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We study the cross-Kerr (CK) effect on an optomechanical system driven by two-tone fields. We show
that in the presence of the CK effect, a bistable behavior of the mean photon number in the cavity becomes
more robust against the fluctuations of the frequency detuning between the cavity mode and the control field.
The bistability can also be turned into a tristability within the experimentally accessible range of the system
parameters. Also, we find that the symmetric profile of the optomechanically induced transparency is broken and
the zero-absorption point is shifted in the presence of the CK effect. This shift can be used to measure the strength
of the CK effect and the asymmetric absorption profiles can be employed to engineer a high quality factor of the
cavity.
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I. INTRODUCTION

Due to the potential applications to the study of a range
of topics such as gravitational wave detection [1] and tiny
displacement measurement [2], optomechanical systems have
received considerable theoretical and experimental interest in
the past few years [3]. In a typical setup, two mirrors (one is
fixed and the other is movable) forming a cavity are subjected
to a radiation pressure that causes the movable mirror to
vibrate. This vibration in turn changes the length of the cavity
(thus the frequency of the cavity modes) and gives rise to
a nonlinear coupling between the cavity and the mechanical
modes. To study the associated quantum effects, cooling of
the nanomechanical resonator (NAMR) (i.e., the movable
mirror) to the ground state is necessary. Various methods are
proposed theoretically [4–6] and recently successful cooling
to the ground state has been demonstrated experimentally
[7–9]. However, experimental results [10–12] demonstrate that
single-photon optomechanical coupling cannot be operated in
the strong-coupling regime, indicating that nontrivial quantum
effects cannot be observed at the single-photon level. Instead,
a multiphoton strong-coupling regime is accessible under
a strong driving field on the cavity mode [13–15]. Under
this condition, quantum entanglement [16–18], quantum state
transfer [19–21], nonclassical states [22,23], optomechan-
ically induced transparency analogous to the electromag-
netically induced transparency in atomic systems [24–26],
and normal-mode splitting [27,28] have been investigated.
However, realizing such a multiphoton strong-coupling regime
reduces the nonlinearity arising from the radiation pressure.
The case with weak nonlinearity was discussed in studying the
photon blockade under both weak [29] and strong [30] driving
fields. Also, it has been predicted that an optomechanical
system driven by a strong field can give rise to an effective
interaction Hamiltonian similar to that of a nonlinear Kerr

*C.H.Lam@polyu.edu.hk
†jqyou@csrc.ac.cn

medium interacting with photons [31,32], as investigated
theoretically in [33,34]. Therefore, the hybridization of a
Kerr medium and an optomechanical system driven by a
strong field can both enhance the optomechanical coupling
and prevent the suppression of the nonlinearity. It has been
proved that the Kerr nonlinearity in optomechanical systems
can exhibit normal-mode splitting, reduce the photon number
fluctuation, and provide a coherently controlled dynamics
for the mechanical modes [35]. Nevertheless, an external
Kerr medium introduced to the system may also give rise
to significant noise [36].

Among various other suggested methods for attaining a
strong coupling [37–41], a promising approach [38] involves
an electromechanical system coupled to a two-level system
such as a superconducting charge qubit (see, e.g., [42,43]),
which has recently been demonstrated experimentally [44].
In this hybrid system, the optomechanical coupling can be
enhanced several orders of magnitude and a controllable cross-
Kerr (CK) effect is also introduced. Furthermore, Ref. [45]
showed that this CK effect can give rise to a sideband shift as
well as an optimal cooling or heating. Very recently, Ref. [46]
reported a stability analysis of an optomechanical system with
the CK effect, in which an optical bistable behavior was
investigated.

