Optimizing the Mixing Procedure of Warm Asphalt Rubber with Wax-Based Additives through Mechanism Investigation and Performance Characterization

Zhen Leng ${ }^{\text {a }}$ *, Huayang $\mathrm{Yu}^{\mathrm{b} * *}$, Zeyu Zhang ${ }^{\mathrm{c}}$, Zhifei Tan ${ }^{\text {d }}$

Abstract

Wax-based additives can be used as flow improvers to enhance the workability of asphalt rubber (AR). Conventionally, warm asphalt rubber (WAR) is produced by preparing AR first and then blending it with warm mix asphalt (WMA) additive. However, directly mixing WMA additive, base asphalt and crumb rubber together may save more energy since the early incorporation of WMA additive also helps decrease the production temperature of AR. To assess the feasibility of incorporating wax-based additives at an earlier stage, this study investigates the influence of the mixing procedure on WAR prepared by two wax-based additives, i.e., commercial Sasobit and conventional paraffin wax. Rheological tests on WAR revealed no significant difference between WARs prepared by different procedures. However, the direct mixing method led to worse WAR workability compared to the traditional

[^0]mixing procedure. Chemical analysis on the liquid phase of WARs (crumb rubber removed) indicated that independent of the type of wax-based additive, there is less wax in the liquid phase of WARs when the additive is added earlier, which may be caused by the absorption of wax by crumb rubber during the interacting process. Thus, it is not recommended to replace the traditional mixing procedure with the direct mixing method.

Keywords: Asphalt rubber; warm mix asphalt; wax; rheological property; workability; interaction

1 Introduction

Asphalt rubber (AR), which is defined as raw bitumen modified by no less than 15% of crumb rubber modifier (CRM) by total binder weight [1], has gained increasing interest due to its excellent mechanical performance and tyre-road noise reduction function [2] and [3]. During its preparation process at elevated temperature, CRM absorbs the light fractions of base binder and releases polymer chains, such as natural rubber and styrene-butadiene rubber, resulting in higher percentage of heavy molecules in asphalt, thus higher viscosity [4], [5], [6] and [7]. Although the high viscous behavior enhances the rutting resistance of asphalt, it brings the concerns of worse pumpability, mixability and workability. In general, the production temperature of AR is $20-30{ }^{\circ} \mathrm{C}$ higher than that of base binder, leading to more energy consumption and higher construction emission [8]. During the past decade, warm-mix asphalt (WMA) technology has been successfully applied to alleviate the workability
concern of AR [9] and [10]. Warm asphalt rubber (WAR) binders with lower viscosities at mixing and compacting temperatures can be prepared by incorporating WMA additives into AR binder before mixing it with aggregates. A $15-30{ }^{\circ} \mathrm{C}$ reduction can be achieved by using different WMA additives [8], [10], [11], [12], [13], [14] and [15]. Among various types of WMA additives, organic additives, in most cases wax-based additives, have been reported to be effective in improving AR's workability without compromising its mechanical properties [11], [12], and [13].

Attributed to its low melting point and good flowability at elevated temperature, wax is usually recognized as flow improver of asphalt binder. Various studies have shown that commercial wax product prepared by Fischer-Tropsch (FT) synthesis process positively affects not only workability, but also rutting and fatigue resistance of asphalt [2], [7], [8], [10], [11], [15], and [16]. Meanwhile, despite its potential negative effect on low-temperature cracking resistance, traditional paraffin wax was found to be a potential WMA additive for AR binders, since its adverse effect on low-temperature performance can be compensated by CRM [13]. To prepare WARs with wax additives, the following two procedures can be adopted: 1) conventional method: mixing CRM and base binder first and then adding wax additive; 2) direct mixing method: directly mixing CRM, base binder and wax additives together. Between these two methods, the direct mixing method may save more energy as the preparing temperature of AR can also be reduced due to the earlier incorporation of WMA additive. Once the wax is incorporated, the viscosity of binder decreases,
which brings positive effect on homogenous distribution of crumb rubber in base binder and makes the mixing work easier. However, it is still unclear that whether these two mixing procedures may lead to different interactions among CRM, raw binder and WMA additive, thus different final workability and rheological properties of WAR.

The performance of WAR with wax additives prepared by the conventional method has been well studied, while the research on the direct mixing method is relatively limited [12] and [17]. Thus, this study aims to evaluate the feasibility and effectiveness of incorporating wax-based WMA additives at an earlier stage of WAR production. To achieve this objective, the rheological properties, including penetration, softening point, viscosity, Superpave rutting parameter, and Superpave fatigue parameter of WAR binders were characterized and compared. In addition, to reveal the interaction mechanism, chemical analyses including Differential Scanning Calorimeter (DSC) test, Gel Permeation Chromatography (GPC) test and wax content test were also conducted.

