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ABSTRACT 
 

Vision-based localization is a temporal informative task in which 

we can obtain information about the ego-motion of a vehicle from 

the historical information via examining consecutive frames. 

Sufficient temporal information helps to reduce the search space of 

the next location. Hence, both efficiency and accuracy of the 

localization system can be enhanced. This paper presents a semi-

supervised deep vision-based localization algorithm, using a novel 

tubing strategy to find the starting location of a vehicle. We group 

different number of consecutive frames as sets of tubes based on 

their temporal correlation to achieve pair searching with variable 

tube sizes. We also enhance an off-the-shelf network model with 

our modified training data generation method to improve the 

discrimination power of the features given by the model. 

Experimental results show that our proposed temporal correlation 

based initialization module can confidently localize the starting 

location of a vehicle (for a certain journey), and achieve 40% 

precision improvement over that of the conventional CNN 

approaches.  
 

Index Terms— Visual localization, temporal correlation, 

scene recognition, autonomous driving, deep learning  
 

1. INTRODUCTION 

Visual scene recognition (or visual ego-localization) has been 

studied for decades and it is crucial to the development of 

autonomous driving [1,2]. Nowadays, there are numerous 

applications and services in which Global Navigation Satellite 

Systems (GNSS) acts as the basis of ego-localization module. 

Nevertheless, one common problem is that GNSS suffers from the 

masking and reflection of the GNSS signal on dense trees and 

concrete buildings [1]. Under the circumstances, many researchers 

look for other possible techniques to give ego-localization 

information so as to generalize various types of localization 

systems. Vision-based localization has been a popular topic 

because of the richness and cost-effectiveness of visual information. 

In this paper, we will show how we can accomplish a reliable 

system through using only visual information.  

Visual localization methods can be categorized into two main 

streams, namely single image-based and sequence-based. For the 

first category, finding the global best match to a query image 

among all database images (single nearest neighbor search) is the 

most straightforward method which merely relies on the 

discrimination power of the image descriptors. Milford and Wyeth 

[3] presented the first sequence-based method called SeqSLAM. 

With the use of sequences of images as a performance boosting 

technique, SeqSLAM attains 100% precision at around 60% recall 

rate. [4-8] propose methods for visual localization via using the 

temporal correlation given by consecutive frames. Here, we define 

the temporal correlation as the information obtained from the 

comparisons of previous frames.  

Recently, Convolutional Neural Networks (CNN) have 

outperformed many conventional methods in various computer 

vision tasks [9]. CNN features (or deep features) have been proven 

to be more robust than traditional hand-crafted features. [10-14] 

applied deep features to the localization problem and evaluated the 

corresponding performance. Heavy computational cost and 

difficulty in constituting a large amount of training data are two 

obvious weaknesses of CNN-based methods. [10] proposes a 

shallow convolutional autoencoder network to speed up the feature 

extraction stage and a way to generate training data automatically 

for easing the collection of training data. They achieved 

satisfactory performance in small databases via using only single 

nearest neighbor search. 

In this paper, our main contributions include (i) we propose a 

high confident initialization stage which makes use of the temporal 

correlation between consecutive frames; (ii) we improve the 

network proposed by [10] and enhance the way of generating 

training data by considering also the changes in appearance, 

illumination and viewpoints, as well as fine-tuning the model on 

parts of a localization dataset, Nordland dataset [15]. Hence, the 

discrimination power of the deep features from the fine-tuned 

model is generally improved. Extensive experimental results, 

including on three challenging datasets with different practical 

issues, show the temporal correlation between consecutive frames 

can boost the initialization performance in large databases.  

The rest of the paper is organized as follows. Section 2 briefly 

reviews the architecture of the used network and describes our 

suggested improvement on training data generation. Section 3 

presents the proposed initialization stage. Section 4 provides 

comparisons of several state-of-the-art methods. Finally, Section 5 

draws a conclusion of this paper.  
 

2. REVIEW ON CONVOLUTIONAL AUTOENCODER 

NETWORK FOR LOOP CLOSURE 

In 2012, AlexNet [9] outperformed the conventional methods in 

the classification competition. [12] evaluated the performance of 

deep features obtained from AlexNet in localization tasks, for 

which the structural features of a scene are of critical importance. 

For scene recognition, moving and standstill objects can be 

regarded as noise which affects our decision making. We can infer 
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that the middle convolutional layer (conv3) is more suitable for 

localization tasks as structural features of a scene is about 

understanding the gist of an image. Their experimental results 

showed that conv3 features give the best performance in 

localization tasks. However, high dimensional feature vector 

(conv3 features ∈ ℝ384×13×13 ∈ ℝ64896) causes the problem of slow 

pair matching especially for linear full search strategy.  

