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Cordon toll pricing in a multi-modal linear monocentric city with 

stochastic auto travel time 

 

This paper proposes an analytical model to determine the optimal cordon toll 

pricing scheme in a linear monocentric city with a competitive railway/highway 

system. It is assumed that the daily commuting time by rail mode is deterministic, 

whilst that by auto is stochastic and location-dependent across the city. The 

uncertainty in the auto travel time could affect residents’ residential location 

choices and thus the urban spatial structure due to a long-term adjustment. In 

order to hedge against travel time variability on highway, commuters by auto 

often consider a travel time budget longer than the expected trip time to avoid 

late arrivals. It shows that ignorance of auto travel time variation may cause a 

significant bias in the prediction of the urban spatial structure in terms of 

residential distribution and city size. The implementation of cordon toll pricing 

scheme can rationalize the urban residential distribution and promote the 

efficiency of the urban system in terms of social welfare.  

Keywords: travel time uncertainty; travel time budget; mode choice; cordon toll 

pricing scheme; households’ residential location choices. 

1. Introduction 

It has been widely recognized that there is a strong interaction between design of urban 

transportation policies and the spatial patterns of urban land use. On one hand, urban 

land use, which involves the distribution of urban population, and housing demand and 

supply, can govern the travel demand and the demand distribution across the city, and 

thus affects the making-decisions on transportation policies for long-term transportation 

planning purposes. On the other hand, design of urban transportation policies can affect 

location accessibility and household’s annual transportation expenses, which is a key 

factor to affect housing demand and supply, and thus affects households’ residential 

distribution in the city. For example, Xu et al. (2015) reveals that implementation of 

private driving restriction in Beijing has raises the demand for subway proximity. It is, 

thus, essential to explore the interaction between transportation policy and urban land 

use for long-term planning purposes. 



 

 

The variation of travel time on highway always exists in practice. In 

transportation network, the daily travel time of commuters often varies due to various 

random factors, such as stochastic road capacity and travel demand fluctuation. The 

former can be caused by events like unpredicted vehicle breakdowns, traffic accidents, 

and inclement weather conditions. The latter can be spawned by daily and seasonal 

demand variations, special events, and population characteristics. Owing to the 

uncertainty in travel time, commuters do not know exactly when they will arrive at the 

destination. It is necessary to incorporate commuters’ responses to daily travel time 

uncertainty (e.g., reserving a buffer time to reduce the risk of late arrivals) in the 

transportation policy design.  

The effects of travel time variability on travelers’ route and mode choice 

behaviors have been widely explored in previous studies (Abdel-Aty et al., 1995; 

Sumalee and Watling, 2003; Lo et al., 2006; Shao et al., 2006; Lam et al., 2008; Chen 

and Zhou, 2010; Du and Wang, 2014). Abdel-Aty et al. (1995) found that travel time 

reliability played an important role in commuters’ route choice behaviors. Sumalee and 

Watling (2003) investigated the effects of dependent link fails on travel time reliability 

in a network. Lo et al. (2006) proposed a reliable user equilibrium (RUE) model through 

introducing the concept of travel time budget to hedge against travel time variability. 

Based on the research work of Lo et al. (2006), Shao et al. (2006) and Lam et al. (2008) 

studied the impacts of uncertainties in both demand and supply sides. Chen and Zhou 

(2010) further proposed a METE model to explicitly consider the unreliability aspects 

of travel time variability. Du and Wang (2014) developed a multimodal equilibrium 

model to explore the impacts of travel time reliability on commuters’ mode choice. 

However, they all studied travelers’ behaviors for a given transportation network with 

OD pairs given and fixed, and thus were unable to investigate the effects of travel time 

variability on households’ residential location choices, namely, the choices of origins of 

trips. 

In view of the above, Ioannides (1983) first investigated the impact of random 

transportation costs on residential location decisions of households. He found out that 

uncertainty in transportation costs steepens the fall of land prices with distance from the 

Centre Business District (CBD) and engenders an increase in optimal city size. However, 

the study assumed that housing space throughout the city is fixed and equal, thus failed 

to consider the impact of uncertainty on household’s housing space consumption. 

Papageorgiou and Pines (1988) relaxed this assumption and investigated the effects on 



 

 

urban structure of uncertainty in transportation cost, and found that risk would cause the 

urban area to be diminished under certain condition. However, he implicitly assumed a 

congestion-free road network and the same variation level of travel time across the city. 

In reality, congestion is one of the most important reasons that cause uncertainty in auto 

travel time. For instance, location with higher congestion often implies higher variation 

level of travel time. Accordingly, it fails to study the effects of traffic congestion and the 

variation levels of travel time across the city. Besides, the above urban models have 

assumed a single travel mode, and thus can not estimate the impacts of travel time 

uncertainty on commuters’ mode choices.  

This study makes one important step forward by explicitly considering the 

effects of travel time uncertainty on the equilibrium modal split and urban residential 

distribution in a competitive railway/highway system, where the uncertainties in auto 

travel time are location-dependent. The major contributions made in this article are as 

follows. First, a multi-modal urban system equilibrium model is developed, in which the 

effects of travel time uncertainty on commuters’ mode choices and households’ 

residential location choices are considered. Second, the optimal cordon toll pricing 

scheme is presented to rationalize commuters’ mode choices and household residential 

distribution across the city so as to alleviate traffic congestion and travel time 

uncertainty. Third, the impacts of the level of auto travel time uncertainty on the urban 

system performances are analytically explored, together with that on design of the 

optimal cordon toll pricing scheme in terms of toll level and location. 

This paper is organized as follows. In Section 2, the multi-modal urban system 

equilibrium with stochastic auto travel time is formulated, together with its relevant 

properties. It follows with presentation of the social welfare maximization model in 

Section 3 with determination of the optimal cordon toll pricing scheme in terms of the 

toll level and location. In Section 4, a numerical example is provided to illustrate the 

applications of the proposed model. Finally, conclusions and recommendations for 

further studies are given in Section 5.  

2. Urban system equilibrium 

2.1. Assumptions 

To facilitate the presentation of essential ideas without loss of generality, the following 



 

 

basic assumptions are made in this paper.  

A1 We consider a linear, closed and monocentric city, which implies that all job 

opportunities cluster in a highly compact city center or central business district (CBD), 

and the total number of households in the city is exogenously given and fixed. Also, all 

the land within the city boundary is supposed to be owned by absentee landlords and the 

value of land at/beyond the city boundary equals its opportunity cost. These 

assumptions have been widely adopted in the field of urban economics, such as Alonso 

(1964), Muth (1969), Solow(1972), Fujita (1989), Li et al. (2012a, 2012b, 2013) and 

Chen et al. (2016). 

A2 Three types of stakeholders are concerned in the urban system: households, 

property developer and the authority. All households are supposed to be homogenous in 

terms of their income level and utility function. Each household has a quasi-linear utility 

function and aims to maximize its own utility by determining the residential location, 

size of housing space and amount of non-housing goods within the budget constraint 

(e.g., Song and Zenou, 2006; Kono et al., 2012). The property developer is assumed to 

maximize its net profit by determining its capital investment intensity. The authority 

seeks for the cordon toll pricing scheme in terms of toll level and location that 

maximizes the social welfare of the urban system. 

