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Non-Abelian holonomic transformation in the presence of classical noise
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It is proposed that high-speed universal quantum gates can be realized by using non-Abelian holonomic
transformation. A cyclic evolution path which brings the system periodically back to a degenerate qubit subspace
is crucial to holonomic quantum computing. The cyclic nature and the resulting gate operations are fully dependent
on the precise control of driving parameters, such as the modulated envelop function of Rabi frequency and the
control phases. We investigate the effects of fluctuations in these driving parameters on the transformation fidelity
of a universal set of single-qubit quantum gates. We compare the damage effects from different noise sources
and determine the “sweet spots” in the driving parameter space. The nonadiabatic non-Abelian quantum gate is
found to be more susceptible to classical noises on the envelop function than that on the control phases. We also
extend our study to a two-qubit quantum gate.
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I. INTRODUCTION

Quantum geometrical phase [1–4], which is proportional to
the area spanned in the parameter space but is insensitive to the
trajectory followed by the system, has inspired more and more
efforts in circuit-based quantum computation and quantum
control protocols [5–7]. An appealing modern application
of quantum geometrical phase is non-Abelian holonomic
quantum computation (HQC) [8–15], in which one performs
a universal set of unitary transformations, i.e., quantum logic
gates operations via cyclic evolution in a degenerate subspace.
More generally, HQC belongs to the field of quantum state
engineering [16,17]. It is argued that the implementation of
quantum gates encoded in a degenerate subspace suppresses
the effect of dynamical phase around the given loops in the
parameter space. Thus it is not surprising to see that the
conventional HQC schemes are based on adiabatic evolution
due to its resilience against local fluctuations. The adiabatic
theorem [18,19] asserts that at any moment a quantum
system remains closely at an instantaneous eigenstate of a
slowly varying Hamiltonian. Specifically for a cyclic adiabatic
process, a geometric phase is acquired over the course of
the cycle [20–23]. Experimental implementations of adiabatic
HQC have been proposed in various physical systems, such
as trapped ions [10], superconducting nanocircuits [24],
semiconductor quantum dots [25], to name a few.

Despite the advantages such as robustness to fluctuations in
runtime and system energy, geometric operations in adiabatic
HQC suffer from a dilemma between a long runtime and a
good coherence, noting that a loss of coherence can occur
due to fluctuations in the control parameters. Nonadiabatic
non-Abelian geometric-phase-based holonomic transforma-
tion [15,26–33] has been recently proposed to demonstrate
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universal operations for quantum computation in both theory
and experiment. As an all-geometric scheme, it still retains
the advantages of the conventional HQC but the evolution
speed can be greatly accelerated. There have been studies on
the reliability of the nonadiabatic non-Abelian quantum gate
upon considerations of adverse effects including gate deco-
herence and noise [34], influence from the Lindbladian [35],
systematical error [36,37], rotating-wave approximation [29],
and finite operational time [38]. The robustness of HQC, in
particular the performance of the unitary transformation over
general input states, against classical noise (fluctuations) in
the control Hamiltonian parameters is still under investigation
[37]. And that would be the focus in this work.

Classical noise characterizing small system perturbations
can have a dramatic impact on the cyclic time evolution of
system as well as the performance of quantum gates which
require precisely controlled external driving. In this work, we
introduce classical noises in the form of stochastic fluctuations
in the control parameters [39,40] of a driven Hamiltonian
of a three-level atom or ion forming a �-configuration
for realizing universal holonomic single-qubit and two-qubit
gates. Such fluctuations are often due to imprecise system
controls and other unknown environmental influences. They
can be introduced during gate operations or during reading
of the results. Then, the output (resulting) quantum state
under the operation by the perturbed holonomic quantum gate
will in general deviate from that under the noise-free unitary
transformation. We study a transformation fidelity for a general
input state, which quantitatively measures these deviations.
In particular, we estimate the robustness of the nonadiabatic
holonomic transformation and determine the conditions in
which the desired state passage can be reliably realized in the
presence of classical noise. We note that both the magnitude
and the correlation of the classical noises are important factors
in determining the transformation fidelity.

