an M-matrix, since it has non-positive off-diagonal elements and is inverse-

positive, i.e., (GTBG)−1 =ABAT ≥ 0.

Given the matrix G, the complementarity condition in (84) reads:

if Ŵ k
ℓ (t)> 0, then server ℓ is fully utilized, ℓ= 1, · · · ,L− 1; and (90)

if
Ŵ k

L(t)

bL
>

L−1
∑

ℓ=1

Ŵ k
ℓ (t)

bℓ
, then server L is fully utilized. (91)

The first condition (90) is obvious. So, consider server L and the case that Ŵ k
L(t)/bL >

∑L−1

r=1 Ŵ
k
r (t)/br. Without loss of generality, consider the case of Ŵ k

r (t)> 0, r = 1, · · · ,L− 1. Sup-

pose to the contrary of (91), server L is not fully utilized, or ΛL(N̂
k(t)) < cL = ρL, which also

implies Λr(N̂
k(t))> ρr for r= 1, · · · ,L− 1. From the KKT condition of the optimization problem

in (3), with n replaced by N̂k(t) (recall Ŵ k
r (t) = νrN̂

k
r (t)), we find that

βrN̂
k
r (t)

Λr(N̂k(t))
= ηℓ, r= ℓ= 1, · · · ,L− 1, and

βLN̂
k
L(t)

ΛL(N̂k(t))
=

L
∑

ℓ=1

ηℓ,

where ηℓ denotes the shadow price of the corresponding server. Note that ηL = 0, since server L is

under-utilized (as assumed). Consequently,

ρL

ΛL(N̂k(t))

Ŵ k
L(t)

bL
=

L−1
∑

r=1

ρr

Λr(N̂k(t))

Ŵ k
r (t)

br
≤

L−1
∑

r=1

Ŵ k
r (t)

br
<

Ŵ k
L(t)

bL
.

The above implies ΛL(N̂
k(t))> ρL = cL, which violates the capacity constraint of server L.

In summary, the network in Figure 4 meets both requirements, M -matrix and complementarity,

and therefore satisfies the bounded workload condition as we have established earlier.

Figure 5. A network in which one server is shared by all classes
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5.2. Without M-Matrix Consider the network in Figure 5, with server L shared by all job

classes, whereas every other server serves one class only. In this case, the incidence matrix A is the

transpose of its counterpart in the last example:

A=















1 0 0 0
0 1 0 0

. . .

0 0 1 0
1 1 1 1















L×L

.

We have,

ABAT =















b1 0 0 b1
0 b2 0 b2

. . .

0 0 bL−1 bL−1

b1 b2 bL−1

∑L

ℓ=1 bℓ















, G=

















1
b1

0 0 0

0 1
b2

0 0
. . .

0 0 1
bL−1

0

− 1
bL

− 1
bL

− 1
bL

1
bL

















,

GTBG=

















1
b1
+ 1

bL

1
bL

1
bL

− 1
bL

1
bL

1
b2
+ 1

bL

1
bL

− 1
bL

. . .
1
bL

1
bL

1
bL−1

+ 1
bL

− 1
bL

− 1
bL

− 1
bL

− 1
bL

1
bL

















.

Thus, GTBG is not an M -matrix (when L≥ 3), since it has positive off-diagonal elements. Never-

theless, the bounded workload condition still holds, as will be shown below.

Consider any k, and fix any time t > 0. We first estimate the class-L workload. Suppose Ŵ k
L(t)> 0

without loss of generality. Let t0 ≥ 0 be the smallest time such that

Ŵ k
L(s)> 0, for all s ∈ (t0, t].

Observe that at any time s∈ (t0, t], the server L is fully occupied, i.e.,

L
∑

r=1

Λr(N̂
k(s)) = cL.

Then, we have

ΛL(N̂
k(s)) = cL−

L−1
∑

r=1

Λr(N̂
k(s))≥ cL−

L−1
∑

ℓ=1

cℓ = ρL,

where the inequality is because the allocations to class r, r = 1, · · · ,L − 1, are limited to the

capacities of server ℓ (ℓ= r). Hence, regarding the last items in (23), we have from (24),

k(ρLt− D̃k
L(t))− k(ρLt0 − D̃k

L(t0)) = k

∫ t

t0

(ρL −ΛL(N̂
k(s)))ds≤ 0.
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Consequently, we have from (23),

Ŵ k
L(t)− Ŵ k

L(t0) = X̂k
L(t)− X̂k

L(t0)+ k(ρLt− D̃k
L(t))− k(ρLt0 − D̃k

L(t0))≤ X̂k
L(t)− X̂k

L(t0).

And, no matter whether t0 = 0 or t0 > 0, the above implies

Ŵ k
L(t)≤ Ŵ k

L(0)+ 2 sup
0≤s≤t

|X̂k
L(s)|. (92)

Next, we estimate the class-ℓ workload for ℓ= 1, · · · ,L− 1. Suppose without loss of generality

Ŵ k
ℓ (t)/bℓ > Ŵ k

L(t)/bL; (93)

otherwise, Ŵ k
ℓ (t) can be bounded through (92). Let t0 ≥ 0 be the smallest time such that

Ŵ k
ℓ (s)

bℓ
>

Ŵ k
L(s)

bL
, for all s ∈ (t0, t]. (94)

Under the above condition, server ℓ must be fully occupied:

Λℓ(N̂
k(s)) = ρℓ, for all s∈ (t0, t]. (95)

Suppose to the contrary, Λℓ(N̂
k(s′)) < ρℓ for a time s′ ∈ (t0, t]. From the KKT condition of the

optimization problem in (3), with n replaced by N̂k(s′), we find that

βℓN̂
k
ℓ (s

′)

Λℓ(N̂k(s))
= ηℓ + ηL = ηL =

βLN̂
k
L(s

′)

ΛL(N̂k(s))
,

where ηℓ and ηL are the shadow prices of servers ℓ and L, respectively; and we have ηℓ = 0 as server

ℓ is assumed to be under-utilized. Rewrite the above as follows:

ρℓ

Λℓ(N̂k(s))

Ŵ k
ℓ (s

′)

bℓ
=

ρL

ΛL(N̂k(s))

Ŵ k
L(s

′)

bL
.

This equality, along with the condition in (94) and the contradictory assumption, implies

ΛL(N̂
k(s′))< ρL. That is, both servers ℓ and L are under-utilized at time s′. Such an allocation

certainly cannot maximize the utility objective function in (3).

Using the property in (95), we have

Ŵ k
ℓ (t)− Ŵ k

ℓ (t0) = X̂k
ℓ (t)− X̂k

ℓ (t0)+ k

∫ t

t0

(ρℓ−Λℓ(N̂
k(s)))ds= X̂k

ℓ (t)− X̂k
ℓ (t0).

Consequently, no matter whether t0 =0 or t0 > 0, we have

Ŵ k
ℓ (t) ≤ (bℓ/bL)Ŵ

k
L(t0)+ Ŵ k

ℓ (0)+ X̂k
ℓ (t)− X̂k

ℓ (t0)

≤ (bℓ/bL)(Ŵ
k
L(0)+ 2 sup

0≤s≤t

|X̂k
L(s)|)+ Ŵ k

ℓ (0)+ 2 sup
0≤s≤t

|X̂k
ℓ (s)|. (96)

Finally, as t is arbitrary, the estimates in (92, 96) imply that the bounded workload condition

in (72) must be satisfied.
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Figure 6. A symmetric variation of the network in Figure 4

5.3. Without Complementarity Consider the network in Figure 6. It is a model studied

by others in the literature (and sometimes referred to as a “linear network”) with wide-ranging

applications, from the Internet protocol to road traffic control (e.g., [43, 32, 39]). It is, in fact, a

symmetric variation of our first example, the network in Figure 4: with the addition of class L+1,

which is the class that occupies all L servers, now every server ℓ serves exactly two classes, class ℓ

and class L. (In the first example server L serves one class only.) The incidence matrix is no longer

a square matrix:

A=















1 0 0 0 1
0 1 0 0 1

. . .

0 0 1 0 1
0 0 0 1 1















L×(L+1)

.

To avoid tedious algebra, consider the following parameters: λr = 1, νk
r = νr = 1, ρr = 1, βr = 1,

cℓ = 2, B = I. Then, the matrices G, H and GTBG are as follows:

G=
1

L+1















L −1 −1
−1 L −1

. . .

−1 −1 · · · L
1 1 1 1















(L+1)×L

, H =
1√
L+1















1
1
...
1
−1















(L+1)×1

,

GTBG=
1

L+1











L −1 −1
−1 L −1

. . .

−1 −1 L











L×L

.

The optimization problem in (3) for the proportional fair allocation now reads:

max
γ

L+1
∑

r=1

nr log(γr), (97)

s.t. γr + γL+1 ≤ cℓ, r= ℓ= 1, · · · ,L. (98)
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Solving the above problem yields the following allocation,

ΛL+1(n) =
wL+1
∑L+1

ℓ=1 wℓ

cℓ, for w 6= 0, (99)

Λℓ(n) = cℓ−ΛL+1(n), for wℓ > 0, for ℓ=1, · · · ,L. (100)

Consider a state w satisfying w1 = 0 and wL+1 >
∑L

ℓ=2wℓ > 0. Hence, we have gT1 w = Lw1 +

wL+1 −
∑L

ℓ=2wℓ > 0. However, from (99) and (100), we have

Λℓ(n)+ΛL+1(n) = 0+
wL+1
∑L+1

ℓ=1 wℓ

cℓ < cℓ;

that is, link 1 is not fully occupied, even though g1w> 0. Therefore, this network does not satisfy

the complementarity condition of the first example. Nevertheless, we can still verify the bounded

workload condition as follows.

First, from (17, 18) and (23), we have

HTŴ k(t) = HT Ŵ k(0)+HT X̂k(t)+ Ẑk(t)

= HT Ŵ k(0)+HT X̂k(t)+

∫ t

0

HT [ρ−Λ(N̂k(s))]ds. (101)

Using (99) and (100), we can show that

[HT Ŵ k(t)] · [HT (ρ−Λ(N̂k(s)))] =−
√
L+1

(

∑L

ℓ=1 Ŵ
k
ℓ (t)− Ŵ k

L+1(t)
)2

∑L+1

ℓ=1 Ŵ k
ℓ (t)

≤ 0.

In view of (101), the above implies that Ẑk(t) cannot increase (resp. decrease) at time t if

HT Ŵ k(t)> 0 (resp. < 0). Hence, intuitively, the deviation of HT Ŵ k(t) from zero is mitigated by

Ẑk(t), and consequently cannot exceed the oscillation of HT X̂k(t).

To formalize the above intuition, we consider any fixed time t > 0 for the moment, and consider

the case of HTŴ k(t)> 0 first. Let t0 ≥ 0 be the smallest time such that

HT Ŵ k(s)> 0, for all s ∈ (t0, t].

This implies

Ẑk(t)− Ẑk(t0) =

∫ t

t0

HT (ρ−Λ(N̂k(s)))ds≤ 0.

Then, we have

HT Ŵ k(t)−HTŴ k(t0−) =HT X̂k(t)−HT X̂k(t0−)+ Ẑk(t)− Ẑk(t0)≤HT X̂k(t)−HT X̂k(t0−).

Here, in the case of t0 = 0, we understand Ŵ k(t0−) and X̂k(t0−) as Ŵ k(0) and X̂k(0), respectively;

and also note that Ẑk(s) is continuous in time s. No matter whether t0 =0 (Ŵ k(t0−) = Ŵ k(0)) or

t0 > 0 (Ŵ k(t0−) = 0), the above inequality implies

|HT Ŵ k(t)| ≤ |HT Ŵ k(0)|+Osc(HT X̂k(·), [0, t]).
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For the other case that HTŴ k(t)< 0, we can derive the above estimate simliarly. As the time t is

given arbitrarily, we have

sup
0≤s≤t

|HT Ŵ k(s)| ≤ |HT Ŵ k(0)|+Osc(HT X̂k(·), [0, t]). (102)

In addition, the above, along with (101), implies the following bound for Ẑk(t), for some constant

κ1 > 0,

sup
0≤s≤t

|Ẑk(s)| ≤ 2
(

|HT Ŵ k(0)|+Osc(HT X̂k(·), [0, t])
)

≤ κ1

(

|Ŵ k(0)|+ sup
0≤s≤t

|X̂k(s)|
)

. (103)

Next, let Ŵ k
(L)(t), X̂

k
(L)(t), GL and HL be the first L rows of Ŵ k(t), X̂k(t), G and H, respectively.

