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Emergent facilitation behavior in a distinguishable-particle lattice model of glass
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We propose an interacting lattice gas model of structural glass characterized by particle distinguishability and
site-particle-dependent random nearest-neighboring particle interactions. This incorporates disorder quenched
in the configuration space rather than in the physical space. The model exhibits nontrivial energetics while
still admitting exact equilibrium states directly constructible at arbitrary temperature and density. The dynamics
is defined by activated hopping following standard kinetic Monte Carlo approach without explicit facilitation
rule. Kinetic simulations show emergent dynamic facilitation behaviors in the glassy phase in which motions
of individual voids are significant only when accelerated by other voids nearby. This provides a microscopic
justification for the dynamic facilitation picture of structural glass.
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I. INTRODUCTION

Glassy dynamics still admits many open questions despite
decades of intensive studies [1–3]. When supercooled below
the glass transition temperature Tg , many liquids can be
quenched into the glassy phase, an amorphous solidlike
state without long-range order. Molecular dynamics (MD)
simulations are able to capture the dramatic slowdown [4,5],
but a thorough understanding of the simulated dynamics also
proves challenging. The study of simplified lattice models
[6–13] is thus important. In particular, the p-spin model [7]
has inspired the random first-order transition (RFOT) theory
[14,15], a leading theory of glass. A potential issue in the
p-spin model however is that it assumes externally imposed
quenched disorder rather than the expected self-generated
disorder, although a density functional Hamiltonian with
self-generated disorder has also been used to demonstrate
RFOT [16]. Another promising theory is dynamic facilitation
[17–19] founded on kinetically constrained models (KCM)
[8,9]. An important example is a spin-facilitation model by
Fredrickson and Andersen (FA) in which defects interpreted as
low-density regions are allowed to evolve only when facilitated
by the presence of adjacent defects [8]. A full microscopic
justification of the facilitation rules still remains a challenge.

In this paper, we formulate a distinguishable-particle
lattice model (DPLM), which is a lattice gas model with
effectively infinitely many particle types. This generalizes
other multispecies models for glass [4,12,20]. It also models
glassy systems in which most particles have distinct properties
including polymers [5], polydispersive colloidal systems [21],
and monodispersive systems in which particle interactions
admit random positional shifts [22–24]. More generally, it
is suggested to model also identical-particle glassy systems
in which distinct particle properties effectively account for
the positional disorder of particles at sub-lattice resolutions.
DPLM can be simulated at arbitrary temperature and particle
density realizing physical systems ranging from dilute gases
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to glasses. Interestingly, the glassy phase exhibits dynamic
facilitation as an emergent property.

II. MODEL

DPLM is defined by N particles on a 2D square lattice
of unit lattice constant and size L2 with periodic boundary
conditions. No more than one particle can occupy each site.
Each particle is distinguishable from the others (see Fig. 1). For
an occupied site i, the particle index si = 1,2, . . . ,N denotes
which particle is at site i. For convenience, we let si = 0 if the
site is unoccupied, i.e., occupied by a void. The occupation
number ni is hence

ni = 1 − δsi ,0, (1)

where δ is the Kronecker delta. The whole set of si , rather than
ni , uniquely specifies the state of our system.

The total system energy is defined as

E =
∑
〈i,j〉

Vijsi sj
ninj , (2)

where the sum is over all nearest neighboring (NN) sites. It
can be equivalently written as

E =
∑
〈i,j〉′

Vijsi sj
, (3)

where the sum is restricted to bonded NN sites i and j , i.e.,
with both sites occupied by particles.

A key feature is the site-particle-dependent interaction
energy Vijkl . Its dependence on particle indices k and l means
that each particle defines its own interaction strengths and this
will be justified further. Effectively, each particle is a type of its
own generalizing multispecies models. In DPLM, each Vijkl

is time independent and is an independent variable following
a probability distribution g(Vijkl) except when the symmetry
Vijkl = Vjilk applies. We expect Vijkl to be bounded below as
in typical two particle interactions and thus g(Vijkl) should not
be for example a simple Gaussian. For simplicity, g(Vijkl) is
assumed to be the uniform distribution in [−0.5,0.5] which
leads to a particle interaction slightly attractive on average.
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FIG. 1. (a) Schematic diagram of a region with distinguishable
particles randomly colored. The arrows indicate a possible sequence
of hops by four particles arranged in a line. The dynamics is
equivalently described by four hops of a single void in the reversed
direction. (b) The particle displacements alter the nearest neighbor
pairings and hence the pair interactions (indicated by black lines)
along the whole path.