[10] resolved the above mentioned problems via constructing 

a shallow convolutional autoencoder network and preparing the 

training data with a self-transformed manner. Autoencoder model 

is able to extract robust features because of its denoising property 

[16]. Generally, the model learns to identify the salient features of 

the input and use them to generate a “denoised” version of the 

input as output to us. For training data, [10] applied a random 

perspective transformation to each input such that each input is 

automatically paired up with its self-perspective transformed 

version as the ground truth label. As a result, their network is 

tailored for a particular issue – changes in viewpoints.  

Fig.1 shows the training process of their proposed network 

with our modifications in the training data generation. We follow 

their training process1 under the Caffe framework [17] to improve 

the model. Histograms of Oriented Gradients (HOG) [18,19] is a 

well-known hand-crafted feature which is robust to changes in 

illumination because of its local contrast normalization. [10] 

adopted HOG for their network training in which it benefits from 

(i) smaller size of the extracted features to achieve reasonable data 

compression (HOG feature vector ∈ ℝ3648); (ii) illumination 

invariance property of HOG to handle changes in lighting 

conditions; (iii) perspective transformed training data to further 

enhance the features for localization tasks. Their proposed network 

aims to reproduce the same HOG feature vector of an image pair as 

the prior knowledge is that an image pair always represents the 

same scene. For the loss function, they simply employed Euclidean 

 
1 Source code and pre-trained model are available online: 

https://github.com/rpng/calc. Please refer to it for the details.  

loss function (L2 norm) [18] to minimize the difference between 

the HOG feature vector and the deep feature vector given by the 

network. For the online use, only the convolutional layers are kept 

(as shown in the dashed box in Fig.1) for further quicken the 

feature extraction. Hence, the network learns to map an input 

image I ∈ ℝ120×160 to a feature space ∈ ℝ1064.  

Our main suggested improvement in the training data 

generation is that we add more variations in the paired training 

data. Apart from the random perspective transformation, we also 

employ a random gamma correction to the input images and a 

random selection of the corresponding image for the data 

generation. Eqn.1 shows the formula for gamma correction. Note 

that γ is randomly chosen from 0.1 to 2.5.  
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where I is the input, Ic is the gamma corrected image and γ is 

the gamma used to correct the brightness of the input via using 

non-linear mapping of pixel values. If γ < 1, the corrected image 

will be darker than the input. For γ > 1, the opposite observation is 

made. We are not restricted to use the input image to generate the 

ground truth label for training. Our procedure for generating a 

training image pair is as follows. (i) We randomly select one of the 

paired images of the input from the dataset or use the input directly 

as an image pair. For example, if a scene has been recorded in 4 

different time slots in the dataset, we will have possible 4 image 

pairs of this scene. We randomly pick one of them and use it to 

create a training image pair. Note that all the images input to the 

network is in grayscale and down-sampled to 120×160 as the same 

in [10]. (ii) From each training image pair, we randomly choose 

one image to perform either the perspective transformation or the 

gamma correction (Eqn.1), or even both of them. With our data 

generation strategy, we can then resolve the three practical 

problems, namely changes in appearance, illumination, and 

viewpoints.  

3. PROPOSED METHOD 

3.1. Temporal correlation based initialization 
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Fig. 1. Illustration of the CALC network architecture and its training process [10] with our modifications in the training data generation. 

Note that the training pair covers the problems of changes in appearance, illumination, and also viewpoints  



Our previous work [8] found that only datasets for situations with 

identical speed can benefit from long image sequences. Practical 

situations with varying speeds are burdened with the excessive 

consideration to the historical information. This induces an 

important question to us. What is a suitable size of image sequence 

(or we refer to tube size later)? This means that how much 

temporal correlation we have to consider in order to benefit from 

it. To address this concern, we propose a weighted sum of the 

searching (or matching) similarity scores (S) of consecutive frames 

(we refer this strategy to tubing later). The weight of each 

searching similarity score depends on the differences between the 

current querying frame and the previous frames. Fig.2 shows the 

pipeline of our proposed temporal correlation based initialization 

graphically.  