A3 It is assumed that each commuter chooses its preferred travel mode (auto or 

railway) based on the generalized travel cost which is defined as the monetary cost plus 

the time cost weighted by the value of time (VOT), leading to a deterministic mode 

choice equilibrium. Following Wang et al. (2004), Liu et al. (2009) and Li et al. (2012a), 

it is assumed that under free-flow and no-toll conditions, railway has lower fixed cost 

but higher variable cost than auto. In addition, the travel cost by auto travelling from the 

city boundary to the CBD is supposed to be lower than that by railway, which ensures 

both travel modes are used in the urban system.  

A4 Commuters are assumed to have perfect knowledge of the daily travel time 

distribution. In order to hedge against the risk of late arrivals, commuters are supposed 

to allow for a travel time budget longer than the expected trip time so as to avoid late 

arrivals. The concept of travel time budget (TTB) is proposed by Lo et al. (2006), and 

widely adopted by following studies thereafter (see Shao et al., 2006; Siu and Lo, 2008; 

Zhou and Chen, 2008; Chen and Zhou, 2010).  

2.2.  Continuum equilibrium of travel mode choice 



 

 

2.2.1. Generalized travel cost by rail mode 

In a linear monocentric city as assumed in A1, each location across the corridor is 

characterized by its distance from the CBD. Denote x as the distance of a location from 

the CBD. Let 
r ( )C x  be the round-trip travel cost by railway between location x and the 

CBD, which is defined as the monetary cost plus the travel time weighted by the value 

of time (VOT), i.e.,  

   r r r r r
0 0 0( ) 2C x a t x f f x     ,  (1) 

where the “2” denotes a round-trip journey,   is the VOT of commuters, which is used 

to convert the travel time into equivalent monetary units, 
r
0a  is the average 

access/egress time of passengers from their home/workplace to the railway station, 

which is supposed to be independent of location x, r
0t  is the average movement time of 

trains per unit distance, and r
0f  and 

rf  are, respectively, the fixed and variable 

components of the fare paid for the rail ride. 

2.2.2. Generalized travel cost by auto mode with travel time uncertainty 

Let ( )n x  be the household residential density at location x  (i.e., number of households 

per unit of land area), ( )q x  be the hourly density of travel demand (i.e., number of 

commuters per unit of land area) at location x , and   be peak-hour factor (i.e., the ratio 

of peak-hour flow to the average daily flow), which is used to convert the travel demand 

from a daily to an hourly basis. ( )q x  can be defined as  

  ( ) ( ) ( )q x n x n x    , (2) 

where  is the average daily number of trips to the CBD per household, and ( )    is 

the peak-hour trip generation rate (i.e., average number of peak-hour trips to the CBD 

per household). Let 
a ( )q x  and 

r ( )q x  respectively be the hourly density of travel 

demand for auto and rail modes at location x . Travel demand conservation at each 

location requires that 

 
a r( ) ( ) ( )q x q x q x  .  (3) 

Denote  aQ x  as the total traffic volume on highway at location x , which can be 

determined by 



 

 

  
a a( ) ( )

B

x
Q x q w dw  , (4) 

where B  is the distance from the urban boundary to the CBD (i.e., the length of the 

corridor). Let   a at Q x  represent the travel time on highway per unit of distance 

around location x , where the traffic volume  aQ x  is determined by Equation (4). To 

capture the travel time variability on highway due to uncertain traffic conditions and 

commuter characteristics,   a at Q x  is assumed to be the combination of the mean 

travel time   a at Q x  and a stochastic component ( )x . Then, we have 

       a a a a ( )t Q x t Q x x   , (5) 

where ( )x  is supposed to follow normal distribution with zero mean and variance 

2 ( )x . In Equation (5), the mean travel time   a at Q x  is assumed to be a strictly 

increasing function with regard to traffic volume  aQ x  on highway at location x  and 

can be estimated using the Bureau of Public Roads (BPR) function, as follows: 

     
2a

a a a
0 11.0

Q x
t Q x t

K

  
    

  
  

, (6) 

where a
0t  is the free-flow travel time per unit of distance on highway, 1  and 2  are 

positive parameters, and K  is the travel capacity of the corridor.  

Denote 
a ( )T x  as the travel time by auto from location x to the CBD, which can 

be obtained by integrating Equation (5) over the interval (0, )x . The mean of 
a ( )T x  can 

thus be given by  

     a a a

0
( ) ( )

x
E T x t Q w dw  , (7) 

where ( )E   represents the expectation operator. For simplicity, the travel time at each 

location is assumed to be independent. Allowing for travel time correlation among 

different locations would significantly complicate theoretical analysis in a continuous 

model, which is left for our future study. Accordingly, the variance of 
a ( )T x  can be 

estimated from the variances of the traversed areas, as follows: 

   a 2

0
( ) ( )

x
Var T x w dw  , (8) 



 

 

where ( )Var   represents the variance operator. Under the assumption of normal 

distributed travel time of each location, the total travel time 
a ( )T x  follows a normal 

distribution, with mean and variance respectively given by Equations (7) and (8).  

Although travellers are assumed to have perfect knowledge of daily travel time 

distribution, they do not know the exact prior travel time. According to A4, when faced 

with travel time variability, commuters would depart earlier and reserve a buffer time to 

ensure more frequent on-time arrivals. That is, travellers allow for a longer travel time 

budget (TTB) to hedge against travel time variability. Denote 
a ( ; )x   as the travel time 

budget of commuters from location x to the CBD by auto with parameter   reflecting 

travellers’ requirement on punctual arrivals, which can be derived as 

    a a a( ; ) ( ) ( )x E T x Var T x     , (9) 

where  a ( )E T x  and  a ( )Var T x  are, respectively, the mean and variance of 
a ( )T x , 

which are given by Equations (7) and (8). The second term on the right-hand side of 

Equation (9) indicates the buffer time (or reservation time) to hedge against travel time 

uncertainty. Denote 
a ( )x  as such buffer time of travellers residing at location x, which 

is given by 

 
1 2

a 2

0
( ) ( )

x
x w dw     

  . (10) 

Following Lo et al. (2006), the value of   can be derived mathematically from 

the probability that a trip arrives within the travel time budget, specified as 

      a a a a aPr ( ) ( ) Pr ( ) ( ) ( )T x x T x E T x Var T x        
 

, (11) 

where   is the probability that the actual trip time is within the travel time budget, 

indicating a pre-specified confidence level of travel time reliability. Rearranging 

Equation (11) yields 

 
 

 

a a

a

( ) ( )
Pr

( )

T x E T x

Var T x

 
 

    
 
 

.  (12) 

Note that the travel time 
a ( )T x  in Equation (12) follows a normal distribution. The left-

hand side in Equation (12) is thus 
a ( )T x ’s standard normal variate. Let ( )   be the 

cumulative distribution function (CDF) of standard normal variate. Equation (12) can 



 

 

thus be written as  

       . (13) 

Taking the inverse of Equation (13) yields 

   1    , (14) 

where 
1( )   is the inverse CDF of standard normal variate.  