Motivated by these developments, we study the impacts
of the CK effect on the steady-state behavior of the mean
photon number [47] and the optomechanically induced trans-
parency [24–26] in an optomechanical system. Here we
consider the case in which the strength of the CK effect
has an opposite sign compared with that in Ref. [46]. We
show that in the presence of the CK effect, the mean phonon
number in the NAMR no longer varies monotonically with
the mean photon number in the cavity and a tristability
behavior may be observed for the mean photon number. We
also find that the condition to observe the bistable behavior
is less stringent and more robust against the fluctuations of
the frequency detuning between the cavity mode and the
control field. Concerning optical absorption, without the CK
effect, the absorption vanishes when the frequency detuning is
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comparable to the frequency of the NAMR and the absorption
profile with respect to the frequency detuning is symmetric
about the zero-absorption point. However, in the presence
of the CK effect, the zero-absorption point is shifted, which
can be employed to measure the strength of the CK effect in
the optomechanical system. Moreover, the absorption profile
becomes asymmetric, with the linewidth of the left peak
becoming narrow and the right one broad. This indicates that
a higher quality factor of the cavity can be engineered via
introducing the CK effect.

The paper is organized as follows. In Sec. II the theoretical
model is introduced and the Hamiltonian is given. Then
we use quantum Langevin equations to derive steady-state
solutions in Sec. III. Also, the steady-state behavior of the
mean photon number is analyzed and the results with and
without the CK effect are compared. In Sec. IV the CK effect
on the optomechanically induced transparency is discussed. A
summary is given in Sec. V.

II. OPTOMECHANICAL SYSTEM WITH CK EFFECT

A. Model and Hamiltonian

A typical optomechanical system [3] consists of a bare
cavity and a NAMR, where the cavity mode is coupled to
the NAMR mode via radiation pressure depending on both
the photon number of the cavity and the displacement of the
NAMR. The Hamiltonian of this optomechanical system can
be written as (setting � = 1) [48]

Hopt = ωaa
†a + ωmb†b − g0a

†a(b + b†), (1)

where a† (a) is the creation (annihilation) operator of the cavity
mode with frequency ωa , b† (b) is the creation (annihilation)
operator of the NAMR mode with frequency ωm, and g0 is
the coupling strength between the cavity and NAMR modes.
Moreover, we consider the CK effect between the cavity and
NAMR modes, corresponding to an interaction Hamiltonian
of the form [38]

HCK = −gCKa†ab†b, (2)

where gCK is the CK coupling strength. This CK effect
can be achieved via a two-level system [Fig. 1(a)] or a
superconducting charge qubit [Fig. 1(b)] coupled to both the
cavity and NAMR modes [38,44,45]. Also, the cavity is driven
simultaneously by a control field with frequency ωc and a probe
field with frequency ωp [see Fig. 1(a)]. The corresponding
interaction Hamiltonian is

Hd = (iεce
−iωct + iεpe−iωpt )a† + H.c., (3)

where εc (p) = √
2κ℘c (p)/�ωc is the Rabi frequency between

the cavity mode and the control (probe) field, with ℘c (℘p)
being the power of the control (probe) field and κ the
decay rate of the cavity mode induced by the thermal bath.
Experimentally, εp is usually chosen to be much smaller
than εc.

The total Hamiltonian of the considered optomechani-
cal system with the CK effect can be written as Htot =
Hopt + HCK + Hd. Adopting the rotating frame with respect
to the frequency of the control field, we apply a unitary
transformation S = exp(−iωca

†at) to the system. The total

c

p
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p

c
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FIG. 1. (a) Schematic diagram of the optomechanical system.
One mirror of the cavity is fixed (green) and the other vibrates (blue).
The assisting qubit (two-level system) (red) is used to induce the CK
effect between the cavity and mechanical modes. (b) An equivalent
quantum circuit [38] with a superconducting charge qubit coupled
to an on-chip cavity (e.g., a coplanar waveguide resonator) and a
nanomechanical resonator. In (a), εc and εp are the amplitudes of the
control and probe fields, respectively, while aout is the amplitude of
the output filed.

Hamiltonian is written as

H = SHtotS
† + iS∂tS

†

= �aa
†a + ωmb†b − g0a

†a(b† + b)

− gCKa†ab†b + [(iεc + iεpe−i�pt )a† + H.c.], (4)

where �a = ωa − ωc is the frequency detuning of the
cavity mode from the control field and �p = ωp − ωc

is the frequency detuning between the probe and control
fields.

