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Abstract— Low-light image enhancement is a challenging 

task that has attracted considerable attention. Pictures taken in 

low-light conditions often have bad visual quality. To address 

the problem, we regard the low-light enhancement as a residu-

al learning problem that is to estimate the residual between 

low- and normal-light images. In this paper, we propose a nov-

el Deep Lightening Network (DLN) that benefits from the re-

cent development of Convolutional Neural Networks (CNNs). 

The proposed DLN consists of several Lightening Back-

Projection (LBP) blocks. The LBPs perform lightening and 

darkening processes iteratively to learn the residual for nor-

mal-light estimations. To effectively utilize the local and global 

features, we also propose a Feature Aggregation (FA) block 

that adaptively fuses the results of different LBPs. We evaluate 

the proposed method on different datasets. Numerical results 

show that our proposed DLN approach outperforms other 

methods under both objective and subjective metrics. 

Keywords— low-light image enhancement, image processing, 

deep learning. 

I. INTRODUCTION 

Taking photos is one of the most popular and convenient 
ways to record memorable moments of our life. Images taken 
in low-light conditions are usually very dim. This makes us 
difficult to recognize the scene or object. However, often it is 
inevitable to take photos in low-light conditions. To obtain 
high-visibility images in the low-light conditions, we can 
adopt three solutions. 1) To use flash: It is a direct way to 
solve the problem. However, it is not allowed in some public 
areas, such as the museum, cinema, and exhibition hall. 2) 
To increase the ISO (sensitivity of the sensor): This method 
could increase the visibility of dark areas, but higher ISO 
will also bring more noise to the image, and the normal-light 
area will easily face the overexposure problem. 3) To take a 
photo with longer exposure time: Capturing an image with 
longer exposures allows more light that enlightens the dark 
area. Nevertheless, long-time exposure may blur the image if 
there is camera shake or fast-moving objects.   

A large number of conventional approaches have been 
proposed to mitigate the degradation caused by low-light 
conditions. Histogram Equalization (HE) [1, 2]  counts the 
frequency of the pixel values. By rearranging the pixels to 
obey uniform distribution, it improves the dynamic range 
(i.e., better visibility) of the low-light image.  Retinex-based 
methods [3] regard one image as a combination of illumina-
tion and reflectance, where the reflectance is an inherent 
attribute of the scene that is unchangeable in different light-
ing conditions, and the illumination maps store the differ-
ences between the low- and normal-light images. The Reti-
nex-based methods enhance the illumination map of the low-
light image to estimate the corresponding normal-light image. 
Other methods adopt dehazing theory [4, 5] that decomposes 
the low-light image to ambient light, refraction, and scene 

information.  Refining the refraction map can also enhance 
the visibility of low-light images. 

Convolutional Neural Networks (CNNs) have achieved 
impressive results in many tasks, such as image classification 
[6], semantic segmentation [7], super-resolution [8], and 
object detection [9]. Compared with conventional 
approaches, the CNNs have better feature representation that 
benefits from the large dataset and powerful computational 
ability. For CNNs, the information extracted from the shal-
low layers has detailed local information (like edge, texture), 
while deep layers have large receptive fields that can obtain 
more global features (like complex texture and shape) [10]. 
The CNNs tend to have more convolutional layers and com-
plex structures to obtain more powerful learning abilities 
[11-13].  

The low-light enhancement can be regarded as an image 
restoration task. Image Super-Resolution (SR) is one of the 
similar topics, which reconstructs a high-resolution (HR) 
image from a low-solution (LR) image of different scales. 
Some SR networks adopt an end-to-end structure that mini-
mizes the mean squared error between the reconstructed SR 
and HR images [14-16]. Other approaches add Back-
Projection structures that iteratively up- and down-sampling 
the LR images. It improves the efficiency of the network that 
is widely used in the field [8, 17, 18].  For example, Deep 
Back-Projection Network (DBPN) [19] approach has several 
BP stages that iteratively reconstruct the SR image. Back 
Projection and Residual Network (BPRN) [18] refines the 
DBPN structure by injecting the advantages of Residual 
Network structure. Hierarchical Back-Projection Network 
(HBPN) [8] investigates the benefits of Hour-Glass and 
weighting structures to enhance the BPRN.  

Recent literature shows that the CNN technology also 
benefits the low-light image enhancement. Some approaches 
(like Retinex-Net [20], LightenNet [21]) are based on the 
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Retinex theory that contains two CNNs: One network 
decomposes the low-light image into illumination and 
reflectance, where reflectance is an inherent attribute of the 
scene which is unchangeable in different light conditions. 
The other network works as an enhancer to refine the 
illumination map of the low-light image. However, the 
definitions of ground-truth illumination and reflectance are 
not clear, which makes the decomposition difficult. Another 
problem is that these CNN-based approaches make use of 
shallow CNN structures that have few trainable parameters, 
which leads to a considerable limitation on the performance. 
For example, Retinex-Net [20] has only seven convolutional 
layers in the decomposition network, and LightenNet [21] 
has four convolutional layers only. It is obvious that the deep 
learning for low-light enhancement is still in its infancy stage. 
Some other approaches use Generative Adversarial Networks 
(GANs) that regard the low-light enhancement as a domain 
transfer learning task by finding the mapping between low- 
and normal-light domains (e.g. EnlightenGAN [22]). Each 
GAN has a generator and a discriminator, where the genera-
tor estimates normal-light images from the low-light ones, 
while the discriminator constrains the visual quality of the 
estimations and tries to distinguish the estimations from real 
normal-light images. However, the generator may collapse to 
a setting where it always outputs the same settings that are 
difficult for the discriminator to distinguish. In addition, the 
two models need to be trained simultaneously, but they have 
completely opposite targets that make it difficult to obtain 
the desired output [23]. 

Although considerable research has been devoted to ap-
ply the CNNs for low-light enhancement, less effort is being 
made to investigate new and suitable structures for the task. 
Recently, the use of back-projection block has shown out-
standing performance in the image restoration field (e.g., 
image Super-Resolution(SR)). Based on the idea of enhanc-
ing the image iteratively, we proposed a novel CNN structure 
(i.e., the Deep Lightening Network (DLN)) that achieves 
remarkable enhancement for the low-light image, as shown 
in Fig. 1. Let us highlight the novelty of our proposed meth-
od as follows: 

 Interactive Low-light Enhancement: We resolve 
the low-light enhancement through a residual learn-
ing model that estimates the residual between the 
low- and normal-light images. The model has an in-
teractive factor that controls the power of the low-
light enhancement. More details can be found in 
Section III-A.  