The rest of this work is organized as follows. In Sec. II, we
introduce a universal nonadiabatic non-Abelian quantum gate
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implementation. The logical subspace and control parameters
including the envelop function and two control phases are
explained. In Sec. III, we consider stochastic fluctuations in
each parameter and their damage to the fidelity of the nonadi-
abatic holonomic transformation. We analyze the fidelity as a
function of or minimized over the input (initial) states and the
driving parameters. In Sec. IV, we extend our formalism to a
two-qubit gate case. A conclusion is presented in Sec. V.

II. CONSTRUCTING NONADIABATIC HOLONOMIC
QUANTUM GATES

We first construct a universal holonomic single-qubit gate
based on a driven �-configuration three-level system as well
as nonadiabatic non-Abelian geometric transformations. The
driving Hamiltonian, realized by system-laser interactions,
admits classical noise originated from the control lasers and
environmental disturbance.

The bare three-level system consists of two nondegenerate
ground states |0〉 and |1〉, representing the logic states in the
encoded quantum gate, and one excited state |e〉 acting as
the auxiliary state. In the presence of two separable polarized
laser pulses properly tuned to be at resonance with transitions
|e〉 ↔ |1〉 and |e〉 ↔ |0〉, respectively. Assuming the level
|0〉 has an energy ω0 = 0, without loss of generality, the
Hamiltonian can be written as

H0 = ωe|e〉〈e| + ω1|1〉〈1|
+�(t)[a0(t)|e〉〈0| + b0(t)|e〉〈1| + H.c.], (1)

where ωe and ω1 are the bare energies of |e〉 and |1〉,
respectively, �(t) is the modulated Rabi frequency (pulse
envelop or amplitude), and a0(t) and b0(t) are the driving
coefficients assumed to satisfy |a0(t)|2 + |b0(t)|2 = 1 for
simplicity. To cancel the bare energy terms in the original

Hamiltonian (1), we turn to the rotating frame by applying
the unitary transformation U0 = exp[i(ωe|e〉〈e| + ω1|1〉〈1|)t].
Upon this rotation, the Hamiltonian becomes

H1(t) = �(t)[a(t)|e〉〈0| + b(t)|e〉〈1| + H.c.]. (2)

Here the coefficients are

a(t) = a0(t)eiωet , b(t) = b0(t)ei(ωe−ω1)t ,

which still satisfy the normalization condition |a(t)|2 +
|b(t)|2 = 1. Their time dependence can be suppressed by
choosing a0(t) ∝ e−iωet and b0(t) ∝ e−i(ωe−ω1)t . In general,
the time-independent coefficients a and b can further be
parametrized by two control phases in the form

a = sin
θ

2
eiφ, b = cos

θ

2
.

Then, we have three parameters �(t), θ , and φ controllable via
the two driving lasers. They are taken as real numbers in the
ideal case of stable control. In the following, we will show that
the envelop function of the Rabi frequency �(t) determines
the cyclic period as well as the speed of the quantum gate
operation, while the control phases θ and φ specify the type
of the quantum gate.

A spectral analysis of the Hamiltonian in Eq. (2) gives

H1(t) = �(t)(|ψb+〉〈ψb+| − |ψb−〉〈ψb−|) + 0|ψd〉〈ψd |. (3)

In terms of the basis states {|0〉,|1〉,|e〉}, |ψb±〉 =
(1/

√
2)[a,b, ± 1]′ represent two bright eigenstates, while

|ψd〉 = [b,−a,0]′ is a state playing no role in the dynamics
and the gate operation. The time-evolution operator resulting
from H1 is found to be

U (t) = e−i
∫ t

0 ds H1(s) =

⎛
⎜⎝

sin2 θ
2 cos �̄ + cos2 θ

2
sin θ

2 e−iφ(cos �̄ − 1) i sin θ
2 e−iφ sin �̄

sin θ
2 eiφ(cos �̄ − 1) cos2 θ

2 cos �̄ + sin2 θ
2 i cos θ

2 sin �̄

i sin θ
2 eiφ sin �̄ i cos θ

2 sin �̄ cos �̄

⎞
⎟⎠, (4)

where �̄ ≡ �̄(t) = ∫ t

0 ds �(s). It is straightforward to

see that when �̄(T ) = π , i.e.,
∫ T

0 dt �(t) = π , the first
two degrees of freedom, |0〉 and |1〉, will be decoupled
from the excited (ancillary) state |e〉. It follows that
the qubit space spanned by |0〉 and |1〉 is invariant
under the time evolution U (s) if the lasers satisfy
�̄(T ) = π . It can be verified that this evolution is purely
geometric since 〈k|U †(s)H1(s)U (s)|l〉 = 〈k|H1(s)|l〉 = 0
for k,l = 0,1 and s ∈ [0,t].