B. Quantum Langevin equations

According to the Heisenberg-Langevin approach [49],
the quantum dynamics of the considered optomechanical
system can be described by the following quantum Langevin
equations:

ȧ = −(i�a + κ)a + ig0a(b + b†)

+ igCKab†b + εc + εpe−i�pt +
√

2κain, (5)

ḃ = −(iωm + γ )b + ig0a
†a + igCKa†ab +

√
2γ bin,

where κ (γ ) is the decay rate of the cavity (NAMR) mode
and ain (bin) is the input noise operator acting on the cavity
(NAMR) mode, each of which has a zero mean value, i.e.,
〈ain〉 = 〈bin〉 = 0. Under the Markov approximation, two-
time correlation functions of these input noise operators are
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given by

〈ain(t)a†
in(t ′)〉 = δ(t − t ′),

〈b†in(t)bin(t ′)〉 = nthδ(t − t ′), (6)

〈bin(t)b†in(t ′)〉 = (nth + 1)δ(t − t ′),

where nth = (e�ωm/kBT − 1)−1, with kB being the Boltzmann
constant and T the bath temperature, is the average phonon
number in the thermal bath coupled to the NAMR. Here
we write each of the system operators a and b as a sum of
the steady-state value and the fluctuation via a factorization
assumption, i.e., a = 〈a〉 + δa, and b = 〈b〉 + δb. It follows
from Eq. (5) that the steady-state values of a and b satisfy

〈ȧ〉 = −(i�a + κ)〈a〉 + ig0〈a〉(〈b〉 + 〈b†〉)
+ igCK〈a〉〈b†〉〈b〉 + εc + εpe−i�pt , (7)

〈ḃ〉 = −(iωm + γ )〈b〉 + ig0〈a†〉〈a〉 + igCK〈a†〉〈a〉〈b〉.
This mean-field approximation applies when the coupling
between the cavity and NAMR modes is weak. In the weak
driving regime (εp � εc), the nonlinear interaction between
the cavity and NAMR modes affects the response of the system
to the probe field. The solution to Eq. (7) can be written as

〈a〉 = A0 + A+e−i�pt + A−ei�pt ,

〈b〉 = B0 + B+e−i�pt + B−ei�pt ,
(8)

where A0 (B0) is the steady-state solution of the system
operator a (b) in the absence of the probe field (εp = 0). For a
weak probe field, A± (B±) are much smaller than A0 (B0), but
can have the same order of magnitude as the amplitude of the
probe field. When the first-order terms are kept, the parameters
in Eq. (8) can be analytically expressed as

A0 = εc

κ + i�
, B0 = ig0|A0|2

γ + i
m

,

A+ = i(g∗B+ + gB∗
−)A0 + εp

κ + i�−
,

A− = i(gB∗
+ + g∗B−)A0 + εp

κ + i�+
, (9)

B+ = ig(A∗
0A+ + A0A

∗
−)

γ + iω−
,

B− = ig(A0A
∗
+ + A∗

0A−)

γ + iω+
,

where

� = �a − gCK|B0|2 − 2g2
0 |A0|2
m

γ 2 + 
2
m

(10)

is the effective frequency detuning between the cavity mode
and the control field in the optomechanical system with CK
effect, which depends on the mean photon number |A0|2, the
mean phonon number |B0|2, and the CK coupling strength gCK.
Also, the radiation-pressure coupling strength g0 is modified
by the CK effect as g = g0 + gCKB0. The other parameters in
Eq. (9) are defined as 
m = ωm − gCK|A0|2, �± = � ± �p,
and ω± = 
m ± �p.

In Fig. 2 we show the mean phonon number |B0|2 versus the
mean photon number |A0|2 in the optomechanical systems with

CK

CK

CK

FIG. 2. Behavior of the mean phonon number |B0|2 as a function
of the mean photon number |A0|2. The blue line corresponds to the
usual optomechanical system without the CK effect (gCK = 0) and
the red line corresponds to the optomechanical system in the presence
of the CK effect (gCK = 10−3g0). The other parameters are ωa/2π =
1.3 GHz, ωm/2π = 6.3 MHz, g0 = 250 Hz, κ/2π = 0.1 MHz, γ =
40 Hz, and �a = ωm.

and without the CK effect by using experimentally accessible
parameters [11] ωa/2π = 1.3 GHz, ωm/2π = 6.3 MHz, g0 =
250 Hz, κ/2π = 0.1 MHz, γ = 40 Hz, and �a = ωm. These
parameters correspond to an optomechanical system in the
resolved sideband regime where the frequency ωm of the
NAMR is larger than the decay rate κ of the cavity. For
the usual optomechanical system without the CK effect, the
mean phonon number increases monotonically with the mean
photon number (see the blue curve in Fig. 2). However, the
behavior of the mean phonon number differs drastically in the
presence of the CK effect (see the red curve in Fig. 2). For
|A0|2 < ωm/gCK, the mean phonon number |B0|2 increases
with the mean photon number |A0|2, but it then decreases with
|A0|2 for |A0|2 > ωm/gCK.

