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Abstract—This paper presents a key frame recognition algorithm, 
using novel offline feature-shifts approach and search window 
weights. We extract effective feature patches from key frames 
with an offline feature-shifts approach for real-time key frame 
recognition. We focus on practical situations in which blurring 
and shifts in viewpoints occur in our dataset. We compare our 
method with some conventional keypoint-based matching 
methods and the newest CNN features for scene recognition. The 
experimental results illustrate that our method can reasonably 
preserve the performance in key frame recognition when 
comparing with methods using online feature-shifts approach. 
Our proposed method provides larger tolerance of unmatched 
pairs which is useful for decision making in real-time systems. 
Moreover, our method is robust to illumination and blurring. We 
achieve 90% accuracy in a nighttime sequence while CNN 
approach only attains 60% accuracy. Our method only requires 
33.8 ms to match a frame on average using a regular desktop, 
which is 4 times faster than CNN approach with only CPU mode. 

Keywords—Key frame identification, vehicle detection, 
autonomous driving, visual place and key frame recognition 

I.  INTRODUCTION 
Robot localization has been an overwhelming research 

topic in recent decades because of the rapid development of 
self-driving cars [1, 2]. Global Positioning System (GPS) is 
widely used in various commercial localization systems but 
satellite signals are generally affected by reflection and 
masking due to the concrete buildings, dense trees, etc [1]. 
Other different kinds of sensors such as wheel odometer and 
inertial sensor [2] are also solutions to the localization problem. 
Nevertheless, many of them are costly and also have their 
respective limitations. Under the situations, single camera 
based approach plays a crucial role in robot localization 
systems as its richness of information and cost-effectiveness. 
For single vision-based localization systems [3]-[12], different 
kinds of features are used for measuring the similarity between 
templates and query frames so as to report the best match to 
each query frame. Apart from the scene recognition module, 
there could be other building blocks such as vehicle detection 
[13, 14], and front car distance estimation [15] in localization 
systems. Therefore, the time cost of each building block 
algorithm is a critical issue as the entire system should be in 
real-time but not just for a specific module. 

For all detection and recognition tasks [3]-[14], feature 
extraction is a standard procedure in localization algorithms. 
Artificially designed features and relative matching or 
evaluation methods are application-oriented for acquiring 
satisfactory results under some hypotheses. We have always to 

balance the time cost of the algorithm against the confidence in 
making final decisions. For example, [3] combined BRIEF and 
Gist descriptors into BRIEF-Gist descriptor for scene 
recognition using Hamming distance. [4] proposed an 
appearance-based approach to Visual Simultaneous 
Localization and Mapping (Visual SLAM) using only low-
resolution images. [5] is an improved version of [4] which 
added a patch-based verification process for refining the place 
matches. However, they employed parallel programming in 
order to deal with the heavy computation requirement. 

[7, 8] suggested that there are straight paths where the 
scenes cannot be discriminated effectively. [7] proposed a key 
frame approach to tackle the problem. Scenes with high 
discrimination power can act as key frames for high confidence 
matching and to lock the current location of the train and 
perform tracking for less possible scenes. 

In recent years, many research teams have applied CNN 
features to their methods so as to enhance the adaptability to 
changes in conditions and appearance. [9] assessed the 
performance of CNN features for scene recognition with 
AlexNet [16] and discovered that the AlexNet conv3 layer 
features provide the best performance in localization tasks. 
Subsequently, [10] fused features from different layers together. 
[11] suggested to learn the representative features from 
different types of features. Their results reflected that 
Histograms of Oriented Gradients (HOG) [17] and CNN 
features occupied the main section of the learned representative 
features, from 83.1% to 95.1%. [12] modelled the localization 
problem as a network flow problem. They used HOG and 
AlexNet conv3 layer features to evaluate their method and 
found that two types of features could achieve similar 
performance in some situations. 

