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Abstract: In view of the advantages and a promising market prospect of the emerging connected 
automated vehicles (CAVs), the number of CAVs will keep increasing rapidly in the coming decade. 
Meanwhile, the regular human-piloted vehicles (RHVs) may still play a significant role in the 
roadway traffic. Therefore, it will be very likely that the roadway is shared by CAVs and RHVs in 
the near future. To support traffic control design, this paper develops a multiclass multilane cell 
transmission model (CTM) to simulate traffic flow dynamics mixed with CAVs and RHVs by 
capturing the interaction between the two vehicle classes. First, headway distributions and variations 
in the fundamental diagram with respect to different penetration rates of CAVs are quantified. Then, 
the minimum headway acceptance criteria are determined for the lane changing (LC) maneuvers 
proposed by CAVs and RHVs with consideration on drivers’ anticipation. An advanced priority 
incremental transfer (PIT) principle is then proposed to evaluate the sending flows. Finally, the cell-
lane-specific multiclass flow conservation law is developed to propagate traffic flow and density 
considering the vehicle LC maneuvers. Numerical simulations explore the potential operational 
capacity increase, delay reduction, and traffic flow smoothing under several penetration scenarios.  

Keywords: Vehicle Automation and Communication System (VACS); Multiclass multilane cell 
transmission model; Connected automated vehicle (CAV); Penetration rate; Capacity variation. 

1 Introduction 

The advancement of cyber-physical systems enables vehicles to form a mobile wireless network on 
the road called vehicular ad hoc network (VANET), which links vehicles with roadway 
infrastructures via wireless communication. As a promising technology, VANET offers the following 
two types of communications: vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). In view 
of the promising market prospect, enormous efforts have been exerted by the automobile industry 
and numerous institutions toward the development, testing, and deployment of Vehicle Automation 
and Communication Systems (VACS) in recent years because they are believed to bring benefits to 
traffic safety and efficiency (Diakaki et al., 2015). For example, through the aid of VACS, an 
effective approach is to change the driving behavior from individual car following (CF) to a platoon-
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based driving, that is, a cooperative driving pattern for a group of vehicles wherein a vehicle follows 
the preceding vehicle with a small and nearly constant safety space/time headway to form platoons 
(Ngoduy and Jia, 2016). The literature has validated that the platoon-based driving pattern with fully 
automated vehicles can significantly improve roadway capacity and introduce numerous benefits 
(Hall and Chin, 2005; van Arem et al., 2006). A recent experiment at the California Partners for 
Advanced Transit and Highways (PATH) showed that connected automated vehicles (CAVs) in 
platoons could maintain a time gap as small as 0.6 sec compared with 1.5 sec for regular human-
piloted vehicles, thereby possibly nearly doubling the roadway capacity (Chen et al., 2017).  
 
The reduced reaction time of CAVs can improve traffic flow efficiency via smaller inter-vehicle 
headway (Levin and Boyles, 2016a; Zhou et al., 2017; Zhu and Ukkusuri, 2017). Stern et al. (2018) 
demonstrated in the mixed-autonomy single-lane ring road experiments (consisting of 22 RHVs on 
a 230m ring track) that a reduction in fuel consumption over 40% can be achieved by the insertion 
of a CAV in the traffic to dampen the ring instability. Given that vehicle platooning can significantly 
reduce the air drag of vehicles inside the platoon, energy consumption and exhaust emissions can 
also be considerably reduced as a result. The cooperative driving pattern of CAVs can increase 
roadway capacity to double (or higher) and can significantly improve traffic flow stability (Milanes 
et al., 2014; Milanes and Shladover, 2014). Talebpour and Mahmassani (2016) proposed a 
framework to simulate traffic flow characteristics consisting of CAVs with distinct communication 
capabilities and RHVs under certain technology-appropriate assumptions. It was shown numerically 
that the CAVs can improve string stability and be more effective in preventing shockwave formation 
and propagation. 

 
As it can be expected, the number of connected automated vehicles (CAVs) equipped with VACS 
will be rapidly increasing in the coming decade. Meanwhile, the regular human-piloted vehicles 
(RHVs) still play a major role in the market in the short term (Levin and Boyles, 2016a,b). Therefore, 
it will be common that the road is shared by CAVs and RHVs in the near future. To the best of the 
authors’ knowledge, most efforts have adopted simulations, whereas limited theoretical 
research has been conducted. The mechanism on how the CAVs help improve the 
operational capacity is unclear due to the complicated (car following) CF and LC rules 
specified in the simulations. Nevertheless, systematic investigation of the influences of CAVs 
on collective (macroscopic) traffic flow and sustainability remains insufficient (Khondaker et al., 
2015; Wang et al., 2015, 2016a,b). All these factors impede the development of trusted and fast 
traffic flow models for Active Traffic Management for traffic flow mixed with CAVs and RHVs. 
Thus, research and development activities can be further developed. 
 
Under the car-following framework, Jia and Ngoduy (2016b) developed a microscopic traffic model 
that simulates the cooperative driving behavior in terms of platooning via inter-vehicle 
communication. An enhanced cooperative microscopic car-following traffic model was proposed in 
Jia and Ngoduy (2016a) to consider how V2V and V2I communications affect the vehicle 
cooperative driving, e.g., the local traffic flow stability and shock wave smoothing. Zhu and Ukkusuri 
(2017a) proposed a cell-based simulation approach to simulate the proactive driving behavior of 
CAVs by tracking the trajectory of CAVs and adjusting the exit flow of cells containing connected 
vehicles. To study the car-following behavior of CAVs following RHVs, Zhu and Ukkusuri (2017b) 
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developed an approach to calibrate CAVs’ car following behavior in a mixed traffic environment 
using the simplified car-following model with disturbances. Zhou et al. (2017) developed a 
cooperative intelligent driver model to examine the system performance of freeway merging under 
different proportions of CAVs. Jia et al. (inpress) proposed a multiclass microscopic model that 
includes a consensus-based control algorithm to model the dynamics of CAVs and a car-following 
model to describe the dynamics of RHVs.   
 
The average speed of RHVs is approximately equal to the average speed of connected vehicles in a 
traffic stream (Bekiaris-Liberis et al., 2016; Fountoulakis et al., 2017). Based on scalar conservation 
law, Bekiaris-Liberis et al. (2016) proposed a Kalman filter approach to estimate the density and flow 
for traffic comprising regular and connected vehicles using the average speed measurements from 
connected vehicles and spot-sensor-based total flow measurements. Fountoulakis et al. (2017) further 
investigated this estimation approach through microscopic simulation while revealing different CF 
behaviors between these two vehicle classes. Wang et al. (2017) extended the second-order traffic 
flow model and modeled traffic streams with mixed RHVs and CAVs. Based on the model, the traffic 
state is estimated via a nonlinear particle filtering approach. Roncoli et al. (2015), Levin and Boyles 
(2016a,b) extended the CTM to simulate the mixed traffic flow with regular and connected vehicles. 
The existing multiclass CTM models modified the fundamental diagram to consider the 
variations in capacity and backward wave speed in response to vehicle-class proportions within 
each cell while LC maneuvers were not considered. Chen et al. (2017) proposed traffic operational 
capacity formulations for mixed traffic under equilibrium. They found that a macroscopic capacity 
can be properly identified for the mixed traffic by considering the proportion of CAVs, the 
micro/mesoscopic characteristics of the two vehicle classes, and different lane policies. 
 