Previous studies have shown that the standard deviations of the travel time are 

proportional to the square root of the mean travel time (Richardson and Taylor, 1978; 

Taylor, 1982). Following these studies, we assume that  

   a a( ) ( )x t Q x   , (15) 

where   is a positive parameter associated with the degree of travel time variability or 

uncertainty. The larger the value of  , the more stochastic the travel time, and vice 

versa.  

Remark 1. The buffer time 
a ( )x  is an increasing function with regard to the 

distance x  from the CBD, capturing the characteristic that households residing at the 

suburb suffer higher level of travel time uncertainty and have to reserve more time to 

hedge against the risk of late arrivals, in comparison with those living at the CBD area. 

It can be proved by taking derivation of 
a ( )x  with respect to x , as follows: 

 
1 2a

2 2

0

( ) 1
( ) ( ) 0

2

xd x
w dw x

dx


       

  . (16) 

Let  aC x  be the round-trip travel cost by auto between location x  and the 

CBD. Denote 1  and 2  respectively be the punctual arrival requirement in the 

morning peak and evening peak with 1 2   , allowing for risk aversion heterogeneity 

between home-to-work trip and work-to-home trip. Following Wang et al. (2004) and 

Liu et al. (2009), the travel cost consists of both travel time budget and monetary cost, 

which can be expressed as 

    a a a a a
1 2 0( ) ( ; ) ( ; ) 2C x x x v v x         , (17) 

where   is the referred value of travel time, the “2” denotes a round-trip journey 

between location x  and the CBD, 
a
0v  is the fixed monetary travel cost (e.g., the parking 

charge), and 
av  is the variable monetary travel cost (e.g., auto fuel cost per unit of 



 

 

distance). The first term on the right-hand side of Equation (17) indicates the round-trip 

(i.e., home-to-work trip and work-to-home trip) travel time budgets, which are the 

combination of the average travel time cost and the buffer time cost. The second term 

implies the round-trip monetary cost.  

2.2.3. Continuum equilibrium of mode choice 

Travellers are assumed to choose a travel mode that minimizes their individual travel 

cost. As a result, a Wardrop-type user equilibrium of mode choice can be obtained when 

no traveller can reduce its travel cost by switching mode.      

Definition 1. (Continuum equilibrium of mode choice). At equilibrium, the travel cost of 

used mode at any location of the corridor is at its minimum, and the travel cost of 

unused mode at any location is greater than or equal to the minimum.  

Definition 1 defines the equilibrium conditions of mode choice in a linear continuum 

corridor, which can be mathematically expressed as 

  a a a a( ) ( ) ( ) 0, ( ) ( ) 0, ( ) 0,q x C x C x C x C x q x      (18) 

  r r r r( ) ( ) ( ) 0, ( ) ( ) 0, ( ) 0,q x C x C x C x C x q x      (19) 

where (0, )x B , the generalized travel cost by auto and railway are given by Equations 

(1) and (17), and ( )C x  is the minimal round-trip travel cost between location x and the 

CBD. The annual travel cost (denoted by ( )x ) for each household residing at location x  can 

be easily estimated by 

  ( ) ( )x C x  , (20) 

where   is the average annual number of trips to the CBD per household, which can be 

estimated using survey data.  

Proposition 1. There must exist some critical location x  (i.e., referred to as modal 

boundary in the following), such that the travel cost by auto is equal to that by railway 

at location x , and the travel cost by auto is higher (or lower) than that by railway 

inside (or outside) the modal boundary x .  

The proof of Proposition 1 is provided in Appendix A. Proposition 1 implies that 

only railway is used inside the modal boundary x , and only auto is used outside 



 

 

location x . As a result, the hourly density of travel demand for auto 
a ( )q x  across the 

corridor can be determined by 

  
a 0, (0, ),
( )

( ), ( , ).

x x
q x

n x x x B

 
 

  
 (21) 

The traffic volume on highway (4) can thus be rewritten as 

  a
( ) , (0, ),

( )

( ) , ( , ).

B

x

B

x

n w dw x x
Q x

n w dw x x B

   


 
   





 (22) 

At the modal boundary, the two modes are indifferent for commuters. Thus, the 

value of the modal boundary x  can be determined by  

  
a r( ) ( )C x C x . (23) 

Let rN  and aN , respectively, be the total numbers of households using rail and 

auto, which can be determined by  

 
r

0
( )

x
N n x dx  , and (24) 

 a rN N N  . (25)  

2.3. Households’ residential location choices 

According to A2, each household is assumed to choose a residential location to 

maximize its own utility subject to a budget constraint. Following Song and Zenou 

(2006) and Kono et al. (2012), a quasi-linear utility function is adopted in this paper to 

facilitate social welfare analysis, with which the social welfare can be easily calculated 

by adding the utility level to the land rents and toll revenue. The quasi-linear utility 

function can be specified as 

   ( )+ log ( ) , 0U x z x g x    , (26) 

where  U x
 
is the annual utility of households at location x , ( )z x

 
is the annual 

composite non-housing goods each household consumed at location x , for which the 

price is normalized to 1,   is the housing parameter, which implies the part of income 

spent on housing, and ( )g x
 
is the average annual consumption of housing per 

household at location x , which is measured in square meters of floor space. Each 

household’ income is spent on travel cost, housing consumption and non-housing goods 

consumption. Thus, the household utility maximization problem can be represented as 



 

 

  
,

max   ( )+ log ( )
z g

U x z x g x  , (27) 

  s.t.    ( ) ( ) ( ) ( ) 0Y x z x p x g x    , (28) 

where Y  is the annual wage of each household, ( )p x
 
is the average annual rental price 

per unit of housing floor area at location x, and ( )x  is determined by Equation (20) 

indicating the average annual travel cost for residents living at location x  with 

consideration of travel time uncertainty.  

We define bid rent, ( ( ), )Y x u  , as the maximal rent that a household can pay 

for residing at location x while enjoying a generalized utility level u, which can be 

mathematically expressed as   

 
,

( ) ( ) ( , )
( ( ), ) max ( , ) max

z g g

Y x z Y x Z g u
Y x u U z g u

g g

      
       

  
,(29) 

where ( , )Z g u  is the solution to ( , )U z g u  for z, which is a function of annual housing 

consumption g, and annual utility level u. Accordingly, ( )g   and ( )p   can be derived as 

functions with respect to common utility level u, as follows: 

 
( )

( , ) exp
u x Y

g x u
    

  
 

, and (30) 

  
( )

( , ) exp
Y x u

p x u
     

   
 

. (31) 

Substituting Equations (30) and (31) into Equation (28) yields 

 ( ) ( )z x Y x   . (32) 

2.4. Property developers’ housing production behaviour 

Following Song and Zenou (2006) and Li et al. (2013), property developers are 

supposed to behave in keeping with a Cobb-Douglas form of the housing production 

function, as follows: 

  ( ( )) ( ) ,0 1
b

h S x S x b    , (33) 

where ( ( ))h S x  is the housing output per unit of land area at location x , ( )S x  is the 

capital investment intensity at location x  (i.e., the capital input per unit of land), and   

and b  are positive parameters.  