Under the above conditions, the final time evolution
operator U (T ) is projected onto the qubit subspace spanned
by |0〉 and |1〉 and can be expressed as

Uh(T ) =
(

cos θ − sin θ e−iφ

− sin θ eiφ − cos θ

)
. (5)

It can be used to realize any single-qubit rotation, i.e.,
an arbitrary unitary transformation for a single qubit. This

thus defines a universal holonomic single-qubit gate. For
examples, Eq. (5) can realize (i) the Hadamard gate with
θ = 3π

4 and φ = 0, (ii) the Pauli-X gate with θ = π
2 and φ = π ,

(iii) the Pauli-Z gate with θ = 0, and (iv) the phase-shift gate
with θ = 3π

2 . In general, using Eq. (5), an input (initial) state
|ψ(0)〉 = α eiη|0〉 + β|1〉 will be transformed into

|�(T )〉 = (α cos θ eiη − β sin θ e−iφ)|0〉
− (α sin θ ei(η+φ) + β cos θ )|1〉, (6)

where α, β, and η are assumed to be real numbers satisfying
α2 + β2 = 1. Here and in the following, � denotes the result-
ing state from an ideal noise-free holonomic transformation.

The gate operation provided by Eq. (5) is in general
universal connecting any pair of pure states and there is
in principle no limit on the operation time T . The control
parameters θ and φ set up the desired quantum gate. The
effective time evolution operator Uh in Eq. (5) thus provides a
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general protocol for quantum state engineering. It is therefore
important to consider the reliability of this gate operation.

III. RELIABILITY OF HOLONOMIC TRANSFORMATION
IN THE PRESENCE OF CLASSICAL NOISE

The ideal holonomic transformation specified by Eq. (6)
is not always attainable once nonideal driving in the original
Hamiltonian (1) is taken into account. We now consider the
stochastic time-evolution operator Uξ (t) which deviates from
U (t) in Eq. (4) under the effect of a single noisy control
parameter ξ ∈ {�,θ,φ}. To measure the robustness of the
holonomic quantum gate for HQC, we study a transformation
fidelity defined by

Fξ = M[〈�(T )|ψξ (T )〉〈ψξ (T )|�(T )〉]. (7)

Here M[·] means the ensemble average over all random
realizations of fluctuations in the control parameter, and
|ψξ (t)〉 ≡ Uξ (t)|ψ0〉 denotes the nonideal output state of the
noisy quantum gate. The transformation fidelity indicates the
leakage of the output state out of the logic subspace. For
example, putting ξ ≡ �, U�(t) can be obtained after letting
�(t) → �′(t) = �(t) + δ�(t) in Eq. (4). It yields

|ψ�(t)〉 =
[

cos �̄′
(

α sin2 θ

2
eiη + β

sin θ

2
e−iφ

)

+α cos2 θ

2
eiη − β

sin θ

2
e−iφ

]
|0〉

+
[

cos �̄′
(

β cos2 θ

2
+ α

sin θ

2
ei(φ+η)

)

+β sin2 θ

2
− α

sin θ

2
ei(φ+η)

]
|1〉

+ i sin �̄′
(

β cos
θ

2
+ α sin

θ

2
ei(φ+η)

)
|e〉,

where �̄′ = �̄ + ∫ t

0 ds δ�(s). It can be verified (see, e.g.,
Ref. [39]) that for any classical Gaussian noise δξ (t) with
a zero mean 〈δξ (t)〉 = 0 and an autocorrelation function
Cξ (t,s) = 〈δξ (t)δξ (s)〉,

M[eim
∫ t

0 dt1δξ (t1)] = e−m2
∫ t

0 dt1
∫ t1

0 dt2Cξ (t1,t2),

M[eimδξ (t)] = e− m2

2 Cξ (t,t),

where m is a real constant. These results are helpful in
evaluation of the fidelity in Eq. (7).