As reviewed in this section, a rather limited research effort has been dedicated to addressing the 
implications of the emerging VACS on the flow characteristics of traffic mixed with RHVs and 
CAVs, as well as their potential exploitation for improving traffic flow operations (Diakaki et 
al., 2015). All these impede the development of trusted and fast traffic flow models for ATM of 
traffic flow mixed with CAVs and RHVs. To simulate the traffic flow characteristics and to support 
the integrated freeway traffic control design and subsequently improve the performance efficiency 
of freeways, this study intends to develop a multilane traffic flow model to simulate traffic flow 
dynamics mixed with CAVs and RHVs. The main contributions of this paper are twofold: 
a) We propose a multiclass multilane macroscopic model to explore the interaction between RHVs 

and CAVs. The model is capable of evaluating the variations in the fundamental diagrams with 
respect to the penetration rate of CAVs.  

b) The model develops a set of minimum headway acceptance criteria for LC maneuvers of RHVs 
and CAVs; The model simulates the LC maneuvers of both vehicle classes while considering 
drivers’ anticipation.     

 
Pan et al. (2016) developed a multilane CTM to simulate the impacts of MLC and DLC maneuvers 
on traffic flow comprised of RHVs. As reviewed, several factors, e.g., the uncertain penetration rate 
of CAVs, human drivers’ behavior, and lane-changing maneuvers, affect the characteristics of traffic 
flow with mixed RHVs and CAVs. In this paper, the multilane cell transmission model (CTM) 
proposed by Pan et al. (2016) is extended from a single vehicle class to multiple vehicle classes to 
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consider the factors mentioned above. To be specific, we extend this model to multiclass traffic by 
incorporating several new features: (1) modeling the time-dependent proportion of CAVs on the cell-
lane traffic flow characteristics such as the lane-based fundamental diagram and vehicle-class-
specific minimum space headway acceptance criteria to guarantee the traffic safety and lane-
changing priorities; (2) simulating lane-changing maneuvers considering lane-changing priorities 
with respect to different vehicle classes and the lane-changing motivations; and (3) extending new 
sending and receiving functions governing flow propagation considering the lane-changing flows 
and multiclass cell-lane fundamental diagrams. 
 
It is assumed in this paper that the V2X communication is always reliable and the control issued to 
the CAVs can be well actuated. The CAVs know the position and speed of some following vehicles 
and the direct preceding vehicle in real time regardless whether the following and the preceding 
vehicles are CAVs or not using either through V2X technology or via their own detector (Jia and 
Ngoduy, 2016a; Lioris et al., 2017).   
 
The rest of the paper is organized as: Section 2 presents the traffic flow characteristic mixed with 
CAVs and RHVs. Section 3 presents the traffic flow propagation under the lane-based multiclass 
CTM framework. Numerical simulations are conducted in Section 4 to demonstrate the effects of 
CAVs on speed, operational capacity, travel time and different penetration rates of CAVs. Section 5 
concludes the paper. Notation list and companion materials are provided in the Appendix.  
 

2. The multiclass traffic flow characteristics mixed with CAVs and RHVs 

 
As reviewed in Section 1, several factors, e.g., the uncertain penetration rate of CAVs, human 
drivers’ behavior, and lane-changing maneuvers, affect the characteristics of traffic flow with mixed 
RHVs and CAVs. In this section, the multilane cell transmission model (CTM) proposed by Pan et 
al. (2016) is extended from a single vehicle class to multiple vehicle classes. 
 

2.1. Headway distribution and fundamental diagram    

 

Headway, defined as the time/space between the same positions of two consecutive vehicles, is an 
important measure of traffic flow characteristics, and thus it is essential for studying traffic flow. 
Because CAVs have significantly different operating characteristics compared to RHVs, e.g., 
ignorable reaction time and platooning, it is deemed that CAVs can significantly reduce the 
headway between vehicles and hence increase the roadway capacity (Levin and Boyles, 2016b; 
Chen et al., 2017). Therefore, it is necessary to define a headway distribution law to model the 
capacity enhancement with the introduction of CAVs and to enable minimum headway control for 
the mixed traffic. 
 
In line with Levin and Boyles (2016b) and Chen et al. (2017), the effect of CAVs on roadway 
capacity was investigated by considering a single-lane freeway segment, as depicted in Figure 1. 
Suppose a platoon of vehicles is traveling along a freeway section in the same lane and that the 
traffic flow is stable without interruption from on-ramp/off-ramp or traffic incidents. Based on the 
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rear-end collision avoidance principle (Jepsen, 1998; Levin and Boyles, 2016b), for vehicles 
traveling at speed v(t) (miles/hour) the space headway (from the head of the leading vehicle to the 
head of the following vehicle) criterion HD(t) (mile) ahead of a specific vehicle belongs to vehicle 
class D is defined as below: 

      ,+D DH t v t T l C for D CAV RHV   ，              (1)            

where C AVT  and RHVT   (hour) denote the response times of CAVs and RHVs, respectively, l 

(mile) denotes the vehicle length of the leading vehicle, and C is the safety gap (Jepsen, 1998) or 
minimum safe constant gap (Hidas, 2005) when all the vehicles are at a standstill. Compared with 
RHVs, CAVs can tolerate a much smaller space headway because of the smaller response time. 
Supposing that the traffic on this unit length freeway segment (otherwise, multiply both sides of 
Equation Error! Reference source not found. by the segment length) with a proportion, P(t), of 
CAVs and RHVs, 1-P(t), at time t, the relationship between space headway and traffic density is 
described as  

            1 1CAV RHVt P t H t P t H t                   (2) 

where ρ(t) is the traffic density,  CAVH t  and  RHVH t denote the space headway of CAVs and 

RHVs, respectively, as illustrated in Figure 1. 

CAVRHV CAV CAV

VMS Gantry

RHV RHV

VACS transmitter

 CAVH t
 RHVH t

 
Figure 1 Illustration of space headway of mixed freeway traffic 

 
Based on Equation Error! Reference source not found., we have the following relations: 
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Summing the left and right sides, respectively, we obtain  
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This in conjunction with Equation Error! Reference source not found. provides   

              1 + 1 +CAV RHVt P t v t T l C t P t v t T l C         

Therefore, the maximum speed  sv t that can be evaluated by specific traffic density and proportion 
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of CAVs is evaluated as follows: 
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         (3)  

without considering the speed limit or vehicles’ mechanical capability. As reported in the literature, 
the average speed of RHVs is roughly equal to the average speed of CAVs in a traffic stream 
(Bekiaris-Liberis et al., 2016; Fountoulakis et al., 2017). To this end, it is assumed that both CAVs 
and RHVs will spontaneously follow this maximum speed as it guarantees the minimum space gap 
for avoiding collisions in accordance with different levels of congestion specified by traffic density. 