2 Experimental program

2.1 Preparation of AR and WARs

Asphalt with a penetration grade of 60/70 (Pen 60/70), a common type of asphalt in Hong Kong, was used as the base binder. Crumb rubber with 40 -mesh size was used and the content was 18% by weight of base binder. Two different types of wax
additives were selected and used, namely Sasobit (commercial WMA additive produced by the Fisher-Tropsch process) and $56^{\#}$ paraffin wax (conventional wax), and their dosages were determined as $3 \mathrm{wt} \%$ and $1.5 \mathrm{wt} \%$, respectively, based on the manufacture's recommendation and preliminary test results [13]. Both the conventional and direct mixing methods were applied to produce WARs, leading to in total four WARs. These WARs are labeled as ARS, ARW, ARSD and ARWD, representing AR with Sasobit prepared by conventional method, AR with Wax prepared by conventional method, AR with Sasobit prepared by direct mixing method, and AR with Wax prepared by direct mixing method, respectively. Table 1 provides detailed description on the sample IDs and the corresponding mixing conditions of each test binder.

Both Sasobit and $56^{\#}$ paraffin wax can be completely dissolved in asphalt, while CRM remains in small particulate form in asphalt after interaction. To investigate the interaction among different components of AR and WARs, the liquid phase of AR and WARs were extracted by passing the hot binders through a mesh \#200 sieve [5]. Right after they were prepared, the AR and WARs were dropped onto the sieve which was placed on top of a custom-designed container. Then the whole extraction system was placed into an oven at $150{ }^{\circ} \mathrm{C}$ for 30 minutes to drain the liquid phase through the sieve. The extracted liquid phase was stored at $0{ }^{\circ} \mathrm{C}$ to prevent further ageing or reaction. Each extraction process could produce approximately 50 g extracted liquid
phase from 400 g AR or WAR binders. The liquid phases of WARs were labeled as L-WAR in this paper.

2.2 Testing Program

Conventional binder property tests conducted in this study included penetration, softening point and ductility tests [18], [19], and [20].

Viscoelastic properties of the AR and WAR binders as well as their liquid phases were characterized by the dynamic shear rheometer (DSR) test. The high- and intermediate-temperature performances were characterized by the Superpave rutting parameter and fatigue parameter, respectively [21]. 2 mm gap was used for all DSR tests to reduce the influence of CRM particles [5], [22], and [23]. Unaged binders were used for Superpave rutting parameter measurement (with 25 mm -diameter plates) and Pressure Aging Vessel (PAV) aged binders were used for Superpave fatigue parameter measurement (with 8 mm -diameter plates). Besides, the complex modulus and phase angle were recorded for rheological analysis. For each test, two replicates were prepared.

The workabilities of AR and WARs were evaluated by three parameters, including rotational viscosity [24], air void content of Marshall Specimen (SMA10, 4.0\% design air void) corresponding to each binder [25, 26], and number of gyrations of Superpave Gyratory Compactor (SGC) samples (SMA 10, 7.0% air void) to achieve the same specimen height [26]. The mixing and compaction temperatures of the
samples with AR were $176{ }^{\circ} \mathrm{C}$ and $160{ }^{\circ} \mathrm{C}$, respectively, while the samples with WARs were mixed at $160{ }^{\circ} \mathrm{C}$ and compacted at $144{ }^{\circ} \mathrm{C}$. Three replicates were prepared and tested.

The interaction among asphalt, CRM and WMA additives was investigated through chemical analyses, including Differential Scanning Calorimeter (DSC) test, Gel Permeation Chromatography (GPC) test, and wax content test [27]. All these tests were performed on the extracted liquid phases of the test binders.

The thermal properties of L-WARs were measured using the Mettler Toledo instruments DSC3. The melting temperatures $\left(T_{m}\right)$ of the binder components were determined by heating the samples from $-20^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ at a rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$.

The molecular weight distribution of L-WARs was evaluated by GPC test. A P230 Elite GPC with three columns (M, NT and NN) was used to separate the constituents of asphalt binder based on molecular size. Each sample was dissolved into Tetrahydrofuran (THF) and then filtered through a $0.2 \mu \mathrm{~m}$ Polytetrafluoroethylene (PTFE) syringe filter prior to being placed into the injection module. During the GPC test, the asphalt-THF solution was drained through columns and allowed to flow at a rate of $0.5 \mathrm{ml} / \mathrm{min}$, and the temperature of the columns were maintained at $40^{\circ} \mathrm{C}$. The components' concentration in the eluent was recorded using a differential refractometer, and the resulting chromatogram was analyzed to obtain the molecular size distribution.