It can be observed that the following relations hold,

Ŵ k
(L)(t) = Ŵ k

(L)(0)+ X̂k
(L)(t)+GLŶ

k(t)+HLẐ
k(t)≥ 0,

Ŷ k(t) is non-decreasing, Ŷ k(0) = 0,

Ŵ k
(L)(t)

TdŶ k(t) = 0.

The last equation holds because server ℓ will be fully utilized when there are jobs present from

its dedicated class r = ℓ; refer to (100). Note that GL is an M -matrix (and hence, a complete-S

matrix); applying the oscillation inequality in Theorem 5.1 of [53] and then using the bound in

(103), we have for some positive constants κ2 and κ3,

sup
0≤s≤t

|Ŵ k
(L)(s)| ≤ |Ŵ k

(L)(0)|+κ2 ·Osc{X̂k
(L)(·)+HLẐ

k(·), [0, t]}

≤ κ3

(

|Ŵ k(0)|+ sup
0≤s≤t

|X̂k(s)|
)

. (104)

Moreover, observe that, Ŵ k
L+1 = |Ŵ k

(L)|−
√
L+1HTŴ k. Then, from the bounds in (102) and (104),

we have for some positive constant κ4,

sup
0≤s≤t

|Ŵ k
L+1(s)| ≤ κ4

(

|Ŵ k(0)|+ sup
0≤s≤t

|X̂k(s)|
)

. (105)

From the bounds in (104) and (105), we know that for some positive constant κ, the bounded

workload condition in (72) holds.

5.4. A Sufficient Condition for Bounded Workload It turns out there is a sufficient

condition for bounded workload, which provides an alternative to proving the latter condition

directly, as well as sheds more light to it. The sufficient condition takes the form of dfp, the distance

from the fixed-point state space:

sup
0≤s≤t∗

dfp(Ŵ k(s))≤ dfp(Ŵ k(0))+κ∗ sup
0≤s≤t∗

|X̂k(s)|, for any t∗ ≥ 0, (106)

Roughly speaking, the condition requires that the distance (of the workload) from the fixed-point

state space be bounded by the initial distance plus the “free” process. Intuitively, once close to
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the fixed-point state space, the (pre-limit) network is required to stay within bounded distance

from the diffusion limit; consequently, its performance (such as stability and moments) can be

approximated by that of the latter, and thus justifying the interchange of limits. (In Eryilmaz and

Srikant [20], a similar observation is made for a parallel server system and a wireless network model

under under heavy traffic.)

Indeed, in two of the above examples verifying the bounded workload condition takes the form

of bounding dfp(Ŵ k(t)) in (22). Specifically, for the example in §5.2, we can write

dfp(w) =

L−1
∑

ℓ=1

(

wL

bL
− wℓ

bℓ

)+

,

and then bound the workload for each link ℓ such that wL/bL >wℓ/bℓ. For the example in §5.3, the
key step turns out to be bounding of the (other) term of dfp(w), hT

m|Ŵ k(t)|, as specified in (102).

To show that the inequality in (106) implies the bounded workload condition, consider any fixed

time t∗ ≥ 0, and for convenience, denote c′ := sup0≤s≤t∗ |Ŵ k(s)|, and denote the right-hand-side of

(106) as c′′. We need to make use of Lemma 2 of Ye and Yao [60], reproduced in the Appendix

as Lemma 19, where the parameters are chosen as κ = 1, ǫ := ǫ′ to be sufficiently small, and

σ := σ′(≤ ǫ′).

Case 1, c′′/c′ >σ′. This gives the bounded workload condition in (72).

Case 2, c′′/c′ ≤ σ′. This along with the condition in (106) implies

dfp

(

Ŵ k(t)

c′

)

≤ c′′

c′
≤ σ′, 0≤ t≤ t∗. (107)

Note that |Ŵ k(t)/c′| ≤ κ=1. According to Lemma 19, for any time t∈ [0, t∗], a link ℓ will be fully

occupied (or Ŷ k
ℓ (t) can not increase) if

gℓŴ
k(t)≥ c′ǫ′.

Moreover, from the definition in (22) and the inequality in (107), we can require that for t∈ [0, t∗],

gℓŴ
k(t)≥−c′ǫ′.

Now, we can apply the oscillation inequality in Lemma 21 to the diffusion scaled system, with the

time restricted to [0, t∗] and ǫ being replaced by c′ǫ′; hence, we have

Osc(Ŵ k(·), [s, t])≤ κc(Osc(X̂
k(·), [s, t]) + ǫ′ sup

0≤s≤t∗
|Ŵ k(s)|), 0≤ s≤ t≤ t∗,

which gives, for any time t∈ [0, t∗],

|Ŵ k(t)| ≤ |Ŵ k(0)|+Osc(Ŵ k(·), [0, t∗])≤ |Ŵ k(0)|+κc

(

2 sup
0≤s≤t∗

|X̂k(s)|+ ǫ′ sup
0≤s≤t∗

|Ŵ k(s)|
)

.

Note that ǫ′ can be chosen such that κcǫ
′ < 1 from the beginning, and that the time t∗ is arbitrarily

given. Then, the above inequality implies the bounded workload condition.



Ye and Yao: Diffusion Limit of Fair Resource Control

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 35

6. Extension Our approach outlined in §3∼§5 above can be readily extended to stochastic

processing networks other than the resource-sharing networks that we have so far focused on. This

should include the multi-class queueing networks studied in, for instance, [4, 9, 10, 54], and other

stochastic processing networks as in [14, 50].

As an illustrative example, consider the two-station network depicted in Figure 7, first studied

by Kumar and Seidman [41], and by Rybko and Stolyar [47] independently, referred to below as

the KS-RS network. The diffusion limit (side I) for the KS-RS network has been established in

Chen and Zhang [10], and extended to more general multi-class queueing network under priority

disciplines in Chen and Zhang [10] and Chen and Ye [9]. Below, we spell out how our approach can

be extended to establishing the other three sides in Figure 1 for the KS-RS network, in particular

side IV—via verification of the bounded workload condition. (Note that results concerning sides II

and III are available in the existing literature, and that side IV can be established by the approach

of Gurvich [26] assuming sufficiently high moment conditions on the interarrival and service times.)

✲ ✲ ✲

✛ ✛✛

St. 1 St. 2

α1

α3

m1 m2

m4 m3

∧ ∨

Figure 7. KS-RS network

6.1. KS-RS Network and its Diffusion Limit The KS-RS network consists of two service

stations, each with a single server and an infinite-size buffer. There are two external arrival streams,

indexed as class-1 and class-3 jobs. A class-1 (class-3) job will turn into a class-2 (class-4) job

after its service completion at station 1 (station 2), and then leave the system after its service

completion at station 2 (station 1). Within the same class, jobs are served in the order of arrivals.

Across classes (at the same station), jobs are served under a preemptive, head-of-line (HL) priority

discipline, with classes 4 and 2 having higher priority over classes 1 and 3, respectively.

Similar to the notation used in §2, we denote the arrival process of class 1 (class 3) as A1(t)

(A3(t)), which is a (delayed) renewal process with arrival rate α1 (α3). The service process for class

j (j = 1, · · · ,4) is a (delayed) renewal process Sj(t), which equals the number of service completions

if the class has attained an amount of service time t. Let µj be the service rate and mj = 1/µj be

the mean service time for class j. The queue-length process Qj(t) (j = 1, · · · ,4) is the number of

class-j jobs in the system at time t.

Let k index a sequence of KS-RS networks, which have the same mean service times (hence

with their index k omitted) but differ in their arrival rates αk
j (j = 1,3). Assume the arrival rates

converge in the following fashion: for some αj and θj (j = 1,3),

k(αk
j −αj) := θkj → θj, as k→∞. (108)
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The heavy traffic condition stipulates that both stations are bottlenecks asymptotically, i.e., the

limiting traffic loads are equal to one:

α1m1 +α3m4 = 1 and α1m2 +α3m3 = 1. (109)

Assume the above heavy traffic condition is in force for the rest of this section. Other conditions

on the interarrival and service times similar to those in (10, 13, 14, 15) are also assumed.

Following Chen and Zhang [10], we have the following queue-length dynamics:

Qk
1(t) =Qk

1(0)+Ak
1(t)−Sk

1 (T
k
1 (t)),

Qk
2(t) =Qk

2(0)+Sk
1 (T

k
1 (t))−Sk

2 (T
k
2 (t)),

Qk
3(t) =Qk

3(0)+Ak
3(t)−Sk

3 (T
k
3 (t)),

Qk
4(t) =Qk

4(0)+Sk
3 (T

k
3 (t))−Sk

4 (T
k
4 (t)),

where

T k
1 (t) =

∫ t

0

1{Qk
4
(s)=0,Qk

1
(s)>0}ds,

T k
2 (t) =

∫ t

0

1{Qk
2
(s)>0}ds,

T k
3 (t) =

∫ t

0

1{Qk
2
(s)=0,Qk

3
(s)>0}ds,

T k
4 (t) =

∫ t

0

1{Qk
4
(s)>0}ds.

To describe the diffusion limit, it is convenient to define the followings,

Y k
1 (t) = 1−T k

1 (t)−T k
4 (t) =

∫ t

0

1{Qk
4
(s)=0,Qk

1
(s)=0}ds,

Y k
2 (t) = 1−T k

2 (t) =

∫ t

0

1{Qk
2
(s)=0}ds,

Y k
3 (t) = 1−T k

2 (t)−T k
3 (t) =

∫ t

0

1{Qk
2
(s)=0,Qk

3
(s)=0}ds,

Y k
4 (t) = 1−T k

4 (t) =

∫ t

0

1{Qk
4
(s)=0}ds.

The strong Markov process representing the network state, Ξk(t), is again defined by appending

the residual arrival and service times to the queue-length process. It will be useful to keep in mind

that here the queue-length process Qk(t) is the counterpart of the workload W k(t) in previous

sections, whereas the process Y k(t) plays essentially the same regulator role as before.

Applying diffusion scaling and the usual centering to the arrival and service processes:

(

Ξ̂k(t), Q̂k
j (t), Â

k
j (t), Ŝ

k
i (t)

)

=
1

k

(

Ξk(k2t),Qk
j (k

2t),Ak
j (k

2t)−αk
jk

2t,Sk
i (k

2t)−µk
i k

2t
)

,

we can rewrite the dynamics above as

Q̂k
1(t) = Q̂k

1(0)+ X̂k
1 (t)+ kα1t− kµ1T̃

k
1 (t) = Q̂k

1(0)+ X̂k
1 (t)+ kα1t+µ1Ŷ

k
1 (t)−µ1Ŷ

k
4 (t), (110)

Q̂k
2(t) = Q̂k

2(0)+ X̂k
2 (t)+ kµ1T̃

k
1 (t)− kµ2T̃

k
2 (t) (111)
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= Q̂k
2(0)+ X̂k

2 (t)− kµ2t−µ1Ŷ
k
1 (t)+µ2Ŷ

k
2 (t)+µ1Ŷ

k
4 (t),

Q̂k
3(t) = Q̂k

3(0)+ X̂k
3 (t)+ kα3t− kµ3T̃

k
3 (t) = Q̂k

3(0)+ X̂k
3 (t)+ kα3t−µ3Ŷ

k
2 (t)+µ3Ŷ

k
3 (t), (112)

Q̂k
4(t) = Q̂k

4(0)+ X̂k
4 (t)+ kµ3T̃

k
3 (t)− kµ4T̃

k
4 (t) (113)

= Q̂k
4(0)+ X̂k

4 (t)− kµ4t+µ3Ŷ
k
2 (t)−µ3Ŷ

k
3 (t)+µ4Ŷ

k
4 (t),

where

X̂k
1 (t) = Âk

1(t)− Ŝk
1 (T̃

k
1 (t))+ k(αk

1 −α1)t,

X̂k
2 (t) = Ŝk

1 (T̃
k
1 (t))− Ŝk

2 (T̃
k
2 (t)),

X̂k
3 (t) = Âk

3(t)− Ŝk
3 (T̃

k
3 (t))+ k(αk

3 −α3)t,

X̂k
4 (t) = Ŝk

3 (T̃
k
3 (t))− Ŝk

4 (T̃
k
4 (t)),

T̃ k
j (t) = T k

j (k
2t)/k2, j = 1, · · · ,4,

Ŷ k
j (t) = Y k

j (k
2t)/k, j = 1, · · · ,4.