In this paper, we consider that key frames [7] have already 
been extracted from a sequence of reference frames. Frames 
with high discrimination power in a reference sequence have 
been extracted as key frames for key scene recognition. We 
assume that the key feature patches (KFPs) which compose of 
one or more blocks of the key frames have also been extracted 
by comparing with all other frames in the reference sequence 
as shown Fig.1 and these patches are stored in HOG patch 
format with standard HOG feature vector formation [17]. 

The major contribution of this paper is that we propose an 
offline feature-shifts approach which greatly reduces the 
complexity of the recognition process comparing with online 
feature-shifts approach in conventional matching procedures [5, 
18]. Also, with a weighting approach based on the HOG patch-
based matching distance, the discrimination power of key 
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frames can largely be enhanced and be comparable to or even 
better than that of using the CNN approach. 

 
The rest of this paper is organized as follows. Section II 

describes our proposed method for offline feature-shifts 
approach and online key frame recognition with weighting 
approach. Section III gives experimental results and 
comparisons of various approaches. Finally, Section IV 
provides a conclusion of the paper. 

II. PROPOSED METHOD 
Key frames are extracted if these frames contain 

distinguished features different from other frames. Key feature 
patches (KFPs, we also refer KFP as patch later) with fixed or 
variable sizes (in terms of basic key feature blocks, KFBs) are 
identified within a key frame, such that these form the most 
distinguished patches within the key frame. Usually there are 
something like 5 to 12 KFPs for a key frame. The extraction of 
Key frames, KFBs and KFPs are outside the scope of this 
paper. Fig.2 is a simplified flow chart of key frame 
identification process. 

 
A. Offline Feature-Shifts Approach 

The objective of this step is to reduce the time cost of real-
time key frame recognition. In conventional feature-based 
matching procedures [5, 18], we match a feature in a query 
frame by building a search window and search for the location 
which gives the highest similarity between features. This is 
what we call online feature-shifts approach as we shift the 
features in the query frame. The time cost of the online feature-
shifts approach involves the comparison of two feature vectors 
and also the formation of shifted feature vectors which 
occupies most of the time cost. We propose to shift the key 
feature patches in an offline manner for predicting the feature-
shifts in the query frame. The proposed offline feature-shifts 
approach is illustrated as follows. 

Suppose that we set the search range to [-a, a] pixels and 
the stride is s pixels. The total number of shifted versions of a 
patch, (Ts) is calculated as: 

22( 1)s
aT
s

= +     (1) 

 
Each shifted version is indicated by (m, n) where m and n 

are the horizontal and vertical shifts respectively, as shown in 
Fig.3b, with a = 1 and s = 1. We have to record the HOG 
feature vector for each shifted version of the patches and store 
it into a database for online usage. Note that the initial location 
of each patch in a key frame has also to be stored with the 
computed feature vectors. 

B. Key Frame Recognition with Weighting Approach 
For online key frame recognition, we calculate the feature 

vector of each patch in an incoming query frame based on the 
initial locations of the patches of a key frame. The feature 
vector of each patch in the query frame is compared with Ts 
versions of feature vectors stored in the database (reference key 
frames with key feature patches) using Cosine similarity. 

( , ) cosC ω ⋅= = p qp q
p q

         (2) 

where cos� is the Cosine similarity which is defined as the 
cosine of the angle difference between vectors p and q. 

For each patch, we find out the best matched location 
among all the shifted versions which gives the highest 
similarity. 
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where Fk,query is the kth patch in the query frame and 
Fk,key,�mk,�nk is the shifted version of the kth KFP in the key frame 
at (�mk, �nk). We target at (�mk,min, �nk,min) which is the best 
match to the kth KFP with Cosine similarity, Ck. 

,min ,min, , , ,( , )
k kk k query k key m nC C F F Δ Δ=   (4) 

In order to ensure that the patches in the query frame are 
matched to the original KFPs we found previously, each patch 
is weighted by the distance from the initial location of its 
corresponding KFP in the comparing key frame. 