 Deep Lightening Network (DLN): We propose a 
novel DLN approach based on our residual model to 
enhance the low-light image in an end-to-end way. It 
contains several lightening blocks (see LBPs in 
Figure 2) that enhance the low-light image accumu-
latively. Our DLN is compared with several state-of-
the-art approaches through comprehensive experi-
ments. The results show that our proposed DLN out-
performs all other methods in both subjective and 
objective measures. 

 Lightening Back-Projection (LBP): Based on the 
idea of enhancing the low-light image iteratively, we 
propose a LBP block that iteratively lightens and 
darkens the low-light image to learn the residual for 
low-light enhancement. It is the first work that suc-
cessfully introduces a new back-projection structure 

for low-light enhancement. More details can be 
found in Section III-C.  

 Feature Aggregation (FA): Both global and local 
features are useful for low-light enhancement. We 
propose a FA block that aggregates the results from 
different lightening stages and provides more 
informative features for the following lightening 
process. More details can be found in Section III-D.  

The rest of the paper is organized as follows: Section II 
presents a brief review of some related works. Section III 
models the low-light enhancement firstly, and then 
introduces our proposed DLN method. Section IV shows 
experimental results, and Section V concludes the paper. 

II. RELATED WORKS 

Back Projection (BP): BP technique has been widely 
used in image Super-Resolution (SR) tasks, that initially 
utilizes multiple low-solution (LR) images to predict one SR 
image. The Deep Back-Projection Network (DBPN) [17] 
comes up with refining the quality of SR by using BP blocks 
iteratively, which minimizes the loss between LR and down-
sampled SR images. The BP block can be described as 
follows: Assume that we have obtained an immediate SR 
image (denoted as Ŷt ∈ ℝH×W×3, where H, W and 3 mean the 
height, width and RGB channels, respectively. The symbol t 
denotes the iteration index). Firstly, BP down-samples the 
SR image and calculates the residual with the LR image (de-
noted as X ∈ ℝH’×W’×3, where H’ and W’ mean the down-
sampled height and width, respectively). Then, it up-samples 
the residual to obtain the residual between SR image Ŷt and 
the ground-truth high-resolution (HR) image. By adding the 
residual with a balance coefficient λ ∈ ℝ, the SR image Ŷt 
can be refined as Ŷt+1. Mathematically, the BP block is 
described as: 

 ))ˆ((ˆˆ
1 ttt DU YXYY    (1) 

where D(⋅) and U(⋅) represent the down-sampling and up-
sampling operations separately.  

The approach can be improved by adding two weighting 
coefficients  (α ∈ ℝ and β ∈ ℝ, as shown in Eqn. 2)  to form 
an enhanced BP block [8], which makes use of the residual 
information more efficiently.   

 ))ˆ((ˆˆ
1 ttt DU YXYY    (2) 

For the task of image SR, the LR images may lose some 
detail information after the down-sampling process. The SR 
algorithms up sample the LR images by estimating the lost 
details. The low-light enhancement is different from the im-
age SR task, which takes no account of scale changes but 
refining the illumination conditions of the low-light images. 
Therefore, using this BP block could not resolve the low-
light problem. In this paper, based on the idea of the BP 
process, we propose a novel Lightening Back-projection 
(LBP) block that focuses on increasing the dynamic range of 
the low-light image. More details can be found in Section III-
C.  

Feature Recalibration:  CNN consists of several convo-
lutional layers, and each layer has a set of trainable filters 
that express different local spatial patterns. Then, CNN can 
produce image representations by capturing hierarchical pat-
terns from the filters. Some approaches strengthen the repre-
sentation power by investigating the spatial encodings from 
different sizes of the filters, like the Inception family [12, 24, 
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25]. Other approaches, like Squeeze-and-Excitation (SE) 
block [26], improve the representation ability by seeking the 
relationship on the channels. To investigate the interdepend-
encies between channels, it firstly uses average global pool-
ing at each channel to squeeze the global spatial information 
into channel-wise descriptors (denoted as Fsq(⋅) in Eqn. 3).  
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where Uc∈ ℝH×W denotes the feature map with channel c.  
The symbol c ∈ ℝ denotes the c-th channel of the feature 
map, and uc(i,j) ∈ ℝ represents the attribute value at position 
(i,j) of the feature map. 

Then, the channel-wise descriptors are sent to a shallow 
neural network to model the interdependencies among the 
channels. It can be regarded as a feature selection process 
that assigns different weights (denoted as w ∈ ℝC) to 
different feature channels. Finally, it recalibrates the feature 
maps by multiplying the weights with the corresponding 
maps (denoted as Fscale(⋅) as shown in Eqn. 4). 

 
ccccscale wwF UU ),(  (4) 

where wc∈ ℝ is the estimated weight for the channel Uc. 

Making use of the hierarchical structure, CNNs have in-
herent multi-scale feature representations, where the features 
extracted from the shallow layers usually contain detailed 
information (like edge and texture), and the features extract-
ed from deep layers provide global components (like com-
plex texture and shape). For low-light enhancement, both 
global and local information is essential. The global infor-
mation is helpful for the evaluation of the illumination condi-
tion, and the local features benefit the detail restoration. 
Therefore, fusing both local and global information can con-
struct wealth features for the following process.  

Nevertheless, features from different layers play distinct 
roles in the feature representation. Stacking the feature maps 
may simply lose some representation power. Hence, further 
investigation for the channel-wise dependencies is needed. 
However, very few papers in the literature focus on seeking 
for a better representation from different layers. Based on the 
idea of squeeze-and-excitation, we propose a Feature Aggre-
gation (FA) block that strengthens the feature representation 
power from multiple intermediate layers, which fuses both 
spatial and channel-wise information to the same block. 
More details can be found in Section III-D. 