The diffusion limit for the KS-RS network is established in Chen and Zhang [10]: Assume the

weak convergence Ξ̂k(0)⇒ (Q̂(0),0,0) with Q̂2(0) = Q̂4(0) = 0, i.e., the class-2 and class-4 queue

lengths and the residual arrival and service times are asymptotically zero. Then, the weak con-

vergence Q̂k(t)⇒ Q̂(t) holds when k→∞, if and only if the following “virtual-station condition

([16])” holds:

α1m2 +α3m4 < 1. (114)

The diffusion limit Q̂(t) is then characterized by the following:

Q̂2(t) = Q̂4(t) = 0, (115)
(

Q̂1(t)

Q̂3(t)

)

=

(

Q̂1(0)

Q̂3(0)

)

+

(

X̂1(t)

X̂3(t)

)

+R

(

m4X̂4(t)

m2X̂2(t)

)

+R

(

Ŷ1(t)

Ŷ3(t)

)

≥ 0, (116)

Ŷj(t) is nondecreasing in t, withŶj(0) = 0, j = 1,3, (117)
∫ ∞

0

Q̂j(t)dŶj(t) = 0, j = 1,3, (118)

where

X̂j(t) = Âj(t)− Ŝj(αjmjt)+ θj, j = 1,3,

X̂j(t) = Ŝj−1(αj−1mj−1t)− Ŝj(αj−1mjt), j = 2,4,

R=
1

m1m3 −m2m4

(

m3 −m4

−m2 m1

)

,

and Âk
i (t) and Ŝk

j (t) (i = 1,3; j = 1, · · · ,4) are independent (driftless) Brownian motions. (The

reflection matrix R is denoted as H in Chen and Zhang [10]. Also note that in comparison with

Theorem 2.1 of [10], we have re-arranged the terms involving the free processes X̂j(t) slightly to

facilitate discussions below.)

Similar to the remark following Theorem 1, it is important to note here that the relevant key

results leading to the above diffusion limit will also play an important role below in establishing the

other three sides of Figure 1 for the KS-RS network. These include: the complementarity, which

holds automatically in (118), and will be used in the standard oscillation inequality shortly; the
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uniform attraction property (refer to the remark at the end of this subsection). Also note, the

above diffusion limit for the KS-RS network parallels Theorem 1; and similarly, to support the

study of the other three sides in Figure 1, variations to the diffusion limit must be established.

This involves adapting Propositions 2 and 3 to the KS-RS network.

Remark. As the uniform attraction property for the KS-RS network is not given explicitly in

literature, a brief account of it is in order. First, the fluid model associated with the property is as

follows:

Q̄i(t) = Q̄i(0)+αit−µiT̄i(t), i= 1,3,

Q̄2(t) = Q̄2(0)+µ1T̄1(t)−µ2T̄2(t),

Q̄4(t) = Q̄4(0)+µ3T̄3(t)−µ4T̄4(t),

T̄i(0) = 0, ˙̄Ti(t)≥ 0, i= 1,2,3,4,
˙̄T1(t)+

˙̄T4(t)≤ 1, ˙̄T2(t)+
˙̄T3(t)≤ 1,

˙̄Ti(t) = 1 if Q̄i(t)> 0, i=2,4,
˙̄T1(t)+

˙̄T4(t) = 1 if Q̄1(t)> 0,
˙̄T3(t)+

˙̄T2(t) = 1 if Q̄3(t)> 0.

Intuitively, the above is the deterministic counterpart of the critically loaded KS-RS network

(formally, with αk
1m1 +αk

3m4 = 1 and αk
1m2 + αk

3m3 = 1 for a pre-limit network). The above also

parallels the equations in (129-132) for the resource-sharing network in Appendix A, and can be

derived following the standard approach, for instance, in Chen and Zhang [11] and Dai and Vande

Vate [16].

Then, from (109) and (114), we note that m1 >m2 (or, µ1 < µ2), i.e., class-2 fluid drains away

faster than the inflow from class-1. The same observation applies to class-3 and class-4 too. Hence,

it is straightforward to establish the uniform attraction for the KS-RS network: there exists a

time τ ≥ 0 such that for any solution to the the above fluid model with |Q̄(0)| ≤ 1, we have

(Q̄2(t), Q̄4(t)) = 0 and (Q̄1(t), Q̄3(t)) = (Q̄1(τ), Q̄3(τ)) for all t≥ τ . Note that this version of uniform

attraction is stronger than the one for the resource-sharing network in (139), and is said to be the

stability of higher priority classes (SHP) in Chen and Ye [9].

With the above (strong) uniform attraction established, to justify the interchange of limits

(edge IV), one can use the approach in Gurvich [26], which requires a high-moment condition on

the interarrival and service times; alternatively, our approach is to verify the bounded workload

condition, which we will do below. �

6.2. Stationary Distributions The deterministic DCP corresponding to the diffusion limit

in (116-118) is given by:

(

q̂1(t)
q̂3(t)

)

=

(

q̂1(0)
q̂3(0)

)

+

(

θ1
θ3

)

t+R

(

ŷ1(t)
ŷ3(t)

)

, (119)

ŷj(t) is nondecreasing in t, with ŷj(0) = 0, j = 1,3, (120)
∫ ∞

0

q̂j(t)dŷj(t) = 0, j = 1,3. (121)
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Clearly, Theorem 4 (regarding side III in Figure 1) is valid for the KS-RS network too. Indeed,

since the diffusion limit and the associated deterministic DCP for the KS-RS network are all in

the standard form in the sense of Dupuis and Williams [19], Theorem 2.6 there applies directly.

Theorem 7 for KS-RS network (side II) can be established in the same way via uniform stability.

The key step is to prove Lemma 6, and this can be done by basically repeating the proof of

the heavy traffic theorem for the KS-RS network, which requires properties such as the uniform

attraction property used to prove the (conventional) diffusion limit in (115-118) for the KS-RS

network. Thus, in summary, the implications in Figure 2 can be extended to a more general context

(except the part in parentheses, which is specific to the resource-sharing model studied in previous

sections).

6.3. Verifying Bounded Workload Condition for Interchange of Limits To establish

side IV, via Theorem 14 for the KS-RS network, the main task is to verify the bounded workload

condition: for some constant κ and for any t≥ 0,

sup
0≤s≤t

|Q̂k(s)| ≤ κ

(

|Q̂k(0)|+ sup
0≤s≤t

|X̂k(s)|
)

. (122)

To this end, consider any given k and t > 0. Let τ be the last time, before t, such that the class-2

queue is empty, i.e.,

τ = sup{s≥ 0 : Q̂k
2(s) = 0, s≤ t}.

Let τ =0 if the above set is empty, and denote Q̂k(0−) = Q̂k(0). From (111), we have

Q̂k
2(t) = Q̂k

2(τ−)+ [X̂k
2 (t)− X̂k

2 (τ−)]+ k[µ1(T̃
k
1 (t)− T̃ k

1 (τ−))−µ2(T̃
k
2 (t)− T̃ k

2 (τ−))]. (123)

By the definition of τ , we have,

T̃ k
2 (t)− T̃ k

2 (τ−) = t− τ,

since station 2 is busy with class-2 jobs during the period [k2τ, k2t] (under the original time scale).

From (109) and (114), we note that m1 >m2 (or, µ1 < µ2). Then, the second term on the right

hand side of (123) is non-positive:

k[µ1(T̃
k
1 (t)− T̃ k

1 (τ−))−µ2(T̃
k
2 (t)− T̃ k

2 (τ−))]≤ k[µ1(t− τ)−µ2(t− τ)]≤ 0,

which implies,

Q̂k
2(t)≤ Q̂k

2(τ−)+ X̂k
2 (t)− X̂k

2 (τ−)≤ 2

(

sup
0≤s≤t

|Q̂k
2(0)+ X̂k

2 (s)|
)

. (124)

Similarly, we have,

Q̂k
4(t)≤ 2

(

sup
0≤s≤t

|Q̂k
4(0)+ X̂k

4 (s)|
)

. (125)
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Next, we use the relationship in (111) and (113) to remove Ŷ k
2 (t) and Ŷ k

4 (t) in (110) and (112),

and write Q̂k
1(t) and Q̂k

3(t) in terms of the following DCP:
(

Q̂k
1(t)

Q̂k
3(t)

)

=

(

Q̂k
1(0)

Q̂k
3(0)

)

+R

(

Q̂k
4(0)

Q̂k
2(0)

)

+Σ̂k(t)+R ·
(

Ŷ k
1 (t)

Ŷ k
3 (t)

)

≥ 0,

with Σ̂k(t) =

(

X̂k
1 (t)

X̂k
3 (t)

)

+R ·
(

m4(X̂
k
4 (t)− Q̂k

4(t))

m2(X̂
k
2 (t)− Q̂k

2(t))

)

,

Ŷ k
j (t) is nondecreasing in t, withŶ k

j (0) = 0, j = 1,3,
∫ ∞

0

Q̂k
j (t)dŶ

k
j (t) = 0, j =1,3.

According to the standard oscillation inequality in Theorem 5.1 of [53], we have,
∣

∣

∣

∣

(

Q̂k
1(t)

Q̂k
3(t)

)∣

∣

∣

∣

≤
∣

∣

∣

∣

(

Q̂k
1(0)

Q̂k
3(0)

)

+R

(

Q̂k
4(0)

Q̂k
2(0)

)∣

∣

∣

∣

+κ′

(

sup
0≤s≤t

|Σ̂k(s)|
)

, (126)

for some κ′. Combining (124, 125, 126) yields the bounded workload condition in (122) for the

KS-RS network.

After verifying the bounded workload condition, the results in §4, from Lemma 9 to Theorem 14,

can all be adapted in a straightforward manner (e.g., with the “usual traffic condition” replaced

by the “stability of q̂(t)”). Moreover, investigating the stability of q̂(t) may lead to other more

explicit, model-dependent conditions on primitives. To this end, note that R is an M-matrix, and

it is invertible if and only if the virtual-station condition in (114) holds. Then, the deterministic

DCP in (119-121) is stable if and only if R−1θ < 0, i.e.,

θ1m1 + θ3m4 < 0 and θ1m2 + θ3m3 < 0. (127)

Putting all the above together, we have the following proposition for the KS-RS network.

Proposition 15 If in addition to the heavy traffic condition in (109), the conditions in (114, 127)

are satisfied, then the following properties hold.

(a) The diffusion limit Q̂(t) given in (115-118) is positive recurrent and has a unique stationary

distribution.

(b) For any sufficiently large k, the state process Ξ̂k(t) is positive recurrent and has a unique

stationary distribution. Furthermore, both the state process and the stationary queue length have

a finite (p− 1)-moment: for some constant κ and for sufficiently large k,

E|Ξ̂k(∞)|p−1 ≤ κ and E|Q̂k(∞)|p−1 ≤ κ,

where the random variables, Ξ̂k(∞) and Q̂k(∞), follows the stationary distributions of Ξ̂k(t) and

Q̂k(t), respectively.