Denote ( )r x  as the rent per unit of land area at location x , and k  as the price of 

capital (i.e., the interest rate). The net profit per unit of land area, ( )x , at location x 



 

 

can then be given by 

    ( ) ( ) ( ) ( ) ( )x p x h S x r x kS x    , (34) 

where the price per unit of housing floor space ( )p x  is given by Equation (31). The first 

term on the right-hand side of Equation (34) is the total revenue from housing supply, 

and the final two terms in the parentheses are the land rent cost and the capital cost 

respectively.  

Each property developer in the housing market aims to determine the optimal 

capital investment intensity so as to maximize the net profit, which is mathematically 

expressed as 

  max ( ) ( ) ( )b

S
x p x S r x kS     . (35) 

The first-order optimality condition of the maximization problem (35) yields 

 1( ) 0bp x bS k
S


   


. (36) 

Substituting ( )p x  in Equation (31) into Equation (36) produces the optimal 

capital investment intensity as a function of the common utility level u, namely, 

  
1

1 1
( )

( , ) exp
(1 )

b
Y x u

S x u bk
b

 
  

    
  

. (37) 

Substituting Equation (37) into Equation (33), we have  

      1 1 1
( )

( , ) exp
(1 )

b
b b

b Y x u
h S x u bk

b

 
  

    
  

. (38) 

The households residential density, ( )n x , at location x  can thus be obtained by 

dividing the housing output per unit of land area,  ( , )h S x u , by the housing space 

consumed by each household, ( , )g x u , as follows: 

 
   

1

11( , ) ( )
( ) exp

( , ) (1 )

b bh S x u Y x u
n x bk

g x u b

       
      

    
. (39) 

Note that the property developers earn zero profit (i.e., 0 ) under perfect 

competition, thus 

 ( ) ( ) ( ) ( )br x p x S x kS x   . (40) 

Substituting Equations (31) and (37) into Equation (40) yields 

  
1

1
1 ( )

( , ) 1 exp
(1 )

b b
Y x u

r x u bk
b b

 
   

      
    

. (41) 



 

 

2.5. Housing market equilibrium 

The urban system equilibrium requires that all households should be within the urban 

area, which is mathematically expressed by 

 
0

( )
B

n x dx N , (42) 

where B  is the distance from the city boundary to the CBD as concerned, and N  is the 

total amount of households in the city. Substituting Equation (39) into Equation (42) and 

solving it for u , we then have 

  
1

11

0

( )
(1 ) log exp

(1 )

b Bb Y x
u b bk dx N

b



 
                 

 

 . (43) 

In addition, according to A1, the equilibrium rent of unit land area at the city 

boundary B  equals the agricultural rent or opportunity cost of the land, i.e.,  

 ( , ) ar B u r , (44) 

where ar  is a constant opportunity cost of land.  

Proposition 2. When the traffic congestion cost for auto can be ignored (i.e., 

1 0  ), it follows that an increase in the travel time uncertainty (i.e.,  ) or in the 

punctual arrival requirement (i.e., 1  or 2 ),can lead to a decrease in the equilibrium 

utility level, city length and the total number of auto users, but an increase in the modal 

boundary x  between the travel modes, land rent and residential density at the CBD, 

and the total number of rail passengers as shown in Table 1.  

The proof of this proposition is provided in Appendix B. The general case with 

considering traffic congestion will be illustrated through numerical simulations in the 

numerical example section.  

2.6. Calculating the equilibrium solution for the urban system 

In this subsection, we propose a procedure for calculating the equilibrium solution of 

the urban system. The step-by-step procedure is as follows, where the bolded symbols 

represent the vectors of the corresponding variables for convenience.  



 

 

Step 0  Choose minimum and maximum values for the city length, which are 

respectively indicated by B  and B .  

Step 1  Set the city size ( ) / 2B B B  . Choose initial values for the corresponding 

household residential density (1)
n  across the city. Set the iteration counter to 

1i  . 

Step 2  Calculate the generalized travel cost vector for the rail mode  ( ) r( )( )i iC xr
C  

in terms of Equation (1) and the value of modal boundary ( )ix  based on 

Equation (23). Then, determine the values of the traffic volume on highway 

( ) a( ){ ( )}i iQ xa
Q  according to Equations (21) and (22), the generalized travel 

cost on highway  ( ) a( )( )i iC xa
C  by Equation (17), the minimum travel cost at 

each location  ( ) ( )( )i iC xC , and the annual travel cost  ( ) ( )( )i i x φ  by 

Equation (20).  

Step 3  Calculate the value of utility ( )iu  by Equation (43). The values of the vectors 

( )i
g ,

( )i
p , ( )i

S , ( )i
h  and ( )i

r  can then be determined by substituting ( )iu  into 

Equations (30), (31), (37), (38) and (41). Meanwhile, the household residential 

density vector ( )i
n  can be obtained by Equation (39).  

Step 4  Update the household residential density according to 

 ( 1) ( ) ( ) ( )i i i i i   n n n n .  

Step 5  If the relative gap 
( 1) ( ) ( )|| || /i i in n n   is less than a pre-specified precision, then 

go on to Step 6. Otherwise, set 1i i   and go to Step 2.  

Step 6 If the value of ( )r B  obtained is equal to the land opportunity cost ar  (i.e, 

condition (44) holds), then stop. Otherwise, if ( ) ar B r , update B B , else if 

( ) ar B r , update B B . Then, go to Step 1.  

In Step 1, the initial household residential density can be assumed to be uniform 

across the city. In Step 2, the modal boundary x  can be determined by enumerating 

each location from city boundary B  towards the CBD until Equation (23) satisfies.  

3. Design of cordon toll pricing scheme 



 

 

Considerable attention has been paid to cordon toll pricing scheme (see e.g., Mun et al. , 

2003, 2005; Ho et al., 2005, 2007; Verhoef, 2005; Chu and Tsai, 2008; Tsekeris and Voβ, 

2009; de Palma and Lindsey, 2011; Balijepalli and Shepherd, 2016). Specifically, Meng 

and Liu (2012) investigated the impact of cordon-based congestion pricing scheme on 

the modal split in a bimodal transportation network with auto and rail travel modes. Liu 

et al. (2013) and (2014) respectively designed a speed-based toll and a joint distance-

time toll for cordon-based congestion pricing scheme. Cordon toll pricing scheme, 

requiring all auto users passing through the cordon location towards the CBD to pay a 

congestion toll, has been widely implemented in practice. For instance, this scheme has 

been adopted in Singapore, London, Hong Kong, Oslo, Trondheim, and Bergen (see 

Zhang and Yang, 2004; Rouwendal and Verhoef, 2006; Li et al., 2014).  

3.1. Travel cost under cordon toll pricing scheme 

Cordon toll pricing scheme is defined by the combination of cordon location and toll 

level. Let   be the toll level and cx  be the distance of the cordon location from the 

CBD. The cordon locates between the CBD and the city boundary (i.e., 0 cx B  ). All 

the auto users are required to pay the toll when cordon locates at the CBD (i.e., 0cx  ), 

and no commuters need to pay the toll when cordon locates at the city boundary (i.e., 

cx B ).  