 
For the 1st query frame, we perform the linear full search to 

find the match pair as shown in Eqn.2.  
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where C(q,p) is the Cosine similarity defined as the cosine of 

the angle difference between normalized vectors q and p. In this 

paper, p and q represent the normalized deep feature vectors of the 

database images and query images respectively extracted by the 

network model discussed in Section 2. D is the total number of 

frames in the database, t is the input query order, t=0 for the 1st 

query frame. Neighbor d* is the single nearest neighbor to the 1st 

query frame among the database with the highest similarity score 

(S0,t=0 = C(qt,pd*)) and d* is regarded as the match pair for output. 

If the ratio of S0,t=0 to S1,t=0 (the second highest similarity score 

found outside the window centered at d*, with window size W) is 

smaller than a threshold, thinit, the confidence of this match pair is 

high and the initialization can be done with only the 1st query 

frame. Otherwise, we record the top T% of the nearest neighbors 

with the similarity scores denoted as Sk, k ∈ [0,K-1] and K=D×T%. 

The search range of the next query frame is based on the K nearest 

neighbors and ik denote the location of the kth neighbor in the 

database. Starting from the 2nd query frame, the weighted 

similarity score is computed by Eqns.3 and 4.  
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where α and β are the upward and downward search offset 

respectively. For each ik, it has its own search range and we find 

the corresponding single nearest neighbor i*
k. If i*

k-α < 0, we start 

to search from the 1st database frame; if i*
k+β ≥ D, we stop the 

search once reaching the last database frame. Sk,t is the weighted 

similarity score of the kth neighbor in time t. We weight the score 

using the difference between the current and previous query 

frames. If the two frames are very similar, this means that we can 

neglect the current score as there is very little new information 

given by the current query frame. Note that ik is updated for each 

query frame based on i*
k, hence we only keep the K nearest 

neighbors to each query frame. We report the match pair of the 

current query frame (k*) using Eqn.5.  
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if t=1, Sk,0 is obtained from the linear full search of the 1st 

query frame (i.e. Sk,t=0={S0,0, S1,0,…, SK-1,0}). When the current 

query frame is different from the past query frames, the vehicle 

goes far away from the past locations and the influence of the 

historical information on the current decision making should be 

diminished. The weighted sum of scores of location k* for the 

current query frame is calculated using Eqn.6. Similar to the case 

of the 1st query frame, we compute the ratio of WSSk*,t to WSSk’,t 

(k’ is location which has the second highest weighted sum of 

scores found outside the window centered at k*, with window size 

W, the purple box in Fig.2). If the ratio is smaller thinit, high 

confidence of k* is observed and the initialization is done with 

tubing.  
 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

4.1. Dataset for fine-tuning and module parameters  
 

For the network model fine-tuning mentioned in Section 2, we 

used parts of the Nordland dataset [15] and removed the tunnel and 

stop frames. This dataset contains 4 long rail sequences recorded at 

4 seasons and it has been time-synchronized such that any frame in 

one of the sequences represents the same frame in the other 

sequences. We used the first 10,000 frames of each sequence. After 

the removal of stop and tunnel frames, there are 7,705 frames for 

each sequence and 30,820 frames in total for the fine-tuning.  

We consider the top 10% of the nearest neighbors for the 

initialization. α and β are set to 5 and 10 respectively. The window 

size W is set to 3 and thinit is predefined as 0.8.  
 

4.2. Datasets for comparisons  
 

Much experimental work has been done, including 3 challenging 

datasets with several state-of-the-art approaches, namely CALC 

[10], and AlexNet conv3 deep feature-based approaches [9,12,20]. 

CALC is the network model that we fine-tuned for our proposed 

method. Note that CALC merely focuses on the discrimination 
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Fig. 2. Our proposed temporal correlation based initialization stage  



power of its deep features, the simplest single nearest neighbor 

search is applied to find the match pair. For AlexNet conv3 deep 

feature-based approaches, we directly extract the conv3 features 

from two AlexNets pre-trained on two datasets, ImageNet [9] and 

Places365 [20]. The former one is for classification tasks and the 

latter one is for single scene recognition tasks. These approaches 

also employ the single nearest neighbor search.  
 

4.2.1. Alderley Dataset  
This dataset is described in [3] which focuses on extreme changes 

in weather and lighting conditions. We extracted the first 2,000 

frames of the daytime sequence to construct the database and there 

are 2,069 frames of the nighttime sequence correspond to these 

2,000 database images. The ground truth of this dataset is very 

close to a diagonal line which means situation with identical speed.  
 

4.2.2. Nordland Dataset  
We used the last 5,000 frames of each sequence for comparisons. 

We have ensured that there is no overlap with the training data and 

we did not remove the tunnel and stop frames for the comparisons. 