Therefore, in this section, the variable  sv t is named the spontaneous speed limit (SSL). However, 

when the traffic density tends to zero (i.e., no vehicle is traveling on the freeway), the SSL 
approaches an infinitely large value. To remedy this, one can simply set an upper bound to this SSL, 
called a vehicle’s maximum mechanical speed. For example, 170 miles/hour is a typical upper 
bound of the speedometer of private vehicles. Generally speaking, the speed is actually restricted 
by the posted permanent compulsory (upper bound) speed limit for freeway traffic management 
purpose. In the United States under normal conditions, the posted permanent compulsory freeway 
speed limit ranges from 90 miles/hour in rural areas to 40 miles/hour in urban areas (Highway 
Capacity Manual, 2010). Additionally, a temporary VSL can be issued as a control strategy for traffic 
incident management or congestion resolution if needed. As it can be expected, maximum 
mechanical speed > permanent compulsory speed limit > temporary VSL; therefore, the 
implemented speed limit (ISL) is generally given as either the permanent compulsory speed limit 
or the temporary VSL.   

 
In line with the VSL control literature, e.g., Hegyi et al. (2005), the turning point of ISL and SSL is 

located at the critical density  c t   (noting that the critical density is also affected by the 

implemented speed limited control itself), as shown in Figure 2. From the above analysis, the traffic 
flow speed v(t) is finally defined as a function of ISL (the lower of the posted compulsory speed 
limit and the VSL), traffic density, and the proportion of CAVs. 
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where  lv t  denotes the ISL (which can be regarded as a decision variable of the dynamic 

optimization problem as discussed in our recent work Pan et al. (preprint) or the permanent 

compulsory speed limit posted by freeway management center) and  c t   is a function of the 

penetration rate of CAVs and ISL as follows: 
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               (5)  

In traffic flow theory, the flow is the product of speed, v(t), and density, ρ(t), whereas the capacity 
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is the maximum traffic flow (rate) observed at the critical density  c t . By      cm lQ t t v t  , 

the roadway capacity can be defined below as a function of the penetration rate of CAVs and ISL: 
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               (6)  

For the congested part, according to Equation (4), the flow can be evaluated as  
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Assuming a linear relationship in the congested part, we have  

      
     

       

1

  1  

1

  1

1 ( )
( ) ( )

 

J

CAV RHV

CAV RH

c c

V

t
t t

P t T P t T

t
P t T P t

l C
w t w t

l C

l C

lT C


  



 
 

      


  



 



  

 

Therefore the back-wave speed is evaluated by: 
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                  (7)  

while the jam density is determined by the average vehicle length and the minimum safe constant gap: 

                    
1

J l C
 


                                (8)  

To ensure safety, the minimum space headway criteria  DH t for vehicle class D = CAV and RHV 

are evaluated respectively as 

   
   

= +

= +
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RHV RHV

H t v t T l C

H t v t T l C

 

 




                         (9) 

The total space  O t   reserved for the minimum-space headway of all vehicles traveling on the 

freeway segment is calculated according to the proportions of the two vehicle classes. 

              1CAV RHVO t t P t H t t P t H t                (10) 

When    ct t   , the speed is determined by SSL  sv t   according to Equation (4), the total 

space  O t  reserved for the minimum-space headways fills the total spaces. That is, the relationship 

between the traffic speed and density attains a critical value, as illustrated in Error! Reference source 
not found.2. The flow speed cannot be increased so as to maintain safety. However, when
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   ct t  , ISL  lv t can be lower than SSL  sv t , thus allowing extra space. 
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That is to say, if there is no ISL  lv t , vehicles can travel faster under light traffic conditions. The 

free space  1-O t  not occupied by vehicles can be randomly distributed among them. For 

simplification, we assume the safe space headway criteria are magnified by 
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Figure 2 Lane-specific fundamental diagram as a function of the penetration rate of CAVs. 

 
To sum up, the (average) space headway distributions are thus calculated: 
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 (11) 

 
As stated in Green (2000), the brake response time of a human driver is composed of three 
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components: mental processing, muscle movement, and brake engagement time. On average, the 
mental processing takes about 1.3 sec for unexpected occasions, the average muscle movement takes 
0.2 sec (Wierwille and Casali, 1983; Lerner et al., 1995; Green 2000), and the brake engagement 
time takes 0.35 sec under emergency conditions. Therefore, the braking response time of RHVs to 
an unexpected occasion is 1.85 sec. However, CAVs do not have mental reactions nor muscle 
movement; therefore, the response time of CAVs is considered to be 0.35 sec for the brake 
engagement process. This value is consistent with the 0.6 sec time headway between successive 
CAVs (Chen et al., 2017).  

 
Figure 3 Capacity as a function of the penetration rate of CAVs and implemented speed limit. 

 
Figure 3 demonstrates the impact of the penetration rate of CAVs1 and the compulsory speed limit 
on road capacity. In this example, all vehicles are considered passenger car equivalent (P.C.E.) or 
passenger car unit (P.C.U.) vehicles 20 ft in length, and the safe constant gap is 6.5 ft (when the 
related vehicles are at a standstill). As stated above, the response times of RHVs and CAVs are set to 
be 1.85 sec and 0.35 sec, respectively. As shown in Figure 3, the capacity monotonically increased 
with the increasing penetration rate of CAVs and the ISL. The solid black line quantifies the variation 
of capacity with respect to the penetration rate of CAVs varying from 0% to 100% by fixing the 
compulsory speed limit at 70 miles/hour. As demonstrated in this figure, the capacity varies 
significantly from 1719 P.C.U./hour/lane (with 100% RHVs) to 6055 P.C.U./hour/lane (with 100% 
CAVs). On the other hand, by conventional macroscopic traffic flow theory, the increase in free-flow 
speed (or the compulsory speed limit in our case) would introduce an increase in capacity. The red 
dotted line presents an example for this using a fixed 66.7% penetration rate of CAVs, while the pink 
dot-dash line presents the 33.3% one.     

                                                             
1 In this case, the penetration rate is equivalent to proportion as we interest in cell-lane capacity.  
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Figure 4 The distribution of space headway as a function of the penetration rate of CAVs 

 

Table 1 Space headway as a function of traffic density and penetration rate of CAVs 

 

Figure 4 and Table 1 present the space headways of RHVs and CAVs with respect to traffic density 
and penetration of CAVs. The space headway distributions with respect to different penetration rates 
of CAVs depicted in Figure 5 were obtained by setting the traffic density to be 47 P.C.U./mile/lane, 
i.e., 3 P.C.U./337ft, and assuming 66.7% and 33.3% penetration rates of CAVs, respectively. As it 
can be inferred from Figure 4, 5 and Table 1 that: 
1) The space headway in front of an RHV is larger than that in front of a CAV under the same traffic 
conditions, and this difference is more significant under free-flowing conditions (the results related 
to free-flowing conditions use bold font in Table 1). 
2) The increment of traffic density leads to smaller space headways for both RHVs and CAVs. 
3) The penetration rate of CAVs affects the space headway distribution. In particular, the space 
headway in front of RHVs increases when the penetration rate of CAVs raises from 33.3% to 66.7%.   
4). With the same traffic density, the traffic with a higher penetration rate of CAVs might maintain a 
higher speed. As demonstrated in Figure 5, the traffic is 21 miles/hour faster when the penetration 
rate of CAVs raises from 33.3% to 66.7%. 
 