III. THE PROPOSED DEEP LIGHTENING NETWORK 

Firstly, we model the low-light enhancement as a residual 
learning task. Then, we present our proposed Deep 
Lightening Network (DLN) that learns the residual for the 
low-light enhancement. 

A. Assumption: Residual Learning 

Single low-light image enhancement is a fundamental 
low-level vision problem where the aim is to reconstruct a 
normal-light (NL) image Y ∈ ℝH×W×3 from a low-light (LL) 
image X ∈ ℝH×W×3. However, it is difficult to get paired LL-
NL images as there may not be a unique or well-defined 
ground-truth NL image given a LL image. Therefore, instead 
of learning the mapping function between the LL and NL 
images directly, we model the problem as a residual learning 
task, and the assumption is shown below: 

 Y = X + γP(X) - n (5) 

where P(⋅) denotes the enhancing operator that estimates the 
residual between the NL and LL images. We introduce an 
interactive factor γ ∈ ℝ that controls the lightening power of 
the low-light enhancement (its effect is shown in Fig. 7). The 
symbol n ∈ ℝH×W×3 represents the noise to be removed. To 
simplify the low-light enhancement task, the noise term is 
ignored in this paper. Then, the low-light enhancement is to 
find an enhancing operator P(⋅), which can be learned by a 
CNN structure. The optimization of the CNN is formulated 
as: 

 P = argminE( ||Y- (X + γ⋅P(X))||2 + λ⋅Ω(P) ) (6) 

where ||.||2 represents the L2 norm, and λ ∈ ℝ is a factor to 
balance the regularization term Ω(P). 

B. Deep Lightening Network (DLN) 

Fig. 2 illustrates the architecture of our proposed Deep 
Lightening Network (DLN). It consists of three parts: shal-
low feature extraction, Lightening Back-Projection (LBP) 

Figure 2. Architecture of Deep Lighten Network (DLN). The rectangles and cubes denote the operations and feature maps respectively. LBP 

represents the Lighten Back-Project (LBP) block (see Section III-C for details). FA denotes the feature aggregation block (see Section III-D 

for details). γ is interactive factor of brightness control (see Section III-A for details).  
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blocks and enlightening process. The DLN takes the LL im-
age as the input. It firstly enters into the shallow feature ex-
traction part that consists of two convolutional layers (the 
Conv.*2 at the left side of Fig. 2), where each layer has 64 3-
by-3 filters with stride of 1, padding of 1. Then, the multiple 
LBPs (with feature aggregation (FA) blocks) scheme starts to 
enhance the LL image accumulatively. Next, the enlighten-
ing process receives the results from LBPs and estimates the 
residual to the NL image by two convolutional layers (the 
Conv.*2 at the right side of Fig. 2. The filter size is 3*3 with 
stride of 1, padding of 1).  Finally, the LL image is enhanced 
by adding the residual with the interactive factor γ. We will 
show the details of LBP and FA blocks in the remaining 
parts of this section. 

C. Lighten Back-Projection (LBP) 

 Based on the back-projection theory (as shown in Fig. 3), 
a low-light (LL) image (X) can be obtained from its normal-
light (NL) version (Y) through a darkening operation (D, see 
the left green arrow in Fig. 3). The objective of LL 
enhancement is to find a lightening operation (L1), which 
predicts the NL image (Ỹ ∈ ℝH×W×3) from the observed LL 
image (X) (see the top red arrow in Fig. 3). Objectively, we 
can also estimate a version of the LL image (X̃ ∈ ℝH×W×3) 
from the estimated NL one (Ỹ) through the darkening 
operation (D, see the right green arrow in Fig. 3). If the 
lightening (L1) and darkening operations (D) are in an ideal 
situation, the ground-truth (X) and estimated (X̃) LL images 
will be the same. In real condition, their difference (a 
residual term RLL ∈ ℝH×W×3, for RLL = X- X̃) indicates the 
weakness of the lightening (L1) and darkening (D) operations. 
Based on the residual information (RLL), it can estimate the 
residual (R̃NL ∈ ℝH×W×3, for R̃NL ≈ Y-Ỹ) in the NL domain 
through a lightening operation (L2). Finally, the intermediate 
NL estimation (Ỹ) can be refined by adding the residual R̃NL 

to Ỹ, i.e., Ŷ= Ỹ + R̃NL, where the term Ŷ ∈ ℝH×W×3 is the 
refined NL estimation. 

Accordingly, we propose a Lighten Back-Projection 
(LBP) block that is shown in Fig. 4, where each LBP block 
consists of two lightening, and one darkening operator. The 
LL image (X) makes use of a Lightening operator L1 to esti-
mate a NL image (Ỹ). Next, a Darkening operator (D) pre-
dicts the LL image (X̃) from the estimated Ỹ. For the LL 
image, the estimated (X̃) should be close to its ground truth 
(X). Then, it calculates the difference between X̃ and X, i.e., 
the residual (RLL). Similarly, for the residual (RLL), another 
Lightening operator (L2) is used to estimate the residual (R̃NL) 
under NL conditions. The final estimation for the NL image 
(Ŷ) is obtained by adding the NL estimation (Ỹ) and its re-

sidual R̃NL.  

As we mentioned above, different from other approaches 
that directly learn the mapping function between LL and NL 
images, the proposed LBP blocks iteratively lightening and 
darkening the LL image to learn the residual term (R̃NL) for a 
better reconstruction. The whole procedure of LBP can be 
formulated as: 

 )))((()(ˆ
11212 XXXY   LDLL  (7) 

where λ1 ∈ ℝ and λ2 ∈ ℝ are two weights to balance the re-
sidual updating.  

The key parts of the LBP block are the Lightening and 
Darkening operations. For the LL and NL images, the differ-
ences lie in the pixel magnitude of the image, i.e., the LL 
image usually has lower pixel values and narrower dynamic 
ranges compared with the NL image. Therefore, increasing 
or decreasing the pixel values with appropriate offsets can 
realize the lightening or darkening operations.  