(c) The following weak convergence of stationary distributions hold,

Q̂k(∞)⇒ Q̂(∞), as k→∞,

where Q̂(∞) follows the stationary distribution of the diffusion limit Q̂(t). Furthermore, for any

m∈ [0, p− 1),

E|Q̂k(∞)|m → E|Q̂(∞)|m, as k→∞.
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To close this section, we remark that the sufficient condition in (106) for bounded workload

applies to general multiclass queueing networks as well (e.g., those studied in Bramson [4] and

Williams [54], which include the KS-RS network). Recall the workload representation fromWilliams

([54], equations (60, 68, 75)), for a multiclass queueing network with J stations and K classes:

Ŵ r(t) = Ŵ r(0)+Rξ̂r(t)+RCMQP̃ (ǫ̂r(0)− ǫ̂r(t))+RŶ r(t),

Ŷ r
j (t) is non-decreasing, with Ŷ r

j (0) = 0,
∫ ∞

0

Ŵ r
j (t)dŶ

r
j (t).

Here, R is the reflection matrix and is completely-S; ξ̂r(t) is the “free process”; ǫ̂r(t) = Ẑr(t)−
∆Ŵ r(t) is the distance from the fixed-point state space to the queue-length state Ẑr(t), where the

“lifting” matrix ∆ maps the J -dimensional workload to the K-dimensional queue length.

The sufficient condition in (106) takes the following form, for some constant κ′,

|ǫ̂r(t)| ≤ κ′

(

|ǫ̂r(0)|+ sup
0≤s≤t

|ξ̂r(s)|
)

, t≥ 0.

Then, we can invoke the standard oscillation inequality to establish the bounded workload condi-

tion:

sup
0≤s≤t

|Ŵ r(s)| ≤ |Ŵ r(0)|+κ1Osc

(

Rξ̂r(s)+RCMQP̃ ǫ̂r(s),0≤ s≤ t
)

≤ |Ŵ r(0)|+κ2

(

sup
0≤s≤t

|ξ̂r(s)|+ sup
0≤s≤t

|ǫ̂r(s)|
)

≤ |Ŵ r(0)|+κ2

(

sup
0≤s≤t

|ξ̂r(s)|+κ′

(

|ǫ̂r(0)|+ sup
0≤s≤t

|ξ̂r(s)|
))

≤ κ′′

(

|Ŵ r(0)|+ sup
0≤s≤t

|ξ̂r(s)|
)

.

7. Concluding Remarks As mentioned in the beginning of the paper, a main objective

out this study is to establish the three sides, II, III and IV, of the rectangle in Figure 1, for a

resource-sharing network under proportional fair allocation. Specifically, we have established the

stationary distributions for both the diffusion limit of the workload processes, and the pre-limit

processes; and we show both stationary distributions exist under the usual traffic condition. These

correspond to sides II and III of the rectangle. Our approach is to establish first the stability of ŵ(t),

the deterministic counterpart of the diffusion limit, and then the uniform stability of ŵk(t), the

deterministic counterpart of the pre-limit networks. These stability properties are then connected

to the stationary distributions of the diffusion limit and pre-limit networks. What is interesting is

that the stability of ŵ(t) implies the uniform stability of ŵk(t), and hence, it suffices to establish

the former, which, we show, is equivalent to the usual traffic condition.

For side IV of the rectangle, we have identified a bounded workload condition, under which the

uniform stability can be strengthened to uniform p-th moment stability. The latter is sufficient for

the stationary distribution of the pre-limit network to converge to the stationary distribution of

the diffusion limit, thus justifying the interchange of the two limits.
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These three steps (corresponding to the three sides, II, III and IV) constitute a streamlined and

systematic approach to developing diffusion approximations (for stationary distributions), which

has the potential to extend to a broader range of multi-class stochastic networks. To illustrate

what’s perhaps a first move in this direction, we have shown how to apply this approach to justify

the diffusion approximation for the KS-RS network.

Appendix A: More Preliminaries As mentioned in the introduction, we collect in this
Appendix A additional preliminary or technical results that supplement those in §2. These include
the fluid limit and its associated uniform attraction property, the complementarity/reflection prop-
erty, and the oscillation inequality associated with the DCP. We also establish a representation
theorem for a tight sequence of distributions.
Results here are used in most sections of the main text and cross-referenced in the subsequent

appendices, B∼D, each of which serves exclusively one of the main sections, §2∼§4.

A.1. Fluid Limit and Uniform Attraction We apply the standard fluid scaling to the
primitive processes associated with the sequence of resource-sharing networks introduced in §2:

(

Ēk(t), S̄k(t)
)

=
1

k

(

Ek(kt), Sk(kt)
)

;

and similarly define the fluid-scaled version of the derived processes:

(

Ξ̄k(t), N̄k(t), D̄k(t), W̄ k(t)
)

=
1

k

(

Ξk(kt),Nk(kt),Dk(kt),W k(kt)
)

.

We know (e.g., [8]), with probability one,
(

Ē0,k(t), S̄0,k(t)
)

→ (λt,µt), u.o.c.,

where λ= (λr)r∈R and µ= (ν−1
r )r∈R, and the convergence is uniform on compact sets (u.o.c.) of

t≥ 0. Observe that, for t≥ uk
r (1)/k, we can write

Ēk
r (t) =

1

k

(

1+max

{

i− 1 :
i
∑

j=2

uk
r(j)≤ k(t−uk

r(1)/k)

})

=
1

k
+ Ē0,k(t−uk

r(1)/k),

while for t < uk
r(1)/k, we have Ēk

r (t) = 0. Hence, we have,

Ēk
r (t) =

1

k
· 1{t≥uk

r (1)/k}
+ Ē0,k((t−uk

r(1)/k)
+),

where x+ =max{x,0} for any real number x. If the residuals in initial state converge almost surely
under the fluid scaling:

1

k
(Uk(0), V k(0))≡ 1

k
(uk(1), vk(1))→ (ū(1), v̄(1)) as k→∞,

then, under the assumptions (36), taking k→∞, we have
(

Ēk(t), S̄k(t)
)

→ (λ(te− ū(1))+, µ(te− v̄(1))+), u.o.c. (128)

The proposition below states that the sequence of derived processes also approaches a limit, the
fluid limit. It can be shown by simply applying the “delayed” convergence in (128) to the proof of
Proposition 4.2 of [57] (also Theorem 4 of [58]); hence the detailed proof is omitted.
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Proposition 16 (Fluid limit) Consider the proportional fair allocation in (3). Suppose |Ξ̄k(0)|=
|W̄ k(0)|+ |Ūk(0)|+ |V̄ k(0)| ≤M for all k and for some constant M . Then, with probability one,
for any subsequence of k, there exists a further subsequence, denoted K, such that, along K,

Ξ̄k
r(0) =

(

W̄ k
r (0), Ū

k
r (0), V̄

k
r (0)

)

→ (w̄r(0), ūr(1), v̄r(1)) u.o.c.,

and

(

W̄ k(t), D̄k(t), N̄k(t)
)

→
(

w̄(t), d̄(t), n̄(t)
)

u.o.c.,

where the (fluid) limit is Lipschitz continuous and satisfies the following: for all r ∈R, and ℓ∈L,

|w̄(0)|+ |ū(1)|+ |v̄(1)| ≤M, (129)
w̄(t) = w̄(0)+ ρ(te− ū(1))+− (d̄(t)− v̄(1))+

= w̄(0)− ρ(te∧ ū(1))+ (d̄(t)∧ v̄(1))+ ρt− d̄(t), (130)

d̄r(t) =

∫ t

0

Λ̄r(n̄(s))ds, (131)

Λ̄r(n) =

{

Λr(n) if nr > 0,
ρr if nr = 0.

(132)

(Note that we use the convention wr ≡ νrnr and w̄r(t)≡ νrn̄r(t), and repeat the definition (60) for
ease of reference.)

The residuals ū(1) and v̄(1) in the above fluid limit will cause subtle technical difficulties below.
The following lemma is used to get around such difficulties. It says that after an initial transient
period the residuals will vanish and have only limited impact on the workload state.

Lemma 17 Consider the fluid limit w̄(t) in Proposition 16. There exist a time τ and a constant
κ that depend on the network parameters only (independent of k), such that

(t, d̄(t))≥ (ū(1), v̄(1)), for t≥Mτ ; (133)
|w̄(Mτ)| ≤ κM. (134)

Proof. Denote W̃r = {w : w ≤ e + ρ,wr ≥ ρr/2} for r ∈ R. Since Λr(n) is strictly positive and
continuous on the compact set W̃r (cf. Lemma 6.2(b) of Ye et al [57]), we have γ∗

r = inf{Λr(n) :
w ∈ W̃r} > 0. Consequently, we have γ∗

min =minr∈R γ∗
r > 0. (Again, keep in mind our convention

wr = νrnr and w̄r(t) = νrn̄r(t).)
Let τ = 2+ 1/γ∗

min. From (129), we have t≥ ū(1) for t≥Mτ , the first part of (133). We claim
that the inequality, d̄(t)≥ ū(1), also holds for t≥Mτ . Otherwise, we pick any class r′ such that

d̄r′(t)< ūr′(1), for t≤Mτ. (135)

Then, for any t∈ [2M,Mτ ], we have, from (130),

w̄r′(t) = w̄r′(0)+ ρr′(t− ūr′(1))
+ ≥ ρr′t

(

1− ūr′(1)

t

)+

≥ ρr′t

(

1− ūr′(1)

2M

)

≥ 1

2
ρr′t, (136)

and

w̄r(t) ≤ w̄r(0)+ ρr(t− ūr(1))
+ ≤ t+ ρrt, for all r ∈R. (137)
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Hence, from (136) and (137), we have w̄(t)/t ∈ W̃r′ for t ∈ [2M,Mτ ], which, along with the def-
initions of γ∗

r′ and γ∗
min, implies Λr′(n̄(t)) ≥ γ∗

r′ ≥ γ∗
min. Consequently, for t ∈ [2M,Mτ ], we have

Λ̄r′(n̄(t)) = Λr′(n̄(t))≥ γ∗
r′ ≥ γ∗

min taking into account the definition in (132) and the lower bound
in (136), and finally

d̄r′(Mτ)≥
∫ Mτ

2M

Λ̄r′(n̄(t))≥ (Mτ − 2M)γ∗
min =M ≥ v̄r′(1).

This contradicts (135).
Observe that the inequality in (137) holds generally (not requiring the assumption that d̄r′(t)<

ūr′(1)), which implies the estimation in (134). �

The next proposition, concerning the uniform attraction of the fluid limit w̄(t), is almost a
paraphrase of the (more general) result established in Ye and Yao ([58], Theorem 6) specialized to
the setting here; also refer to a similar result in Kelly and Williams ([38], Theorem 5.2) and Kang
et al [32]. The only exception is that in their papers there is no residual initial arrival times and
service requirements involved. However, the effect of such residuals can be mitigated easily by the
lemma just established. The proof is hence omitted.

Proposition 18 Consider the fluid limit w̄(t) in Proposition 16 and Lemma 17, along with the
constant M and τ specified there. Assume the heavy traffic condition in (11) holds.
(a) The link-based workload, Aℓw̄(t) (ℓ∈L), is non-decreasing in time t≥Mτ ; and there exists a
constant κw that only depends on the network parameters, such that the following bounds hold
for all t≥ 0,

|w̄(t)| ≤ κw(|w̄(0)|+ |ū(1)|+ |v̄(1)|) (≤ κwM). (138)

(b) (Uniform Attraction) There exists a (unique) fixed-point state w∗ such that, for any given ǫ > 0
and for some sufficiently large time TM,ǫ (depending on M and ǫ), the following holds:

|w̄(t)−w∗| ≤ ǫ, for t≥ TM,ǫ. (139)

Furthermore, the time TM,ǫ can be chosen large enough such that the following also holds:

dfp(w̄(t))≤ |GT (w̄(t)−w∗)|+ |HT w̄(t)| ≤ ǫ, for t≥ TM,ǫ. (140)

(c) If w̄(0) is a fixed-point state and (ū(1), v̄(1)) = 0, then w̄(t) = w̄(0) and d̄(t) = ρt for all t≥ 0.

A.2. Reflection near the Boundary of W The following lemma characterizes the reflection
property of the regulator Ŷ k(t) (= k

∫ t

0
(c−AΛ(N̂k(s)))ds) given in (26).