S
pa

ce
 h

ea
dw

ay
 (

fe
et

)
S

pa
ce

 h
ea

dw
ay

 (
fe

et
)

 Scenario: 33.3% Penetration rate Scenario: 66.7% Penetration rate 

Density 

(P.C.U./mile/

lane) 

Speed 

(miles/hour) 
 CAVH t  

(ft) 

 RHVH t

(ft) 

Speed 
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10 70 196 694 70 286 1012 

32 70 61 217 70 89 316 

47 49 47 145 70 61 215 

100 14 32 63 20 36 86 

200 0.8 25 27 1 25 28 
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As it can be inferred from the above observations, the introduction of CAVs can change the gap 
distribution of the target lanes, while this change makes the lane changing maneuvers easier to be 
accepted by the target lanes. 

C CR

CR R

337 ft

70 miles/hour

49 miles/hour

145 ft 145 ft

47 ft

61 ft 61 ft

215 ft

A). Penetration rate =66.7% 

B). Penetration rate =33.3%  

Figure 5 The variation of space headway with respect to penetration rate. 

 

2.2. The minimum gap acceptance criteria 
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Figure 6 The headway acceptance analysis 

 
Apart from the traffic flow characteristics associated with traffic flow on a single lane, such as in 
the fundamental diagram and space headway distribution introduced in Section 2.1, the penetration 
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of CAVs also has an impact on lane-changing maneuvers when traveling on multilane freeways. In 
this subsection, the lane-changing acceptance/rejection criteria for multiclass traffic is proposed by 
extending the counterparts from Pan et al. (2016).  
    
Suppose that the subject vehicle s traveling on lane m switches to lane β via the space gap between 
the leading vehicle l and the following vehicle f in the target lane at time t, as demonstrated in Figure 
6. It is assumed that the subject vehicle is traveling at speed vm(t) (miles/hour), whereas the leading 
vehicle and following vehicle in the target lane are both traveling at the same speed vβ(t) (miles/hour). 
Without loss of generality, the assumption vm(t) < vβ(t) is proposed in this section, i.e., the lane-
changing maneuver is executed to gain better driving conditions. Based on the speed difference 
assumption vm(t) < vβ(t), it is necessary for the subject vehicle to accelerate to avoid a collision with 
the following vehicle in the target lane after the lane changing maneuver is executed. During the 
acceleration process, the space gap between the leading vehicle and the following vehicle must 
always fulfill the collision avoidance criteria. Denoting t′ = t + Ta (hour) as the moment when the 
lane-changing maneuver is executed, as shown in Figure 6, the subject vehicle is supposed to travel 
at the same speed as the vehicles in the target lane. By assumption, this speed is

     = =m a av t T v t T v t   . Considering the speed difference between the related vehicles during 

the lane-changing maneuver, the leading space headway2  'LH t  (mile) (as shown in Figure 6) 

will gradually increase, whereas the lag space headway  'GH t  (mile) will decrease with respect 

to the acceleration and lane-changing maneuver of the subject vehicle, that is, 
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According to the collision avoidance principle described in Section 2.1, the following conditions 
need to be fulfilled: 
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where D sT ，  and D fT ，  denote the response times of the subject and the following vehicles, 

                                                             
2The leading space headway denotes the distance from the head of the lead vehicle to the head of the subject vehicle. 

The lag headway denotes the distance from the head of the subject vehicle to the head of the following vehicle.  
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respectively. The space headway of the target lane at time t,      ,
, =f L G

s mH t H t H t
  , should be 

not less than the minimum space headway  ,
,
f

s mH t , which is determined by Equation (14): 

       
      

   
      

2

, ,
, , , ,

421
3

2

, ,

421
3

= 2 2 1
2

2 2
2

mf f
s m s m D f m D s

itemitemitem
item

m c
D f m D s

r c
itemitemitem

item

v t v t
H t H t v t T v t T l C Case

a

v t v t x x
v t T v t T l C

a x x

 





 
 

       
 
 
 

  
        

 


 

 

 
4

2

2 2 3
item

Case

l C Case











 






(14) 

This criterion varies with respect to the lane-changing motivation, level of lane-changing urgency, 

and vehicle class. According to the level of urgency,  ,
,
f

s mH t  is divided into three cases. Case 1 

refers to the non-urgent scenario associated with a lane-changing demand proposed by RHVs, such 
as a discretionary demand or a mandatory demand at a remote state with the remaining distance3 

rx x  . Under this case, drivers usually prefer a relatively large gap at the beginning of a lane-

changing maneuver due to a risk-adverse attitude.  ,
,
f

s mH t  decreases linearly with respect to the 

remaining distance when x is within the range c rx x x    according to Case 2 of Equation 

(14)Error! Reference source not found.. Case 2 is between the non-urgent scenario (that the lane 
change is executed far from the target point due to the risk-adverse attitude of the drivers) and the 
urgent lane-changing scenario (that the vehicle is so close to the target point that the lane change has 
to be executed). Both Case 1 and Case 2 were devised to model the minimum gap acceptance 

criterion of RHVs in line with Pan et al. (2016). Therefore, the response time is , =D s RHVT T  . In 

addition, because RHVs cannot identify whether the vehicle behind it on the target lane is an RHV 

or a CAV, , =D f RHVT T   is adopted from the point of view of safety. Case 3 involves the urgent 

lane-changing demand, i.e., x < xc, proposed by RHVs and the lane-changing demand proposed by 
CAVs. Case 3 involves the urgent MLC demand, i.e., x < xc, proposed by RHVs or CAVs. For DLC 

                                                             
3 The remaining distance x is defined as the distance from the current position of the subject vehicle to its 

target turning point. xc and xr denote the remaining distances by which the test section is partitioned as remote, 

median, and close sections, respectively, with each section corresponding to a specific level of mandatory 

lane-changing (MLC) urgency and minimum acceptance criterion. Taking a vehicle intending to execute an 

MLC as an example, the target turning point is considered to be remote as long as the remaining distance x > 

xr and close if x < xc. In Pan et al. (2016), xc and xr were calibrated to be 0.05 miles and 1 mile, respectively, 

in their empirical study. 
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intention which only can be proposed by RHVs, the  ,
, ,

f
DLC s mH t  is simplified as below: 
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since an RHV cannot identify the vehicle class of the following vehicle on the target lane. Whether 
the target lane could provide sufficient space headway to fulfill the minimum space headway criteria 
is a prerequisite of a successful lane-changing maneuver. However, the final execution of a lane-
changing maneuver still needs to fulfill other supplementary conditions apart from this minimum 
space headway criteria. This issue will be further discussed in the next section. 
 

In summary, compared with traffic of pure RHVs, traffic flow mixed with CAVs would introduce 
the following three advantages: 1) the higher penetration rate of CAVs induces a higher capacity for 
the same freeway; 2) the minimum space headway gap required by the CAVs is smaller than that 
required by RHVs, for both MLC and DLC lane changing intentions; 3) the space headway in front 
of RHVs can be significantly enhanced if more CAVs are traveling on the segment under the same 
traffic conditions because CAVs tolerate a smaller headway, as illustrated in Figure 5. As it can be 
inferred from advantage 2) and 3), lane changing will be easier and safer.  
 