Denote a
1 ( )q x  as the hourly density of travel demand for auto at location 

(0, )cx x  and a
2q  as the hourly density of travel demand for auto at location 

( , )cx x B . Let a
1 ( )Q x  and a

2 ( )Q x  respectively be the traffic volume on highway at 

location x  in sections (0, )cx  and ( , )cx B , which can be given by 

 

a a a
1 1 2

a a
2 2

( ) ( ) ( ) , (0, )

( ) ( ) , ( , )

c

c

x B

c
x x

B

c
x

Q x q w dw q w dw x x

Q x q w dw x x B

    


   


 



. (45) 

The mean travel time on highway per unit of distance around location x ,  a a ( )it Q x , 

can thus be determined by  

  
2a

a a a
0 1

( )
( ) 1.0 , 1, (0, ); 2, ( , )i

i c c

Q x
t Q x t i x x i x x B

K

  
           

. (46) 



 

 

The average travel time cost 
a ( )T x  from location x to the CBD can thus be 

rewritten as 

 

  

     

a a
1

0a

a a a a
1 20

, (0, ),
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, ( , ).
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x

c

x x
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t Q w dw x x

T x

t Q w dw t Q w dw x x B

  


 
   




 
 (47) 

The travel time budget 
a ( ; )x   with a pre-specified confidence level   can 

thus be given by 

 
1 2

a a 2

0
( ; ) ( ) ( )

x
x T x w dw       

  . (48) 

After implementation of the cordon toll pricing scheme, every auto user that 

originates from outside of the cordon location and heads for the CBD has to pay a 

congestion toll (i.e.,  ). Accordingly, the round-trip travel cost of each commuter by 

auto between location x  and the CBD can be written as  

 
   

   

a a a a
1 2 0

a

a a a a
1 2 0

( ; ) ( ; ) 2 , (0, ),
( )

( ; ) ( ; ) 2 , ( , ,

c

c

x x v v x x x
C x

x x v v x x x B

         


 
           


)
 (49) 

which means households living beyond the cordon location (i.e., cx ) and commuting by 

auto have to pay a certain amount of toll (i.e.,  ) for entering the congested CBD area, 

while those living within the cordon location do not need to pay.    

 

The following proposition shows the effects of the cordon toll on the urban system. Its 

proof is given in Appendix C. 

Proposition 3.  When the traffic congestion cost for auto can be ignored (i.e., 1 0  ), it 

follows that an increase in the toll level (i.e.,  ) can lead to a decrease in the 

equilibrium utility level, city length and the total number of auto users, but an increase 

in the modal boundary x  between the travel modes, land rent and residential density at 

the CBD, and the total number of rail passengers as shown in Table 2.  

3.2. Social welfare maximization model 

As stated in the previous section, given the cordon location and toll level exogenously, 

the urban spatial equilibrium can endogenously determine the commuters’ mode choices, 



 

 

households’ residential location choices, and housing market structure in terms of 

housing price and space. In this subsection, a social welfare maximization model is 

proposed to determine the optimal combination of the cordon location and toll level. 

The social welfare of the urban system (denoted by SW ) is defined as the sum of the 

total utilities of all households and the total net revenue, as follows: 

 SW R Nu  , (50) 

where R  denotes the total net revenue, which comprises revenue from land rent and toll 

charging, i.e., 

 1 a

0
( ( ) ) ( )

c

B B

a
x

R r x r dx q x dx     , (51) 

where   is the average annual number of trips to the CBD per household referred, and 

  is the peak-hour trip generation rate, which is applied to convert the unit of travel 

demand from hour-based into day-based. The first term on the right-hand side of 

Equation (51) represents the aggregate land rent received by the absentee landlords and 

the second term represents the total revenue from congestion toll.  

The authorities aim to maximize the urban efficiency in terms of the total social 

welfare by determining the optimal combination of cordon location and toll level, which 

can be mathematically expressed by 

 1 a

0,
max SW + ( ( ) ) ( )

cc

B B

a
xx

Nu r x r dx q x dx


     . (52) 

A simple grid search method is applied to solve the above social welfare 

maximization problem in the two-dimensional space of cordon location and toll level. 

Thus, the grid is defined by the cordon location - toll level dimensions. In the grid 

search, we first establish acceptable ranges of values for both cordon location, cx , and 

toll level,  .  Then, both ranges are divided into a set of equal-value intervals by a pre-

specified step size, for example, 0.01 km for cordon location cx  and RMB0.1 for toll 

level  . For each combination of cx  and  , one solves the urban system equilibrium for 

obtaining the associated cordon toll pricing scheme. The combination  *, *cx   that 

leads to the maximal social welfare is thus the optimal cordon toll pricing scheme. This 

procedure is simple and has the merit in its capability to find the global optimal solution, 

though at the cost of long computational time.  

4. Numerical studies 



 

 

In this section, a numerical example is provided to illustrate the properties of the 

proposed model and the contributions of this study. The numerical example is intended 

to compare the performances of urban system under deterministic and stochastic 

scenarios and ascertain the effects of the level of auto travel time uncertainty on the 

modal split of travellers. It is also used to investigate the optimal cordon toll pricing 

scheme and the effects of such pricing scheme on the urban system performance. 

Additionally, the effect of the level of auto travel time uncertainty on design of the 

optimal cordon toll pricing scheme is also examined. In the following analyses, unless 

specifically stated otherwise, the baseline values for the model’s input parameters are 

the same as those shown in Table 3. 

4.1. No toll scenario 

In this section, we focus on the effects of auto travel time uncertainty on the urban 

system performances without consideration of cordon toll pricing scheme. First, we 

make a comparison of the urban system performances with and without considering 

daily travel time uncertainty on highway. Then, a sensitivity analysis is conducted with 

respect to the level of auto travel time uncertainty.  

4.1.1. Comparison of urban system performances under deterministic and stochastic 

cases  

We first compare the performances of urban system when the daily travel time on 

highway is assumed to be deterministic (i.e., 0.0  ) and stochastic (i.e., 0.6  ).  

Figure 1 plots the round-trip generalized travel cost by rail and auto along the corridor 

under both deterministic and stochastic cases. It can be easily observed that ignorance of 

uncertainties would underestimate the travel cost on highway, making the intersection 

between auto and rail cost curves (i.e., modal boundary) moves from location 

8.2sx  km to 5.7dx  km. It means the modal boundary moves 2.5 km towards the 

CBD. Also, it can be seen that for both scenarios the rail cost curve lies below (or lies 

above) the auto cost curve on the left (or right) of the modal boundary. It implies 

residents living on the right of the modal boundary choose to use auto due to low 

generalized travel cost, and those living on the left of the modal boundary take the 

subway to escape from the severe traffic congestion on highway at central areas. This 



 

 

illustrates the result of Proposition 1.  