C. Steady-state behavior

We now study the steady-state behavior of the mean photon
number |A0|2 without the probe field (εp = 0). In this case,
using Eq. (9), it is straightforward to show that |A0|2 satisfies

|A0|2
[
κ2 +

(
�a − g2

0 |A0|2 gCK|A0|2 + 2
m

γ 2 + 
2
m

)2
]

= ε2
c .

(11)

Due to the existence of the CK coupling gCK, this equation is
more complicated than the case of the usual optomechanical
system without the CK effect [47]. When the CK coupling
vanishes, Eq. (11) is simplified to [47]

|A0|2
[
κ2 +

(
�a − 2g2

0 |A0|2 ωm

γ 2 + ω2
m

)2
]

= ε2
c . (12)

Note that Eq. (12) is a cubic equation in |A0|2 that can have
up to three real roots. The leading nonlinear term originates
from the optomechanical coupling term a†a(b + b†), which
reduces to |A0|2B0. In a certain parameter regime, the mean
photon number thus exhibits a bistable behavior as shown by
the black and red curves in Fig. 3(a). We now consider the CK

023844-3



XIONG, JIN, QIU, LAM, AND YOU PHYSICAL REVIEW A 93, 023844 (2016)

B'

C'

（b）

（a）

B

C

FIG. 3. Mean photon number |A0|2 in the optomechanical sys-
tems with and without the CK effect as a function of the control field
℘c for different values of �a . (a) The usual optomechanical system
without the CK effect (gCK = 0). (b) The optomechanical system with
the CK effect (gCK = 0.001g0). The other parameters are the same as
in Fig. 2.

effect that can be controlled by tuning the external gate voltage
of a charge qubit in the optomechanical system [38]. In this
case, Eq. (11) applies, which is a fifth-order equation and has
up to five real roots. The higher nonlinearity is due to the CK
coupling term a†ab†b, which leads to |A0|2|B0|2. In addition
to the bistable behavior, this can also give rise to tristability
in the optomechanical system. As shown by the black and red
curves in Fig. 3(b), one can observe a tristable behavior of the
mean photon number when appropriately tuning the power of
the control field.

Below we determine the stability of the steady states of
our system using the Routh-Hurwitz criterion. Note that A0

(B0) is the steady-state value of 〈a〉 (〈b〉) in the absence of
the probe field (εp = 0). In this case, we can write a and
b as a ≡ 〈a〉 + δa = A0 + δa and b ≡ 〈b〉 + δb = B0 + δb,
respectively. Substituting them into Eq. (5) and using Eq. (7),
we can obtain the dissipation-fluctuation equations of the
motion as

δȧ = −(i� + κ)δa + iA0(G∗δb + Gδb†) +
√

2κain,
(13)

δḃ = −(i
m + γ )δb + iG(A∗
0δa + A0δa

†) +
√

2γ bin,

where

G = g0

(
1 + igCK|A0|2

γ + i
m

)
. (14)

In a compact matrix form, Eq. (13) can be recast as

δv̇ =Cv + δvin, (15)

with the operator vectors v = (δa,δa†,δb,δb†)T and δvin =
(
√

2κain,
√

2κa
†
in,

√
2γ bin,

√
2γ b

†
in)T, where T denotes the

transpose of a matrix. The matrix C is given by

C =

⎛
⎜⎜⎜⎝

−i� − κ 0 iA0G
∗ iA0G

0 i� − κ −iA∗
0G −iA∗

0G
∗

iA∗
0G iA0G −i
m − γ 0

−iA0G
∗ −iA∗

0G
∗ 0 i
m − γ

⎞
⎟⎟⎟⎠.