3.  Traffic-state propagation  

 3.1. Cell-lane representation of the multiclass traffic flow conservation  
 
Consider a multilane freeway segment divided into several cell packages, from cell package 1 to 
package N, along the longitudinal dimension, as shown in Figure 7. Each cell package includes two 
cells located on lane m and lane β, denoted as cell (i, m) and cell (i, β), respectively. In this paper, 
we assume that there is only one bottleneck (caused by lane drop or traffic accident) on this freeway 
segment, which is located at the end of cell (N, m). Based on flow conservation, the cell densities 

, ( 1)i,m CAV k    (P.C.U./mile/lane) of CAVs and , ( 1)i,m RHV k    (P.C.U./mile/lane) of RHVs are 

respectively: 
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Figure 7 Merging and diverging induced by lane-changing demands of CAVs and RHVs 

 

The cell density is a summation of the two vehicle classes, i.e.,  

, ,( 1)= ( 1) ( 1)i,m i,m CAV i,m RHVk k k                               (16) 

whereas the proportion of CAVs in a particular cell-lane unit is given by 

,( 1)= ( 1) / ( 1) ( 1) 0i, m CAV i, m CAV i, m i, mP k k k if k      ，         

According to Equation (3), the cell-lane speed is given by 
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 (17)  

depending on whether the speed limit control or the posted permanent compulsory speed limit is 
implemented.    
 
3.2. Sending and receiving functions for multiclass multilane traffic flow propagation   

The sending and receiving functions for mixed traffic flow are extended from those developed by 
Pan et al. (2016) according to the new fundamental diagrams for multiclass traffic flow with various 

proportions of CAVs. First, the sending function  1
, ,
i
i m Ds k  (P.C.U./hour/lane) that determines the 

traffic flow that intends to leave cell (i, m) for vehicle class D is defined as 

 
, , , , , , ,
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0, 0, ,
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， ０

 (18) 

where , , ( )i m DP k  is the proportions of CAVs and RHVs in cell (i, m), with D = CAV and RHV, 

respectively, and  

, , , ,( ) 1 ( )i m RHV i m CAVP k P k                                  
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where 0, , ( )m DP k  is the proportion of vehicle class D arriving at the upstream boundary, 0, ( )mS k  is 

the demand toward lane m and ( )m DW k，   is the number of vehicles of class D queuing at the 

upstream boundary to cell (1, m) at simulation time step k. 
 

The sending function  1
, ,
i
i m Ds k  intended to leave cell (i, m) during time step k would move to the 

downstream cell package (i +1) involving all possible lanes, i.e., cell (i+1, β) in the adjacent lane 
and cell (i+1, m) in the current lane. There would be three possible lane-changing intentions: a) 

1,
, , ( )i

i m CAVs k  the amount of CAVs following the lane-changing instructions issued by the VACS; b) 

1,
, , , ( )i

M i m RHVs k the amount of RHVs making MLC decisions based on lane-changing suggestions; and 

c) 1,
, , , ( )i

D i m RHVs k  the RHVs making DLC decisions to increase speed. These lane-changing flows can 

be evaluated as 

 

1, 1 1,
, , , , , ,

1, 1 1,
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             (19) 

A definition constraint 1,
, ,ˆ0 ( ) 1i

i m CAVp K   is imposed on the proportion of CAVs issued with the 

MLC control. The other two proportions 1,
, , , ( )i

M i m RHVp k   and 1,
, , , ( )i

D i m RHVp k   are associated with 

RHVs based on human drivers’ individual decisions. Once the incident alarm is disseminated 

through the VMS gantries, i.e., ˆ ( ) 1mB K  , the MLC motivations of RHVs are triggered; otherwise,

ˆ ( ) 0mB K  . The term 1,
, , , ( )i

M i m RHVp k  depends on the following elements: the remaining distance ix

from the current cell package i to the incident spot, the cell density , ( )i k , the total MLC demand 

that intends to switch from lane m to lane β, , , ( )M m RHVS k , and the accumulation of executed MLC 

flow, 1,
, , , ( )j

M j m RHVq k , from cell (1, m) to cell (i, m). 

2 2
1 2 ,

1
( ) /( ( ))1, 1, 1

, , , , , , , , , ,
1

( )= ( ) e ( ) / ( )i c i

i
x x ki j i

M i m RHV M m RHV M j m RHV i m RHV
j

p k S k q k s k    


     



 
  

 
   (20) 

Interested readers are referred to Pan et al. (2016) for a detailed discussion on the detailed discussion 

on mandatory lane changing and the calibration of parameters 1 , 2  and the critical remaining 

distance xc (also refer to footnote No. 3 on Page 13 of this paper).   
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DLC (for RHVs) is motivated by the speed advantage of the adjacent lane if there is no LCR is 

issued to the current segment on the current lane, i.e., ˆ ( ) 0mB K  .   

    , ,1,
, , ,

max 0,
( )=

i i mi
D i m RHV

f

v k v k
p k

v






                    (21) 

The term can be interpreted as the average time a driver takes to decide and execute a lane change 
when the original lane is stopped, and the target lane is free-flowing (Laval and Daganzo, 2006).  

 
Finally, the straightforward flow intended to leave cell (i, m) and enter cell (i+1, m) is 

1, 1 1,
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                (22) 

However, the final execution of all the lane changing demands and straightforward demands still 
depends on two external factors: the fulfillment to minimum gap acceptance criteria by target lane, 
and the accommodation of several merging demands considering specific priorities.  

3.3. Allocation of available space for merging flows  

The available space of the target cell (i+1, β)  1,iR k   (P.C.U./hour/lane) can be evaluated 

according to the fundamental diagram. 
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 (23) 

where E denotes the downstream sink connected to the last cell N. 

Toward the target cell (i+1,β), there are five sending flows, i.e.,    1, 1,
, , , , , ,

i m i m
st i m CAV st i m RHVs k s k ，  , 

 1,
, ,
i
i m CAVs k ,  1,

, , ,
i
M i m RHVs k , and  1,

, , ,
i
D i m RHVs k , where the last three elements correspond to the three 

minimum space headway criteria  1,
, ,
i
i m CAVH k  ,  1,

, , ,
i
M i m RHVH k  , and  1,

, , ,
i
D i m RHVH k  . Considering the 

limited available space provided by the target cell, the flows that can be received by the target cell 
are calculated by Equations (24) and (25).            
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The subscript lc in  1,
, , ,

i
lc i m Dq k (P.C.U./hour/lane) refers to the lane-changing motivations and D 

refers to vehicle class.  1,i
iU k  (P.C.U./hour/lane) denotes the total space required by the lane-

changing demand (by fulfilling the minimum space headway criterion in the target lane) toward cell 
(i+1, β). 
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，  (26) 

Based on the result of Equations (24-26), the cell densities , ( 1)i,m CAV k   (P.C.U./hour/lane)  of 

CAVs and , ( 1)i,m RHV k    (P.C.U./hour/lane) of RHVs are evaluated according to Equation (15). 