To better understand the time dependence of the interac-
tions, it is instructive to write Eq. (3) as

E =
∑
〈i,j〉′

Vij (t), (4)

where Vij (t) ≡ Vijsi sj
. We emphasize that while each inter-

action Vijkl for any given sites i and j and particles k and l

is a quenched random variable, the interaction Vij (t) at site i

and j and arbitrary particles is not quenched. Instead, Vij (t)
admits an implicit time dependence via si and sj , which are
time dependent and change in values when a particle at i or
j is replaced. Equally importantly, Vij (t) has no explicit time
dependence. A previous value can thus be exactly reinstated
whenever a previous local particle configuration as specified
by si and sj is restored via the return of the particles. We believe
that such particle-dependent local interactions with persistent
memory capture essential characteristics of structural glass. A
further subtle point is that since Vij (t) depends on time, the
disorder in our model is not quenched in the physical space,
unlike spin-glass models [6]. Instead, because of the time
independence of Vijkl and that the same interaction energy
always applies to the same local particle configuration, the
disorder is quenched in the configuration space.

This site-particle dependence in Vijkl is not necessarily due
to possible diverse particle properties. Instead, it effectively
accounts for the impacts of positional disorder at sub-lattice
resolutions which are usually truncated in lattice models. A
particle at site i in a spatially disordered system in principle
admits a small random offset �ri from the exact lattice point.
This results in a random deviation in the atomic separation
rij between the particles at sites i and j and hence also
in the pair interaction Vijkl . Rather than explicitly modeling
the disorder in �ri or rij , we directly consider the resulting
random fluctuations in the interaction by simply taking a
random Vijkl . The dependence on both site and particle indices
models the random changes expected to be induced by the
hopping of any of the concerned particles or of the whole pair.
Realistically, there must also be additional dependencies on
further neighbors, which are all neglected for simplicity.

Equilibrium states of DPLM are exactly solvable. In
particular, particle occupancies ni follow equilibrium statistics

the same as those of a standard identical-particle lattice
gas model with a constant interaction energy. These will be
explained in Appendix A. Furthermore, equilibrium states
of DPLM can be directly constructed using those of stan-
dard lattice gas, which exhibits no glassy slowdown (see
Appendix B 5).

The dynamics of DPLM is defined by standard activated
hopping approach for kinetic Monte Carlo simulations. Specif-
ically, to simulate the dynamics at temperature T , each particle
can hop to an unoccupied NN site at a rate [25]

w = w0 exp

(
−E0 + �E/2

kBT

)
, (5)

where �E is the change in the system energy due to the hop
and kB = 1 is the Boltzmann constant. This definition satisfies
detailed balance. We let E0 = 1.5 so that E0 + �E/2 � 0.
Also, we put w0 = 106 without loss of generality. Particle
motions can be equivalently described as void motions (see
Fig. 1). At temperature T → ∞, DPLM reduces to a simple
sliding block model [26].

III. GLASSY DYNAMICS

Let φv = 1 − φ be the void density where φ = N/L2 is the
particle density in principle related physically to the system
pressure. We perform kinetic Monte Carlo simulations of fully
equilibrated systems at L = 100 at various T and φv (see
Appendix B for simulation methods). Standard dynamical
measurements show that the system behaves as a simple liquid
at high T and φv and a glass at low T and φv . As will be further
explained, glassy behaviors are shown by the appearance of
a plateau in the particle mean square displacement (MSD), a
super-Arrhenius T dependence of the particle diffusion coeffi-
cient D, a stretched exponential form of the self-intermediate
scattering function decaying towards zero at long time, a
violation of the Stokes-Einstein relation, and typical time and
T dependences of a four-point susceptibility. In particular,
the convergence of the self-intermediate scattering function
towards zero rather than a finite value at long time verifies
that DPLM is a model of structural glass, as opposed to, for
example, spin glass. For all T and φv studied, DPLM exhibits
no sign of ideal glass transition. It also appears ergodic as
supported, for example, by the divergence of the particle MSD
and the vanishing of the self-intermediate scattering function
at long time.