(16)

The characteristic equation |C − λI| = 0 can be reduced to
λ4 + C3λ

3 + C2λ
2 + C1λ + C0 = 0, where the coefficients

can be derived using straightforward but tedious algebra.
For the particular case with γ + i
m ≈ i
m, their explicit
expressions can be found in Ref. [46]. From the Routh-Hurwitz
criterion [50], a solution is stable only if the real part of
the corresponding eigenvalue λ is negative and the stability
conditions can then be obtained as

C3 > 0,

C3C2 − C1 > 0, (17)

C3C2C1 − (
C2

1 + C2
3C0

)
> 0.

Using our model parameters and considering |A0|2 > ωm/gCK,
we find that three positive roots of Eq. (11) correspond to the
stable solutions, leading to a tristable behavior. The remaining
two positive roots sandwiched in between correspond to the
unstable solutions as expected. In the Appendix we also verify
using the Descartes rule that at most five positive roots can
exist for Eq. (11). We should also point out that a similar
analysis in Ref. [46] considering, in our notation, a negative
value of gCK leads to a bistable behavior.

Interestingly, the onset of bistability requires a weaker
control field ℘c in the presence of the CK effect, so the
condition of bistable behavior for the mean photon number
in an optomechanical system with the CK effect is more
relaxed. We now explain the effect of the frequency detuning
on the bistable behavior with or without the CK effect. From
Figs. 3(a) and 3(b), a relatively large detuning �a = ωa − ωc

is needed to observe the bistable phenomenon. For instance,
the bistable phenomenon does not occur at �a = 0.1ωm (see
the blue curves in Fig. 3). However, the stable value of the
mean photon number is more robust against the variation of the
detuning value in the presence of the CK effect. For example,
without the CK effect, the upper stable point shifts significantly
from B to C as �a decreases [Fig. 3(a)], but it shifts only a
little from B ′ to C ′ in the presence of the CK effect [Fig. 3(b)].
Therefore, the CK effect in the optomechanical system can
be used to suppress the variation of the bistable point with
respect to the frequency detuning between the cavity mode
and the control field.

III. THE CK EFFECT ON THE OPTOMECHANICALLY
INDUCED TRANSPARENCY

Below we investigate the transmission of a probe field
through an optomechanical system in the presence of the CK
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effect. Using input-output theory [49], we obtain

〈aout〉 + (εc + εpe−i�pt )/
√

2κ =
√

2κ〈a〉. (18)

Also, the output of the cavity field can be expressed in a form
similar to Eq. (8), i.e.,

〈aout〉 = Aout + A+
oute

−i�pt + A−
oute

i�pt . (19)

By comparing Eq. (19) with Eq. (18), we have

Aout =
√

2κA0 − εc/
√

2κ,

A+
out =

√
2κA+ − εp/

√
2κ, (20)

A−
out =

√
2κA−,

where Aout is the output amplitude at the control field
frequency ωc, A+

out is the output amplitude at the Stokes
frequency (i.e., probe frequency) ωp, and A−

out is the output
amplitude at the anti-Stokes frequency 2ωc − ωp. Now we
define a reduced output field that responds to the probe field
at frequency ωp as

εT ≡
√

2κA+
out

εp

+ 1 = 2κA+
εp

, (21)

where

A+ = s/(κ + i�−) + i|g|2|A0|2(ω+ + ω−)

s − |g|2|A0|2(ω+ + ω−)(�+ + �−)
εp, (22)