Fig.5 shows a search window with m and n range from -3 to 
3. dmax is the largest L2 distance [17] inside the search window, 
sqrt(18) = sqrt(32+32) in this case. Based on dmax, we normalize 

 

        (a)                                 (b) 
Fig.3. (a) The proposed offline feature-shifts approach (red-bounded 

regions: KFPs with their initial locations, blue-bounded region: search 
window for current KFP, yellow-bounded regions: shifted versions of the 

current KFP) (b) Illustration of a search window 

Fig.2. Flow chart of Key Frame Identification 
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                                        (a)                                        (b) 
Fig.1. (a) Key frame, Frame 403, from LRT dataset with 8 key feature patches 

(b) Key frame, Frame 2533, from LRT dataset with 7 key feature patches 



the distance inside the search window and the weighting for the 
kth patch, wk, can be computed. 

,min ,min( , )
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k

d
w

d
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where we compute the distance between (�mk,min, �nk,min) 

and the origin of the kth KFP. If the distance is very small, the 
patch is matched to what we found originally and we trust the 
matching result by multiplying a larger weighting. Otherwise, 
Ck is hugely lowered. We calculate the overall confidence level 
(CL) between two frames. 

K

k k
k

C w
CL

K
=
�    (6) 

where K is the number of KFPs in a key frame, Ck and wk 
are calculated using Eqn. (4) and (5) respectively. 

III. EXPERIMENTAL RESULTS 

A. Dataset 
A large amount of experiments have been done. We have 

compared our method with 4 other approaches, namely STAR 
detector [19] with BRIEF descriptor [20], SIFT [21], low-
resolution whole frame descriptor [4], and AlexNet conv3 
layer features based approach [9, 12]. The first two are the 
keypoint-based approaches in which detector is used to detect 
keypoints in a frame and a descriptor is used to describe each 
of the keypoints. BRIEF is a binary descriptor while SIFT 
describes each keypoint in a real value format. Low-resolution 
whole frame descriptor is a global descriptor which compares 
the structural features between frames. For CNN approach, a 
pre-trained AlexNet [22] replaces the conventional feature 
extraction process and we used the AlexNet conv3 layer 
features as features for similarity measure. Our dataset is 
acquired from a public transportation in Hong Kong, Light 
Rail Transit (LRT) which consists of 4 sequences of the same 
route, 3 in the daytime and 1 at nighttime. We used one 

daytime sequence as a reference sequence for key frame 
identification. This dataset involves practical issues such as 
extreme lighting conditions and blurring. Each of the four 
sequences contains 2565 images on average. 

B. Feature Implementation and Hardware Details 
All approaches used in evaluation were implemented by 

C++ programming language, except the AlexNet conv3 layer 
features based approach. STAR detector [19] with BRIEF 
descriptor [20], SIFT [21], and low-resolution whole frame 
descriptor [4, 5] were implemented using OpenCV lib. 2.4.13. 
The AlexNet conv3 layer features [9, 12] were extracted under 
the Caffe framework [23] pre-trained by ImageNet [22]. For 
the hardware, i7-4790 CPU and GTX 1080 GPU were used for 
time cost evaluation. Note that no code optimization technique 
and parallel programming has been applied. 

