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ABSTRACT 

 

In this paper, two-tier mathematical models were developed to simulate the microscopic 

pedestrian decision-making process of route choice at signalized crosswalks. In the first tier, 

a discrete choice model was proposed to predict the choices of walking direction. In the 

second tier, an exponential model was calibrated to determine the step size in the chosen 

direction. First, a utility function was defined in the first-tier model to describe the change of 

utility in response to deviation from a pedestrian’s target direction and the conflicting effects 

of neighboring pedestrians. A mixed logit model was adopted to estimate the effects of the 

explanatory variables on the pedestrians’ decisions. Compared with the standard multinomial 

logit model, it was shown that the mixed logit model could accommodate the heterogeneity. 

The repeated observations for each pedestrian were grouped as panel data to ensure that the 

parameters remained constant for individual pedestrians but varied among the pedestrians. 

The mixed logit model with panel data was found to effectively address inter-pedestrian 

heterogeneity and resulted in a better fit than the standard multinomial logit model. Second, 

an exponential model in the second tier was proposed to further determine the step size of 

individual pedestrians in the chosen direction; it indicates the change in walking speed in 

response to the presence of other pedestrians. Finally, validation was conducted on an 

independent set of observation data in Hong Kong. The pedestrians’ routes and destinations 

were predicted with the two-tier models. Compared with the tracked trajectories, the average 

error between the predicted destinations and the observed destinations was within an 

acceptable margin. 

 

Keywords: Pedestrian decision model, Pedestrian route choice, Bi-directional pedestrian 

movements, Discrete choice model, Random-parameter model, Panel data  
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1 INTRODUCTION 

 

Walking is an environmentally friendly mode of transportation. A better understanding of the 

decision-making processes of individual pedestrians when interacting with others would help 

to improve microscopic simulation of pedestrian movements and would thus allow more 

accurate prediction of their behavior in different situations. This in turn would help to assess 

the effectiveness of management measures on pedestrian-related traffic, such as crowd 

movements in mass gatherings (Batty et al. [1], Kluepfel [2]), passenger flows in mass 

transport terminals (Jia et al. [3], Schultz et al. [4]), and pedestrian crossing movements at 

signalized crosswalks (Zeng et al. [5], Lee et al. [6]). 

Because signalized junctions are the most common type of traffic junction in densely 

populated cities, observational survey is a practical, straightforward, and reliable approach by 

which to study pedestrian movements there. To assess the macroscopic characteristics of 

pedestrian flows, Knoblauch et al. [7] conducted field studies on walking speed and start-up 

times at signal-controlled intersections in four urban areas in the United States. Lam et al. [8] 

conducted surveys on bidirectional pedestrian flows at signalized crosswalks in Hong Kong 

and investigated the relationships between speed and flow under different conditions. Xie et 

al. [9] observed pedestrian crossing flows at a busy crosswalk in central Hong Kong and 

suggested that the walking speed of bidirectional pedestrian streams is also influenced by the 

angle of intersection between the two flows. Xie and Wong [10] further extended their study 

on four-directional pedestrian streams at another crosswalk in Hong Kong and proposed a 

mathematical model to represent multidirectional pedestrian flow movements. Petritsch et al. 

[11] collected field data from the United States and developed a level of service model based 

on a series of pedestrian perception factors and junction geometric factors. Yang et al. [12] 

and Li et al. [13] estimated pedestrian delay at signalized intersections based on a field study 

in Xi’an. Although analyses of pedestrian-related safety issues are usually based on historical 

data, observational studies are still beneficial for measurement of pedestrian exposure 

(Knoblauch et al. [14]) and for evaluation of electronic devices’ distracting effects on 

pedestrians as they cross junctions (Nasar et al. [15]). Therefore, it is appropriate to develop a 

microscopic model of pedestrian movements based on observational survey data. 

In recent decades, typical models have been proposed to model pedestrian behavior at 

the microscopic level. The cellular automaton model and the lattice model were both 

introduced from vehicle traffic models. Blue and Adler adopted the cellular automaton model 

to simulate unidirectional [16], bidirectional [17], and four-direction [18] pedestrian flows 
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based on a set of behavioral rules that determine the occupancy of neighborhoods. As CA 

models enable pedestrian movements to be approximated by setting rules for behavior, 

researchers have used this approach to perform microsimulation experiments investigating 

the operational conditions and performance of a variety of walking facilities. For example, 

Yue et al. [19] produced CA models of bidirectional pedestrian flow with different directional 

split ratios, taking pedestrian habits into consideration. Fang et al. [20] and Yang et al. [21] 

investigated whether pedestrians in different countries preferred to move left or right in cases 

of counter-flow. Lee and Lam [22] used observational survey data to derive rules for 

pedestrian behavior and calibrate and validate a simulation model for bidirectional pedestrian 

flow at signalized crosswalks, using the speed-flow relationship obtained in a previous study 

[8]. Abdelghany et al. [23] developed a microsimulation assignment model of 

multidirectional pedestrian movements in crowds, and used the model to evaluate the 

performance of different operational conditions in a prayer hall in Mecca, Saudi Arabia.  