To measure the wax content, a distillation process was applied to extract the wax from
asphalt components at $550^{\circ} \mathrm{C}$. The distilled components were dissolved in ether/ethanol (50/50, V/V) solvent and crystallized at $-20^{\circ} \mathrm{C}$. The crystallized waxes were collected by filtration and their weights were measured.

3 Test results

3.1 Rheological Properties of AR and WARs

Figure 1 describes the rheological properties of the test binders. According to Figure 1 a and 1 b , the incorporation of CRM decreased the penetration and ductility and increased the softening point of base asphalt. Regardless of the mixing procedure, the effects of Sasobit on penetration and softening point were similar to those of CRM, while paraffin wax provided the opposite modification effects. WMA additives had insignificant effect on ductility, since the homogeneous structure of asphalt was destroyed by CRM. Figure 1c shows the Superpave rutting parameters of all test binders at various temperatures. The failure temperatures of ARS and ARSW were above $88{ }^{\circ} \mathrm{C}$, while those of AR, ARW and ARWD were between $82^{\circ} \mathrm{C}$ and $88^{\circ} \mathrm{C}$ [21]. The Superpave rutting parameters of ARW and ARWD were lower than AR, but still much higher than that of the base binder. These results indicate that Sasobit is beneficial to the rutting resistance of AR while paraffin wax has negative effect, which is consistent with the results of penetration and softening point tests. No obvious difference can be observed between WARs prepared by different mixing procedures. Figure 1d shows that all binders with CRM have superior fatigue resistance than base asphalt. Both Sasobit and paraffin wax negatively affected the
fatigue properties of AR. Among the four WARs, ARS and ARSD showed the best fatigue resistance, with the threshold temperature lower than $16^{\circ} \mathrm{C}\left(\mathrm{G}^{*} \sin \delta<5 \mathrm{MPa}\right)$. Besides, the intermediate-temperature fatigue performance of WAR is independent on the mixing procedure.

3.2 Workability Comparison of WARs

As aforementioned, the workabilities of WARs were measured by their rotational viscosities (Figure 2a), the air void contents of corresponding Marshall Specimen (Figure 2b) and the number of gyrations of corresponding SGC samples to achieve the same specimen height (Figure 2c). According to Figure 2a, both Sasobit and paraffin wax were effective in reducing the viscosities of $A R$ at all three testing temperatures. For both WMA additives, the mixing procedure had insignificant influence on rotational viscosity values.

Figure 2 b shows the air void contents of the prepared Marshall Specimens, which indicate that only the mixtures with ARS and ARW achieved similar air voids in comparison to hot AR mixtures when the mixing and compaction temperatures were $16{ }^{\circ} \mathrm{C}$ lower. Besides, unlike the rotational viscosity test results, the air void content results illustrated significant effect of mixing procedure. Under the same preparation condition, the air void contents of the Marshall Specimens with ARSD and ARWD are 1.3% and 0.7% higher than those of ARS and ARW, respectively, indicating that WARs prepared by direct mixing procedure had worse workability. Similar finding can also be obtained from the number of gyrations of SGC samples (Figure 2c). The
mixtures with ARSD and ARWD required more gyration numbers to achieve the same sample height as those with ARS and ARW. Since the air void contents and number of gyrations can take into the effect of aggregate-asphalt interaction during mixing on workability, while rational viscosity cannot, they are believed to be better indictors for workability of WARs.

3.3 Rheological Properties of Extracted Liquid Phase of WARs

The rheological test results have shown limited difference among the WARs prepared by different mixing procedures, regardless of the type of WMA additives. However, the effects of different mixing procedures on the performance of the extracted liquid phases are obvious (Figure 3). Figure 3a compares the failure temperatures of L-WARs and their corresponding WARs, which were determined as the temperatures when their rolling thin film oven (RTFO) aged samples have a $\mathrm{G} / \mathrm{sin} \delta$ value of 2.2 KPa . In general, WARs have $8-10{ }^{\circ} \mathrm{C}$ higher failure temperatures compared with their corresponding liquid phases. This is because the CRM particles may act as fillers in rheological asphalt system, which increase the complex shear modulus and thus enhance the rutting resistance. For ARS and ARSD, the failure temperature difference was less than $1{ }^{\circ} \mathrm{C}$. However, the difference between L-ARS and L-ARSD was $2.2^{\circ} \mathrm{C}$. Similarly, ARW and ARWD had close failure temperatures while L-ARW has $1.9^{\circ} \mathrm{C}$ lower failure temperature compared with L-ARWD. The effect of mixing procedure on L-WARs seems more significant.