C. Conventional Approaches on Key Frame Recognition 
For both keypoint-based scene recognition methods, we 

used the conventional keypoints matching procedures [21] for 
evaluating the similarity between two frames. We matched the 
keypoints in a key frame to a query frame using Hamming 
distance for binary descriptor (BRIEF) or L2 distance for real 
value descriptor (SIFT). We also define that there is a “good 
match point” only if the distance from a keypoint to a proposed 
match point is at least 20% smaller than the distance of all 
other proposed match points. The confidence level (CL) of a 
frame to a key frame is the ratio of the good match points to the 
total number of keypoints of that key frame. For low-resolution 
whole frame approach, we used average pixel difference to 
calculate the distance between two frames which is bounded 
between 0 to 255. In our experiments, we found that all the 
distances between frames always range from 50 to 100. 
Therefore, we bounded the distance between two frames from 
50 to 100 manually and convert it into CL which ranges from 0 
to 1 for concise comparison of different approaches. Fig.4a 
shows the discrimination power of our HOG key feature 
patches (KFPs) approach and other 3 conventional approaches. 
Its corresponding key frame is shown as Fig.4b and we match 
this key frame with a nighttime sequence. As indicated by the 
arrows in Fig.4a, it is clear that only low-resolution whole 
frame approach and HOG KFPs with offline feature-shifts 
approach give the correct match pair (peak of the curve, frame 
301 of the current sequence which is shown in Fig.4c). Similar 
observation is found for the cases of other sequences. The 
results show that our HOG KFPs with offline feature-shifts 
approach performs better compared with other approaches with 

           

 
   (a) 

Fig.4. (a) Discrimination power of our HOG KFPs approach and other 3 conventional approaches in key frame recognition (b) A key frame, Frame 571, from LRT 
dataset with 10 KFPs (c) The ground truth of the key frame in the current sequence, Frame 301 (under changes in illumination and blurring) 
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(b)            (c)

Red: Initial location of a key feature 
patch (KFP) 
Yellow: The farthest location from the 
origin 
Fig.5. A search window with m and n 
range from -3 to 3 

The ground truth, Frame 301 

HOG KFPs with Offline Feature-Shifts 
STAR + BRIEF 

Low-resolution Whole Frame Descriptor 
SIFT 



extreme lighting and blurring conditions. However, there 
should be rooms of improvement as shown below. 

D. HOG Key Feature Patches with Weighting Apporach 
Fig.6 shows the discrimination power of HOG KFPs 

approach with our offline or conventional online arrangements 
and our weighting approach. The key frame and matching 
scenario are the same as discussed previously. With our 
proposed weighting approach, the tolerance of the key frame 
recognition is greatly enhanced. We define the tolerance as the 
difference between the peak CL and the average CL of a curve. 
Large tolerance means that we have a larger decision boundary 
which is important to temporal informative localization 
problems. Considering the tolerances of the red and blue 
curves, there is an increase of 0.33, from 0.13 to 0.46. Also, the 
average matching time of this key frame has only increased 
from 37.17 ms to 41.35 ms. Note also that this key frame has 
10 KFPs (see Fig.4b) which consist of 16 KFBs. This means 
that 10 weightings are included and our weighting approach 
only costs an extra of a few milliseconds. 

E. Online and Offline Feature-Shifts Approach 
From Fig.6, it is obvious that the performance of offline 

and online feature-shifts approaches without our weighting 
approach are similar. The tolerances of the red and black 
curves are 0.13 and 0.11 respectively. However, the average 
matching time is 405 ms if online feature-shifts approach is 
used. It is nearly 10 times on average slower when compared 
with the matching time using our proposed method. Note that 
we considered 169 (with a = 24 and s = 4 in Eqn. (1)) shifted-
patches from an anchor patch. 

F. Comparing CNN Approach for Key Frame Recognition 
Fig.7 also shows the discrimination power of CNN 

approach and our proposed method. We observe that the 
tolerances of the blue and pink curves are 0.46 (our) and 0.25 
(CNN) respectively. The dimension of AlexNet conv3 layer 
features based approach is 384x13x13 = 64896 [9, 16]. If GPU 
is used, the average feature extraction time is 3.41 ms. If only 
CPU is used, 133.44 ms is required to extract features on 
average. The feature matching time of a 64896-length feature 

vector is less than 0.5 ms. Our proposed method is 3 times 
faster than CNN approach using CPU mode for this typical 
example of our study. 