The lattice model is an analog for pedestrian flow as a gas or fluid. Muramatsu et al. 

[24] adopted the lattice gas model to describe pedestrian counter flow in a two-dimensional 

system. Helbing et al. [25] and Isobe et al. [26] adopted the lattice gas model to simulate 

pedestrian movements during an evacuation. In addition to using the analogy of gas and fluid, 

Helbing and Molar [27] proposed a “social force” model to represent several factors that 

influence the pedestrians’ decision making. Furthermore, Hoogendoorn and Bovy [28] 

considered that pedestrian predict the behavior of other pedestrians based on their 

observations on the surrounding pedestrians, and hence suggested that walking can be 

represented as a differential game and pedestrian may aware of the walking strategies of 

others. Hoogendoorn and Daamen [29] further amended the model with anisotropy and finite 

reaction times as important aspects of walking behavior, and establish the approach to the 

calibration of experimental pedestrian trajectory data. Qu et al. [30] incorporated a heuristic 

function into the force-based model and suggested an effective algorithm to find approximate 

optimal pedestrian walking direction. 

While CA models, lattice-gas models and social force models represent pedestrian 

movements with certain rules and predict their behavior in a deterministic approach, the 

discrete choice model has been commonly adopted to model pedestrian route choices in a 

probabilistic way. Antonini et al. [31] and Robin et al. [32] proposed a model to describe the 

short-term individual responses regarding route choice in the presence of other pedestrians. A 

cross-nested logit model was formulated because they considered the walking direction 

choice and the decision to change walking speed to be correlated. An error component was 
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then introduced to change the model’s error structure, and thus the mixed nested logit model 

was formulated. This approach considered 33 different alternatives and resulted in well 

statistically fit in model calibration and recovered comparable choice histogram in the 

validation. However, it divided the area around a pedestrian into 33 strips and only predicted 

which one he/she would go at the next step, i.e. the exact position of pedestrian will not be 

predicted. Rather than considering walking direction and speed at different levels of a nested 

logit model, Guo et al. [33] developed a microscopic pedestrian-simulation model that 

updated the pedestrians’ positions at discrete time steps. A multinomial logit model was 

proposed to combine the choice of direction and the time step. As a one-step approach, all 

pedestrians were assumed to behave in the same way with the same preference in direction 

choice and avoidance of possible collisions.  

Besides the above studies on pedestrian moving behavior at step level, discrete choice 

model has also been adopted to simulate pedestrian destination choices at link level. Dijkstra 

et al. [34] proposed a multi-agent approach to utilize behavioral principles for simulating 

pedestrian activity in shopping environments, and particularly focused on impulse and non-

impulse chopping behavior. Borgers et al. [35] used this approach to model pedestrian 

movements at street segments. The destination choices include shops and other terminus, and 

the independent variables include type of shop, distance and tendency to visit a shop. 

Considering that pedestrian may not take all attributes into account in reality, Zhu and 

Timmermans [36] suggested principles of bounded rationality, i.e. pedestrians may have 

heterogeneous decision styles and rules so that they may decide only based on a subset of 

attributes. 

In this study, we investigated pedestrian movements and their interactions in crossing 

signalized intersections, developed and calibrated an estimable model for pedestrian route 

choice at signalized crosswalks at microscopic level.  We considered the choice of walking 

direction and the determination of step size sequentially. A two-tier modeling approach was 

proposed to simulate the microscopic pedestrian decision-making process on the choice of 

route at signalized crosswalks. In the first tier, a discrete choice model was proposed to 

estimate the choice of walking direction. It is followed by the second tier with an exponential 

model for capturing the step size change in response to the spacing change between 

pedestrians. Given the heterogeneity across the pedestrian samples, a random-parameter 

multinomial logit model (mixed logit) was adopted to address inter-pedestrian heterogeneity. 

Furthermore, because repeated observations of each pedestrian are made through the 
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trajectory, panel data were adopted to ensure that the random parameters remained constant 

for individual pedestrians. 