as given by Eq. (9), and s = (γ + iω−)(γ − iω+)(κ +
i�−)(κ − i�+). The real and imaginary parts of εT de-
scribe the absorption and the dispersion of the probe field,
respectively, which can be measured via, e.g., homodyne
detection [49]. Figure 4(a) displays the real part of the
output field εT defined by Eq. (21) as a function of the
reduced detuning δp/ωm, where δp = �p − ωm. For the usual
optomechanical system without the CK effect (gCK = 0), the
absorption Re[εT ] vanishes at �p = ωm and the absorption is
symmetric about δp = 0 [see the blue curve in Fig. 4(a)]. This
optomechanically induced transparency phenomenon [24–26]
is similar to the electromagnetically induced transparency in
atomic systems. When the CK effect is introduced, the position
of the zero-absorption point is shifted and the absorption curve
becomes asymmetric. When increasing the strength gCK of the
CK effect, the absorption peak on the left becomes narrow
and the one on the right becomes broad [see the red and black
curves in Fig. 4(a)]. This result suggests that the CK effect
can be employed to improve the quality factor of the cavity
when the reduced detuning δp/ωm is tuned to be around the
left peak. In addition, the separation between the two peaks is
widened as gCK increases. In Fig. 4(b) we show the position of
the zero-absorption point against the strength of the CK effect.
The simple dependence shown in Fig. 4(b) indicates that the
strength of the CK effect can be easily probed by measuring
the zero-absorption point.

IV. CONCLUSION

We have studied the impacts of the CK effect on the
steady-state behavior of the mean phonon number and optical
transparency in an optomechanical system. In this nonlinear
system, the mean phonon number does not vary monotonically

（a）

（ )b

CK

CK

CK

CK

FIG. 4. (a) Absorption of the probe field (i.e., Re[εT ]) as a
function of the reduced detuning δp/ωm for different values of gCK,
where the control field is fixed at ℘c = 9.6 nW and g = 10−3g0.
(b) Probing CK effect based on the optomechanically induced
transparency phenomenon. The other parameters are the same as
in Fig. 2.

with the mean photon number and a tristability for the
mean photon number under realistic conditions may be
observed. We also find that the bistable behavior of the photon
number becomes more robust against the variation of the
system parameters compared to the case without the CK
effect. Concerning the optomechanically induced transparency
phenomenon, we have predicted an asymmetric absorption
profile and a shift of the zero-absorption point when the
detuning between the cavity mode and the control field is
comparable to the frequency of the NAMR. This asymmetry
can be employed to improve the quality factor of the cavity
and the shift of the zero-absorption point can be used to probe
the strength gCK of the CK effect.
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APPENDIX

In this appendix we provide a direct and efficient estimation
on how many positive solutions exist for Eq. (11) according to
the Descartes rule. Because 
m = ωm − gCK|A0|2 and γ 2 +

2

m 
= 0, Eq. (11) can be recast as

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 = 0, (A1)
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where we define x ≡ |A0|2, and the coefficients are

a0 = −ε2
c

(
γ 2 + ω2

m

)2
,

a1 = (
γ 2 + ω2

m

)[
4ε2

cgCKωm + (
�2

a + κ2
)(

γ 2 + ω2
m

)]
,

a2 = −2
{
2
[
�a

(
g2

0 + �agCK
) + gCKκ2

]
ωm

(
γ 2 + ω2

m

)
+ ε2

cg
2
CK

(
γ 2 + 3ω2

m

)}
,

a3 = 2gCK
[
�a

(
g2

0 + �agCK
) + gCKκ2]γ 2 + 4ε2

cg
3
CKωm

+ 2
[
2g4

0 + 5�ag
2
0gCK + 3g2

CK

(
�2

a + κ2
)]

ω2
m,

a4 = −gCK
{
ε2
cg

3
CK + 4

[(
g2

0 + �agCK
)2 + g2

CKκ2
]
ωm

}
,

a5 = g2
CK

(
g2

0 + �agCK
)2 + g4

CKκ2. (A2)

Because all parameters g0, gCK, ωm, �a , εc, κ , and γ in
Eq. (A2) are positive, we have a0 < 0, a1 > 0, a2 < 0, a3 > 0,
a4 < 0, and a5 > 0, corresponding to the following unique
sign sequence:

sgn(a5), . . . ,sgn(a0) = + − + − + − . (A3)

According to the Descartes rule, Eq. (A1), namely, Eq. (11) in
the main text, has at most five positive roots, which are consis-
tent with our results [see the red and black curves in Fig. 3(b)].

We should point out that a different case with the definition
ωe

m = 
m = ωm + gCK|A0|2 = ωm + gCKx, where gCK > 0,
was studied in Ref. [46], which is equivalent to a negative
gCK in our notation. This gives a bistable behavior as shown
in Ref. [46] and an application of the Descartes rule to it gives
at most three positive roots instead, as expected.
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