Fig. 5 shows our proposed lightening and darkening op-
erations, where each operator consists of three parts: encod-
ing, offset estimating, and decoding process. To take the 
lightening operation for example (see Fig. 5 (a)), the LL im-
age (actually, it is the features of the LL image) firstly enters 
into an “Encoding” structure to extract representative fea-
tures from the low-light image by using a convolutional 
block (Conv.+PReLU, which reduces the number of feature 
channels from 64 to 32). As we mentioned before, the light-
ening operation is to increase the mean values of the image. 
The “Offset” structure adopts a convolutional layer to learn 
the differences between the LL and NL images. Consider 
that the NL images usually have larger pixel values com-
pared with the LL images. Note that the PReLU activation 
layer has the effect to remove the negative values of the off-
set. Then, adding the offset to the LL image can increase the 
pixel values of the LL image, i.e., lightening the LL image. 
Subsequently, the “Decoding” process is conducted to recon-
struct the NL image (actually, increase the number of the 
feature channels from 32 to 64). Similarly, the darkening 
operator estimates the offset and performs the subtraction to 
darkening the images (see Fig. 5 (b)). 

D. Feature Aggregation (FA)  

As shown in Fig. 2, the DLN has several short 
connections among the LBPs, which allows to propagate 
features from the former to the latter LBPs. To use the 
features more effectively, we propose a feature aggregation 
(FA) block that strengthens the feature representation power 
based on multiple intermediate results. The first FA block in 
Fig. 2 on the left has two inputs which fuses information 
from two feature maps, while the second FA block in Fig. 2 
on the right fuses three input feature maps. Let us use the 
second FA block as an example (as shown in Fig. 6) which 

Figure 4. Structure of Lighten Back-Projection (LBP). Details of the 

Lighten and Darken operations are shown in Fig. 5  
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receives three feature maps, and each map has a size of 
W×H×C, where W, H, and C denote the width, height, and 
the number of channels of the feature map separately. The 
FA block consists of three parts:  feature concatenation, 
recalibration, and digesting process, as described below.   

Feature concatenation: For a CNN network, the shallow 
layers extract the feature maps that contain detailed 
information. After the process of several layers, the neurons 
have larger receptive fields that extract more global 
information. Therefore, the filters of different layers can in-
vestigate the information on different sizes of spatial regions. 
As we mentioned above, for the low-light enhancement task, 
both local and global information are essential, because we 
need global information to evaluate the light condition of the 
whole image and the local features to refine the details. The 
FA block takes multiple feature maps (three cubes with dif-
ferent colors in Fig. 6) that contain different spatial infor-
mation as the input. It concatenates them together (with size: 
W×H×3C) and captures the spatial correlations in different 
scales through a convolutional layer, where the filter size is 3, 
with stride of 1 and padding of 1.  

Recalibration: Each channel of the feature map stores 
the information of a type of spatial pattern that is extracted 
by the convolutional filter. Based on the idea of constructing 
informative features by fusing the channel-wise information 
[26], we recalibrate the concatenated feature map by giving 
weights to different channels. As shown in Fig. 6, the recali-
bration process contains a weighting branch and a short con-
nection. For each channel (size: W×H), the weighting branch 
squeezes the information into a single value through global 
average pooling (“Ave. pool” in Fig. 6, mathematically the 
process can be written as Fsq in the Eqn. 3). Then, the feature 
map (size: W×H×3C) can be described by a squeezed vector 
with the size of 1×1×3C, and each value represents the in-
formation for one channel. To investigate the channel-wised 
dependency, we make use of two fully-connected (fc) layers 
(“2 fc.” in Fig. 6, where the first layer consists of C/16 
neurons and the second layer has C neurons) to assign 
weights for different feature channels, i.e., it estimates a 
weight vector (size: 1×1×3C), each attribute of which stores 
the weight for each channel. Next, it expands the weights at 
the width-height plane, and this changes the dimension to 
W×H×3C. Finally, the representational ability of the feature 
map is improved by multiplying the weights to the corre-
sponding features (see “Element-wise multiplication” in Fig. 
6, and mathematically the process can be written as Fscale in 
Eqn. 4). Note again that the recalibration process investigates 
channel-wise dependencies of the concatenated feature maps. 

Digesting: Usually, the recalibration process has the ef-
fects to make the key features have large weights, that are 
more important for the following process. The digesting 
block further improves the representation ability of the 
weighted features through a one-by-one convolutional layer 

(“Conv.” on the right in Fig. 6), which reduces the channels 
from W×H×3C to W×H×C. 

E. Loss Function 

Given a LL image, we can estimate its corresponding NL 
image through the network. We consider the low-light en-
hancement as a supervised learning task where for each LL 
image, there is a corresponding NL image as the training 
target. Therefore, we define the loss function as shown in 
Eqn. 8. It consists of two parts: Lossstruct which measures the 
structure similarity, and LossTV which constrains the smooth-
ness that works as a regularization term. 

 Lossdif (Ŷ, Y) = Lossstruct(Ŷ, Y) + λ LossTV(Ŷ) (8) 

where λ ∈ ℝ is the balance coefficient (note: we used 0.001 
in our experiments). 

Structure Similarity: Images captured in the low-light 
condition usually have structure distortion problems (like 
blur effect) that are visually salient [27]. MAE and MSE 
losses average all pixel-wise differences that cannot compe-
tently handle the problem. In order to improve the quality of 
the estimation both qualitatively and quantitatively, we use 
the Structure Similarity (SSIM, definition is shown in Eqn. 9) 
[28]  as the evaluation metric that gives further consideration 
for structure similarity. The value of SSIM ranges from 0 to 
1, and larger value means better similarity. Therefore, we 
define the structure loss as Lossstruct(Ŷ, Y) = 1 - SSIM(Ŷ, Y). 
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where x ∈ ℝH×W×3, y ∈ ℝH×W×3 denote the images to be meas-
ured. The terms μx ∈ ℝ and μy ∈ ℝ are the mean values of the 
two images. The symbols δx ∈ ℝ and δy ∈ ℝ represent the 
variances of the images. The terms c1 ∈ ℝ  and c2 ∈ ℝ are two 
constants to prevent the denominator be zero (c1=0.0001, 
c2=0.0009 were used in our experimental work, which are 
the same settings as those in [29]).  