Lemma 19 (Lemma 2 of Ye and Yao [60]) Let κ > 0 and ǫ > 0 be given constants. Then, there
exists a (sufficiently small) constant σ > 0 such that, for any state w satisfying

|w| ≤ κ and dfp(w)≤ σ, (141)

the following implication holds for any ℓ∈L:

gTℓ w> ǫ ⇒ AℓΛ(n) =
∑

r∈R

aℓrΛr(n) = cℓ. (142)

In words, the link ℓ will be fully occupied if the workload state of the network is away from the
ℓ-facet, and toward the interior, of the fixed-point state space.
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A.3. Dynamic Complementarity Problem and Oscillation Inequality What connects
the workload process with its limiting regime under diffusion scaling in the diffusion limit theorems
is the following DCP:

w(t) =w(0)+x(t)+BGy(t)+BHz(t) (≥ 0), for t≥ 0; (143)
GTw(t)≥ 0, for t≥ 0; (144)
yℓ(t) is non-decreasing in t≥ 0, yℓ(0) = 0, ℓ∈L; (145)
∫ ∞

0

w(t)TG dy(t) = 0; (146)

HTw(t) = 0, for t≥ 0; (147)
z(0) = 0; (148)

where the initial state w(0) and the “free process” x(t) (an R-dimensional function) are given.
Clearly, the deterministic DCP in (39-44) is a special case of the above DCP.

Proposition 20 (Ye and Yao [60]) Given an R-dimensional RCLL “free process” x(t), there
exists a unique solution, (w(t), y(t), z(t)), to the DCP in (143)-(148).

The oscillation inequality is a useful tool to establish the boundedness of the workload process
below (refer to Lemma 23(c) below). For any RCLL (vector) function f(u) (u≥ 0) and any time
interval [s, t], denote

Osc(f(·), [s, t]) = sup{|f(u1)− f(u2)| : s≤ u1 ≤ u2 ≤ t}.

Lemma 21 (Oscillation Inequality) Suppose there exists a constant κc > 0 such that, for any
ǫ ≥ 0 and any RCLL functions, w(t) = (wℓ(t))ℓ∈L, x(t) = (xr(t))r∈R, y(t) = (yℓ(t))ℓ∈L and z(t) =
(zm(t))

R−L
m=1, satisfying

w(t) =w(0)+x(t)+BGy(t)+BHz(t) (≥ 0), for t≥ 0;
GTw(t)≥−ǫ, for t≥ 0;
yℓ(t) is non-decreasing in t≥ 0, yℓ(0) = 0, ℓ∈L;
yℓ(t) can not increase at time t, if gTℓ w(t)≥ ǫ.

Then, the following oscillation inequalities hold for any 0≤ s≤ t,

Osc(GTw(·), [s, t]) and Osc(y(·), [s, t])≤ κc(Osc(x(·), [s, t]) + ǫ). (149)

If in addition,

|HTw(t)| ≤ ǫ, for t≥ 0, (150)

then the above oscillation inequalities can be strengthened as follows: for any 0≤ s≤ t,

Osc(w(·), [s, t]) and Osc(y(·), [s, t])≤ κc(Osc(x(·), [s, t]) + ǫ). (151)

The first oscillation inequality in the above lemma is essentially Proposition 7.1 of [32], a variation
of Theorem 5.1 of [53]. The second is a direct consequence of the first and the additional condition
in (150). Hence the detailed proof is omitted.
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A.4. A Representation Theorem The following lemma (used at the beginning of the proof
of Proposition 2) is an independent result, which relates the tightness of a sequence of distribu-
tions to a uniform bound through a coupling technique — in the same spirit as the Skorohod
representation theorem.

Lemma 22 A sequence (of random variables/vectors) {wk} is tight, if and only if the following

statement holds: There exists another sequence {w̃k}, with w̃k
d
=wk for each k, and all w̃k’s coupled

on a common probability space Ω, such that for every ω ∈ Ω, {w̃k} is uniformly bounded, i.e.,
supk |w̃k(ω)|<∞.

Proof. The “if” part holds trivially. To prove the “only if” part, we first consider the case that
wk’s are nonnegative scalars (random variables). Let Fk(x) be the distribution function of wk; and
denote

F−1
k (u) = inf{t≥ 0 : Fk(t)≥ u}, u∈ [0,1).

Let ξ be a random variable uniformly distributed over the interval [0,1)=Ω. Define w̃k = F−1
k (ξ);

then, w̃k
d
=wk,

Now, let ω ∈ [0,1) =Ω be any given sample. Tightness implies there exists a finite (but sufficiently
large) M =M(ω), which may depend on ω, but independent of k, such that Fk(M)≥ ω for all k.
Hence, for the given ω, we have w̃k(ω) = F−1

k (ω)≤M for all k; i.e., supk w̃k(ω)<∞.
In general (i.e., regardless whether wk’s are non-negative or not, scalars or vectors), let Sk = |wk|

(the absolute value of the sum of wk’s components), a non-negative scalar. Then, the above applies

to Sk; hence, we have S̃k
d
=Sk for every k, and supk S̃k(ω)<∞ for every ω ∈Ω.

To construct w̃k, first, for each k, define an independent sequence {w̃k,m,m= 0,1, · · · } such that
w̃k,m follows the distribution of wk conditioned on {m≤ Sk <m+1}, i.e., for any vector x,

P(w̃k,m ≤ x) = P(wk ≤ x|m≤ Sk <m+1).

Given the definition that Sk = |wk|, the above implies

P(m≤ |w̃k,m|<m+1)= 1.

Moreover, by redefining the value of w̃k,m(ω) (at most) on an event of zero probability, we can
strengthen the above so that for all ω ∈Ω,

m≤ |w̃k,m|<m+1. (152)

Next, let w̃k =
∑∞

m=0 w̃k,m1{m≤ S̃k <m+1}. Then, for m= 0,1, · · · , we have

P(w̃k ≤ x|m≤ S̃k <m+1)= P(w̃k,m ≤ x) = P(wk ≤ x|m≤ Sk <m+1).

Therefore,

P(w̃k ≤ x) =
∞
∑

m=0

P(w̃k ≤ x|m≤ S̃k <m+1)P(m≤ S̃k <m+1)

=
∞
∑

m=0

P(wk ≤ x|m≤ Sk <m+1)P(m≤ Sk <m+1)= P(wk ≤ x).

That is, w̃k
d
=wk.

Now, given any ω ∈Ω, choose an integer M =M(ω) such that supk S̃k(ω)≤M . Then, from its
definition, w̃k can be written as w̃k =

∑M−1

m=0 w̃k,m1{m≤ S̃k <m+1}. This, along with the property
in (152), implies that supk |w̃k(ω)| ≤M . �
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Appendix B: Proofs for §2

B.1. Proof of Proposition 2 Let’s first lay out the setup before presenting the proof. From
the functional central limit theorem (i.e., Donsker’s theorem; refer to [1]), we know the diffusion-
scaled processes, Ê0,k

r (t) and Ŝ0,k
r (t), converge weakly to Brownian motions:

Ê0,k
r (t)⇒ Êr(t) and Ŝ0,k

r (t)⇒ Ŝr(t), (153)

where Êr(t) and Ŝr(t) are zero-mean Brownian motions with variances λ3
rσ

2
a,r and ν−3

r σ2
s,r, respec-

tively.
Following the Skorohod representation theorem, we can turn the weak convergence into a prob-

ability one convergence of suitable copies of processes (refer to [1]). Hence, we now assume that
the following convergence has replaced the weak convergences in (153): with probability one, as
k→∞,

Ê0,k
r (t)→ Êr(t) and Ŝ0,k

r (t)→ Ŝr(t) u.o.c. of t≥ 0. (154)

Per Lemma 22, we can replace the tightness of initial states {Ξ̂k(0)} by the uniform boundedness,
and hence assume that the sequence {Ξ̂k(0)} is uniformly bounded: for each sample, there exists a
(sample-dependent) constant M such that

|Ξ̂k(0)| ≤M for all k. (155)

In addition, we can assume that all these variables and processes are coupled on a common prob-
ability space. Having invoked the representations for weak convergence and tightness, we now
consider another version of the sequence of networks, in which the k-th network evolves following
the same probabilistic law of the k-th network in the original version (i.e., the sequence of networks
referred to in the theorem). Hence, the probabilistic property are the same for the k-th networks
in the two versions of network sequences.
Observing that tk0 >M/k≥ (|uk(1)|+ |vk(1)|)/k2 for sufficiently large k (since ktk0 →∞), we can

write

Êk
r (t

k
0 + t)− Êk

r (t
k
0) = Ê0,k

r (tk0 + t−uk
r (1)/k

2)− Ê0,k
r (tk0 −uk

r(1)/k
2).

Note that tk0 −uk
r(1)/k

2 → 0. Then, applying (154) to the right-hand-side of the above, we have

Êk
r (t

k
0 + t)− Êk

r (t
k
0)→ Êr(t) (156)

As a direct consequence of (155), the initial states of the fluid-scaled processes, Ξ̃k(t) :=
Ξk(k2t)/k2, will vanish:

Ξ̃k
r(0) =

1

k
Ξ̂k(0)→ 0, as k→∞. (157)

Note that Propositions 16 and 18 remain unchanged (with the residuals ū(1) and v̄(1) set to zeros)
if we replace the scaling factor k by k2; therefore, from Proposition 18(b), we have, under the
proportional fair allocation scheme,

D̃k
r (t)→ ρrt, u.o.c. of t≥ 0. (158)

From (154) and (158) and using the similar argument for (156), we have

Ŝk
r (D̃

k
r (t

k
0 + t))− Ŝk

r (D̃
k
r (t

k
0))→ Ŝr(ρrt), u.o.c. of t≥ 0, (159)
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where Ŝr(ρrt) is a Brownian motion with zero mean and variance ρrν
−3
r σ2

s,r. Consequently, X̂
k
r (t)

converges as follows,

X̂k
r (t

k
0 + t)− X̂k

r (t
k
0)→ X̂r(t) = θrt+ νr

(

Êr(t)− Ŝr(ρrt)
)

, u.o.c. of t≥ 0, (160)

with the limit X̂r(t) being a Brownian motion with drift and variance coefficients, θr and σ2
r ,

specified in (10) and (34).
Below we shall focus on a fixed sample for which the above u.o.c. convergence in (154, 156,

158-160) and the boundedness property in (155) hold.
Consider the time interval [τ, τ + δ], where τ ≥ 0 and δ > 0 can be chosen arbitrarily. Let T > 0

be a fixed time of a certain magnitude to be specified later. Let the index k be a large integer.
Divide the time interval [τ, τ + δ] into a total of ⌈kδ/T ⌉ segments with equal length T/k, where
⌈·⌉ denotes the integer ceiling. The j-th segment, j = 0, ..., ⌈kδ/T ⌉ − 1, covers the time interval
[τ + jT/k, τ +(j+1)T/k]. Note that the last interval (with j= ⌈kδ/T ⌉−1) covers a negligible piece
of time beyond the right end of [τ, τ + δ] if kδ/T is not an integer. For notational simplicity, below
we shall assume kδ/T to be an integer (i.e., omit the ceiling notation). Then, for any t∈ [τ, τ + δ],
we can write it as t= τ +(jT +u)/k for some j = 0, · · · , kδ/T and u∈ [0, T ]. Therefore, we write

Ŵ k(t) = Ŵ k(τ +
jT +u

k
) =

1

k
W k((k2τ + kjT )+ ku) := W̄ k,j(u), u∈ [0, T ], j ≤ kδ

T
. (161)

That is, for each time point t, we will study the behavior of Ŵ k(t) through the fluid process,
W̄ k,j(u), over the time interval u ∈ [0, T ]. Similarly define Ξ̄k,j(u), Ūk,j(u), V̄ k,j(u), N̄k,j(u) and
Ȳ k,j(u) as the fluid “magnifiers” of Ξ̂k(t), Ûk(t), V̂ k(t), N̂k(t) and Ŷ k(t). The above representation
follows the idea of hydrodynamics in Bramson [4] (also refer to [42, 50, 58]).
We need the following lemma (which is a modification of Lemma 7 in [60]), with its proof deferred

to the next subsection.