 

2 DATA 

 

2.1 Description 

 

In this study, a video data set collected in a previous study of bidirectional pedestrian flow at 

signalized crosswalks (Xie et al., [9]) was used to provide walking trajectory data to develop 

our model. The selected site was the signalized intersection between the Queen’s Road 

Central and D’Aguilar Street in Central District, Hong Kong. The crosswalk was at the 

Queen’s Road Central, which is a one-way, two-lane road. The size of the crosswalk was 

17.5 m in length and 7.5 m in width. The cycle time of the intersection was 120 seconds, and 

there was a 15-second pedestrian phase in each cycle. 

 

As described by Xie et al. [9], a 2-second period in the middle of each pedestrian 

phase was extracted to capture pedestrian interactions when the two streams had fully mixed. 

The pedestrian movements were tracked every 0.2 s; therefore, the trajectory of an individual 

pedestrian consisted of 10 positions. The first point was regarded as the origin, and the last 

was regarded as the destination. In this study, 1457 trajectories including 11,656 observations 

were extracted to develop the model, and the average speed was 1.21 m/s. An additional data 

set collected at the same site, with 5376 observations from 672 trajectories, was used for 

validation later in the study (Table 1). 

 

[Insert Table 1 here] 

 

2.2 Classification of direction choices 

 

To investigate pedestrians’ decisions on walking direction, the choices of direction must be 

defined. According to our observations, a pedestrian chooses any forward direction rather 

than stepping backward in more than 90% of cases. Therefore, the possible movement 

directions of a pedestrian at Pi were defined as shown in Figure 1 (labeled 1 to 10). The 

angles between the 10 directions and the target direction are −π/2, −3π/8, −π/4, −π/8, 0, π/8, 

π/4, 3π/8, π/2, and π, respectively. The red arrow represents the pedestrian’s target direction 
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(from the origin to the destination). However, when affected by conflicting pedestrians, the 

subject pedestrian at Pi may choose to move in one of the 10 directions to avoid potential 

conflicts. As shown in Table 2, nearly 60% of observations indicate a strong preference for 

maintaining the target direction, and about 85% of observations maintain directions within 

3π/16 (33.75°) of the target direction (i.e., direction choices 4, 5, and 6). In addition, because 

directions 1, 2, 3, and 4 are actually symmetric with the directions 9, 8, 7, and 6, respectively, 

both directions in each symmetrical pair have the same degree of deviation from the target 

direction. The numbers of observations that fall on both sides of the target direction for each 

pair are roughly the same, which reveals that pedestrians have no significant preference for 

using either side of the target direction. 

 

[Insert Figure 1 here] 

[Insert Table 2 here] 

 

Because pedestrians are inclined to walk with a smaller deviation from the target 

direction while not being sensitive to which side of it they use, it is reasonable to categorize 

the 10 possible movement directions according to the degree of deviation from the target 

direction as shown in Figure 2 (labeled 1 to 6). 

 

[Insert Figure 2 here] 

 

2.3 Interaction with potential conflicting pedestrians 

 

In addition to the preference on directions, the movements of surrounding pedestrians also 

influence one’s decision on the choice of route when walking in crowds. In this study, 

pedestrians who were closer than 2 m were generally considered to have possible conflicts. 

According to a preliminary investigation, a neighboring pedestrian Pj that enters the 90° 

visual cone in front of subject pedestrian Pi would be significantly aware of Pi and would 

influence the decision regarding the choice of route (Figure 3). To specify the effect induced 

by the surrounding pedestrians, a potential conflict point Q for Pi and Pj was estimated on the 

basis of their speeds at the preceding steps. The distance between the current position of Pi 

and Q was measured as Sijn for Pi chooses a particular direction n, as shown in Figure 3. 

 

[Insert Figure 3 here] 
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Based on the categories of direction choices defined in Figure 2, the observations of 

potential conflicts with surrounding pedestrians were identified, and their average distance to 

the estimated conflict points are listed in Table 3.  

 

[Insert Table 3 here] 

 

As shown in Table 3, although more than 80% of pedestrians who maintained their 

target directions (category 1) encountered no potential conflicts, about half of those who 

adjusted their walking directions (categories 2 to 6) had potential conflicts with surrounding 

pedestrians. In addition, the average distance to the estimated conflict point was greater than 

0.8 m for categories 1 and 2, which deviate less from the target direction. However, this 

distance dropped to a level comparable to the width of the human body, about 0.5 to 0.6 m 

(Transportation Research Board, [37]), for categories 3 to 6. The greater the deviation from 

the target direction, the closer the subject pedestrian comes to the estimated conflict point, 

and some would finally choose to step backward to avoid the imminent collision (category 6, 

0.47 m). This finding implies that pedestrians are sensitive to potential conflicts with others 

and would rather change directions to maintain a comfortable distance. Therefore, the trade-

off between the willingness to maintain the target direction and the avoidance of potential 

conflicts should be taken into account in the model formulation. 