Figure 2 compares the residential distribution across the corridor under 

deterministic and stochastic cases. It can be seen that the residential density decreases 

with the distance further away from the CBD for both cases. However, the decline 

gradient for stochastic case is more severe than that for deterministic case, and thus 

leads to a more compact urban spatial structure in comparison with the deterministic 

case. Specifically, the city lengths under deterministic and stochastic cases are 38.8 and 

33.2 km, respectively, which implies the city size is overestimated by 5.6 km when 

ignoring the daily travel time uncertainty. Notably, the points dx  and sx  indicate the 

modal boundary as shown in Figure 1. In addition, it can be observed from Figure 2 that 

the two curves intersect at point A with distance of 13.0 km from the CBD and 

residential density of 10.5 thousand households per square kilometres. For the left-hand 

side of point A, the residential density is underestimated when ignoring auto travel time 

uncertainty, and it is overestimated for the right-hand side of point A. In view of the 

above, ignorance of the daily travel time variation will cause a significant bias in the 

prediction of urban spatial structure.  

Figures 3 (a-b) respectively exhibit the housing space per household and land 

price along the linear corridor under determinitic and stochastic cases. It can be 

observed from Figure 3 (a) that housing space consumed by each household increases 

with the distance further away from the CBD for both scenarios. But the curve for 

stochastic case is steeper than that for deterministic case and the two curves intersect at 

point C with distance of 13.0 km from the CBD. It reveals that the housing space per 

household is overestimated for central areas (i.e., the left-hand side of point C), and is 

underestimated for suburban areas (i.e., the right-hand side of point C) when ingoring 

the dialy auto travel time uncertainty. It’s because under stochastic scenario the level of 

auto travel time uncertainty increases with the distance further away from the CBD (see 

Remark 1), making the central area even more attractive than the suburb. Thus, more 

households are willing to live near the CBD and thus the housing space per household is 

reduced there. Consequently, the land price per unit of floor space is underestimated for 

central areas (i.e., left-hand side of point D), and is overestimated for suburban areas 

(i.e., right-hand side of point D) when ignoring the auto travel time uncertainty, as 

shown in Figure 3 (b).   

4.1.2. Sensitivity analysis with respect to the level of auto travel time uncertainty 



 

 

Figure 4 displays the effects of the level of auto travel time uncertainty on the modal 

split of auto and rail through changing the value of   (see Equation (15)) from 0 to 1.2. 

It can be observed that as the value of   increases, the proportion of auto users 

decreases, whereas that of rail passengers increases. When the value of   is 0.55 (see 

point E), the whole market is equally shared by the auto and rail modes. It’s because an 

increase in the value of   would increse the travel cost on highway, making a number 

of auto users switch to the rail mode. In addition, as the level of auto travel time 

uncertainty increases, the city size decreases, whereas the modal boundary moves 

towards the suburb, as shown in Figure 5. This illustrates the results of Proposition 2.   

4.2. Cordon toll pricing scheme 

In this section, we first determine the optimal cordon toll pricing scheme in terms of 

cordon location and toll level so as to maximize the annual social welfare. On the basis 

of this solution, comparison of the urban system performances before and after 

implementation of the optimal cordon toll pricing scheme is made. Finally, the effects of 

the level of auto travel time uncertainty on design of the cordon toll pricing scheme are 

explored.  

4.2.1. Design of the optimal cordon toll pricing scheme  

Figure 6 depicts the variation in the total social welfare with variation in the toll level 

and location, given that 0.6   and other input parameters are the same as those in 

Table 3. It can be observed from this figure that the optimal cordon toll pricing scheme 

occurs at point F1 with a toll of RMB7.1 and cordon location at 6.6 km from the CBD, 

leading to the maximal social welfare of 59.571 billion RMB per year. When the cordon 

toll location moves outward by 2.0 km (i.e., to 8.6 km), the optimal toll level is RMB7.5 

(point F2) and the total social welfare is 59.531 billion RMB per year. When the cordon 

toll location moves to 10.6 km, the optimal toll level increases to RMB7.8 (point F3) 

and the total social welfare is 59.502 billion RMB per year. These observations imply 

that the shorter is the distance of the cordon toll location from the CBD, the lower is the 

optimal toll level, and vice versa.   

4.2.2.  Comparison of urban system performances with and without cordon pricing  



 

 

Given the optimal toll level and location (see point F1 in Figure 6), Figure 7 plots the 

round-trip generalized travel cost using auto and rail across the corridor after 

implementation of this optimal pricing scheme. The pricing scheme requires all auto 

users passing through the cordon location (i.e., 6.6 km) towards the CBD to pay a toll of 

RMB7.1. Figure 8 further compares the residential distribution across the linear corridor 

before and after implementing this optimal pricing scheme. It can be seen that 

implementation of the cordon toll pricing scheme leads to a higher residential density at 

urban central area but a lower one at suburban area. This is because implementation of 

the pricing scheme imposes an additional toll for auto commuters residing outside the 

cordon location, and thus leads them to switch to rail mode or migrate from the outside 

to the inside of the cordon so as to evade the extra tolls. Accordingly, the city boundary 

decreases from 33.2 km to 31.6 km, implying a more compact spatial structure. This 

result is consistent with that found in Verhoef (2005), in which only auto is considered. 

Additionally, implementation of the pricing scheme decreases the proportion of auto 

users, and thus alleviates the travel time uncertainty on highway and further reduces the 

buffer time cost of auto users as shown in Figure 9. This illustrate the results of 

Proposition 3.  

Table 4 further summarizes the performances of urban system before and after 

the optimal cordon toll pricing for different values of  . It can be seen that regardless of 

the value of  , cordon toll pricing scheme would trigger some auto users to switch to 

rail mode or migrate to the central area to escape from toll charging, thus leading to a 

decrease in the city size and further an increase in the average residential density, 

average housing and land price, and average capital investment intensity. Also, it can be 

observed that for =0.0, 0.6 and 1.2, the optimal pricing scheme, respectively, results in 

an increase in the annual social welfare by 430, 140 and 10 million RMB, a save in total 

buffer time cost of 0, 6.7 and 3.4 million hours. Specifically, when ignoring auto travel 

time uncertainty (i.e., 0.0  ), the total buffer time cost equals zero regardless of toll. 

The ignorance of auto travel time uncertainty will underestimate the travel cost on 

highway, thus leading to a distorted urban system.  

4.2.3.   Effects of the auto travel time uncertainty on the optimal toll level and location  

Figure 10 displays the changes of the optimal toll level and location with the level of 

auto travel time uncertainty. It can be observed that an increase in the level of auto 



 

 

travel time uncertainty would decrease the toll level and make the cordon location move 

towards the suburb. This is not surprising because an increase in the travel time 

uncertainty on highway would trigger some auto users to switch to rail mode, which 

eases the traffic congestion on highway. Accordingly, the alleviation in the congestion 

externality on highway decreases the toll level and makes the cordon location move 

towards the suburb.  

5. Conclusions and further studies 

This paper proposed an analytical model for design of the cordon toll pricing scheme in 

a multi-modal urban system with uncertainty in daily travel time on highway. It is 

assumed that the daily commuting time by rail mode is deterministic, whilst that by auto 

is stochastic and location-dependent across the city. A comparison of urban system 

performances was made with and without considering the auto travel time uncertainty. 

Also, the effects of level of auto travel time uncertainty (i.e., indicated by the value of  ) 

on the urban system performance were analytically explored. Then, a social welfare 

maximization model was formulated to determine the optimal toll level and location 

simultaneously. In addition, a sensitivity analysis was conducted to investigate the 

effects of level of auto travel time uncertainty on design of the optimal toll level and 

location.  