Lemma 23 Consider the time interval [τ, τ + δ], with τ ≥ 0 and δ > 0; pick a constant C > 0 such
that

Osc(X̂(·), [τ, τ + δ])≤C; (162)

and suppose

sup
k

|Ξ̂k(τ)|= sup
k

(|Ŵ k(τ)|+ |Ûk(τ)|+ |V̂ k(τ)|)≤M, (163)

for some constant M ≥ 0. Let ǫ > 0 be any given (small) number. Then, there exists a sufficiently
large T such that, for sufficiently large k, the following results hold for all positive integers j =
1, · · · , kδ/T (excluding j = 0):
(a) (uniform attraction)

dfp(W̄ k,j(u))≤ ǫ, for all u∈ [0, T ]; (164)

(b) (complementarity) if gTℓ W̄
k,j(u′)> ǫ for some u′ ∈ [0, T ], then

Ȳ k,j
ℓ (u)− Ȳ k,j

ℓ (0) = 0, for all u∈ [0, T ];

(c) (boundedness)

|W̄ k,j(u)| ≤ κw|Ξ̂k(τ)|+κx(C+ ǫ)≤ κ= κwM +κx(C+ ǫ), for all u∈ [0, T ], (165)

where κw is a positive constant specified in Proposition 18, and κx is a positive constant that
depends only on network parameters.
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Proof (of Proposition 2). Keeping in mind the boundedness in (155), we know that the condition
in (163) is satisfied with τ =0. Hence, we can apply Lemma 23, with τ = 0, to the processes Ξ̂k(t).
From the definition of tk0 , we have for sufficiently large k,

Ŵ k(tk0) = W̄ k,j(u), for some u∈ [0, T ], and some j satisfying 1≤ j < kδ/T.

Then, by Part (c) of the lemma, we have

|Ŵ k(tk0)| ≤ κw|Ξ̂k(0)|+κx(C+ ǫ), (166)

and hence
limsup
k→∞

|Ŵ k(tk0)| ≤ limsup
k→∞

κw|Ξ̂k(0)|+κx(C + ǫ).

Observe that the left hand side is independent of ǫ and C, and that C can be made arbitrarily
small (for each given sample-path) by choosing a sufficiently small δ in the lemma. Therefore, the
above inequality can be strengthened as

limsup
k→∞

|Ŵ k(tk0)| ≤ limsup
k→∞

κw|Ξ̂k(0)| ≤ κwM. (167)

Since {Ŵ k(0)} is tight (cf. the condition in (155)), the above inequality implies that the sequence
{Ŵ k(tk0)} is also tight. Moveover, from Lemma 23(a), we have

dfp(Ŵ k(tk0))→ 0 as k→∞. (168)

From the tightness of {Ŵ k(tk0)} and the convergence in (168), we know for any subsequence of k,
there exists a further subsequence, denoted K, such that

Ŵ k(tk0)⇒ Ŵ (0)∈W as k→∞ along K. (169)

Moreover, we observe

(Ûk(tk0), V̂
k(tk0))⇒ 0 as k→∞ along K. (170)

To see this, note that for any fixed class r and time point t′ > 0, we have 1<E0,k
r (k2tk0)<λrk

2t′ for
sufficiently large k. Thus, the residual interarrival time Uk

r (k
2tk0), as a portion of the interarrival

time of the E0,k
r (k2tk0)-th arrival, is dominated by the maximum interarrival times of the second

through the (λrk
2t′)-th arrivals (but excluding the first arrival); refer to the equations in (4, 5,

9). From Lemma 5.1 of [4], we know that Ûk
r (t

k
0) = Uk

r (k
2tk0)/k approaches zero, i.e., the first

convergence in (170). The convergence of V̂ k(tk0) in (170) is justified in the same manner.
Now we “restart” the k-th network from the time epoch tk0 . Given the above initial conditions in

(169) and (170) for the sequence {Ŵ k(tk0 + t), k ∈K}, we can apply Theorem 1 to the subsequence
K to conclude Proposition 2, except for the property in (38), which is shown below.
To simplify notation, denote xk = |Ŵ k(tk0)| and yk = κw|Ξ̂k(0)| in the rest of this proof. Then,

the inequality in (166), which is essentially the second inequality in (165), reads

xk − yk ≤ κx(C+ ǫ).

Applying the same argument that leads to (167), we have, with probability one,

limsup
k→∞

(xk − yk)≤ 0,
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which implies for any σ > 0,

P

(

⋃

k′>0

⋂

k>k′

{xk − yk ≤ σ}
)

= 1, or lim
k′→∞

P

(

⋂

k>k′

{xk − yk ≤ σ}
)

=1.

Then, for any δ > 0, there exists a sufficiently large index k′ such that

P

(

⋂

k>k′

{xk − yk ≤ σ}
)

≥ 1− δ;

and hence, for any k > k′,

P{xk − yk ≤ σ} ≥ 1− δ.

Observe that for any positive constant M , the following inequality holds,

P{xk ≤M +σ}+P{yk >M} ≥ P{xk − yk ≤ σ}.

Combining the last two inequalities, we have

P{xk ≤M +σ} ≥P{yk ≤M}− δ.

Hence,

limsup
k→∞

P{xk ≤M +σ} ≥ limsup
k→∞

P{yk ≤M}− δ.

Since δ is arbitrarily chosen, the above is equivalent to

limsup
k→∞

P{xk ≤M +σ} ≥ limsup
k→∞

P{yk ≤M}.

If we restrict the index k to the subsequence K, then given the weak convergence in (37) (i.e.,
(169)), the above is reduced to

P{|Ŵ (0)| ≤M +σ} ≥ limsup
k→∞,k∈K

P{κw|Ξ̂k(0)| ≤M}. (171)

As σ is arbitrary, the above implies the second inequality in (38). �

B.1.1. Proof of Lemma 23 This proof is a modification of the proof of Lemma 7 in [60],
taking into account that we must deal with the initial residuals here. To this end, we need a
variation of Propositions 16 and 18, summarized in the lemma below. (The proof of the lemma
is omitted as it parallels that of Lemma 12 of [60], using Lemma 17 above to handle the initial
residuals.)

Lemma 24 Let M > 0 be an any given constant, and jk an integer in [0, kδ/T ] for each k.
Suppose |Ξ̄k,jk(0)| ≤M for sufficiently large k. Then, for any subsequence of k, there exists a further
subsequence such that along the subsequence, the process (W̄ k,jk(t), D̄k,jk(t), Ūk,jk(0), V̄ k,jk(0))
converge u.o.c. to the fluid limit (w̄(t), d̄(t), ū(1), v̄(1)) that satisfies all the properties described in
Propositions 16 and 18. If in addition jk ≥ 1 for sufficiently large k, then ū(1) = v̄(1) = 0.
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We specify the time length of T as follows:

T ≥ max{Tκ,ǫ/8, Tκ,σ/2}, (172)

where the terms on the right hand side are defined in Proposition 18, and σ= σ(κ′, ǫ/2) is specified
in Lemma 19 (with κ and ǫ given in the current lemma under proof, and κ′ being a constant that
depends on network parameters only and will be specified shortly). Note that T is large enough so
that in the fluid network in Proposition 18 (under the heavy traffic condition), the state w̄(t) will
be close enough (by an error bound of ǫ/8 or σ/2) to the fixed-point state, starting from an initial
state w̄(0) that is bounded by κ.
Step 1. We use contradiction to prove the three parts of Lemma 23, (a,b,c), for j =1. Suppose, to

the contrary, there exists a subsequence K1 of k such that, for any k ∈K1, at least one of the results
in (a,b,c) does not hold for j = 1. To reach a contradiction, below we will construct an infinite
subsequence K2 ⊂K1, such that the desired properties in (a,b,c) hold for j = 1 for sufficiently large
k ∈K2.
By Lemma 24 (and Proposition 16), there exists a further subsequence K2 ⊂ K1 such that, as

k→∞ along K2,

W̄ k,0(u)→ w̄(u) u.o.c. of u≥ 0, (173)

and

(Ūk,0(0), V̄ k,0(0))→ (ū(1), v̄(1)),

with |w̄(0)|+ |ū(1)|+ |v̄(1)| ≤M (≤ κ). Since T ≥ Tκ,ǫ/8, applying the uniform attraction property
in Lemma 24 (and Proposition 18) to the above limit yields:

dfp(w̄(u))≤ ǫ

8
for all u≥ T ; and |w̄(u)| ≤ κw(|w̄(0)|+ |ū(1)|+ |v̄(1)|) for all u≥ 0. (174)

Note that W̄ k,0(T + u)≡ W̄ k,1(u) (and W̄ k,0(0) = Ŵ k(τ)). Hence, the convergence in (173), along
with (174), implies that (a,c) holds with j =1 for sufficiently large k ∈K2. Specifically, the bounding
property in (c) is reduced to the following, for j = 1,

|W̄ k,1(u)|= |W̄ k,0(T +u)| ≤ κw|Ξ̂k(τ)|+ ǫ, for all u∈ [0, T ]. (175)

As a by-product (used below), we have for u∈ [0, T ],

|W̄ k,1(u)| ≤ κwM + ǫ≤ κwκ+ ǫ := κ′. (176)

Furthermore, since T ≥ Tκ,σ/2, the first inequality in (174) also hold with ǫ/8 replaced by σ/2,
i.e., dfp(w̄(u))≤ σ/2 for u≥ T ; and therefore, the result in (a), with ǫ replaced by σ as well, holds
with j =1 for sufficiently large k ∈K2, i.e.,

dfp(W̄ k,1(u))≤ σ, for u∈ [0, T ]. (177)

In addition to (174), we can require the following via Lemma 24 (and Proposition 18) too:

|GT (w̄(T +u)−w∗)| ≤ ǫ

8
, (178)

|GT (W̄ k,1(u)− w̄(T +u))|= |GT (W̄ k,0(T +u)− w̄(T +u))| ≤ ǫ

8
. (179)
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for u∈ [0, T ] and for some fixed-point state w∗. Now, consider any link ℓ satisfying the “if” condition
in (b) for j = 1. Using the estimations in (178) and (179), we have for sufficiently large k(∈ K2)
and for any u∈ [0, T ],

|gTℓ (W̄ k,1(u)− W̄ k,1(u′))| ≤ |gTℓ (W̄ k,1(u)− w̄(T +u))|+ |gTℓ (w̄(T +u)−w∗)|
+|gTℓ (w∗ − w̄(T +u′))|+ |gTℓ (w̄(T +u′)− W̄ k,1(u′))|

≤ ǫ

8
+

ǫ

8
+

ǫ

8
+

ǫ

8
=

ǫ

2
,

and hence

gTℓ W̄
k,1(u)≥ gTℓ N̄

k,1(u′)− ǫ

2
≥ ǫ

2
. (180)

Thereafter, we have

Ȳ k,1
ℓ (u)− Ȳ k,1

ℓ (0) =

∫ u

0

(

cℓ −AℓΛ(W̄
k,1(s))

)

ds=0, (181)

where the first equality follows from the definitions of the processes Ȳ k,j(u) and Ŷ k(t); and in the
second equality we have applied Lemma 19 to the link ℓ given the upper bound in (176) and the
estimations in (177) and (180).
Step 2. We now extend the above to j =2, . . . , kδ/T . Suppose again, to the contrary, there exists

a subsequence K1 of k such that, for any k ∈K1, at least one of the results in (a,b,c) does not hold
for some integer j ∈ [2, kδ/T ]. Consequently, for any k ∈K1, there exists a smallest positive integer
jk in the interval [2, kδ/T ] such that at least one of the properties in (a, b, c) does not hold. To
reach a contradiction, in the rest of the proof we will construct an infinite subsequence K2 ⊂K1,
such that the desired properties in (a, b, c) hold for j = jk for sufficiently large k ∈K2.
Following the earlier argument, under the (contradictory) assumption above, the results in (a,b,c)

hold for j = 1, ..., jk − 1, for each k ∈K1. Specifically, for j = jk − 1 (≥ 1), we have

|W̄ k,jk−1(0)| ≤ κ, for all k ∈K1.