 

 

3 METHODS 

 

To develop a model that accurately represents pedestrian route choice behavior, a logical 

decision-making process must be defined and simulated with the use of a two-tier modeling 

approach. It is reasonable that a pedestrian would first decide upon a direction and then adjust 

the step size to optimize the utility. Therefore, multinomial logit models are adopted to 

evaluate the choice of walking direction, and an exponential function is used to determine the 

step size. 

 

3.1 Choice of walking direction  
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Utility function 

The multinomial logit model is a practical discrete choice model whose framework is based 

on the random utility theory. A commonly adopted expression of the utility of the nth 

alternative for the ith individual is 

 
1

p

in k ik in
k

U X 


    (1) 

 

where Xik is the kth observable characteristics for the ith individual, βk (k = 1,…, p) are the 

estimable parameters, and εin is the random error term. 

In this study, the utility of each choice of direction is estimated on the basis of the deviation 

from the target direction and the conflict induced from the surrounding pedestrians. As 

mentioned in Section 2.2, the direction choices were divided into six categories according to 

the degree of deviation from the target direction. Therefore, Xi1, Xi2, Xi3, Xi4, and Xi5 are a set 

of dummy variables that represent categories 1 to 5, respectively, with the corresponding 

parameters β1, β2, β3, β4, and β5. The parameter of category 6 is normalized to zero to allow 

parameter estimation. As mentioned in Section 2.3, the distance from the current position of 

pedestrian i to the estimated conflict point with pedestrian j for direction n was measured as 

Sijn, and the value for estimating this conflict is defined as the critical spacing 
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Finally, the utility of the nth direction for the ith pedestrian is 
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Standard multinomial logit (MNL) model 

The simplest way to estimate the function and determine the direction choice probabilities is 

to adopt the standard multinomial logit model. The probability that the ith pedestrian chooses 

to walk in the nth direction out of the 10 direction choices is  
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By adopting the standard multinomial model for the choice of walking directions, the 

decision made by each pedestrian at each step was regarded as an individual observation, and 

parameters β are assumed to be constant for all individuals, i.e., a fixed-parameter model. 

 

Mixed multinomial logit (ML) model 

As noted in the previous section, the same set of parameters β are applied to all individuals 

with the standard MNL. However, a general concern in the model specification is the possible 

random variation in the effects of the explanatory variables across observations. To address 

this problem, the mixed multinomial logit model is an alternative that provides flexibility for 

β to vary over observations with the mixing distribution q (β|φ) (Washington et al., [38]); the 

probability function then becomes 
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Particularly for this study, because the direction choices for all pedestrians are the same, to 

address the heterogeneity across individual observations, the mixed logit model can be 

expressed in a random-parameter structure as  
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where φik is randomly distributed. 

 

Mixed logit model with panel data (MLP) 

As mentioned in Section 2.1, repeated observations of a particular pedestrian were made as 

he or she walked along the trajectory. It is more appropriate to account for the correlation 

among observations that belong to the same decision maker (Ortuzar and Willumsen, [39]). A 

practical method is to treat the parameters β as varying among pedestrians while remaining 
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constant over the whole route as he or she walked. Therefore, the repeated observations for 

each pedestrian were grouped as a set of panel data. According to Train [40], a mixed logit 

panel probability that accommodates such inter-respondent heterogeneity while assuming 

intra-respondent homogeneity in tastes was given as  

 

 
1

exp[ ]
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i
t m
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ti in t

n i i
i imt

β X
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 (7) 

 

where Pin is the probability that the ith pedestrian makes the sequence of direction choices as 

n={n
1
,…,n

T
} over T repeated observations. Xintt

 are the explanatory variables of the chosen 

direction nt to the pedestrian i at time t.  

NLOGIT 5 software was used to estimate the models mentioned above. The 

estimation of the random parameters was based on the simulated maximum likelihood 

approach with 100 Halton draws. 

 

3.2 Step size 

 

In addition to the choice of walking direction, step size is the other component of the 

pedestrian route-choice model. It is natural that a pedestrian would adjust the length of his or 

her step to avoid possible conflicts with others as he or she walks. Assuming a free flow 

speed of uf, at which a pedestrian can walk freely without being affected by any other 

pedestrians, an exponential term is used to represent the decrease in walking speed in 

response to the conflicting effects induced by surrounding pedestrians. The model for 

estimating the instantaneous speed is then formulated as  

 

 i i6(1 exp( ( )))fu u X     (8) 

 

where Xi6 is the critical spacing defined in Section 2.3, i.e., the distance to the closest 

estimated conflict point in the chosen direction (Equation 2), and α and β are the coefficients. 