It is because this is the real situation for practical applications, and 

this is for testing algorithms whether they can perform well with 

slow moving or even stop frames. The database was formed using 

the “Spring” sequence.  
 

4.2.3. Light Rail Transit (LRT) Dataset  
LRT dataset was captured directly from a public transportation 

system in Hong Kong. There are 4 sequences of the same route, 3 

in the daytime and 1 at the nighttime. The dataset consists of many 

practical difficulties such as varying speeds, extreme changes in 

illumination, and blurring. On average, there are 2566 frames for a 

sequence in this dataset. We used one of the daytime sequences to 

form the database. As the sequences are not time-synchronized for 

this dataset, we manually marked the ground truth of all the 

sequences.  
 

4.3. High confident initialization with temporal module  
 

In this part, we can show the advantage of using our proposed 

tubing strategy for the initialization to localize the starting location 

of the vehicle. For computing the precision, a match pair is 

regarded as correct if its difference between the ground truth is less 

than 5 frames. We randomly selected 10 starting points for each 

querying sequences and the precisions of the initializations are 

shown in Table.1.  

Without our proposed tubing strategy, the initialization is 

simply done with the single nearest neighbor search. Hence, tube 

size is always 1.0 as there is no any temporal correlation between 

consecutive query frames. Obviously, the initialization 

performance is boosted with the tubing strategy. On average, we 

get 0.229 (=0.800-0.571) increase in precision. High confident 

initialization is always the first step in comprehensive localization 

systems. Compared with the original CALC, we also show our 

improvement in the performance with our modified training data 

generation method. Considering only the discrimination power of 

the deep features, the original CALC get 0.429 in average 

precision while our fine-tuned CALC attained 0.571. We can also 

observe that the AlexNet pre-trained on Places365 outperforms the 

AlexNet pre-trained on ImageNet. On average, these two models 

achieved 0.471 and 0.329 precision respectively. This implies that 

one can benefit from the model pre-trained on task-related datasets. 

We achieve 0.4 (=0.800-(0.471+0.329)/2) precision improvement 

over that of the two AlexNet conv3 deep feature-based approaches.  

In addition, our tubing strategy groups a number of query 

frames to make a confident initialization decision. Note that we 

have had larger tube size for LRT2 (54.1) and LRT3 (80.4) 

sequences. This is due to the fact that we have to handle situations 

with varying speeds. The random starting points sometimes start at 

stop-frame locations and this requires more frames to make the 

decision as stop frames contain very little or even no new 

information. On average, the tubing strategy requires 27.3 frames 

to localize the starting location of the vehicle which costs around 

1.1 second in a 25 fps system.  
 

5. CONCLUSION 

In this paper, we have proposed a high confident initialization 

module via the use of temporal correlation between consecutive 

query frames. We also fine-tuned an existing network model with 

our modified training data generation method to successfully 

enhance the discrimination power of the deep features. More 

importantly, we have suggested a way to achieve pair searching 

with variable tube sizes. For future development, we will focus on 

the localization systems with the initialization module. We will 

keep studying how to effectively make use of the temporal 

information given by the coming query frames so as to maximize 

its benefit to our proposed localization systems.  
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Table. 1. The initialization performance of various approaches (the best scores are in bold typeface)  

 Fine-tuned CALC     

 Without tubing strategy  With tubing strategy  CALC [10] AlexNet, Places365[20] AlexNet, ImageNet[9] 

querying 

sequence 
Precision 

Average 

tube size 
Precision 

Average 

tube size 
Precision 

Average 

tube size 
Precision 

Average 

tube size 
Precision 

Average 

tube size 

Alderley 0.2 1.0 0.5 11.1 0.1 1.0 0.0 1.0 0.1 1.0 

Summer 0.7 

1.0 

1.0 8.0 0.5 

1.0 

0.5 

1.0 

0.5 

1.0 Fall 0.9 1.0 2.5 0.8 0.6 0.3 

Winter 0.4 0.7 7.6 0.3 0.2 0.0 

LRT2 0.6 

1.0 

0.7 54.1 0.2 

1.0 

0.6 

1.0 

0.2 

1.0 LRT3 0.6 1.0 80.4 0.6 0.7 0.6 

LRT4 0.6 0.7 27.4 0.5 0.7 0.6 

Average 0.571 1.0 0.800 27.3 0.429 1.0 0.471 1.0 0.329 1.0 
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