The Constraint of Smoothness: the NL estimation may 
have inconstant illumination and noises that decrease the 
visual quality. Total Variation (TV) is used in our work as 
smoothness prior that minimizes the gradient of the whole 
image. The definition of TV loss is shown below:  
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where P ∈ ℝH×W×3 denotes the image to be measured. The 
symbol p ∈ ℝ represents the pixel values. The terms i and j 
are the indexes of the pixels. 

IV. EXPERIMENTS 

There is no objective evaluation method for the light-
condition measurement that makes it difficult to evaluate the 
performance of different low-light enhancement methods. 
We believe that the enhanced LL image should be close to 
the ground-truth NL image. Therefore, we adopt Peak 
Signal-to-Noise Ratio (PSNR) and Structure Similarity 
(SSIM) [28], which are widely used in image restoration 
field to measure the quality of the estimation. Subjectively, 
we will present visualization results for comparison. We will 
also compare our proposed DLN method with existing ap-
proaches that were implemented through their publicly avail-
able codes, including: conventional methods (HE [1], 
BIMEF [30], LIME [31]), CNN-based methods (LightenNet 

Figure 6. Structure of three-input Feature Aggregation (FA) block 

Input features 
3*(W×H×C)

Weights
(W×H×3C)

Element-wise 

multiplication
Conv.

3×3

Ave. pool

Squeezed vector
(1×1×3C)

2 fc.

Weight vector
(1×1×3C)

expand

Conv.
1×1

Concat. feature
(W×H×3C)

Weighted feature
(W×H×3C)

Aggregated 

feature
(W×H×C)

Concatenation

Recalibration

Digesting

×



 

6 
 

[21], LLNet [32], Retinex-Net [20]), and GAN-based meth-
ods (EnlightenGAN [22]) on a synthetic dataset (images 
were generated by mathematical approach, as described in 
Section IV-A). To further evaluate the generalization ability 
of the proposed work, we have also tested it on a real dataset 
(images were captured in the real situation). Program codes 
will be released in the same month of the publication date. 

A. Implementation Details 

Low-light Image Synthesis: CNN has a large number of 
trainable parameters that need a huge training dataset (i.e., 
the LL-NL image pairs) for the training process. However, it 
is difficult to capture the LL-NL images of the same scene at 
the same time. The NL images usually contain more infor-
mation and less noise as compared with the LL ones. It is 
feasible to synthesize the LL images from the NL images. 
Following the analysis in [33], a LL image can be simulated 
from a NL image through the following simulation equation: 

  )Y(X )(

,

)(

,

c

ji

c

ji   (11) 

where )(

,X
c

ji
 ∈ ℝ  represents the pixel of the simulated LL 

image. The terms i and j are the locations of the pixels. The 
term c ∈ {R, G, B} denotes the R, G, or B channel of the 

image. The pixel )(

,Y c

ji
 ∈ ℝ  is from the NL image that is 

compressed to [0, 1]. The symbols α, β and γ ∈ ℝ follow the 
uniform distribution, i.e., α ~ U (0.9, 1), β ~ U (0.5, 1) and γ 
~ U (1.5, 5), which control the effect of low-light simulation 
(the settings are the same as [33]). γ is a non-linear element 
of the simulation equation that has the effect of local 
illumination transformation. It gives a stronger dark effect to 
the low-light regions of the NL images, which fits very well 
the real situation (low-light regions of the NL images are 
usually darker than other regions in the corresponding LL 
images). 

Training Settings: Images in PASCAL VOC 2007 da-
taset have good visual quality that were initially used for 
image object detection. We used all 9,963 images in 
PASCAL VOC 2007 dataset (train + validation + test) as the 

ground-truth NL images, and assumed that all of them have 
ideal illumination conditions (then, we can set γ=1 in Eqn. 5 
at the training stage). The images were resized through the 
bicubic method, making the shorter side of the images have 
384 pixels, where the original aspect ratios of the images are 
kept. Then, we simulated the LL images from these resized 
images based on Eqn. 11 with data augmentations (like re-
ducing the contrast, color, etc., randomly) by using the Pil-
low [34] package, where α, β, and γ are randomly selected 
from their ranges for each image.  

Let us refer to the architecture of our DLN in Fig. 2 and 
Section III. We randomly initialized the weights of DLN as 
in [35]. The Adam method was adopted to optimize the 
parameters with the momentum equal to 0.9 and the weight 
decay equal to 0.0001. The learning rate was set to 0.0001 
for all layers. To produce more LL-NL pairs, we randomly 
cropped 128*128 patch pairs from LL and NL images in the 
training phase. Because the network is a fully convolutional 
structure, a filter is shared by the whole image. In the testing 
phase, the testing images were processed with their original 
sizes. For each iteration, we set the mini-batch size as 32, 
and the model was trained for 100 epochs. All experiments 
were conducted using PyTorch on a two-GPU (NVIDIA 
GTX2080Ti) PC. 

B. Analysis of Network Structure 

We used different sets of data for the training and testing 
processes. Our testing dataset was obtained from 100 NL 
images (with abundant illumination and structure) that were 
selected from VOC 2012 testing dataset. Then, we used the 
same simulation method (as presented in Section IV-A) to 
generate the corresponding LL images. These LL-NL image 
pairs then form our testing dataset and are used for the fol-
lowing analysis.  It is interesting to know the effect of our 
proposed DLN network, LBP, and FA blocks separately. We 
are going to investigate their effects and find the optimal 
settings by presenting a set of experimental results. 

1) Effect of the Residual Learning 

As we introduced in Section III-A, we regard the low-
light enhancement as a residual-learning task where our DLN 
model learns the residual (Y-X) for the lightening process. In 
order to evaluate the effectiveness of the residual model, we 
have made a comparison with a direct-learning model that 
learns the mapping from X to Y directly (i.e. removing the 
“short connection (X)” in Fig. 2). Table I shows the results of 
the direct- and residual-learning models. We can find that the 
proposed residual-learning model achieves better PSNR and 
SSIM scores, which confirms that the residual-learning mod-
el is more suitable to the low-light enhancement compared 
with the direct-learning model. The reason is that, for the 
residual-learning model, the estimation preserves all the in-
formation of the LL image, and the learning process is simp-
ly to find a lightening residual. While for the direct-learning 
model, it needs to reconstruct the NL estimation comprehen-
sively, which is more complicated compared with the residu-
al-learning model. Therefore, optimizing the residual-

Figure 7. Interactive Brightness Control 

LL image (X)

γ=0.5 γ=0.7 γ=0.9

γ=1.5 γ=2

Estimation (γ=1)

γ=1.1

Residual (P(X))

TABLE I. COMPARISON BETWEEN DIRECT- AND RESIDUAL-LEARNING 

MODELS 

Model PSNR SSIM 
Direct Learning 21.602 0.873 

Residual Learning  23.829 0.912 
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learning model is much easier than to optimize the original, 
unreferenced direct-learning model.  