 

As defined in Section 2.3, only neighboring pedestrians who are closer than 2 m to the 

subject pedestrian and fall within the 90° visual cone would be considered to have conflicting 
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effects on the subject pedestrian (Figure 3). Therefore, the value of Xi6 was set at 2 m as a 

default for all observations that involved no such conflicting pedestrians. 

 

4 RESULTS 

 

4.1 Estimation of the walking direction choice model 

 

NLOGIT 5 was used to estimate the standard multinomial logit model, the mixed logit model, 

and the mixed logit model with panel data; the results are shown in Table 4. The parameter 

estimates of all modeling approaches are significant at the 1% level for the five dummy 

variables that represent the direction choice categories. All models are consistent for the 

preference of direction choices. The pedestrians are inclined to maintain their target 

directions, and the utility decreases as the deviation increases from the target direction. 

However, when conflicting pedestrians are nearby, some may choose to give way directly to 

either side or even step backward (categories 5 and 6) than to keep moving forward along an 

ambiguous direction (categories 3 and 4) that is neither close to the target nor sufficient to 

avoid the potential conflict. 

In contrast, the coefficient of the critical spacing X6 became negative in the standard 

multinomial model, whereas the same coefficients were positive and significant at the 1% and 

5% levels in the mixed logit model and the mixed logit model with panel data, respectively. 

As revealed from the results of the likelihood-ratio test, heterogeneity exists across individual 

pedestrians in response to the change in the explanatory variables. The positive values are 

also consistent with our observation from the data shown in Table 3, i.e., pedestrians would 

likely switch from the preferred target direction when they encounter conflicting pedestrians 

within a short distance. Therefore, the estimates of the latter two models are considered to be 

more reliable because they address heterogeneity and because the parameters are significant 

at acceptable levels. This finding indicates that the presence of a conflicting pedestrian 

reduces the utility of the corresponding direction for the subject pedestrian. Closer spacing 

means that the collision may occur sooner; however, inter-respondent heterogeneity exists 

among pedestrians in response to such a spacing change. 

In terms of goodness-of-fit, the mixed logit model with panel data, with the lowest 

AIC value and the largest McFadden adjusted pseudo R2, is considered to have the best fit 

among the three models. The statistics of the likelihood-ratio test are 192.58 and 727.66, 

respectively, which are both greater than χ2 (6, 99%) = 16.81, which indicates that the 
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standard multinomial logit model is rejected in favor of the mixed logit model and the model 

with panel data. 

 

[Insert Table 4 here] 

 

4.2 Estimation of the step size model 

 

As proposed in Section 3.2, the step size is estimated with an exponential function of the 

critical spacing Xi6. As shown in Table 5, all parameters are significant at the 5% level. The 

free flow speed uf is 1.306 m/s, which is similar to the value calibrated by Xie et al. [9] with 

observational data collected from the same site. It is also consistent with the observational 

mean walking speed (75.38 m/min, or 1.26 m/s) reported by Lam et al. [8] in a commercial 

area in Hong Kong. The other two parameters, α and β, are the coefficients; α is negative and 

indicates that the pedestrians would reduce their step size if the estimated critical spacing 

decreased. With no other pedestrians around, the subject pedestrian can walk freely at the free 

flow speed; however, the speed decreases with the spacing. The R2 value of 0.062 and the 

MAPE of 31.1% indicate that the data points did not perfectly fit the model due to the short 

time interval between each data point (0.2 s); however, it still showed the general trend of 

how pedestrians interact with others and adjust their step size. 

 

[Insert Table 5 here] 

 

4.3 Test on the angle of view 

 

As mentioned above, a preliminary test was conducted before adopting the 90° visual cone as 

the pedestrian visual field in Section 2.3 and later in Section 3.2. The horizontal binocular 

visual limit in humans is generally considered to be 120° (Stidwill and Fletcher, [41]). Using 

the same set of data, tests were conducted for different angles between 60° and 120° at 10° 

intervals. The lowest AIC value (30299.2) was achieved at a visual field of 90° (Figure 4). 

Therefore, we decided that the neighboring pedestrians in such a visual field would be aware 

of the subject pedestrian and would influence his or her decision-making process. 

 

[Insert Figure 4 here] 
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5 VALIDATION 

 

As mentioned in Section 2.1, another set of tracked pedestrian walking trajectories was used 

for model validation. Because the focus of this study was to develop a microscopic decision 

model of pedestrian route choice, the validation was conducted directly by predicting the 

walking route to the destination on the basis of the pedestrian’s origin and the given positions 

of other pedestrians over the 10 frames. 