Figure 3b, 3c and 3d illustrate the results of phase angle, viscous modulus and elastic
modulus. L-ARS has larger viscous modulus, similar elastic modulus and larger phase angle compared with L-ARSD, while L-ARW has lower modulus and higher phase angle than L-ARWD. According to the previous studies, Sasobit leads to higher modulus and lower phase angle, while $56^{\#}$ paraffin wax has the opposite effect [11] and [13]. One possible reason is that there may be more wax additives in the liquid phase of ARS and ARW, compared with their corresponding ARSD and ARWD. The existence of CRM may narrow the difference in rheological test results of WARs. But once the CRM is removed, the distinction caused by mixing procedure becomes more noticeable.

Figure 4 presents the viscosity test results of the extracted liquid phases. It can be observed that at both 135 and $160{ }^{\circ} \mathrm{C}$, the viscosity values of L-ARS and L-ARW were less than $2 / 3$ of L-ARSD's and L-ARWD's values, respectively. Both Sasobit and $56^{\#}$ paraffin wax could enhance the flowability of asphalt binder, and the enhancement effect is more significant with a higher wax content [2], [8], and [13]. Therefore, it is believed that the direct mixing method results in lower wax content in the liquid phase of WARs.

3.4 Chemical Analysis of the Extracted Liquid Phase

Chemical tests were conducted to further verify the difference of wax amount in liquid phase of WARs. The thermal behaviors of L-WARs are shown in Figure 5. In the DSC tests, the differences in heat flow between the testing materials and the reference sample (an empty aluminum pan in this study) were monitored. The peaks
in the DSC curves reveal either endothermic behaviors, such as melting and evaporating, or exothermic behaviors, such as cross-linking and oxidation. Figure 5 shows that the DSC curve of L-AR is relatively smooth within the range between - 20 and $140{ }^{\circ} \mathrm{C}$. L-ARS and L-ARSD exhibit two characteristic peaks with maximum melting temperatures around $100^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, which is attributed to the mixture of linear long-chain aliphatic hydrocarbons with those melting temperatures in Sasobit. L-ARW and L-ARWD show only one characteristic peak at about $57^{\circ} \mathrm{C}$, which is very close to the melting point of $56^{\#}$ paraffin wax. The thermal test results demonstrate that there are certain amounts of wax additives in all WARs. Besides, it is noticed that the normalized heat flow of L-WARs prepared by the traditional procedure is higher, which verifies that there are more wax in L-ARS and L-ARW than in L-ARSD and L-ARWD. The findings of the thermal analysis support that the direct mixing procedure results in lower wax content in the liquid phases of WARs, which is consistent with the findings of the rheological tests results.

The wax content results of L-AR and L-WARs, tested according to the European standard method EN 12606-1, is shown in Figure 6. It is noted that L-AR has lower paraffin compared with base binder, indicating the wax absorption effect of crumb rubber. All L-WARs have higher wax content than L-AR and Pen 60/70, which is due to the incorporation of wax additives. Consistent with the DSC results, L-ARS and L-ARW contain more wax than their corresponding L-ARSD and L-ARWD. In GPC studies of asphalt, the asphalt binder constituents are generally classified into
several groups according to the molecular weight [28], [29], [30] and [31]. In this study, the GPC chromatogram was divided into three parts according to the occurrence of peaks. The large molecular size (LMS), medium molecular size (MMS) and small molecular size (SMS) were defined corresponding to the earliest part, the middle part and the latest part, respectively. Table 2 presents the molecular weight distributions of L-AR and L-WARs.

Sasobit is a crystalline, long-chain aliphatic polymethylene hydrocarbon with carbon chain length ranging from C 45 to C 100 plus, while conventional macrocrystalline paraffin waxes have carbon chain lengths ranging from C25 to C70. According to literature, the average molecular weight of Sasobit and $56^{\#}$ paraffin wax are $1000-1200 \mathrm{~g} / \mathrm{mol}$ and $400-500 \mathrm{~g} / \mathrm{mol}$, respectively [32] and [33]. Therefore, based on the molecular weight data in Table 2, Sasobit and $56^{\#}$ paraffin wax molecules should belong to MMS and SMS, respectively. Figure 7 compares the molecular weight distributions of different WARs. L-ARS was found to have higher percentage of MMS than L-ARSD, while L-ARW had higher percentage of SMS compared with L-ARSD, which are consistent with the findings of the DSC tests, i.e., there are more wax additives in the liquid phases of WARs prepared by the traditional procedure. Besides, it can be noticed that the LMS percentages of ARSD and ARWD are higher than those of their corresponding ARS and ARW, possibly due to the more complete dissolution of CRM polymers.