Interactive Brightness Control: Based on Eqn. 5, the 
NL image can be obtained by adding a lightening residual 
P(X). γ in the equation controls the power of lightening pro-
cess. We can control the value of γ before the addition opera-
tor (as shown in Fig.2). Fig. 7 illustrates an example on the 
effect that γ was interactively adjusted with different values. 
For a LL image (X, as shown in Fig. 7), the DLN can esti-
mate the lightening residual (P(X), as shown in Fig. 7) in the 
ideal lighting condition (i.e., γ=1). It can be seen from the 
figure that a larger γ leads to more remarkable enhancement. 
When γ=0.5, the LL image is lightened slightly, which makes 
the mural become visible.  When “γ=1”, the LL image is 
enhanced appropriately. When γ=2, the enhancement is too 
strong that the ceiling lamp becomes overexposed, as shown 
in Fig. 7. The interactive brightness control gives us the 
chance to control the effectiveness of the enhancement.  

2) Effect of the DLN Structure 

To evaluate the effect of our LBP block, let us make a 
comparison with the PlainNet and ResModel, where the 
PlainNet stacks convolutional blocks (conv.+PReLU) one by 
one, which is a standard CNN structure. ResNet [11] is a 
popular CNN structure that consists of several residual 
blocks. Each block has a skip connection that delivers the 
information from shallow layers to deep layers, which im-
proves the performance of the deep CNNs. We stacked a set 
of residual blocks (the feature maps keep the same size as the 
input) to form a residual network, which is named ResModel 
in this paper. To make the comparison as fair as possible, we 
assigned similar parameters to the Plain net, ResModel, and 
DLN. It can be seen from Table II that the ResModel ex-
ceeds plain net with 0.774dB (=20.818-20.044) on PSNR 
and 0.072 (=0.862-0.790) on SSIM. The DLN further outper-
forms the ResModel with 3.011dB (=23.829-20.818) on 
PSNR, and 0.05 (=0.912-0.862) on SSIM. Our proposed 
DLN structure achieves the best PSNR and SSIM scores in 
the evaluation. The reason is that the structure of ResModel 
has the skip connections that can transmit information from 

the input to the output. It simplifies the learning task to the 
residual information which is much easier than directly 
learning the input-to-output mapping, such as the PlainNet. 
Our proposed DLN structure has more theoretical support for 
the low-light enhancement. The DLN has several LBP 
blocks that iteratively lighten and darken the image and can 
increase the efficiency of the residual-learning process. The 
experimental result shows that our DLN structure makes 
better use of the learning ability of CNN, and benefits the 
low-light enhancement. 

 

3) Effect of the Lightening and Darkening Operations 

The lightening and darkening operations play important 
roles in the LBP blocks. The structure of this proposed 
lightening and darkening operation has been discussed in 
Section III-C, and let us call it “LBP-DLN” in the experi-
ments. Each operation consists of three parts: encoding, 
offset estimation and decoding process. For the sake of com-
parison, we formed a modified structure that stacked three 
convolutional blocks one by one to form a plain structure, 
and let us call it “LBP-Plain” in the experiment. Table III 
shows the results. We can see that the proposed lightening 
and darkening operations (LBP-DLN) achieve better PSNR 
and SSIM scores, which shows the effectiveness of the 
proposed lightening and darkening operations. 

 

 The lightening operation increases the brightness by 
raising the mean value of the image, while the darkening 
operation decreases the brightness that reduces the mean 
value. Let us use the “LL input” of Fig. 8(a) as an example to 
explain the effect of the two operations. For a trained model, 
we took a LBP (see Fig. 2, the top-left LBP of the DLN 
architecture) as an example to visualize the intermediate 
results, where each intermediate result (feature map) has 64 
channels. We averaged all 64 channels to obtain a single map 
for visualization. The visualization results are shown in Fig. 
8(b). Fig. 8(b)(i) gives the visualization of the LL input (the 
mean value is 0.0134). After the lightening operation (L1), 
the map is brightened (see the sky of (ii), the mean value is 
0.0553). Then, the darkening operation (D) maps the NL 
image back to the LL domain (as shown in (iii). Note that the 
sky returns to black, and the mean value is decreased to 
0.0169). Subsequently, the subtraction operation finds the 
residual in the LL domain (as shown in (iv)), and the 
lightening operation (L2) enhances it into NL residual (as 
shown in (v)). Finally, by adding the NL residual (R̃NL) to 
the intermediate NL estimation (Ỹ), it can obtain the refined 
NL result (Ŷ, see (vi) in the figure). The results confirm that 
the lightening or darkening operation can shift the mean 
values, and can increase or decrease the brightness of the 
input image, which exactly fits with our design. 

TABLE III. COMPARISON OF DIFFERENT CNN STRUCTURES 

Structure PSNR SSIM 
LBP-Plain 23.157 0.903 

LBP-DLN (proposed) 23.829 0.912 
 

TABLE II. COMPARISON OF DIFFERENT CNN STRUCTURES 

Structure PSNR SSIM 
PlainNet 20.044 0.790 

ResModel 20.818 0.862 
DLN 23.829 0.912 

 

Figure 8. Intermediate results of the LBP (the top one of the DLN). The LL 
input and NL target of the DLN are shown at the top right corner. 