For the choice of walking direction, the probabilities that the ith pedestrian would 

choose each of the 10 directions were computed with the proposed model. Rather than 

assuming that the pedestrian would always choose the direction with the highest probability, 

a random number between 0 and 1 was generated for each step and the corresponding 

direction was drawn from the cumulative density function. The instantaneous speed was 

directly computed with the proposed step size model using the critical spacing of the ith 

pedestrian on each direction at the tth frame. The process was repeated frame by frame over 2 

s. Finally, the predicted destination was then compared with the tracked one, and the error 

between them was taken as εi for the ith pedestrian. The 672 trajectories resulted in a mean of 

0.260 m and a standard deviation of 0.182 m, which is about half of the widely accepted 

human body width (0.5 to 0.6 m; Transportation Research Board, [37]). A comparison 

between observed and predicted sampled trajectories is shown as Figure 5. 

 

[Insert Figure 5 here] 

 

6 CONCLUSIONS 

 

This paper proposes a two-tier modeling approach for simulation of the microscopic 

pedestrian decision-making process on the choice of routes at signalized crosswalks. The 

model results regarding pedestrian route choice were validated with the use of observation 

data collected from a signalized crosswalk in Hong Kong. In the first tier, a random-

parameter multinomial logit model was used to model the choice of direction. In the second 

tier, an exponential model was calibrated to further determine the step size. Each parameter in 

the calibrated results was statistically significant. 

In the first tier, the walking direction choice model indicates that pedestrians would 

probably walk in the most desirable target direction. However, if conflicting pedestrians are 

encountered, they would rather give way (either to one side or backward) than move on in a 
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deviated direction. In addition, the estimated spacing change between the surrounding 

pedestrians also influences the utility of a pedestrian to choose a walking direction. 

In estimating the walking direction choice model, the mixed logit model (random 

parameter) was found to be superior in addressing inter-pedestrian heterogeneity and thus 

gave better results than the standard multinomial logit model. The application of panel data 

was shown to be a practical way to control the random parameter as a constant for an 

individual pedestrian. 

In the second tier, the model of the step size formulated the manner in which 

pedestrians would adjust their step size according to the presence of conflicting pedestrians. 

The nearer the potential conflict point, the slower is the walking speed. Finally, it was shown 

that two-tier models can work together to effectively reproduce the observed routes and 

destinations of pedestrian movements. 

Rather than giving a set of fixed rules to simulate pedestrian movements, the proposed 

model represents pedestrian movements in a probabilistic approach, and accounts for 

heterogeneities among pedestrians with a simple and estimable form. Further validation with 

data from other sites would be beneficial for future application of the model. The model 

would be helpful in estimating pedestrian crossing time and capacity of signalized crosswalks, 

hence provide useful information for planning and geometric and signal design of the 

intersections. Besides, pedestrian movements at other walking facilities, especially crowded 

areas such as metro facilities and shopping malls, can also be investigated with the proposed 

model or its extended forms in future.   

 

 

ACKNOWLEDGEMENTS 

 

The research described here was supported by a Research Postgraduate Scholarship from the 

University of Hong Kong, and grants from the Research Grants Council of the Hong Kong 

Special Administrative Region, China (Project No. 717512, 524313). 

 

 

REFERENCES 

 

1. Batty M, Desyllas J, Duxbury E. The discrete dynamics of small-scale spatial events: 



16 
 

agent-based models of mobility in carnivals and street parades. International Journal 

of Geographical Information Science 2003; 17(7): 673-697. 

2. Klüpfel H. The simulation of crowd dynamics at very large events — Calibration, 

empirical data, and validation. Pedestrian and Evacuation Dynamics 2005; 285-296.  

3. Jia, H, Yang L, Tang M. Pedestrian flow characteristics analysis and model parameter 

calibration in comprehensive transport terminal. Journal of Transportation Systems 

Engineering and Information Technology 2009; 9(5): 117-123. 

4. Schultz M, Lehmann S, Fricke H. A discrete microscopic model for pedestrian 

dynamics to manage emergency situations in airport terminals. Pedestrian and 

Evacuation Dynamics 2005; 369-375.  

5. Zeng W, Chen P, Nakamura H, Iryo-Asano M. Application of social force model to 

pedestrian behavior analysis at signalized crosswalk. Transportation Research Part C: 

Emerging Technologies 2014; 40: 143-159. 

6. Lee JYS, Lam WHK. Simulating pedestrian movements at signalized crosswalks in 

Hong Kong. Transportation Research Part A 2008; 42(10): 1314-1325. 

7. Knoblauch RL, Pietrucha MT, Nitzburg M. Field studies of pedestrian walking speed 

and start-up time. Transportation Research Record 1996; 1538: 27-38. 

8. Lam WHK, Lee JYS, Cheung CY. A study of the bi-directional pedestrian flow 

characteristics at Hong Kong signalized crosswalk facilities. Transportation 2002; 

29(2): 169-192. 