4. Discussion

4.1 Feasibility of Adding WMA Additives at an Earlier Stage

Table 3 provides a summary on the similarity and difference of the two mixing procedures, based on the test results of this study. It was found that the mixing procedure did affect the interaction among various components of WAR and thus its final performance. Compared with the traditional mixing method, the direct mixing method allows for longer interaction time for wax additive and other components. Despite the lower interaction temperature, the longer interaction time promoted the penetration of wax additives into CRM, as evidenced by the wax content test results. Rheological analysis on WARs showed almost no difference between different mixing procedures, because the effect of CRM is more dominant. Finally, since the direct mixing method was found to compromise the workability of $A R$, it is not recommended to replace the conventional mixing procedure.

4.2 Appropriate Method to Measure Workability of Asphalt Rubber

In this study, the rotational viscosity test results were found to contradict to the results of the air void content and number of gyrations measurement. To measure the rotational viscosity of asphalt binder, the commonly used spindle is the number $27^{\#}$ and the volume of asphalt sample is 10.5 ml . After interaction with base binder, CRM particles swell to three to five times of their original volumes by absorbing the light fractions of asphalt [4] and [34]. As a result, the test AR sample cannot be treated as a simple Newton fluid anymore, because of the solid rubber particles inside. Besides,
the space for liquid asphalt among the chamber wall, spindle wall and CRM particles is very limited (Figure 8). During the testing, the CRM particles may produce resistance to the rotation of the spindle, demanding additional torque to maintain the constant rotational speed. As a result, the viscosity difference of liquid phases might be masked by the particle effect.

In addition, the size effect of insoluble CRM particles may lead to different speeds between liquid asphalt phase and the CRM particles when pumping and mixing the binders with aggregates. The size of CRM is larger than part of the fine aggregates and fillers even before swelling, and the density difference makes CRM unable to maintain the same moving speed with asphalt and aggregate. Therefore, the relative movement among CRM, liquid asphalt and aggregate is very complicated. Therefore, the rotational viscosity test is not recommended to be conducted directly on AR to evaluate its workability. Instead, it is worth to further investigate whether the viscosity value of the liquid phase of AR can better describe its workability.

5. Findings and Recommendations

In this study, a series of rheological tests and chemical analyses were conducted on AR and wax-additive-based WAR binders to characterize the effects of different mixing procedures. Based on the outcome of this study, the following findings and recommendations have been obtained:

1. Sasobit enhances the high-temperature performance of AR binder while $56^{\#}$ paraffin wax has the opposite effect. Both additives negatively affect the intermediate-temperature fatigue performance.
2. For WAR binders with either Sasobit or $56^{\#}$ paraffin wax, the effect of the mixing procedure on their mechanical performance is insignificant.
3. The direct mixing method leads to poorer workability of WAR compared with the traditional method. But the rotational viscosity test cannot effectively detect such difference.
4. The mixing procedure affects the interaction among the components of WARs. The wax content of the liquid phase of the WARs prepared by the direct mixing method is lower than that prepared by the conventional method.
5. It is not recommended to replace the traditional mixing method with the direct mixing method because of the compromised workability of WAR.
6. Further study on a more appropriate workability index for AR binders is recommended.

Acknowledgements

The authors sincerely acknowledge the funding support from the Hong Kong Research Grants Council (Project Number: 539113). Trademark or manufacturers’ names appear in this paper only because they are considered essential to the object of this paper.