The classical noise sources in our work are associated
with the three driving parameters, i.e., the amplitude-envelop
function � and two phases θ and φ in Rabi frequency. The
shape and duration of the input laser field are determined by
the envelop function �, whereas the carrier-envelop phases of
the two driving lasers are described by θ and φ. Physically the
amplitude and the phases can be tuned by certain combinations
of acousto-optical modulators and phase-modulation locking
achieved with low driving voltages, respectively. Recently,
techniques to separately modulate the amplitude and phases
of laser sources have been proposed and experimentally
demonstrated [41–44]. In the following, we assume that only
one control parameter admits significant fluctuations in each

x(T)

f(
θ,

φ)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 1. Landscape of the transformation fidelity F� in the
parameter space of decay function x(T ) ≡ e−C̄�(T ) and f ≡ f (θ,φ).

case and the fluctuations are of Gaussian type. However,
the conclusion is independent of the spectral function or the
correlation function of the noise.

A. Fidelity under noisy envelop function �

The fidelity in the presence of fluctuations in �(t) can be
obtained from the overlap between the ideal and nonideal wave
functions,

〈�(T )|ψ�(T )〉 = [1 + cos �̄′(T )]f (θ,φ) − cos �̄′(T ),

where

f = f (θ,φ) ≡ α2 cos2 θ

2
+ β2 sin2 θ

2
− αβ sin θ cos(φ + η).

Note that the tight upper and lower bounds of f (θ,φ)
are limited by |α cos(θ/2) − β sin(θ/2)|2 or |α cos(θ/2) +
β sin(θ/2)|2. Either situation satisfies 0 � f � 1. Substituting
the above results into Eq. (7) with �̄(T ) = π and performing
the ensemble average for the fluctuations, the fidelity is
obtained as

F� = 1 + e−4C̄�(T )

2
+ [2e−C̄�(T ) − e−4C̄�(T ) − 1]f

+ 3 − 4e−C̄�(T ) + e−4C̄�(T )

2
f 2, (8)

where C̄�(T ) ≡ ∫ T

0 dt1
∫ t1

0 dt2C�(t1,t2). Here, e−C̄�(T ) can
be considered as a decay function, which is clearly in the
range (0,1].

Evidently, this transformation fidelity depends on the
correlation function of the classical noise δ�, the initial state
characterized by α, β, and η, and the control parameters θ and
φ. In Fig. 1, we provide a landscape of F� plotted against
the decay function x(T ) = e−C̄�(T ) and f (θ,φ) according to
Eq. (8). Note that the impacts of the noise correlation function
are already considered via x(T ) while those of the control
phases θ and φ and input state parameters α, β, and η are
included via f (θ,φ). We thus have considered all possible
regimes.
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FIG. 2. Average transformation fidelity F̄� under non-Markovian
processing caused by δ�(t), as a function of dimensionless cyclic
period �T , and the memory parameter of noise γ /�. Here the
correlation function is supposed to be C�(t,s) = �γ e−γ |t−s|/2,
so that the decay function x = x(T ) ≡ e−C̄�(T ) = exp[−�(e−γ T +
γ T − 1)/(2γ )]. When γ → ∞, C�(t,s) reduces to a delta function
�δ(t − s) implying a purely Markovian noise and then x reduces to
the exponential decay function. On the other hand, for γ → 0, the
decay is strongly suppressed and the function x(T ) approaches unity.

It is interesting to note that when f (θ,φ) is close to unity,
F� is maintained at a high level for the whole range of the
decay function e−C̄�(T ), which depends on both T (the cyclic
period for constructing the logic subspace) and the form of the
noise correlation function. For those particular combinations
of quantum gates and input states, the gate operation is then
robust against the classical noise even for a long runtime,
noting that x(T ) often decreases with T especially after coarse
graining over the time domain. Similarly, when x(T ) is close
to unity (larger than about 0.96), corresponding to a short
runtime, the transformation is found to be fault tolerant in the
whole range of f (θ,φ). Therefore, there are clearly “sweet
spots” at x(T ) � 1 and f (θ,φ) � 1.

A perfect sweet spot for this control problem (in view of
quantum state engineering) emerges only when f (θ,φ) = 1.
From Eq. (8), this gives rise to F� = 1 irrespective of
the existence of the stochastic fluctuations over the envelop
function �. The condition for f (θ,φ) = 1 to hold is cos(φ +
η) = 1 when αβ � 0, or cos(φ + η) = −1 when αβ � 0 and
α = ± cos(θ/2). Note that in the derivation, we apply the fact
that f (θ,φ) � 1. For example, if the input state is chosen
as cos(3π/8)|0〉 + sin(3π/8)|1〉, the Hadamard gate is always
error free even if �(t) is noisy.