A. Diffusion coefficient

We calculate the particle MSD defined as 〈|rl(t) − rl(0)|2〉
where rl(t) denotes the lattice position vector of particle l at
time t . Figure 2(a) shows the MSD in a log-log plot for different
T and φv = 0.01. For t → ∞, the slopes of the lines are con-
sistent with unity, indicating diffusive behavior over long ob-
servation time. Subdiffusive plateaus appearing at intermediate
t at low T indicate cage effects. Note that being a lattice model
without vibrational modes at the sublattice level, the plateaus
are much less pronounced as have been found for other lattice
models [10].
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FIG. 2. (a) Particle mean square displacement (MSD) against t in
log-log scale for T = 0.170, 0.190, 0.216, 0.250, 0.296, 0.363, 0.470,
0.666, 1.142, 4.000, and void density φv = 0.01 with the highest T at
the top. (b) Arrhenius plot of D for φv = 0.005, 0.008, 0.013, 0.021,
0.035, 0.056, 0.092, 0.149, 0.242, 0.392, with the highest φv at the
top.

From similar MSD for various T and φv , we measure the
particle diffusion coefficient

D = 1

2d
lim
t→∞

〈|rl(t) − rl(0)|2〉
t

(6)

by fitting to data points where 〈|rl(t) − rl(0)|2〉 > 1 and the
slope in the log-log plot is higher than 0.96. Figure 2(b)
shows D in an Arrhenius plot for various φv . It exhibits
super-Arrhenius behavior which becomes more pronounced
at small φv and low T . This shows that DPLM is a fragile
glass.

B. Self-intermediate scattering function

We have measured the self-intermediate scattering function
defined as

Fs(q,t) = 〈eiq·(rl (t)−rl (0))〉 (7)

and the result is shown in Fig. 3(a) for φv = 0.01 and
q = (2π/L)q ′ with q ′ = 10. A one-step drop of Fs(q,t) versus
t instead of a two-step decay is again typical for lattice
models [10,12,27]. In glassy systems, the terminal decay
of the scattering function is usually well approximated by
the Kohlrausch-Williams-Watts (KWW) stretched exponential
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FIG. 3. (a) Decays of self-intermediate scattering function
Fs(q,t) in linear-log scale, for the same values of T used in Fig. 2(a),
with T decreasing from left to right. Wave number q = (2π/L)q ′ =
π/5 and φv = 0.01 are used here. (b) Same data as in (a) in
log-log-versus-log scale. Data corresponding to Fs(q,t) < 10−3 are
noisy and are omitted. The slope of the linear region at large t with
10−3 � Fs(q,t) � 0.9 gives the stretching exponent β.

function of the form A exp (−(t/τ )β), where τ is a relaxation
time and β (0 < β < 1) is the stretching exponent. Our results
fit well to the KWW form for large t . This is also demonstrated
by the log-log plot of − log(Fs(q,t)) against t in Fig. 3(b)
which shows a linear region at large t expected from the KWW
form with A � 1. The stretching exponent obtained from the
slope of the linear region is plotted in Fig. 4(a). As T decreases,
β drops from 1 to around 0.82, indicating glassy dynamics at
low T .

From Fig. 3(a), we also extract a relaxation time τα which
is the time at which Fs(q,t) = 1/e. Figure 4(b) plots Dτα

against 1/T . The value clearly increases with decreasing T

and demonstrate a violation of the Stokes-Einstein relation
expected for glasses.