References

[1] ASTM Standard D6114, 2009. Standard Specification for Asphalt-Rubber Binder. American Society for Testing and Materials. West Conshohocken, PA, USA.
[2] Shu, X., \& Huang, B. (2014). Recycling of waste tire rubber in asphalt and Portland cement concrete: an overview. Construction and Building Materials, 67, 217-224.
[3] Liu, Y., Han, S., Zhang, Z., \& Xu, O. (2012). Design and evaluation of gap-graded asphalt rubber mixtures. Materials \& Design, 35, 873-877.
[4] Gawel, I., Stepkowski, R., \& Czechowski, F. (2006). Molecular interactions between rubber and asphalt. Industrial \& Engineering Chemistry Research, 45(9), 3044-3049.
[5] Ghavibazoo, A., Abdelrahman, M., \& Ragab, M. (2016). Changes in composition and molecular structure of asphalt in mixing with crumb rubber modifier. Road Materials and Pavement Design, 1-14.
[6] Yu, H., Leng, Z., \& Gao, Z. (2016). Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives. Construction and Building Materials, 125, 168-174.
[7] Moreno, F., Sol, M., Martín, J., Pérez, M., \& Rubio, M. C. (2013). The effect of crumb rubber modifier on the resistance of asphalt mixes to plastic deformation. Materials \& Design, 47, 274-280.
[8] Oliveira, J. R., Silva, H. M., Abreu, L. P., \& Fernandes, S. R. (2013). Use of a
warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures. Journal of Cleaner Production, 41, 15-22.
[9] Rodríguez-Alloza, A. M., Gallego, J., Pérez, I., Bonati, A., \& Giuliani, F. (2014). High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives. Construction and Building Materials, 53, 460-466.
[10] Yu, X., Wang, Y., \& Luo, Y. (2012). Effects of types and content of warm-mix additives on CRMA. Journal of Materials in Civil Engineering, 25(7), 939-945.
[11]Xiao, F., Punith, V. S., \& Amirkhanian, S. N. (2012). Effects of non-foaming WMA additives on asphalt binders at high performance temperatures. Fuel, 94, 144-155.
[12]Kim, H. H., \& Lee, S. J. (2015). Effect of crumb rubber on viscosity of rubberized asphalt binders containing wax additives. Construction and Building Materials, 95, 65-73.
[13]Yu, H., Leng, Z., Xiao, F., \& Gao, Z. (2016). Rheological and chemical characteristics of rubberized binders with non-foaming warm mix additives. Construction and Building Materials, 111, 671-678.
[14]Yu, H., Leng, Z., Zhou, Z., Shih, K., Xiao, F., \& Gao, Z. (2017). Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber. Journal of Cleaner Production, 141, 336-345.
[15]Rubio, M. C., Martínez, G., Baena, L., \& Moreno, F. (2012). Warm mix asphalt: an overview. Journal of Cleaner Production, 24, 76-84.
[16]Jamshidi, A., Hamzah, M. O., Kurumisawa, K., Nawa, T., \& Samali, B. (2016). Evaluation of sustainable technologies that upgrade the binder performance grade in asphalt pavement construction. Materials \& Design, 95, 9-20.
[17]Liu, J., Saboundjian, S., Li, P., Connor, B., \& Brunette, B. (2011). Laboratory evaluation of sasobit-modified warm-mix asphalt for Alaskan conditions. Journal of Materials in Civil Engineering, 23(11), 1498-1505.
[18]ASTM Standard D5, 2013. Standard Test Method for Penetration of Bituminous Materials. West Conshohocken, PA, USA.
[19]ASTM Standard D36, 2006. Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). West Conshohocken, PA, USA.
[20]ASTM Standard D113, 2007. Standard Test Method for Standard Test Method for Ductility of Bituminous Materials. American Society for Testing and Materials. West Conshohocken, PA, USA.
[21]AASHTO Standard M320, 2010. Standard Specification for Performance-Graded Asphalt Binder. Washington, DC, USA.
[22]Bahia, H. U., \& Davies, R. (1994). Effect of crumb rubber modifiers (CRM) on performance related properties of asphalt binders. Asphalt paving technology, 63, 414-434.
[23]Mo, L., Shu, D., Li, X., Huurman, M., \& Wu, S. (2012). Experimental
investigation of bituminous plug expansion joint materials containing high content of crumb rubber powder and granules. Materials \& Design, 37, 137-143.
[24]AASHTO Standard T316, 2013. Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer. Washington, DC, USA.
[25]AASHTO Standard M312, 2015. Standard Method of Test for Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor. Washington, DC, USA.
[26]AASHTO Standard T166, 2013. Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface-Dry Specimens. Washington, DC, USA.
[27]European Standard EN 12606-1. Bitumen and bituminous binders -determination of the paraffin wax content - Part 1: method by distillation.
[28]Zhao, S., Bowers, B., Huang, B., \& Shu, X. (2013). Characterizing rheological properties of binder and blending efficiency of asphalt paving mixtures containing RAS through GPC. Journal of Materials in Civil Engineering, 26(5), 941-946.
[29] Yang, S. H., \& Lee, L. C. (2016). Characterizing the chemical and rheological properties of severely aged reclaimed asphalt pavement materials with high recycling rate. Construction and Building Materials, 111, 139-146.
[30]Kim, S., Lee, S. H., Kwon, O., Han, J. Y., Kim, Y. S., \& Kim, K. W. (2016).