An average fidelity F̄� over all input states is also studied.
We adopt the parametrization α = cos(ϕ/2) and β = sin(ϕ/2)
and assume that ϕ ∈ [0,π ] and η ∈ [0,2π ] follow uniform
probability distributions. We then find that the average of
f (θ,φ) is 1/2 and

F̄� = 3 + 4e−C̄�(T ) + e−4C̄�(T )

8
, (9)

which has a minimum of 3/8. In Fig. 2, we plot the
average fidelity assuming an Ornstein-Uhlenbeck noise with a

correlation function

C�(t,s) = �γ

2
e−γ |t−s|,

where � is the correlation intensity of the noise and γ is
the memory parameter and is inversely proportional to the
memory retention time of the classical noise δ�. In a strongly
non-Markovian regime with γ /� ∼ 0.1, the transformation
fidelity can be maintained beyond 0.99 for T � 6/�, a limit
which is almost 12 times as long as that in a near-Markovian
case with γ /� ∼ 4. Figure 2 thus imposes an explicit demand
on the runtime T for HQC in the presence of the classical noise
with different memory capabilities. As the correlation function
of the noise approaches a delta function, the holonomic
quantum gate runtime must become ever shorter.

We now calculate the minimal value of the fidelity for
various initial states. From Eq. (8), we get

∂F�

∂f
= (3 − 4x + x4)f − (x4 − 2x + 1),

∂2F�

∂f 2
= 3 − 4x + x4,

where we have simplified the notation by writing x ≡ e−C̄�(T ).
Recall that x ∈ (0,1], where the two bounds correspond to an
infinitely large T (or a strongly correlated noise) and a van-
ishing T (or a Markovian noise), respectively. Consequently
the second derivative ∂2F�/∂f 2 is always positive. Thus F�

attains its minimum when ∂F�/∂f = 0. Since the first term
in ∂F�/∂f is positive, it may only vanish if x � xc ≈ 0.5437,
which is the only real root of x4 − 2x + 1 = 0 for x ∈ [0,1).
For x � xc, the minimum fidelity occurs if f (θ,φ) = (x4 −
2x + 1)/(3 − 4x + x4). In contrast, for x > xc, ∂F�/∂f �= 0.
The minimum simply occurs at f (θ,φ) = 0 that follows
from Eq. (8). This corresponds to the initial states satisfying
α/β = tan(θ/2) for φ + η = 2kπ , or α/β = − tan(θ/2) for
φ + η = (2k + 1)π , with k an integer.

B. Fidelity under noisy control phases θ and φ

We now consider a noise-free envelop function �(t). The
holonomic quantum gate then possesses an exact cyclic time T .
Fluctuations in θ or φ leave the system in the computational
subspace spanned by the ground states |0〉 and |1〉 without
invoking the excited state |e〉. In the presence of random
fluctuations associated with dθ/dt , we have θ → θ ′ = θ +
�θ (t), where �θ (t) = ∫ t

0 ds δθ (s). Consequently,

〈�(T )|ψθ (T )〉 = cos[�θ (t)] + 2αβ cos(φ + η) sin[�θ (t)].

Inserting it into Eq. (7), it is straightforward to show

Fθ = 1 + e−4C̄θ (T )

2
+ 4α2β2 cos2(φ + η)

1 − e−4C̄θ (T )

2
,

(10)

where C̄θ (T ) ≡ ∫ T

0 dt1
∫ t1

0 dt2〈δθ (t1)δθ (t2)〉. The sweet spot
for this situation, i.e., Fθ = 1, regardless of the existence
of the noise, then emerges when α2 = 1/2 and φ + η = kπ ,
with k an integer. In addition, the minimum fidelity oc-
curs when α2β2 cos2(φ + η) = 0, in which Fθ = 1/2 +
exp[−4C̄θ (T )]/2. Therefore, for a specific initial phase η
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satisfying φ + η = (k + 1/2)π , the transformation fidelity is
purely dependent on the correlation function of the noise δθ ,
but independent of the population distribution α2 and β2 of the
initial state. On average over α, β, and η, the fidelity turns out
to be

F̄θ = 5 + 3e−4C̄θ (T )

8
, (11)

which has a lower bound of 5/8, larger than that for the case
with a random envelop function �′(t).