Figure 8 presents a precedence diagram that summarizes the concept and the interconnection of 
different components for a better grasp and understanding of the proposed model.   

Lane changing 
command 
issued to 

CAVs  
through VACS

Evaluation of  
sending flow 

associated with 
CAVs

Evaluation of 
sending flow 

associated with 
RHVs

Demand and supply reaction law 
considering PIT  (3.3) 

Evaluation of cell-lane density 
and CAV proportion  (3.1)
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Penetration rate 
dependent FD 

(2.1)     Lane changing 
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proposed by 
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acceptance criteria associated with 
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The supply side

Penetration rate 
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(2.1)     

Evaluation of 
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target cell  (3.2)

Distribution of 
space headway 

provided by 
target cell  

(2.1) 

Figure 8. A precedence diagram of the model  
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4. Numerical simulation  

 
The proposed model is to simulate the multiclass multilane traffic mixed with CAVs and RHVs. 
Unfortunately, there is no existing data recording the traffic flow characteristics of the CAVs and 
RHVs. Therefore, in this section, we explore the properties of the proposed model by numerical 
simulations, e.g., showing the effects of CAVs on traffic flow characteristics such as speed, 
operational capacity, fundamental diagram, total delay under different penetration rates of CAVs.  
 
4.1. Description of the “test site” 
 
We consider a virtual 2.75-mile-long freeway segment with two lanes as shown in Figure 9 in this 
numerical example. The freeway segment is without on/off-ramps. There are sufficient V2X 
infrastructures transmitting real-time traffic data and issuing control actions such as lane-changing 
controls (LCCs) and variable speed limit controls (VSLCs) to CAVs along the freeway section. 
Assuming that the initial time for this simulation is 0, five minutes after that, cell (11,1) is 
temporarily closed due to a traffic incident. Only cell (11, 2) is available for traffic, and a temporary 
bottleneck is thus formed. The lane closure lasts 20 min until the incident is removed. The simulation 
continues another 20 min to dissolve the queue afterward. In order to maintain the same total 
throughput with entry flow, the inflow demand is set to be 0 at the final 5 minutes. The simulation 
time step is 10 sec. To meet the numerical stability requirement, i.e., the Courant–Friedrichs–Lewy 
(CFL) condition of the CTM, the cell length should be greater than or equal to the distance traveled 
during a simulation time step at the free-flow speed. Therefore, this 2.75-mile-long freeway segment 
is divided into 11 cell packages with equal lengths of 0.25 miles. 

Cell (1,1)

Cell (1,2)

Cell (4,1)

   Cell (4,2)

Cell (5, 1)

Cell (5, 2)

……

……

Cell (10,1)

Cell (10,2)

……

……

Incident spot

Cell (9, 1)

Cell (9, 2)

Cell (11,1)

Cell (11,2)

Lane closure

   0,2 0,2,S k P k

 ,1ER k

 ,2ER k
1mile

   0,1 0,1,S k P k

0.25mile 1mile

Cell (8, 1)

Cell (8, 2)

0.5mile

 

Figure 9. Topology of the “test site” 

 
All vehicles are assumed to be P.C.U. 20 ft (6 m) long, and the safe constant gap is 6.5 ft (2 m; see 
the empirical study in Pan et al. (2016)). In this example, the response time is set to 1.85 sec for 
RHVs and 0.35 sec for CAVs4 . The time-dependent fundamental diagram and minimum space 
headway acceptance criteria are then determined according to these settings. It is assumed that the 
                                                             
4 Note that the response time of CAVs is assumed to vary from 0.25 sec to 1.5 sec in Levin and Boyles (2016a). 

The minimum headway required by CAVs is about 0.6 sec if the response time is chosen as 0.35 sec. Since the 

minimum headway required by CAVs would heavily affect the capacity of the freeway with mixed traffic of RHVs 

and CAVs, we will conduct a sensitivity analysis on several typical values of the response time of CAVs. 
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compulsory speed limit is 70 miles/hour under normal conditions. The parameters for evaluating the 
distribution of MLC and DLC demands are listed in Table 2. These parameters were calibrated and 
validated in Pan et al. (2016).  

Table 2 Parameters adopted in the traffic model 

 

Longitudinal cumulative distribution function of 

MLC demand 

α1  671 

α2 Weighting associated with the density of 

the target lane 

33.7 

xc Critical remaining distance 0.05 miles 

DLC demand determination function τ Average lane-changing reaction time 3 s 

 

4.2 Simulation results  

 
To see how the presence of CAVs in the traffic stream would influence the bulk traffic flow, this 
numerical study tests three penetration rates of CAVs, i.e., 0% for the pure RHVs case (which is 
termed as Case A), 33.3% (which is termed as Case B) and 66.7% for mixed traffic case (which is 
termed as Case C). In the simulation setting, no LC recommendations are disseminated to RHVs. 
Therefore, all the drivers would make their own decisions according to their perceived traffic 
conditions. The CAVs traveling in the incident lane would follow the non-optimized LCCs, such as 
remaining in the current lane until the remaining distance to the incident spot is less than 0.2 miles. 
It should be noted that the CAVs are always with full automatic control. Otherwise they can be 
regarded as RHVs. Therefore, when we mention “without control” we mean that the control is only 
applied to the CAVs rather than to coordinate the movements of the RHVs and CAVs. The inflow 
profile is 1125 P.C.U./hour/lane.   
 
Figure 10 depicts the spatial-temporal distribution of traffic density and speed for Case A. Before 
the incident occurred (0-5 min), the inflow demand is less than the freeway capacity (the nominal 
capacity for pure RHVs is 1719 P.C.U./hour/lane (Case A), 2294 P.C.U./hour/lane for 33.3% 
penetrated case (Case B), and 3446 P.C.U./hour/lane for 66.7% penetrated case (Case C)). Under 
normal condition (the period before the incident happened), no congestion would form under such 
setting, see, e.g., Figure 10 a). As soon as the occurrence of the incident, lane 1 is closed. Traffic 
demand exceeds the theoretical bottleneck capacity; congestion starts to onset. As the divers do not 
know about the incident until they reach the incident spot or join the queue, the queue on lane 1 
quickly spills upstream after the lane closure (as it can be inferred from Figure 10 a). After they reach 
the tail of the queue, they have to switch to lane 2 due to the lane blockage. As it can be observed 
from Figure 10 a), when the vehicles join the queue, they would travel at a low speed and seek for a 
chance to execute an MLC. When an MLC maneuver is executed by such a vehicle with low speed, 
the speed in lane 2 is also brought down. As a consequence, density on lane 2 increases thus causing 
congestion in lane 2. As revealed in the literature, this kind of speed reduction causes by the lane-
changing maneuvers can further induce the capacity drop, i.e., the capacity at the bottleneck is much 
lower than the theoretical value, especially when the lane-changing flow ratio is large, see e.g., Pan 
et al. (2016); Zhang and Ioannou (2017) and the references therein). With the penetration of CAVs, 
traffic congestion becomes less severe, see, e.g., Figure 10 b) and c), because autonomous driving 
can achieve a faster lane changing execution and require a smaller minimum safety gap. However, 
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when the penetration rate is not high (i.e., Case B), the effect is limited. In contrast with Figure 10 
b), the congestion alleviation is evident under the high penetration rate case, i.e., Case C in Figure 
10 c). However, the congestion cannot be well resolved by autonomous driving only (especially 
when the penetration rate of CAVs is low) as indicated in Figure 10 and Table 3.            