Estimation of service-life reduction of asphalt pavement due to short-term ageing measured by GPC from asphalt mixture. Road Materials and Pavement Design, 17(1), 153-167.
[31]Zhao, S., Huang, B., Shu, X., \& Woods, M. E. (2016). Quantitative evaluation of blending and diffusion in high RAP and RAS mixtures. Materials \& Design, 89, 1161-1170.
[32]Qin, Q., Farrar, M. J., Pauli, A. T., \& Adams, J. J. (2014). Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. Fuel, 115, 416-425.
[33]Jamshidi, A., Hamzah, M. O., \& You, Z. (2013). Performance of warm mix asphalt containing Sasobit \mathbb{R} : State-of-the-art. Construction and Building Materials, 38, 530-553.
[34]Dong, D., Huang, X., Li, X., \& Zhang, L. (2012). Swelling process of rubber in asphalt and its effect on the structure and properties of rubber and asphalt. Construction and Building Materials, 29, 316-322.

List of Figures and Tables

Figures:

Figure 1. Rheological Properties of WARs: (a) Penetration; (b) Softening point and Ductility;
(c) Superpave rutting parameter; and (d) Superpave fatigue parameter

Figure 2. Workability Evaluation of WARs: (a) Rotational Viscosity; (b) Air voids of Marshall Specimens; (c) Number of Gyrations of SGC Specimens

Figure 3. Rheological Properties of L-WARs: (a) Failure temperature; (b) Phase Angle; (c) Viscous Modulus; and (d) Elastic Modulus

Figure 4. Rotational Viscosity of L-WARs
Figure 5. Thermal Behavior of DSC L-WARs (heat flow was normalized by the sample weight)

Figure 6. Wax content test results
Figure 7. GPC test result: (a) Typical curve of L-ARS and L-ARSD; (b) Molecular size distribution of L-ARS and L-ARSD; (c) Typical curve of L-ARW and L-ARWD; and (d) Molecular size distribution of L-ARW and L-ARWD

Figure 8. Diagram of Rotational Viscosity Measurement

Tables:

Table 1 Description of Prepared Binders
Table 2 Molecular Weight Distributions of L-AR and L-WARs
Table 3 Comparisons between Two Mixing Procedures

Figure 1. Rheological Properties of WARs: (a) Penetration; (b) Softening point and Ductility; (c) Superpave rutting parameter; and (d) Superpave fatigue parameter

(a)

(b)

(c)

Figure 2. Workability Evaluation of WARs: (a) Rotational Viscosity; (b) Air voids of Marshall Specimens; (c) Number of Gyrations of SGC Specimens

Figure 3. Rheological Properties of L-WARs: (a) Failure temperature; (b) Phase Angle; (c) Viscous Modulus; and (d) Elastic Modulus

471

Figure 4. Rotational Viscosity of L-WARs

Figure 5. DSC results of L-WARs (heat flow was normalized by the sample weight)

Figure 6. Wax content test results

Figure 7. GPC test result: (a) Typical curve of L-ARS and L-ARSD; (b) Molecular size distribution of L-ARS and L-ARSD; (c) Typical curve of L-ARW and L-ARWD; and (d) Molecular size distribution of L-ARW and L-ARWD

Figure 8. Diagram of Rotational Viscosity Measurement

Sample ID	Description
Pen $60 / 70$	Base binder, obtained from Anderson Co., Ltd, Hong Kong
AR	Blending 18% of 40 -mesh crumb rubber by the total weight of AR with base asphalt at $176^{\circ} \mathrm{C}$ and $4000 \mathrm{rpm} /$ min for one hour using a high shear mixer
ARS	Adding 3% of Sasobit into AR binder and high shear mixing for 10 minutes at $160^{\circ} \mathrm{C}$ right after the mixing process of AR
ARW	Adding 1.5% of $56^{\#}$ paraffin wax into AR binder and high shear mixing for 10 minutes at $160^{\circ} \mathrm{C}$ right after the mixing process of AR
ARSD	Directly high shear mixing Sasobit, crumb rubber and base binder together (same mass ratio as ARS) at $160^{\circ} \mathrm{C}$ for one hour
ARWD	Directly high shear mixing $56^{\#}$ paraffin wax, crumb rubber and base binder together (same mass ratio as ARW) at $160^{\circ} \mathrm{C}$ for one hour