Similarly, in the presence of a random control phase φ →
φ′ = φ + �φ(t), where �φ(t) = ∫ t

0 ds δφ(s), we have

〈�(T )|ψφ(T )〉
= sin2 θ [α2ei�φ (T ) + β2e−i�φ (T )]

+ cos2 θ + iαβ sin(2θ )[sin(φ′ + η) − sin(φ + η)].

After a tedious but straightforward derivation, the transforma-
tion fidelity is obtained as

Fφ = cos4 θ + sin4 θ [1 − 2α2β2(1 − e−4C̄φ )]

+ sin2(2θ )

2
e−C̄φ + α2β2 sin2(2θ )

×
[

sin2 φ̃(1 − 2e−C̄φ ) + 1 − cos(2φ̃)e−4C̄φ

2

]

+αβ(α2 − β2) sin2 θ sin(2θ ) cos φ̃(1 − e−4C̄φ ), (12)

where C̄φ(T ) ≡ ∫ T

0 dt1
∫ t1

0 dt2〈δφ(t1)δφ(t2)〉 and φ̃ = φ + η.
Rather than locating the sweet spot directly from Eq. (12), it

is more instructive to first average over α, β, and η and obtain

F̄φ = 1 − 3 sin2(2θ )

8
(1 − e−C̄φ ) − sin4 θ

4
(1 − e−4C̄φ ).

(13)
An interesting observation here is that in the presence of a
noisy φ, the average of the transformation fidelity depends
on the particular value of θ in addition to the time-integrated
noise correlation C̄φ . The lower-bound of the average fidelity
is found to be 1 − 3 sin2(2θ )/8 − sin4 θ/4. Therefore, the
transformation fidelity depends on the particular type of
the quantum gate determined by θ . In Fig. 3, we show a
general landscape of the average fidelity. We see that when
sin2 θ is sufficiently small, the average transformation fidelity
shows a sweet spot regime. On the other hand, if the decay
function x(T ) = e−C̄φ (T ) is sufficiently large, equivalently if T

is sufficiently small or if the correlation function is in a strong
non-Markovian regime, we still have an average fidelity close
to unity for an arbitrary sin2 θ . In addition, it is found that when
sin2 θ = 3/5, F̄φ arrives at its minimum value 11/20, which is
larger than that in the presence of a fluctuating envelop function
�′(t) and smaller than that in the presence of a fluctuating θ ′.

Considering averages over input states, values of the
transformation fidelity minimized with respect to various gates
and input states follow F̄min

� < F̄min
φ < F̄min

θ . In summary,
the reliability of this nonadiabatic non-Abelian quantum gate
is most susceptible to fluctuations occurring on the envelop
function of Rabi frequency but is most resilient against that on
the control phase θ .

x(T)

si
n2 θ
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FIG. 3. Landscape of average transformation fidelity F̄φ in the
parameter space of x(T ) ≡ e−C̄φ (T ) and sin2 θ .

IV. TWO-QUBIT GATE

We have considered a direct and exact construction of a
single-qubit nonadiabatic non-Abelian holonomic quantum
gate by modulating two laser pulses interacting with a three-
level atomic system (see Sec. II). In contrast, an existing
design [15,45] of a two-qubit gate is only approximately
holonomic as a result of an adiabatic elimination under a
restricted regime of the coupling strength between the laser
and atoms. In the so-called Sørensen-Mølmer setting [45], a
pair of ions constitute two internal �-configuration three-level
systems. The transitions |e〉 ↔ |1〉 and |e〉 ↔ |0〉 for these
two ions are coupled by lasers with envelop functions of
Rabi frequencies �1(t) and �0(t) and detunings ±ν ± δ and
±ν ∓ δ, respectively, where ν is a phonon frequency and δ

is an additional detuning. The indirect interaction between
the two ions is induced by the lasers. When the Lamb-Dicke
parameter ζ satisfies ζ 2 � 1, the effective Hamiltonian can be
approximated as

H2 = ζ 2

δ

√
�4

0(t) + �4
1(t)H 0

2 ,

H 0
2 = sin

θ

2
ei

φ

2 |ee〉〈00| − cos
θ

2
e−i

φ

2 |ee〉〈11| + H.c., (14)

where θ = 2 tan−1(�2
0/�2

1) and φ is the phase difference of
two control pulses. Note now θ is no longer an independent
physical parameter in contrast to its counterpart in the single-
qubit protocols. In the protocol for two-qubit gate provided
by Ref. [15], the parameter θ is determined by the ratio
of the amplitudes �0 and �1 of the pulse pair but not a
phase under control as that for the single-qubit gate. To
achieve a desired two-qubit gate, the ratio �2