 

 
a) Case A1 (0% penetration rate with 1125 P.C.U./hour/lane inflow demand) 

 

 

b) Case B1 (33.3% penetration rate with 1125 P.C.U./hour/lane inflow demand) 
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c) Case C1 (66.7% penetration rate with 1125 P.C.U./hour/lane inflow demand) 

Figure 10. Spatial-temporal density and speed maps of the baseline cases penetration rate and demand (left-hand 

side: lane 1 (with incident); right-hand side: lane 2) 

 
Vehicles have to slow down considerably when approaching the incident spot or the tail of the queue 
without being aware that their lane is blocked. Apart from a capacity drop, an oscillation in traffic 
speed of the bottleneck cell can be observed from Figure 11 for the pure RHV case (Case A). Without 
acknowledgment of the incident, vehicles traveling in the incident lane would change lanes only 
when they reach the incident spot or arrive at the tail of the queue, see, e.g., Figure 12. In either case, 
they have to slow down considerably to execute an MLC maneuver to the open lane. When the low-
speed vehicle changes to the open lane, vehicles traveling in the open lane have to slow down to 
adapt to the speed of its leading vehicle (i.e., the lane-changing vehicle) to guarantee traffic safety, 
as shown in the solid blue line of Figure 11. The speed of the open lane would increase only if the 
lane-changing vehicle increases its speed. Note that the freeway is under oversaturated traffic 
condition, the process would keep happening if there is any MLC maneuver executed by low-speed 
vehicle from the closed lane. With the penetration of CAVs, such speed oscillation can be alleviated, 
especially when the penetration rate of CAVs is high. This is because the CAVs can achieve a faster 
lane changing execution while requiring a smaller minimum safety headway and can make a faster 
acceleration. The penetration of CAVs delays speed breakdown of the bottleneck cell as indicated in 
Figure 11.    
 
On the other hand, there is the so-called “friction effect” from the empirical observation that drivers’ 
fear of moving fast in open lanes when an incident or slowly moving vehicles exist in adjacent lanes. 
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As observed in Zhang and Ioannou (2017) that which forced lane changes in close proximity to the 
incident were the major cause of capacity drop and thus reducing the actual operational capacity of 
the bottleneck, as shown in Figure 13. As depicted in Figure 13 a), the operational capacity is 
oscillating between 950-1350 P.C.U./hour during the lane blockage period, which is lower than its 
nominal value (i.e., the capacity of a single lane) of 1719 P.C.U./hour when there is no lane changing 
flow. The operational capacity increases with respect to the penetration rate of CAVs. At the 
meanwhile, the oscillation of operational capacity becomes weaker when the penetration rate of 
CAVs becomes higher. With fewer interruptions caused by lane changing maneuvers, the capacity 
drop effect at the bottleneck can be reduced (Zhang and Ioannou, 2017). As shown in Figure 13, 
during 12-25 minute the average operational capacity of the bottleneck increases from 1170 (Case 
A) to 2230 (Case C) P.C.U./hour and the standard deviation reduces from 163 (SD/Mean ratio14%) 
(Case A) to 72 (SD/Mean ratio 3.2%) (Case C) P.C.U./hour.   

 
Figure 11. Speed oscillation of Cell (10,2)   

 

 
(a) Case A 

 

(b) Case B 

Figure 12. The proposed and executed cumulative lane changing flows 
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(a).Case A 

 

(b). Case C 

 Figure 13. Operational capacity during the lane blockage  

 

Table 3. Total travel time spent and speed profile with different penetration rates of CAVs 

Inflow demand 
(P.C.U./hour/lane) 

Penetration 
rate 

Average Speed 
(mile/hour) 

Speed  
deviation 

Total travel 
time 
(P.C.U. hour) 

Cumulative 
exit flow   

1125 0% 15 26.8% 189 1500 
10% 16 24.5% 167 1500 
33.3% 21 20.0% 124 1500 
66.7% 40 0.5% 74 1500 
100% 70 0% 55 1500 

 
As previously mentioned, the penetration rate of the CAVs significantly affects the freeway 
operational characteristics. Sensitivity analysis is conducted to demonstrate the performance of the 
speed profile against the penetration rate of CAVs. Apart from the average velocity, the standard 
deviation of traffic velocity is a common measure to quantify the traffic state in the literature, see, 
e.g., Stern et al., (2017). For our concern, we are interested in the speed deviation during the incident 
period since the lane-changing maneuvers are the primary causes of capacity drop and traffic 
breakdown. Table 3 presents the (weighted) mean and deviation of the speed profile of the segment 
during 12-25 minute (incident period) under different penetration rates of CAVs. As indicated in the 
table, the presence of CAVs can significantly increase the mean speed while reducing the speed 
variation at the same time. When the penetration rate of CAVs is low, the improvement is not 
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significant (both mean and standard deviation). When the penetration rate of CAVs is high enough, 
the bottleneck traffic speed could be smoothed as indicated in Figure 11. This in conjunction with 
Figure 10 suggests that cell traffic speed can recover from abnormal traffic conditions in a much 
faster way when the penetration rate of CAVs is high. The advantage of CAVs in reducing total travel 
time is also highlighted in Table 3. With a penetration rate of 66.7% of CAVs, the total travel time 
can be reduced by about 60% under over-saturated traffic condition. 
 

Table 4. The platooning and re-calibration of the capacity 
Penetration 
rate 

Size of 
CAVs 
platooning 

Ratio of 
C-C gap 

Ratio of 
R-C gap 

Ratio of C-R and 
R-R gap 

Re-calibration of the 
capacity 

33.3% 1 0 1/3 2/3 1991 
3 2/9 1/9 6/9 2164 
6 5/18 1/18 12/18 2212 
9 8/27 1/27 18/27 2229 
12 11/36 1/36 24/36 2237 

66.7% 2 1/3 1/3 1/3 2753 
6 5/9 1/9 3/9 3095 
8 7/12 1/12 4/12 3144 
12 11/18 1/18 6/18 3194 

C-C (CAV following CAV): Response time 0.35sec 
R-C (CAV following RHV): Response time 0.7sec 
R-R/C-R (RHV following RHV/CAV): Response time: 1.85sec 

 

Platooning of CAVs decreases the headway of vehicles by a cooperative adaptive cruise control 
(CACC) algorithm that would maintain a tight headway and thus achieve a large saturation flow rate. 
In this test, we investigate the effect of platooning size of CAVs by sensitivity analysis (by specifying 
the upstream arrival process of CAVs). It is assumed that the lane changing maneuvers of RHVs 
cannot interrupt the CAV platoon. There are several car following scenarios, such as CAV (leading)-
CAV (following), RHV-CAV, RHV-RHV, CAV- RHV, admitting different time headway distributions. 
The CAV-CAV can achieve the smallest headway. For the case when a CAV follows an RHV, since 
the reaction time of a CAV is very small and the assumption that the CAVs have to know the position 
and speed of some following vehicles and the direct preceding vehicle in real time regardless whether 
the following and the preceding vehicles are CAVs or not through either V2X technology or their 
own detectors, the headway can be small too. For other two car-following cases, conventional RHV 
car-following headway is adopted. Therefore, we adopted the settings presented at the bottom of 
Table 4. Simulation results are presented in Table 4. It can be observed that the capacity will increase 
with the size of CAV platoon in general under the same inflow profile. The increase will not be 
significant when the size of the CAV platoon is already large enough, e.g., 6 CAVs for the 33.3% 
case and 8 CAVs for the 66.7% case. This implies that a proper platoon size of CAVs can be 
identified for the purpose of maximizing the capacity under the mixed RHV and CAV scenarios.    