Table 1 Description of Prepared Binders

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

L-AR						
Peak No.	Retention Time (min)	Area\%	Mn	Mw	Mz	$\mathrm{Mw} / \mathrm{Mn}$
1 (LMS)	16.19	8.10	$1.11 \mathrm{E}+04$	$2.15 \mathrm{E}+04$	$9.83 \mathrm{E}+04$	1.94
2 (MMS)	20.16	81.11	$1.37 \mathrm{E}+03$	$1.81 \mathrm{E}+03$	$2.52 \mathrm{E}+03$	1.33
3 (SMS)	22.14	10.79	$4.26 \mathrm{E}+02$	$4.63 \mathrm{E}+02$	$4.92 \mathrm{E}+02$	1.09
ALL		100.00	$1.17 \mathrm{E}+03$	$3.26 \mathrm{E}+03$	$5.36 \mathrm{E}+04$	2.78
L-ARS						
1 (LMS)	16.52	6.46	$1.09 \mathrm{E}+04$	$1.65 \mathrm{E}+04$	$3.62 \mathrm{E}+04$	1.52
2 (MMS)	20.14	82.07	1.38 E+03	$1.84 \mathrm{E}+03$	$2.60 \mathrm{E}+03$	1.34
3 (SMS)	22.10	11.48	$4.32 \mathrm{E}+02$	$4.73 \mathrm{E}+02$	$5.03 \mathrm{E}+02$	1.09
ALL		100	$1.15 \mathrm{E}+03$	$2.63 \mathrm{E}+03$	$1.62 \mathrm{E}+03$	2.28
L-ARSD						
1 (LMS)	16.20	7.05	$1.17 \mathrm{E}+04$	$1.81 \mathrm{E}+04$	$4.08 \mathrm{E}+04$	1.54
2 (MMS)	20.22	78.26	$1.4 \mathrm{E}+03$	$1.91 \mathrm{E}+03$	$2.67 \mathrm{E}+03$	1.35
3 (SMS)	22.37	14.69	$4.13 \mathrm{E}+02$	$4.63 \mathrm{E}+02$	$5.04 \mathrm{E}+02$	1.1
ALL		100.00	$1.13 \mathrm{E}+03$	3.1E+03	$2.2 \mathrm{E}+03$	2.7
L-ARW						
1 (LMS)	16.19	7	$1.01 \mathrm{E}+04$	$1.71 \mathrm{E}+04$	$1.15 \mathrm{E}+04$	1.70
2 (MMS)	20.16	81.21	$1.38 \mathrm{E}+03$	$1.84 \mathrm{E}+03$	$2.56 \mathrm{E}+03$	1.33
3 (SMS)	22.14	11.89	$4.30 \mathrm{E}+02$	$4.68 \mathrm{E}+02$	$4.97 \mathrm{E}+02$	1.09
ALL		100	$1.15 \mathrm{E}+03$	$2.77 \mathrm{E}+03$	$5.21 \mathrm{E}+03$	2.40
L-ARWD						
1 (LMS)	16.22	8.1	$1.11 \mathrm{E}+04$	$2.15 \mathrm{E}+04$	$9.83 \mathrm{E}+04$	1.94
2 (MMS)	20.12	81.11	$1.37 \mathrm{E}+03$	$1.81 \mathrm{E}+03$	$2.52 \mathrm{E}+03$	1.33
3 (SMS)	22.28	10.79	$4.26 \mathrm{E}+02$	$4.63 \mathrm{E}+02$	$4.92 \mathrm{E}+02$	1.09
ALL		100	$1.17 \mathrm{E}+03$	$3.26 \mathrm{E}+03$	$5.36 \mathrm{E}+03$	2.78

*Area\%= the percentage of molecules within specific weight range
$\mathrm{Mn}=$ number-average molecular weight ($\mathrm{g} / \mathrm{mol}$, daltons)
$\mathrm{Mw}=$ weight-average molecular weight $(\mathrm{g} / \mathrm{mol})$
$\mathrm{Mz}=\mathrm{z}$-average molecular weight ($\mathrm{g} / \mathrm{mol}$)
$\mathrm{Mw} / \mathrm{Mn}=$ polydispersity index-relative spread in molecular weights

607

	Similarity	Difference
Sample preparation	Binders are prepared by same material and equipment.	The direct mixing procedure is more convenient and energy-saving.
Interaction condition	Two mixing procedures provide similar interaction time for CRM and base asphalt.	Direct mixing procedure enables more complete interaction condition for wax additive, but lower temperature for the interaction of CRM and base binder
Performance	Samples prepared by two mixing procedures have similar rutting and fatigue resistance, as well as very close rotational viscosities.	Direct mixing procedure leads to poorer workability when preparing mixture specimens.
Component interaction	In both cases, three components interact at a certain level, providing satisfactory mechanical performance and relatively good workability.	The longer interaction time results in less wax additives in liquid phase of WARs. The wax additives may be degraded or absorbed by CRM.

608
609
610

[^0]: ${ }^{\text {a }}$ Assistant Professor, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, zhen.leng@polyu.edu.hk (*Corresponding Author)
 ${ }^{\mathrm{b}}$ PhD Candidate, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, huayang.yu@connect.polyu.hk (**Co-Corresponding Author)
 ${ }^{c}$ Research Assistant, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
 ${ }^{d}$ Research Assistant, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