0/�2
1 and the

phase φ should be kept constant during each pulse pair.
Meanwhile, �0 and �1 are constrained by the π pulse
criterion

∫ T

0 dt
ζ 2

δ

√
�4

0(t) + �4
1(t) = π to attain an effective

evolution operator on the computational subspace spanned by
{|00〉,|01〉,|10〉,|11〉} forming a holonomic two-qubit gate

Ũh = cos θ |00〉〈00| − cos θ |11〉〈11| + sin θ e−iφ |00〉〈11|
+ sin θ eiφ|11〉〈00| + |01〉〈10| + |10〉〈01|. (15)
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We parametrized the input state as |ψ(0)〉 = α|00〉 + ε|01〉 +
η|10〉 + β|11〉, where the four coefficients are real and follow
the normalization condition. Then, we consider the classical
noise perturbing the control phase difference φ, which is a
physically relevant parameter and independent from �0 and
�1. Thus φ → φ′ + �φ(t), where �φ(t) = ∫ t

0 ds δφ(s). We
study the decay function expressed by x(T ) = e−C̄φ (T ), where
the definition of C̄φ(T ) in Sec. III B for the single-qubit case
remains valid. The overlap between the output states of the
ideal and nonideal unitary transformations is found to be

〈�(T )|ψφ(T )〉 = 1 − α2 sin2 θ [1 − ei�φ (T )]

−β2 sin2 θ [1 − e−i�φ (T )].

Therefore, the transformation fidelity reads

F (2)
φ = 1 − 2 sin2 θ [(α2 + β2)(1 − x)]

+ 2 sin4 θ [(α4 + β4)(1 − x) + α2β2(1 + x4 − 2x)],

where x = x(T ) = e−C̄φ (T ). Averaging over θ , α, and β, we
find

F̄ (2)
φ = 1 − 93

256
(1 − x) + 3

64
(1 + x4 − 2x), (16)

which is a monotonic increasing function of x in the range
(0,1) and tightly lower bounded by 175/256 ≈ 0.6836. Thus,
in this particular situation, the minimum value of the average
transformation fidelity for the two-qubit gate is even larger
than that for the single-qubit gate.

V. DISCUSSION AND CONCLUSION

In this work, for the nonadiabatic non-Abelian holonomic
quantum single-qubit gate, we obtain general dependence of
the transformation fidelity on the input (initial) states, the
quantum gate parameters, and statistical properties of classical
noises acting on these parameters. The gate parameters
considered include the envelop function of Rabi frequency
�(t), and two control phases θ and φ of two driving laser
pulses. The former one determines the runtime of the gate
while the latter two determine the type of the gate. Values

of the transformation fidelity averaged or minimized over all
input states are also studied. The location of the high-fidelity
regimes, i.e., the sweet spots implies that the nonadiabatic
non-Abelian holonomic quantum gate is often robust against
fluctuations in the control parameters. In the presence of the
noise, we find that perfect sweet spot does exist under certain
conditions, in particular in the case of nonideal parameter �(t)
or θ . We also find that a nonvanishing memory of the classical
noise can relieve the requirement on the speed of a cyclic
evolution of the logic subspace.

We then extend the analysis into a special two-qubit
quantum gate leading to a universal set of quantum gates.
It is interesting to find that the nonadiabatic non-Abelian
holonomic two-qubit gate is more robust than the single-qubit
gate against classical noise for the setups we have considered.

In conclusion, we have investigated nonadiabatic non-
Abelian holonomic quantum gates for both single-qubit and
two-qubit operations. By studying a unitary transformation
fidelity, we clarify generic properties concerning the gate
reliability, which are independent of the details of the classical
noise correlation function. We compare the effect of classical
noise from different sources. The analyses on the sweet
spot and minimum values of the transformation fidelity are
general and apply to Gaussian noise with arbitrary correlation
functions. Our investigation provides a systematic estimation
over the error of HQC caused by classical noise. It is expected
to be useful for optimizing the performance of quantum gates
for nonadiabatic non-Abelian holonomic quantum computing.
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