The proposed model provides some new insights and important findings. First, 

ignorance of the daily travel time variation will cause a significant bias in the prediction 

of the urban spatial structure. Specifically, compared with stochastic case, the 

assumption of deterministic auto travel time will overestimate the city size and average 

housing space per household, while underestimate the average residential density, 

average housing price and average capital investment intensity. Second, implementation 

of the cordon toll pricing scheme triggers some residents to switch to rail mode or 

migrate from the outside to the inside of the cordon so as to evade the extra tolls, which 

thus works to alleviate the traffic congestion on highway and save auto users’ buffer 

time cost associated with travel time uncertainty. In addition, the cordon toll pricing 

scheme contributes to increasing the social welfare of the urban system through the 

internalization of traffic congestion externalities. Third, the level of auto travel time 

uncertainty has a distinct impact on the design of the optimal cordon toll pricing 

scheme. It’s interesting to find that an increase in the level of auto travel time 



 

 

uncertainty will decrease the toll level and make the cordon toll location move towards 

the suburb due to the alleviation of traffic congestion on highway resulted from modal 

shift.  

Although the proposed model in this paper provides a new avenue for the urban 

system analysis, further extensions should be made in the following directions. First, it 

is worthy to extend the model for providing park-and-ride service, as that done in Wang 

et al., (2004) and Liu et al., (2009) for a given residential distribution pattern. Second, it 

is challenging to integrate the dynamic traffic patterns of peak-hour commuters into the 

multi-modal urban model with stochastic auto travel time (Gubins and Verhoef, 2014). 

Third, the homogenous household assumption is worth being relaxed for enabling the 

consideration of heterogeneity among residents in terms of their risk-averse attitudes 

towards travel. Fourth, it is meaningful to extend the monocentric urban structure to a 

polycentric one in a further study.  
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Appendix A: Proof of Proposition 1 

We define ( )F x  as the difference between the travel costs by auto and by railway, as 

follows: 

 
a r( ) ( ) ( ), [0, ]F x C x C x x B      (A.1) 

According to A3, railway has lower fixed cost but higher variable cost than auto. We thus have 

 
a r(0) (0) (0) 0F C C   . (A.2) 

In addition, it is assumed that at the city boundary  

 
a r( ) ( ) ( ) 0F B C B C B   . (A.3) 

By the intermediate value theorem (Smith and Minton, 2012), there must exist some 

(0, )x B  such that 

 ( ) 0F x  .  (A.4) 

Substituting Equations (1) and (17) into Equation (A.1), and then taking the second-

order derivative yields  
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since   2 2 1a a a a a
0 1 2( ) ( ) ( ) 0t Q x t K Q x q x

        . Equation (A.5) implies that ( )F x  

is strictly concave. By the properties of concave functions (Niculescu and Persson, 

2006), we have  
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Combining Equations (A.4) and (A.6), one obtains 
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which implies the round-trip travel cost by auto is higher (or lower) than that by railway 

inside (or outside) the modal boundary x . As a result, only railway is used for any 

[0, )x x , whereas only auto is used for any ( , ]x x B . This completes the proof of 

Proposition 1.  

 



 

 

Appendix B: Proof of Proposition 2 

Taking the derivative of Equations (42) and (44) with respect to   yields 
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Combining Equations (B.1) and (B.2), one obtains 
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Then, taking the partial derivatives of ( )r x  (see Equation  (41)) with respect to 

u , x , and   produces  
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Similarly, taking the partial derivatives of ( )n x  (see Equation  (39)) with respect 

to u , x  and   yields 
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Applying Equations (B.5) and (B.6), the numerator and denominator of du d  

in Equation (B.3) are respectively negative and positive. As a result, the sign of du d  

is negative. Similarly, the denominator of dB d  in Equation (B.4) is negative. The 

sign of dB d  therefore depends on the sign of the numerator (denoted by  ). 

Substituting Equations (B.5) and (B.6) into  , one obtains  
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because 
( ) ( )C B C x 


 

 holds for any (0, )x B . The sign of dB d  is thus negative.  

At the CBD, Equations (B.5) and (B.6) tell us that both (0)r   and (0)n   

equal zero, so that  
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Under congestion-free assumption (i.e., 1 0  ), x  can be obtained by solving 

the following equation: 
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Taking the derivative of Equation (B.10) with respect to   produces 
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The term in the bracket on the left-hand side of Equation (B.11) is positive, since it's 

assumed that the variable cost of rail is larger than that of auto. Thus, the sign of dx d  

is positive, which implies as the level of auto travel time uncertainty increases, the 

modal boundary x  between the travel modes gets closer to the city boundary until   is 

so large that no one uses auto throughout the city.   

Taking the derivative of 
rN  (see Equation (24)) with respect to   yields 

r

0 0
( ) ( ) 0

x xdN dx n du n dx n du
n x dx n x dx

d d u d d u d

   
      

        
  ,  (B.12) 

since n   equals zero within the region [0, ]x  according to Equation (B.6). Applying 



 

 

Equation (25), one can immediately derive 
a 0dN d  .  

For the effects of the punctual arrival requirement on the urban system, one 

needs only to apply the above process to parameters 1  and 2 . This completes the 

proof of Proposition 2.  



 

 

Appendix C: Proof of Proposition 3 

After introduction of the cordon pricing scheme, the whole corridor is partitioned into 

multiple sections in each of which only auto or railway is used. To facilitate presentation, 

we denote A  as the area where only auto is used, and A  as the area where only railway 

is used. Taking the derivative of ( )n x  in Equation (39) with respect to   yields 
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According to Equation (49), Equations (C.1) and (C.2) are both negative for any 

location x when cx x  and x A , and equal to zero otherwise. Similarly, taking the 

derivatives of Equations (42) and (44) with respect to   produces 
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Combing Equations (C.3) and (C.4), one immediately obtains 

 
0

0

( )

( )

B

B

B

B

r r n
n B dx

Bdu

r n rd
dx n B

B u u

  


  

  


  




, and  (C.5) 

 
0 0

0
( )

B B

B B

B

B

r n r n
dx dx

u udB

r r nd
n B dx

u B u

   


   


  


  

 


, (C.6) 

where 0r u   , 0r B   , 0n u    and 0n B    according to Equations (B.5)-

(B.6), and 0n   , 0n    according to Equations (C.1)-(C.2). It can thus be 

easily observed that the denominator in Equation (C.5) is positive, and the numerator is 

non-positive. Accordingly, we have 0du d  . Similarly, the denominator of dB d in 

Equation (C.6) is negative. Thus, the sign of dB d  is dependent on the sign of the 

numerator (denoted by 1 ). Substituting Equations (B.5), (B.6), (C.1) and (C.2) into 



 

 

1  yields 
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because 
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 
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 holds for any (0, )x B . Thus, we have 0dB d  . In 

addition, all commuters choose to use railway at the CBD, because the fixed cost of 

railway is assumed to be smaller than that of auto. Thus, the travel cost at the CBD is 

independent of toll level  , further implying that (0)r   and (0)n   equal zero. As 

a result, we have 

 
0 0 0

(0)
0

dr r du r r du

d u d u d

  
   