9. Xie SQ, Wong SC, Lam WHK, Chen A. Development of a bidirectional pedestrian 

stream model with an oblique intersecting angle. Journal of Transportation 

Engineering 2013; 139(7): 678-685. 

10. Xie SQ, Wong SC. A Bayesian inference approach to the development of a 

multidirectional pedestrian stream model. Transportmetrica A: Transport Science 

2015; 11(1): 61-73. 

11. Petritsch T, Landis B, McLeod P, Huang H, Challa S, Guttenplan M. Level-of-service 

model for pedestrians at signalized intersections. Transportation Research Record 

2005; 1939: 53-62. 

12. Yang J, Li Q, Wang Z, Wang J. Estimating pedestrian delays at signalized 

intersections in developing cities by Monte Carlo method. Mathematics and 

Computers in Simulation 2005; 68: 329-337. 

13. Li Q, Wang Z, Yang J, Wang J. Pedestrian delay estimation at signalized intersections 

in developing cities. Transportation Research Part A: Policy and Practice 2005; 



17 
 

39(1): 61-73. 

14. Knoblauch RL, Tobey HN, Shunaman EM. Pedestrian characteristics and exposure 

measures. Transportation Research Record 1984; 959: 35-41. 

15. Nasar J, Hecht P, Wener R. Mobile telephones, distracted attention, and pedestrian 

safety. Accident Analysis and Prevention 2008; 40: 69-75. 

16. Blue V, Adler J. Emergent fundamental pedestrian flows from cellular automata 

microsimulation. Transportation Research Record 1998; 1644: 29-36. 

17. Blue V, Adler J. Cellular automata microsimulation of bidirectional pedestrian flows. 

Transportation Research Record 1999; 1678: 135-141. 

18. Blue V, Adler J. Modeling four-directional pedestrian flows. Transportation Research 

Record 2000; 1710: 20-27. 

19. Yue H, Guan H, Zhang J, Shao C. Study on bi-direction pedestrian flow using cellular 

automata simulation. Physica A: Statistical Mechanics and its Applications 2010; 

389(3):527-539.  

20. Fang W, Yang L, Fan W. Simulation of bi-direction pedestrian movement using a 

cellular automata model. Physica A: Statistical Mechanics and its Applications 2003; 

321(3):633-640.  

21. Yang L, Li J, Liu S. Simulation of pedestrian counter-flow with right-moving 

preference. Physica A: Statistical Mechanics and its Applications 2008; 

387(13):3281-3289.  

22. Lee JY, Lam WH. Simulating pedestrian movements at signalized crosswalks in 

Hong Kong. Transportation Research Part A: Policy and Practice 2008; 

42(10):1314-1325.  

23. Abdelghany A, Abdelghany K, Mahmassani H, Al-Gadhi S. Microsimulation 

assignment model for multidirectional pedestrian movement in congested facilities. 

Transportation Research Record 2005; 1939: 123-32.  

24. Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow. 

Physica A: Statistical Mechanics and its Applications 1999; 267(3-4):487-498. 

25. Helbing D, Isobe M, Nagatani T, Takimoto K. Lattice gas simulation of 

experimentally studied evacuation dynamics. Physical Review E 2003; 67(6): 067101. 

26. Isobe M, Helbing D, Nagatani T. Experiment, theory, and simulation of the 

evacuation of a room without visibility. Physical Review E 2004; 69(6): 066132. 

27. Helbing D, Molnár P. Social force model for pedestrian dynamics. Physical Review E 

1995; 51(5): 4282-4286. 



18 
 

28. Hoogendoorn S, HL Bovy P. Simulation of pedestrian flows by optimal control and 

differential games. Optimal Control Applications and Methods 2003; 24(3):153-72. 

29. Hoogendoorn SP, Daamen W. A novel calibration approach of microscopic pedestrian 

models. Pedestrian Behavior: Models, Data Collection and Applications 2009:195-

214. 

30. Qu Y, Gao Z, Orenstein P, Long J, Li X. An effective algorithm to simulate 

pedestrian flow using the heuristic force-based model. Transportmetrica B: Transport 

Dynamics 2015; 3(1):1-26. 

31. Antonini G, Bierlaire M, Weber M. Discrete choice models of pedestrian walking 

behavior. Transportation Research Part B 2006; 40: 667-687. 

32. Robin T, Antonini G, Bierlaire M, Cruz J. Specification, estimation and validation of 

a pedestrian walking behavior model. Transportation Research Part B 2009; 43(1): 

36-56. 

33. Guo RY, Wong SC, Huang HJ, Zhang P, Lam WHK. A microscopic pedestrian-

simulation model and its application to intersecting flows. Physica A: Statistical 

Mechanics and its Applications 2010; 39(3): 515-526. 