Visualization is made by averaging the activations of all feature channels. 
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4) Different Number of LBP Blocks 

Deeper CNN has more trainable parameters that usually 
lead to better learning ability. We investigated the perfor-
mance of the DLN with different numbers of LBPs. It can be 
seen from Table IV that the DLN with more LBPs has more 
parameters such that it needs more inference time. When the 
number of LBPs is less than three, using more LBPs leads to 
better PSNR and SSIM, which means a better lightening 
performance. However, when the number of LBP is larger 
than four, the PSNR and SSIM start to fluctuate. The reason 
is that the number of LBPs saturates at three, and the more 
LBPs makes it fluctuate between overfitting and normal tol-
erance situations, whilst the requirement for a larger compu-
tational power of more LBP’s is also undesirable. Too many 
parameters may also be the cause of the overfitting problem 
that limits the generalization ability. Therefore, we set the 
number of LBPs to three to obtain the best performance. 

5) Effectiveness of Feature Aggregation (FA) Block 

To investigate the effect of FA block, we made a compar-
ison on two DLNs: one removes all the FA blocks (i.e., “No 
FA” in Table V), and the other is the DLN that contains the 
FA blocks (i.e., “With FA” in Table V). We can see from 
Table V that using the FA block can increase the PSNR and 
SSIM with an extensive range. It is easy to understand that 
the FA blocks strengthen the feature representation by inves-
tigating the spatial and channel-wise dependencies, which 
are helpful to the low-light enhancement process. 

 

6) Loss Function 

We evaluated different loss functions for the low-light 
enhancement: L1-norm, L2-norm, and SSIM losses. The 
results are shown in Table VI. Using L1- or L2-norms 
achieves similar SSIM scores. Nevertheless, for the PSNR 
values, the estimation from L1-norm exceeds those from L2-
norm with a large range (0.523dB=23.473-22.950dB). The 
reason is that L1- and L2-norm loss functions weigh error 
differently. The L2-norm exaggerates larger errors but gives 
small effect to small errors, while L1-norm treats all errors 
equally. Also, the derivative of L2-norm approaches to zero 
when the error is tiny that hampers the training of the net-
work (the derivative of L1-norm is always one) [36]. There-
fore, the network trained with L1-norm produces better esti-
mation with smaller errors compared with that of the L2-

norm. For the SSIM loss, the trained network achieves much 
higher SSIM scores compared with L1-norm. It is obvious 
that training with SSIM loss can obtain higher SSIM scores 
at the testing stage, as they both desire more structure simi-
larity. Also, the model trained by SSIM loss causes fewer 
errors that lead to a higher PSNR score. It confirms that us-
ing SSIM loss can benefit the training of the DLN. 

7) Evaluation on the Synthetic Dataset 

Table VIII shows the comparison of several existing low-
light enhancement approaches on the dataset. As we men-
tioned before, PSNR and SSIM can work as the indices of 
the low-light enhancement. A larger value means the estima-
tion has better similarity with the ground-truth reference. It 
can be seen from the table that the proposed DLN approach 
outperforms all other methods with a large extent, where it 
exceeds the second-best approach (LLNet) by 4.4684dB 
=23.829-19.145dB on PSNR and 0.12=0.912-0.792 on SSIM. 
It means that the estimations from DLN have better similari-
ty to the ground-truth image, which suggests a better effort of 
the low-light enhancement.  

 
Fig. 9 shows a visual comparison of these methods. We 

can see from the figure that HE significantly improves the 
brightness of the LL images. However, the dynamic range is 
narrow which loses some information (see for example, the 
motorcycle in Fig. 9(a)). BIME, LIME, LightenNet, Retinex-
Net, and EnlightenGAN notably improve the visual quality 
of the LL images. It seems that the results of LLNet and 
DLN have the best performance among all the methods. To 
further investigate the differences between the two methods, 
let us check the detailed reconstruction of the shoe (red rec-
tangle in Fig. 9(a)) and the television screen (red rectangle in 
Fig. 9(b)) areas. We can find from Fig. 9(c) that LLNet pro-
duces blur results for the shoe, which is difficult to distin-
guish the brown texture, while the result of DLN shows bet-
ter reconstruction. For the television area (see Fig. 9(d)), we 
cannot see the content of the screen from the estimation of 
the LLNet, while the result from DLN is more recognizable.  

C. Evaluation on the Real Dataset  

TABLE VII. COMPARISON ON SYNTHETIC DATASET (RED: BEST; BLUE: 
THE 2ND

 BEST, GREEN: THE 3RD
 BEST) 

Method PSNR SSIM 

HE 15.890 0.662 

BIMEF 14.943 0.711 

LIME 15.580 0.629 

LightenNet 14.317 0.600 

LLNet 19.145 0.792 

Retinex-Net 14.875 0.661 

EnlightenGAN 16.609 0.682 

DLN (proposed) 23.829 0.912 

 

TABLE V. EFFECTIVENETSS OF THE FA BLOCK 

Model PSNR SSIM 

No FA 21.887 0.875 

With FA 23.829 0.912 

 

TABLE VI. EFFECTIVENETSS OF THE FA BLOCK 

Loss Function PSNR SSIM 

L1-norm 23.473 0.888 

L2-norm 22.950 0.885 

SSIM Loss 23.829 0.912 

 

TABLE IV. COMPARISON ON DIFFERENT NUMBER OF LBPS 

# LBP PSNR SSIM Parameters Time Model Size 

1 21.925 0.833 305k 3.84 ms 1.2MB 

2 22.600 0.881 499k 5.27 ms 2.0MB 

3 23.829 0.912 700k 6.53 ms 2.8MB 

4 23.079 0.876 909k 8.35 ms 3.7MB 

5 23.268 0.900 1,126k 12.37 ms 4.5MB 
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LOw-Light (LOL) dataset [20] contains 500 (485 for 
training and 15 for testing) paired LL-NL images that were 
captured by a camera with two different exposure times and 
ISO for each scene. It is the first dataset for the evaluation of 
low-light enhancement for real scenes. We fine-tuned the 
model on the LOL training dataset and then evaluated it on 
the LOL testing dataset. 