By Lemma 24 (and Proposition 16), there exists a further subsequence K2 ⊂K1 such that

W̄ k,jk−1(u)→ w̄(u) u.o.c. of u≥ 0, as k→∞ along K2, (182)

with |w̄(0)| ≤ κ. Since T ≥ Tκ,ǫ/8, applying the uniform attraction property in Lemma 24 (and
Proposition 18) to the above limit yields:

dfp(w̄(u))≤ ǫ

8
for all u≥ T. (183)

Note that W̄ k,jk−1(T + u)≡ W̄ k,jk(u). Hence, the convergence in (182), along with (183), implies
that (a) holds with j = jk for sufficiently large k ∈K2.
In addition to (183), we can claim the following via Lemma 24 (and Proposition 18) too:

|w̄(u)| ≤ κw|w̄(0)| ≤ κwκ, for all u≥ 0; (184)

|GT (w̄(T +u)−w∗)| ≤ ǫ

8
, for u≥ 0, and for some w∗ ∈W; (185)

|GT (W̄ k,jk(u)− w̄(T +u))|= |GT (W̄ k,jk−1(T +u)− w̄(T +u))| ≤ ǫ

8
,

for u∈ [0, T ], and for sufficiently large k ∈K2. (186)
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The first bound above implies the following for sufficiently large k ∈K2 and for all u∈ [0, T ]:

|W̄ k,jk (u)| ≤ |w̄(T +u)|+ ǫ≤ κw|w̄(0)|+ ǫ≤ κwκ+ ǫ= κ′. (187)

Furthermore, since T ≥ Tκ,σ/2, the inequality in (183) also hold with ǫ/8 replaced by σ/2, i.e.,
dfp(w̄(u))≤ σ/2 and therefore, the result in (a), with ǫ replaced by σ as well, holds with j = jk for
sufficiently large k ∈K2, i.e.,

dfp(W̄ k,jk(u))≤ σ, for u∈ [0, T ]. (188)

Now, consider any link ℓ satisfying the “if” condition in (b) for j = jk. Similar to (180) and (181),
we use the estimations in (185) and (186) to show that for sufficiently large k(∈K2) and for any
u∈ [0, T ],

gTℓ W̄
k,jk(u)≥ W̄ k,jk(u′)− ǫ

2
≥ ǫ

2
, (189)

and thereafter apply the estimations in (187, 188, 189) to derive the following,

Ȳ
k,jk
ℓ (u)− Ȳ

k,jk
ℓ (0) =

∫ u

0

(

cℓ −AℓΛ̄(N̄
k,jk(s))

)

ds=0. (190)

Consider any sufficiently large k ∈ K2, such that the results in (a) and (b) hold for j =
1, · · · , jk (but (a) may not holds for j = 0). This implies that the processes, (w(t), x(t), y(t), z(t))=
(Ŵ k(t), X̂k(t), Ŷ k(t), Ẑk(t)), satisfy the specifications in Lemma 21 for t∈ [τ+T/k, τ+(jkT+T )/k].
Hence, we have for any t∈ [τ +T/k, τ +(jkT +T )/k] (⊂ [τ, τ + δ]),

Osc(Ŵ k(·), [τ +T/k, t])≤ κc(Osc(X̂
k(·), [τ +T/k, t]) + ǫ) = κc(C+ ǫ). (191)

Consequently, we have the following estimations,

|Ŵ k(t)| ≤ |Ŵ k(τ +T/k)|+Osc(Ŵ k(·), [τ +T/k, t])≤ κw|Ŵ k(τ)|+ ǫ+κc(C + ǫ),

where in the second inequality we have also applied the conclusion in (175), i.e., |Ŵ k(τ +T/k)|=
|W̄ k,1(0)| ≤ κw|Ŵ k(τ)|+ ǫ. Keeping in mind that W̄ k,jk(u)≡ Ŵ k(τ + (jkT + u)/k) and with κx =
κc +1, the above implies that (c) holds with j = jk for sufficiently large k ∈K2. �

B.2. Proof of Proposition 3 In this proof, we use the superscript mk to denote the mixed
scaling. For example, we write for the k-th network:

Ŵmk(t) =
1

mk

Ŵ k(mkt).

Other processes are similarly indexed.
The proof of Proposition 3 is a straightforward modification of the arguments that establish the

diffusion limits in Theorem 1 and Proposition 2. In particular, all hat-processes in the proof are
now indexed by mk. Below, we look at the part (b) of the theorem, the more complicated part,
and highlight two major changes without repeating the whole proof of Proposition 2.
First, the convergence in (153) of the “non-delayed” version of the arrival process is modified as

follows:

Ê0,mk
r (t) =

1

kmk

(

E0,k(k2mkt)−λk
rk

2mkt
)

=
1√
mk

· E
0,k(k2mkt)−λk

rk
2mkt√

k2mk

→ 0 u.o.c. as k→∞.
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The above convergence is u.o.c. because the limit is a deterministic continuous function (actually
the limit is zero here). Then, we can show

Êmk
r (tk0 + t)− Êmk

r (tk0)→ 0 u.o.c. as k→∞.

Similarly, the convergence in (159) becomes

Ŝmk
r (D̃mk

r (tk0 + t))− Ŝmk
r (D̃mk

r (tk0))→ 0 u.o.c. as k→∞.

where D̃mk
r (t) =Dk

r (k
2mkt)/(k

2mk) is another variation of fluid scaling, while the convergence in
(158) remains intact. Hence, the convergence of the free process in (160) becomes

X̂mk
r (tk0 + t)− X̂mk

r (tk0)→ x̂r(t) := θrt. (192)

In contrast to (160), the (driftless) Brownian motion component vanishes here, and thereafter in
modifying the proofs of Theorems 1 and 2, the process X̂(t) should be understood as in (192);
in other words, the processes (Ŵ (t), X̂(t), Ŷ (t), Ẑ(t)) referred to in the proofs of Theorem 1 and
Proposition 2 are now replaced by (ŵ(t), x̂(t) = θt, ŷ(t), ẑ(t)) defined in (39-44).
Second, the rescaling of the workload process in (161) becomes: for u∈ [0, T ] and j ≤ kδ/T ,

W̄ k,j(u) = Ŵmk(τ +
jT +u

k
) =

1

kmk

W k((k2mkτ + kmkjT )+ kmku).

The processes, Ξ̄k,j(u), Ūk,j(u), V̄ k,j(u), N̄k,j(u) and Ȳ k,j(u), are similarly modified.

Appendix C: Proofs for §3 This main task here is to prove Lemma 6. While the main idea
of the proof follows the proof of the diffusion limit theorems in Propositions 2 and 3, the version
with a tight sequence of initial states, there are several key modifications, which we now highlight
before presenting the proof.
First, the “free process” X̂k(t) in the proof of the diffusion limit is replaced by k(ρk−ρ)t. Other

hat-processes (e.g. Ŷ k(t)) are changed to the corresponding lower-case processes (e.g., ŷk(t)). In
addition, the allocation Λ(·) in the original networks is changed to Λ̄(·) in the corresponding fluid
networks (refer to their definitions in (3, 132)), which actually does not affect the key properties
used in the proof. Specifically, Lemma 19 continues to hold if Λ(n) is replaced by Λ̄(n). To see
this, note the difference between Λ(n) and Λ̄(n): Λr(n) = 0 versus Λ̄r(n) = ρr, when nr =0. Hence,
it suffices to show the difference does not affect the conclusion stated in the lemma. Recall that
ℓ∗ is the link satisfying the condition in (142), and that gTℓ∗w > ǫ > σ1. Consider any r such that
aℓ∗r > 0. We have r ∈R1,σ1 , since ℓ∗ ∈L1,σ1 . Hence,

wr =
∑

ℓ

braℓrπℓ + δr = braℓ∗rπℓ∗ +
∑

ℓ 6=ℓ∗

braℓrπℓ + δr

≥ braℓ∗rσ1 −σ
∑

ℓ 6=ℓ∗

braℓr −κ1σ≥ bminaminσ1 −
(

∑

ℓ,s

bsaℓs+κ1

)

σ

> 0,

where the last inequality holds since σ can be made sufficiently small (relative to σ1). Then, the
above implies Λr(n) = Λ̄r(n). Consequently, we have Aℓ∗Λ̄(n) =Aℓ∗Λ(n) = cℓ∗ .
Second, we need to modify Lemma 17 to account for the residuals ūk(1) and v̄k(1), which takes

the following form (the detailed arguments omitted as they follow closely the proof of Lemma 17):
For the sequence of ŵk(t) (with uniformly bounded initial states particularly) considered in Lemma
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6, there exist a time τ and a constant M , both independent of k, such that the following holds
when k is sufficiently large:

(

te, d̄k(t)
)

≥ 1

k

(

ūk(1), v̄k(1)
)

, for t≥ 1

k
τ ; (193)

|ŵk(τ/k)| ≤M. (194)

That is, for the k-th network ŵk(t), the residuals will have no effect after the time τ/k; and
moreover, the workloads by that time are uniformly bounded by a constant that depends on
network parameters only. Hence, it suffices to prove Lemma 6 for the case of setting the residuals
ūk(1) and v̄k(1) to zero, particularly for the equation in (56); and we shall do so below.
Third, the fluid limit and the uniform attraction property must be re-developed. This can be

done via adapting the proofs of their stochastic counterparts in establishing the diffusion limit (i.e.,
Theorem 1 and Proposition 2). The details are presented in Lemmas 25-26 below.
Consider the time interval [τ, τ + δ], where τ ≥ 0 and δ > 0. Let T > 0 be a fixed time length.

Define for u≥ 0 and j = 0, · · · , kδ/T ,

w̄k,j(u) = ŵk(τ +
jT +u

k
).

Similarly, we define n̄k,j(u), and d̄k,j(u), etc., as the fluid-scaled “magnifiers” of the corresponding
processes for the time interval [τ + jT/k, τ +(j+1)T/k].

Lemma 25 Let jk be an integer for each k. Suppose the L1 norm of w̄k,jk (0) is bounded:
|w̄k,jk (0)|=∑r∈R w̄k,jk

r (0)≤M for all k and for some constant M . Then, for any subsequence of
k, there exists a further subsequence, denoted K, such that, along K,

(

w̄k,jk (t), d̄k,jk(t)
)

→
(

w̄(t), d̄(t)
)

u.o.c.,

where the (“fluid”) limit is Lipschitz continuous and satisfies (129-132) (with (ū(1), v̄(1)) = 0).
Consequently, w̄(t) satisfies all the conclusions in Proposition 18 (with τ =0), assuming the heavy
traffic condition in (11) holds.

The above is a special case of Proposition 4.2 in [57]: replacing the the renewal processes there
by the (deterministic) λt and µt. (Also note that the allocation here is Λ̄(n) instead of Λ(n), but
this will not affect the proof as Λ̄r(n) = Λr(n) for nr > 0.)

Lemma 26 Consider the time interval [τ, τ + δ], with τ ≥ 0 and δ > 0; let C = |θ|δ; and suppose

sup
k

|ŵk(τ)| ≤M, (195)

for some constant M ≥ 0. Let ǫ > 0 be any given (small) number. Then, there exists a sufficiently
large T such that, for sufficiently large k, the following results hold for all positive integers j < kδ/T
(i.e., excluding j = 0):
(a) (uniform attraction)

dfp(w̄k,j(u))≤ ǫ, for all u∈ [0, T ]; (196)

(b) (complementarity) if gTℓ w̄
k,j(u′)> ǫ for some u′ ∈ [0, T ], then

ȳk,j
ℓ (u)− ȳk,j

ℓ (0) = 0, for all u∈ [0, T ];
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(c) (boundedness)

|w̄k,j(u)| ≤ κw|ŵk(τ)|+κx(C+ ǫ)≤ κ := κwM +κx(C + ǫ), for all u∈ [0, T ], (197)

where κw is a positive constant specified in Proposition 18, and κx is also a positive constant that
depends only on network parameters.