G. Overall Comparison of Various Features 
Table I shows the accuracy and tolerance comparisons of 

different approaches. For the LRT sample dataset in this paper, 
there are 10 key frames. The average numbers of key feature 
patches (KFPs) and key feature blocks (KFBs) per key frame 
are 8.5 and 13.3 respectively. If the difference between the 
reported best match and the ground truth is less than 10 frames, 
we regard the match as a correct match. For our offline feature-
shifts approach, we set a = 24 and s = 4, hence 169 versions. 

We can observe that our proposed method has good 
performance in the nighttime sequence, and all approaches 
perform similarly in the daytime sequences. [24] claimed that 
blurring is a limitation of the CNN trained on ImageNet. Our 
results also reflect this problem as the nighttime sequence 
suffers from the problem of blurring, as shown in Fig.4c. For 
tolerance comparison, we calculate the tolerance only if the 
reported best match is a correct match. We can see that our 
proposed method can provide a higher tolerance in general. 

 
Without the use of GPU, the time cost of CNN approach 

and HOG patches with online feature-shifts approach are too 
high and not applicable to real-time systems. From Table II, 
CNN approach with CPU mode requires 134 ms per frame on 
average. The fastest method is the low-resolution whole frame 
approach which only requires 0.0119 ms per frame on average. 
For our proposed method, 33.8 ms is required for one frame 
matching on average and the required computation time is still 
short which is acceptable to real-time systems. 

TABLE II. Overall time cost of our proposed method and other approaches 

Testing 
sequence 

Time cost (ms) 
Low-

resolution 
whole 
frame 

STAR
+ 

BRIEF 
SIFT Proposed 

method 

HOG 
patches 

with 
online 
shifts 

CNN 
approach 

LRT2-Night 

0.0119 
13.4 386.2 34.2 322.02 CPU: 134 

GPU: 3.6 LRT3-Day 14.1 432.0 33.59 340.73 
LRT4-Day 14.6 452.9 33.6 311.01 

 
 
 
 
 
 
 
 
 
 
 

 

TABLE I. Overall Accuracy and Tolerance of our proposed method and other approaches 

Testing 
sequence 

Accuracy (%) Tolerance 
Low-resolution 

whole frame 
STAR+ 
BRIEF SIFT Proposed 

method 
HOG patches 
with online 

shifts 

CNN 
approach 

Low-resolution 
whole frame 

STAR+ 
BRIEF SIFT Proposed 

method 
HOG patches 
with online 

shifts 

CNN 
approach 

LRT2-Night 0.7 0.0 0.1 0.9 0.8 0.6 0.256 0.0 0.033 0.389 0.259 0.22 
LRT3-Day 0.8 0.8 0.9 0.9 0.9 0.9 0.301 0.257 0.121 0.311 0.355 0.302 
LRT4-Day 0.9 0.8 1.0 0.9 1.0 1.0 0.339 0.163 0.056 0.324 0.34 0.297 

 
Fig.6. Discrimination power of our HOG key feature patches with offline or 

online feature-shifts and weighting approach 
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Fig.7. Discrimination power of our proposed HOG KFPs with offline 

feature-shifts and weighting approach, and CNN approach 
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IV. CONCLUSION 
In this paper, we have proposed a novel method which 

employs offline feature-shifts and weighted patches approach. 
With our proposed method, the performance in key frame 
recognition is very fast when comparing with the conventional 
online feature-shifts approaches. Also, our proposed method 
can provide larger tolerance in general which is useful for 
decision making. In terms of time cost, our proposed method is 
applicable to real-time systems because of the use of offline 
feature-shifts approach. On average, our proposed method is 4 
times faster than CNN approach in CPU mode. Therefore, our 
proposed method is suitable for key frame recognition in 
localization problems. For future development, we will try to 
combine the low-resolution whole frame descriptor and our 
method together for enhancing further the performance in a 
localization system. Low-resolution whole frame descriptor is a 
global descriptor which describes the structural features of a 
frame. Our method focuses on key feature patterns which are 
effective local descriptors to describe a key frame. We believe 
that we can fuse these two features together and provide 
superior localization results in our future studies. 
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