Let us compare the DLN with the existing methods, and 
the results are shown in Table VIII. It can be seen from the 

table that for both PSNR and SSIM, the proposed DLN ap-
proach achieves the best performance with an average PSNR 
score of 21.946 dB and SSIM score of 0.807, which exceed 
the second-best approach (LLNet) by 3.993 dB (21.946-
17.953) on PSNR and 0.103 (0.807-0.704) on SSIM. It sug-
gests that the proposed DLN approach has excellent lighten-
ing ability that achieves the best result of the low-light en-
hancement among all compared methods. Recently, some 
metrics [37-40] have been proposed which focus on the visu-
al quality evaluation. NIQE [37] measures the visual quality 
based on natural scenes statistics. A smaller NIQE score in-
dicates better visual quality. We can see from TABLE VIII 
that the proposed method obtains the best NIQE score 
(3.656), which means the predicted NL images are with the 
best visual quality. 

Fig. 10 shows the visualization comparison of different 
approaches. It can be seen from Fig. 10(a) that the result of 
our DLN approach significantly improves the visual quality 
of the input low-light image, which is brighter than other 
approaches, including BIME, LightenNet, LLNet, and En-
lightenGAN. Furthermore, the hue of our DLN is similar to 
the ground-truth NL images, while other approaches (like 
HE, LIME, and Retinex-Net, see for example, the color of 
the chairs) suffer from serious color shift.  Qualitative results 
show that our DLN, LLNet, and LightenNet achieve the top-
3 best performance. Fig. 10(b) shows the visual comparison 
of these methods. We can see from the figure that all the 

Figure 9. Visual comparison of different algorithms on synthetic dataset (zoom in for a better view) 

 

Input (LL) BIME LIME LightenNet

Retinex-Net EnlightenGAN DLN (Ours) Ground truth (NL)

(a)

HE

LLNet

(b)

Input (LL) BIME LIME LightenNet

Retinex-Net EnlightenGAN DLN (Ours) Ground truth (NL)

HE

LLNet

LLNet DLN (ours) Ground truth

(c)

LLNet DLN (ours) Ground truth

(d)

TABLE VIII. COMPARISON ON REAL DATASET (RED: BEST; BLUE: THE 

2ND
 BEST, GREEN: THE 3RD

 BEST) 

Method PSNR SSIM NIQE 

HE 15.467 0.504 9.531 

BIMEF 13.875 0.577 7.699 

LIME 16.92 0.599 8.795 

LightenNet 10.301 0.361 7.422 

LLNet 17.953 0.704 3.974 

Retinex-Net 16.774 0.559 9.728 

EnlightenGAN 17.483 0.658 4.889 

DLN (proposed) 21.946 0.807 3.656 
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methods can enhance the low-light image effectively. How-
ever, the results of the LLNet and EnlightenGAN include 
some black stain (see the yellow circle in the figure) that 
reduces the visual quality. Besides, for the detailed recon-
struction, like the color stripe of the diving platform, as 
shown in the red rectangle of Fig. 10(b), our DLN produces a 
recognizable result that we can easily distinguish the blue 
and red stripes. 

 User study: We have also performed a user study to 
qualify the visual similarity between the enhancement results 
and ground truth NL images. In the user-study, the users 
were requested to evaluate the similarity between the 
enhancement results and the ground truth ones. The 
similarity is divided into five levels, where the score 5 means 
“exactly the same” and 1 denotes “totally different”. We 
used three images chosen from the LOL testing dataset, and 
all estimations were presented blindly. We invited 85 users 
to finish our user study. The result is shown in TABLE IX, 
where Mean Opinion Score (MOS) averages the scores of all 
users. Retinex-Net obtains the lowest score (2.43), which 
means the estimation has obvious differences to the ground-
truth. The LLNet (2.76) and EnlightenGAN (2.67) obtained 
similar scores in the experiment, which is consistent with the 
previous quantitative result in terms of PSNR (LLNet: 
17.953 dB, EnlightenGAN: 17.483dB). Although LIME has 
lower PSNR (16.92 dB), its estimation has slightly better 

perceptual quality (score of 2.91) than the LLNet (2.76) and 
EnlightenGAN (2.67). It is clear that the proposed DLN 
gives the best result (3.12), whose estimations are most 
similar to the ground truth images. 

V. CONCLUSION 

In this paper, we have introduced our proposed Deep 
Lightening Network (DLN) for low-light image enhance-
ment. Unlike the previous methods that either learn the map-
ping between the low- and normal-light images directly, or 
adopt GAN-based method for perception reconstruction, we 
propose a novel Lightening Back-Projection (LBP) block 
which learns the differences between the low- and normal-
light images iteratively. To strengthen the representation 
power of the input of the lightening process, we fuse the fea-
ture maps with different receptive fields through the Feature 
Aggregation (FA) block, which is an extension of the 
squeeze-and-extension structure that investigates both the 
spatial and channel-wise dependencies among different fea-
ture maps. Benefited from the residual estimation of LBP 
and the rich features of the FA, the proposed DLN gives a 
better reconstruction of the normal-light condition. Besides, 
the network works in an end-to-end way, which makes it 
easy to implement. We have used both objective and subjec-
tive evaluations to compare the performance of the proposed 
DLN with other methods. Extensive results show that our 
proposed method outperforms other recent state-of-the-art 
approaches (conventional, CNN-based, and GAN-based 
methods) in quantitative and qualitative aspects.  

In the further work, we can continue to explore more ef-
fective CNN structures to improve the performance of the 
low-light enhancement, and investigate methods for low-

Figure 10. Visual comparison of different algorithms on real dataset (zoom in for a better view) 

Low-light image EnlightenGAN DLN (Ours) Ground Truth

(a)

Input BIME LIME LightenNet

Retinex-Net EnlightenGAN DLN (Ours) Ground truth

(b)

LLNet

HE

LLNet

TABLE IX. USER STUDY 

 
LIME LLNet 

Retinex-

Net 

Enlighten

GAN 

DLN 

(proposed) 

MOS 2.91 2.76 2.43 2.67 3.12 
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light video enhancement. The quality of the simulated LL-
NL images is highly related to the performance of the trained 
model. A good simulation can obviously improve the gener-
alization ability of the enhancement model, which is an in-
teresting research topic to be investigated in the future. Also, 
our proposed algorithm dramatically improves the visibility 
of the low-light images, which can be used in various appli-
cations. For example, it can be used in a driving assistant 
system to provide reliable visual aid for a dark and difficult 
environment.  
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