 

4.3 Discussion 
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From the above simulation analysis, we can see that the congestion cannot be well resolved by 
autonomous driving only especially when the penetration rate of CAVs is low. Freeway control 
schemes that aim to improve traffic flow efficiency are required. Through the VACS, the CAVs can 
adjust their driving status such as speed, lane, and headway according to the control. Zhu and 
Ukkusuri (2017) termed this kind of driving behavior as proactive driving behavior. Note that the 
proactive driving behavior can help to smooth the traffic flow and improving its performance. 
Literature has shown that using a CAV as the leading vehicle to influence the driving behavior of 
RHVs, the efficiency of traffic flow mixed with CAVs and RHVs can be significantly improved 
(Stern et al., 2017). An implication from these findings is that, if the prevailing traffic information 
is available, RHVs could also adjust their driving status such as speed according to the VSLR 
released by the VMS gantry rather than blindly adjust speed based on the speed change of the leading 
vehicle (so does the lane choice). In other words, RHVs can also drive proactively to a certain extent, 
although not as proactive as CAVs, e.g., Equation (20) (which is an extension of the CTM to account 
for the proactive driving behavior of RHVs). One promising future direction is to devise an 
integrated traffic control strategy including the variable speed limit (VSL) and lane-changing control 
(LCC) for improving the efficiency of freeway traffic mixed with RHVs and CAVs using the VACS 
and the en-route Variable Message Signs (VMS) under various penetration rates of CAVs. 
Preliminary results in Pan et al. (preprint) show that the traffic flow could be smoothed if their drivers 
are willing to follow the control information such as the LCR and VSLR disseminated through VMS 
gantry while the CAVs will follow the control through VACS. 
 

5. Conclusions  

To support the design of the freeway traffic control schemes with different market penetration of 
CAVs, a new multiclass multilane traffic flow model was proposed in this paper to simulate traffic 
flow dynamics mixed with CAVs and RHVs. This new multiclass multilane CTM-based model 
explicitly considers the effect of variations in headway and safety gap distributions with respect to 
different vehicle-class proportions within each cell on its fundamental diagram. The impact of the 
implemented speed limit control on the fundamental diagram is also explicitly considered in the 
proposed model. Meanwhile, different safety gap acceptance criteria were proposed to consider 
various lane-changing maneuvers of different vehicle types (RHVs and CAVs) with different lane-
changing intentions to guarantee traffic safety and lane-changing priorities. The proposed model 
includes driver’s anticipation on lane choice regarding the headway, acceleration, and their distance 
to the target location. It was found by numerical investigation that the proactive driving of CAVs can 
smooth traffic flow resulting in an improvement on average traffic speed while reducing traffic speed 
oscillation. Substantial potential operational capacity increases are possible under certain market 
penetration scenarios. The advantage of CAVs in reducing total travel cost is highlighted in the 
numerical example. Further study is recommended to extend the proposed framework for empirical 
experiments under controlled environments such as Stern et al. (2017) and to develop an optimal 
control framework that integrates several traffic control schemes for improving the efficiency of 
freeways.   
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Appendix: Key variables of the multiclass multilane traffic flow model 
 

Elements Notation description 

, , ( )i m CAV k  
Density of CAVs on cell (i, m) during step k 

, , ( )i m RHV k  
Density of RHVs on cell (i, m) during step k 

, , ( )i m CAVP k  
Penetration rate of CAVs on cell (i, m) during step k 

, ( )i mv k  
Traffic speed on cell (i, m) during step k 

1,
, , ( )i

i m CAVs k  
Sending function of lane-changing demand ordered to CAVs from cell (i, m) to  

cell (i+1, β) during step k 

1,
, , , ( )i

M i m RHVs k  
Sending function of RHVs with MLC or DLC demand from cell (i, m) to cell  

(i+1, β) during step k 

1,
, , , ( )i

D i m RHVs k  

, , , ( )st i m CAVs k  
Sending function of flow with vehicle class CAV or RHV that intend to leave cell (i, m) 

and be received by downstream cell (i + 1, m) during step k 

, , , ( )st i m RHVs k  

1,
, , ( )i

i m CAVH k  Minimum space headway criteria of 1,
, , ( )i

i m CAVs k  

1,
, , , ( )i

M i m RHVH k  Minimum space headway criteria of 1,
, , , ( )i

M i m RHVs k and 1,
, , , ( )i

D i m RHVs k  

1,
, , , ( )i

D i m RHVH k  

1,
, , , ( )i

M i m CAVq k  The amount of 1,
, , ( )i

i m CAVs k  received by the target cell 

1,
, , , ( )i

M i m RHVq k  The amount of 1,
, , , ( )i

M i m RHVs k and 1,
, , , ( )i

D i m RHVs k  received by the target cells, respectively 

1,
, , , ( )i

D i m RHVq k  

, , , ( )st i m CAVq k  The amount of , , , ( )st i m CAVs k and , , , ( )st i m RHVs k  received by the target cells 

, , , ( )st i m RHVq k  

, ( )i mR k  
Receiving function of cell (i, m) during step k 

, ,ˆ ( )i m lv K  
Implemented speed limit on cell (i, m) during control cycle K 

1,
, ,ˆ ( )i

i m CAVp K  
Proportion of CAVs that are issued to switch from cell (i, m) to cell (i+1, β) during 

control cycle K 
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,ˆ ( )i mv K  
Speed limit control on cell (i, m) during cycle K 

, , ( )i m c k  
Critical density on cell (i, m) at simulation step k 

, ( )i mQ k  
Capacity on cell (i, m) at simulation step k 

, ( )i mw k  
Wave-back speed on cell (i, m) at simulation step k 

, , ( )i m J k  
Jams density on cell (i, m) at simulation step k 

0, ( )mS k  
Inflow demand of lane m at simulation step k 

0, , ( )m CAVP k  Proportion of CAVs associated with 0, ( )mS k  

, ( )E mR k  
Available space of downstream section at simulation step k 

RHV  Regular Human-piloted Vehicle 

PIT Priority Incremental Transfer 
SSL Spontaneous Speed Limit 
DLC Discretionary Lane Changing 

MLC Mandatory Lane Changing 
ISL   Implemented Speed Limit 
VACS Vehicle Automation and Communication System 

VSLC   Variable Speed Limit Control   
LCC   Lane Changing Control   

 
 
 