34. Dijkstra J, Timmermans H, de Vries B. Modeling impulse and non-impulse store 

choice processes in a multi-agent simulation of pedestrian activity in shopping 

environments. Pedestrian Behavior: Models, Data Collection and Applications 

2009:63-87. 

35. Borgers A, Kemperman A, Timmermans H. Modeling pedestrian movement in 

shopping street segments. Pedestrian Behavior: Models, Data Collection and 

Applications 2009:87-111. 

36. Zhu W, Timmermans H. Modeling and simulating pedestrian shopping behavior 

based on principles of bounded rationality. Pedestrian Behavior: Models, Data 

Collection and Applications 2009:137-155. 

37. National Research Council (U.S.). Transportation Research Board. Highway Capacity 

Manual, Transportation Research Board National Research Council; Washington, DC, 

2010. 

38. Washington SP, Karlaftis MG, Mannering FL. Statistical and Econometric Methods 

for Transportation Data Analysis. Boca Raton, USA: Chapman & Hall/CRC, 2003.  

39. Ortuzar JDD, Willumsen LG. Modeling Transport. Chichester, UK: John Wiley & 

Sons, 2011. 

40. Train K. Discrete Choice Methods with Simulation. Cambridge: Cambridge 



19 
 

University Press, 2003. 

41. Stidwill D, Fletcher R. Normal Binocular Vision. Singapore: John Wiley & Sons, Ltd., 

2010.  

  



20 
 

TABLE 1. Summary of data. 

 
Calibration 

Set 
Validation 

Set 
Total number of trajectories 1,457 672
Total number of observations 11,656 5,376
Average walking speed (m/s) 1.21 1.24
Maximum walking speed (m/s) 3.22 3.06
Minimum walking speed (m/s) 0.13 0.10
Standard deviation of walking speed (m/s) 0.41 0.65
 
 
TABLE 2. Distribution of direction choices. 

Direction Observations Percentage
1 283 2.4%
2 10 0.1%
3 145 1.2%
4 1582 13.6%
5 (Target direction) 6856 58.8%
6 1625 13.9%
7 151 1.3%
8 17 0.1%
9 242 2.1%
10 (Backward) 745 6.4%
 

 

TABLE 3. Observations with potential conflicts. 

Category 1 2 3 4 5 6 
 
Total number of observations 6856 3207 296 27 525 745
  
Number of observations with 
potential conflicts 1141 1299 138 13 249 399
 
Percentage of observations 
with potential conflicts 16.64% 40.51% 46.62% 48.15% 47.43% 53.56%
 
Average distance to the 
estimated conflict point (m) 0.85 0.81 0.62 0.58 0.56 0.47
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TABLE 4. Estimates for the direction choice models. 

 MNL ML MLP 
Variables  
Direction category 1, X1 2.2502 *** 2.3694 *** 2.3410 ***

Direction category 2, X2 0.7941 *** 0.8568 *** 0.8642 ***

Direction category 3, X3 −1.6020 *** −1.6267 *** −2.0039 ***

Direction category 4, X4 −4.1166 *** −4.7053 *** −5.7424 ***

Direction category 5, X5 −1.0243 *** −1.0682 *** −2.6120 ***

Critical spacing, X6 −0.7864 *** 2.9098 ***  0.6954**

  
Goodness-of-fit  
No. of observations 11656 11656 11656
No. of parameters, K 6 12 12
Log likelihood at zero, LL(0) −26838.93 −26838.93 −26838.93
Log likelihood at convergence, 
LL(β) 

−15501.44 −15405.15 −15137.61

AIC 31014.90 30834.30 30299.20
McFadden’s adjusted pseudo R2 0.422 0.426 0.436
  
Likelihood-ratio test (vs. Standard MNL) 

2 2 ( ) ( )MNL MLLL LL     β β   192.58 727.66
Degrees of freedom  6 6
Significance level  < 0.01 < 0.01
Note: ***, **, * = significance at 1%, 5%, 10% level. 
 

 

TABLE 5. Estimates for the step size model. 

Parameter Estimate Standard Error
95% Confidence Interval 

Lower Bound Upper Bound

uf 1.306 0.017 1.273 1.338
α −1.234 0.181 −1.588 −0.880
β 0.817 0.144 0.535 1.098
  

R2 0.062 
MAPE 31.1% 
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FIGURE 1 Possible movement directions 

 

 

FIGURE 2 Categories of direction choices 
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FIGURE 3 Potential conflicting with surrounding pedestrians 

 

 

 

FIGURE 4 The AIC values for different angles of view 
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FIGURE 5 Comparison between observed and predicted trajectories 

 

 