The above lemma is a straightforward adaptation of Lemma 23, replacing processes in the orig-
inal stochastic networks (e.g., Ŵ k(t), Ŷ k(t), W̄ k,jk(u), Ȳ k,jk(u), X̂k(t), and Λ(n)) by their fluid
counterparts (e.g., ŵk(t), ŷk(t), w̄k,jk (u), ȳk,jk(u), x̂k(t) = ŵk(0)+ k(ρk − ρ)t, and Λ̄(n)). Its proof
also parallels closely that of Lemma 23, and hence omitted.

Proof (of Lemma 6). Keeping in mind the boundedness condition in the lemma (|ŵk(0)| ≤ 1), we
know that the condition in (195) is satisfied with τ =0 and M = 1. Hence, we can apply Lemma 26,
with τ = 0, any δ > 0 and M = 1, to the processes ŵk(t). Pick any δ′ ∈ (0, δ). From the definition
of tk0 , we have for sufficiently large k and for any t∈ [0, δ′],

tk0 + t=
jT +u

k
, for some u∈ [0, T ] and 1≤ j < kδ/T.

Therefore, we can write

ŵk(tk0 + t) = w̄k,j(u), for some u∈ [0, T ] and 1≤ j < kδ/T.

Then, Lemma 26(a) translates to: for any ǫ > 0 and sufficiently large k, the following holds,

dfp(ŵk(tk0 + t))≤ ǫ, for t∈ [0, δ′].

Therefore, we have

dfp(ŵk(tk0 + t))→ 0 u.o.c of t≥ 0, as k→∞. (198)

By the property (c) in Lemma 26, we have

|ŵk(tk0)| ≤ κw|ŵk(0)|+κx(C + ǫ)≤ κw +κx(C+ ǫ), (199)

and hence

limsup
k→∞

|ŵk(tk0)| ≤ κw +κx(C+ ǫ).

Observe that the left hand side is independent of ǫ and C, and that C(= |θ|δ) can be made
arbitrarily small by choosing a sufficiently small δ from the beginning. Thus, the above inequality
can be strengthened as

limsup
k→∞

|ŵk(tk0)| ≤ κw. (200)

Consequently, for any subsequence of k, there exists a further subsequence K such that

ŵk(tk0)→ ŵ(0) as k→∞ along K,

where due to (198) and (200), the state ŵ(0) satisfies:

ŵ(0)∈W (dfp(ŵ(0)) = 0), and |ŵ(0)| ≤ κw.
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Multiplying both sides of (56) by hT
m yields

hT
mŵ

k(t) = hT
m(ŵ

k(0)− ρkūk(1)+ v̄k(1))+hT
mk(ρ

k − ρ)t+ ẑkm(t),

where we have applied (193) to simplify the terms involving the residuals. (One may choose to
ignore these residual terms following our comments around (193), if one wish to.) The above
equality implies the following,

hT
mŵ

k(tk0 + t) = hT
mŵ

k(tk0)+hT
mk(ρ

k − ρ)t+(ẑkm(t
k
0 + t)− ẑkm(t

k
0)).

From the convergence in (198) and the definition of dfp in (22), we have hT
mŵ

k(tk0+ t)→ 0 as k→∞
(u.o.c. of t≥ 0). Therefore, letting k→∞ in the above equality yields,

ẑkm(t
k
0 + t)− ẑkm(t

k
0)→ ẑm(t) :=−hT

mθt, u.o.c. of t≥ 0.

The process ŷk(t), for each k, is nondecreasing and continuous (refer to (58)). Moreover, the
property (c) in Lemma 26 implies that ŵk(t), and thus ŷk(t), are uniformly bounded on any compact
set of time t. (We can choose τ = 0 and any δ in the lemma.) Hence, we are guaranteed that for any
subsequence of K there exists a further subsequence, denoted by K′, such that (ŷk(tk0 + t)− ŷk(tk0))
converge along K′ to a limit ŷ(t), which is nondecreasing, RCLL, and is finite for all t≥ 0. Note
that ŷ(t) is continuous for almost all time t, and that as yet this convergence is guaranteed only
for those times t at which ŷ(t) is continuous. Consequently, we have, from (56),

ŵk(tk0 + t) = ŵk(tk0)+ k(ρk − ρ)t+BG(ŷk(tk0 + t)− ŷk(tk0))+BH(ẑk(tk0 + t)− ẑk(tk0))
→ ŵ(t) = ŵ(0)+ θt+BGŷ(t)+BHẑ(t),

along the same convergent subsequence K′. Note that this convergence holds for those times t at
which ŷ(t) is continuous, and that ŵ(t) is finite for all t≥ 0 as well.
From what has been established above, along with Lemma 26, it can be directly verified that the

limits, ŵ(t), ŷ(t) and ẑ(t), jointly satisfy (39-44). (In particular, the convergence in (198) implies
dfp(ŵ(t)) = 0, which gives (40) and (43).) Since x(u) = θu is a continuous function, the oscillation
inequality in Lemma 21 implies that ŵ(t) and ŷ(t) are also continuous.
Having proved that the convergence, along the subsequenceK′, to the limit (ŵ(t), ŷ(t), ẑ(t)) holds

for all t, and that the limit is continuous and satisfies all the requirements in (39)-(44), we can
invoke the uniqueness of the solution to the DCP in (39)-(44) (refer to Proposition 20) to conclude
that the u.o.c. convergence holds for the subsequence K. �

Appendix D: Proofs for §4

D.1. Proof of Lemma 9 As a preparation, we first turn the moment condition in (13) to the
p-th moment condition on the non-delayed (i.e., renewal) part of the arrival and service processes
(e.g., Theorem 4 (in the appendix 1) of [40]): for some p≥ 2, the following inequality holds uniformly
for all k,

E sup
0≤s≤t

∑

r∈R

(

|E0,k
r (s)−λk

rs|p + |S0,k
r (s)−µk

rs|p
)

≤ κ(1+ t
p
2 ), t≥ 0, (201)

which implies the following, more convenient formulation,

E sup
0≤s≤t

∑

r∈R

(

|Ê0,k
r (s)|p + |Ŝ0,k

r (s)|p
)

≤ κ(1+ t
p
2 ), t≥ 0. (202)
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This version of p-th moment condition can be applied more directly below. It is also used in similar
studies in [6, 34, 35].

We prove Lemma 9 now.
From the bounded workload condition (72), there exists a constant κ1 > 0 such that the following

condition holds,

sup
0≤s≤t

|Ŵ k(s)| ≤ κ1

(

|Ŵ k(0)|+ sup
0≤s≤t

∑

r∈R

(

νk
r |Êk

r (t)|+ νk
r |Ŝk

r (D̃
k
r (t))|+ k|ρkr − ρr|t

)

)

.

Recall that D̃k
r (t) =Dk

r (k
2t)/k2. Then, we have, due to the capacity constraint,

D̃k
r (t) =

1

k

∫ k2t

0

Λr(N
k(s))ds≤max

ℓ
cℓt,

which implies

sup
0≤s≤t

|Ŝk
r (D̃

k
r (t))| ≤ sup

0≤s≤t

|Ŝk
r (max

ℓ
cℓt)|

From (10), we know that {νk
r } and {k|ρkr − ρr|} are uniformly bounded by some constant κ′ over

all k and r.
Also, we observe the effect of residuals in the arrival and service processes by examining their

definitions in (4). If t < uk
r(1)/k

2, we have Êk
r (t) =−λk

rkt; otherwise, we have

Êk
r (t) = Ê0,k

r (t−uk
r(1)/k

2)+
1

k
−λk

r

uk
r(1)

k
.

Combining these two cases yields

sup
0≤s≤t

|Êk
r (s)| ≤ sup

0≤s≤t

|Ê0,k
r (s)|+ 1

k
+λk

r

uk
r(1)

k
.

Similarly, we have

sup
0≤s≤t

|Ŝk
r (t)| ≤ sup

0≤s≤t

|Ŝ0,k
r (t)|+ 1

k
+(νk

r )
−1v

k
r (1)

k
.

Hence, from the above estimates and simple algebra, we have for some constant κ2

sup
0≤s≤t

|Ŵ k(s)| ≤ κ2

(

|Ξ̂k(0)|+ t+1+
∑

r∈R

(

sup
0≤s≤t

|Ê0,k
r (t)|+ sup

0≤s≤t

|Ŝ0,k
r (max

ℓ
cℓt)|

)

)

.

The above implies, for some constant κ3,

sup
0≤s≤t

|Ŵ k(s)|p ≤ κ3

(

|Ξ̂k(0)|p+ tp +1+
∑

r∈R

(

sup
0≤s≤t

|Ê0,k
r (t)|p + sup

0≤s≤t

|Ŝ0,k
r (max

ℓ
cℓt)|p

)

)

. (203)

Applying the p-th moment condition in (202), we have for some constants κ4 and κ,

E sup
0≤s≤t

|Ŵ k(s)|p ≤ κ3

(

M p + tp +1+κ4(1+ t
p
2 )
)

≤ κ (M p +1+ tp) .
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The proofs of (b) and (c) are similar, and we prove (c) below only. From (203), we have
∣

∣

∣

∣

∣

Ŵ k(mkt)

mk

∣

∣

∣

∣

∣

p

≤ κ3

(

1+ tp +
1

mp
k

∑

r∈R

(

sup
0≤s≤mkt

|Ê0,k
r (s)|p + sup

0≤s≤mkt

|Ŝ0,k
r (max

ℓ
cℓs)|p

)

)

. (204)

For convenience, denote

ξkr =
1

mp
k

sup
0≤s≤mkt

|Ê0,k
r (s)|p and ηk

r =
1

mp
k

sup
0≤s≤mkt

|Ŝ0,k
r (max

ℓ
cℓs)|p

Applying the p-th moment condition in (202) yields, for some constant κ5, as k→∞,

Eξkr ≤
κ5(1+ (mkt)

p/2)

mp
k

→ 0,

and similarly Eηk
r → 0. Now, for any (small) ǫ > 0, we can find a sufficiently large K such that

Eξkr < ǫ for all k >K, and then we have

sup
k

Eξkr 1{ξkr>a} ≤ max

{

sup
k≤K

Eξkr1{ξkr>a}, sup
k>K

Eξkr

}

≤ max

{

sup
k≤K

Eξkr1{ξkr>a}, ǫ

}

→ ǫ, as a→∞.

That is, {ξkr } is uniformly integrable, and so is {ηk
r }. This integrability, along with the inequality

in (204), implies the conclusion in (c). �

D.2. Proof of Lemma 10(b) Since |Ξ̂k(0)| ≤mk, we can apply Proposition 3(b), with the
sequence {tk0} also given in the proposition. That is, for any subsequence of k, there exists a further
subsequence, denoted by K, such that the following weak convergence holds when k→∞ along K:

1

mk

Ŵ k(mk(t
k
0 + t))⇒ ŵ(t)

where the limit ŵ(t) (along with suitable ŷ(t) and ẑ(t)) follows the specifications in (39-44). Fur-
thermore, according to (46) with M replaced by κw, the limit satisfies |ŵ(0)| ≤ κw with probability
one. (Recall, κw is a constant that depends only on network parameters; refer to Proposition 18(a).)
Under the stability of ŵ(t) (which holds under the usual traffic condition in (66) for the case of

resource-sharing network, as explained in Theorem 8(a)), the above limit satisfies

ŵ(t′0 + t) = 0, t≥ 0,

for some constant time t′0 > 0. Therefore, we have from the above two displays: as k→∞ along K,

1

mk

Ŵ k(mk(t
k
0 + t′0 + t))⇒ ŵ(t′0 + t)≡ 0.

Since the limit is unique and continuous (zero function) and K is a subsequence of an arbitrarily
chosen subsequence of k, the above weak convergence is turned into a (u.o.c.) convergence along
the full sequence of k with probability one: as k→∞ (along the full sequence),

1

mk

Ŵ k(mk(t
k
0 + t′0 + t))→ 0, u.o.c. of t≥ 0.

Letting t0 = t′0 +1, the above implies the conclusion in Lemma 10(b). �
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