     
, and  (C.8) 

 
0 0 0

(0)
0

dn n du n n du

d u d u d

  
   

     
.  (C.9) 

The cordon location cx  divides the region between the CBD and city boundary 

into two sections: one is the no-toll area from the CBD to the cordon location (i.e., 

(0, )cx x ), and the other is the tolled area from the cordon location to the city 

boundary (i.e., ( , )cx x B ). At location cx , the generalized travel cost curve for auto is 

discontinuous. Within the tolled area, there may be one or no intersection between auto 

and rail cost curves. For the latter case, only one single mode is used and thus the 

change of toll level fails to affect commuters’ mode choices, which is out of our 

consideration. Thus, we denote ( , )cx x B  as the intersection between auto and rail 

cost curves (namely the modal boundary) within the tolled area, which can be 

determined by  
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Taking the derivative of Equation (C.10) with respect to   yields 
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because the denominator, namely, the difference between the variable cost of railway 

and auto, is assumed to be positive. Equation (C.11) implies that as the toll level 

increases, the modal boundary between the travel modes would move close to the 

suburb until all auto users switch to rail mode.  



 

 

Within the no-toll area (i.e., (0, )cx x ), the rail cost curve may lie below or 

intersect with the auto cost curve. For the former case, all commuters residing between 

the CBD and the modal boundary x  prefer to use rail mode. Thus, the total number of 

rail passengers rN  can be calculated by 
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Taking the derivative of Equation (C.12) with respect to   yields 
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The second term on the right-hand side of Equation (C.13) is equal to zero 

according to Equation (C.1), since there is no auto user within the region (0, )x . 

Accordingly, applying 0n u   , 0du d   and 0dx d   to Equation (C.13), one 

immediately derives 
r 0dN d  . Inversely, we have 

a 0dN d   since a rN N N  , 

which implies that an increase in the toll level would make partial auto users switch to 

rail mode.  

For the latter case, we denote 0 (0, )cx x  as the intersection between auto and 

rail cost curves at no-toll area. The commuters residing within the regions 0(0, )x  and 

( , )cx x  would choose to use railway. Thus, the total number of rail passengers rN  can 

be calculated by 
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Taking the derivative of Equation (C.14) with respect to   produces 
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Similarly, we have 
a 0dN d  . Based on the above analysis, 

r 0dN d   and 

a 0dN d   hold for both cases. This completes the proof of proposition 3.  



 

 

Table 1. Change of the urban system variables with level of auto travel time uncertainty 

  and punctual arrival requirements 1  and 2 . 

 u  B  x  (0)r  (0)n  rN   aN  

  - - + + + + - 

1  - - + + + + - 

2  - - + + + + - 

Note: (0)r and (0)n  respectively represent the land rent and residential density at the CBD; 

“+” and “-” respectively indicate positive and negative correlations. 

 

Table 2. Change of the urban system variables with toll level  . 

 u  B  x  (0)r  (0)n  rN   
aN  

  - - + + + + - 

 



 

 

Table 3. Input parameters for the numerical illustration. 

Parameters Baseline value 

N  (total number of households in the city) 400,000 

Y  (annual household income, RMB/household/year) 100,000 

  (housing parameter in the quasi-linear utility function) 20,000 

ar  (agricultural rent at the city boundary, RMB/km2) 40,000,000 

K  (capacity of the linear corridor, veh/h) 15,000 

a
0v  (fixed component of monetary auto travel cost, RMB) 15 

av  (variable component of monetary auto travel cost, RMB/veh-

km) 

0.1 

a
0t  (free-flow travel time per unit of distance on highway, h/km) 0.01 

1 , 2  (parameters in the BPR function) 0.15 and 4 

  (value of travel time, RMB /h) 40 

  (average annual number of trips to the city center per household) 365 

 (the average daily number of trips to the CBD per household) 1.0 

  (peak-hour factor) 10% 

r
0a  (average access/egress time to the railway station, h) 0.2 

r
0t  (average travel time per unit distance by railway, h/km) 0.04 

r
0f  (fixed component of the rail fare, RMB) 3 

rf  (variable component of the rail fare, RMB/km) 0.2 

1 and 2 (punctual arrival requirement in the morning and evening 

peak) 

1.29 and 0 

b and   (parameters in housing production function) 0.5 and 0.015  

k  (annual interest rate) 5% 

Note: The data is mainly based on Li et al. (2013) and Liu et al. (2009). ‘RMB’ stands for 

Chinese currency and US$1.0 approximates RMB 6.70 on 1 October 2016.  

 

 

 

 

 



 

 

Table 4. Performances of urban system before and after the optimal cordon toll pricing 

with different levels of travel time uncertainty.  

Performance index 

0    0.6    1.2   

Before After  Before After  Before After 

Toll level (RMB) - 13.7  - 7.1  - 1.8 

Cordon location (km) - 3.4  - 6.6  - 11.2 

Urban length (km) 38.8 36.8  33.2 31.6  27.5 26.9 

Modal boundary between the travel 

modes (km) 
5.7 9.4  8.2 10.4  11.4 12.3 

Percentage of auto users (%) 66.5 47.2  48.3 36.9  27.2 23.5 

Percentage of rail users (%) 33.5 52.8  51.7 63.1  72.8 76.5 

Average residential density  

(households/km2) 
10,323 10,884  12,063 12,666  14,546 14,864 

Average housing space per household 

(m2/household) 
63.4 61.0  57.8 56.0  51.9 51.2 

Average housing price (RMB/m2) 315.6 328.0  346.0 357.4  385.6 390.7 

Average land value (million RMB/km2) 103.2 108.8  120.6 126.7  145.5 148.6 

Average capital investment intensity 

(billion RMB/km2) 
2.06 2.18  2.41 2.53  2.91 2.97 

Annual total buffer time cost (106 h) 0 0  25.6 18.9  26.4 23.0 

Household utility level (103 RMB) 144.0 142.5  141.9 141.1  140.2 140.0 

Annual social welfare (billion RMB) 60.03 60.46  59.43 59.57  58.96 58.97 
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Figure 1. Generalized travel costs by rail and auto under deterministic case (i.e., =0.0 ) 

and stochastic case (i.e., =0.6 ). 
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Figure 2. Comparison of residential distributions under deterministic case (i.e., =0.0 ) 

and stochastic case (i.e., =0.6 ). 
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(a)                                                            (b) 

Figure 3. (a) Housing space per household and (b) land price under deterministic case 

(i.e., =0.0 ) and stochastic case (i.e., =0.6 ). 
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Figure 4. Change of modal split with the level of auto travel time uncertainty. 
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Figure 5. Change of city length and modal boundary with the level of auto travel time 

uncertainty. 
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Figure 6. Variation in the total social welfare with change in the toll level and location. 
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Figure 7. Generalized travel costs by rail and auto under the optimal cordon toll pricing 

scheme. 
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Figure 8. Comparison of residential distributions with and without the optimal cordon 

toll pricing scheme. 
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Figure 9. Total buffer time costs for the two-way commuting trip by auto with and 

without the optimal cordon toll pricing scheme. 
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Figure 10. Change of the optimal cordon location and toll level with the level of auto 

travel time uncertainty. 
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