C. Four-point correlation function

Close to the glass transition, one region in a glassy
fluid can relax much faster than another one. This spatially
inhomogeneous dynamical behavior is known as dynamic
heterogeneity. To quantitatively study the heterogeneity in the
persistence of the particle configuration, one can define an
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FIG. 4. (a) Stretching exponent β plotted against 1/T for φv =
0.01. (b) Violation of the Stokes-Einstein relation, Dτα = constant
where τα is a relaxation time.

overlap function as

cl(t,0) = eiq·(rl (t)−rl (0)). (8)

It measures how much particle l moves during times 0 and t

at a length scale 2π/q. Note that the average overlap equals
the self-intermediate scattering function Fs(q,t). Each particle
contributes to an overlap field defined by

c(r; t,0) =
∑

l

cl(t,0)δ(r − rl(0)). (9)

Consider its spatial correlation

G4(r,t) = 〈c(r; t,0)c(0; t,0)〉 − 〈c(0; t,0)〉2, (10)

where the average is over the spatial origin 0 and the starting
time 0. G4 measures the correlation of the fluctuations in the
overlap function between two points that are separated by r.

In the Fourier space, we get

S4(q̃,t) =
∫

eiq̃·rG4(r,t)dr (11)

= N

〈∣∣∣∣∣ 1

N

∑
l

eiq̃·rl (0)(cl(t,0) − Fs(q,t))

∣∣∣∣∣
2〉

. (12)

One can define the susceptibility as χ4(t) = limq̃→0 S4(q̃,t),
which is simply the variance of the overlap function. χ4(t)
can be interpreted as the typical size of correlated clusters in
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FIG. 5. χ4(t) for φv = 0.01 and the same values of T used in
Fig. 2(a). T decreases from left to right.

structural relaxation, thus an efficient measure of the degree
of dynamic heterogeneity.

Figure 5 shows χ4(t) from DPLM simulations. As is typical
for structural glasses, for each temperature, χ4(t) has a peak,
which shifts to larger times, and has a larger value when T

decreases. This reveals an increasing length scale of dynamic
heterogeneity when the system cools down.

IV. EMERGENT FACILITATION BEHAVIORS

Being an energetically nontrivial model with T and φv

independently and fully tunable, it exhibits much richer
physics than purely kinetic models such as KCM. The particle
diffusion coefficient D shown in Fig. 2(b) is replotted in
Fig. 6(a) against φv . At each T , the linear relation in the log-log
plot at small φv suggests the power law

D ∼ φα
v . (13)

Figure 6(b) plots the scaling exponent α as a function of T . For
the liquid state at high T , we get α � 1 indicating that each
void moves independently [26]. This is supported by a video
in the Supplemental Material [28] showing the motions of the
voids as well as the particles at T = 0.5. It can be observed
that voids diffuse independently. Figure 7(a) visualizes the
same motions using void trajectories (thin lines). They appear
slightly more compact than those of simple random walks
due to the disorder. Particles with nonzero net displacements
(pink and red) induced by the same void can be grouped
into a cluster. Cluster sizes for different voids are relatively
uniform. Voids are not trapped and travel throughout the whole
system independently at longer times. Dynamic heterogeneity
revealed via these clusters is weak.

We now explain that the low T regime exhibits dynamic
facilitation [19]. Figure 6(b) shows that α rises to 2 and beyond
at low T . The nonlinear scaling dictates that a void at small φv

has arbitrarily small contributions to the dynamics. According
to simple chemical kinetics, α � 2 corresponds to motion
dominated by pairs of coupled voids. This quantitatively shows
an emergent dynamic facilitation behavior of void motions. It
is analogous to KCM and in particular the spin facilitation
dynamics of the FA model [8]. We have checked that the
nonlinear scaling in Eq. (13) is not due to any void aggregation
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FIG. 6. (a) Particle diffusion coefficient D against void density
φv in log-log scale for values of T used in Fig. 2(a) with the highest
T at the top. (b) Scaling exponent α against 1/T obtained from linear
fits to data in (a) with φv � 0.05.

and is robust upon tuning the void-void attraction by a shift of
the probability distribution g on the energy scale.

To verify the above facilitation interpretation of Eq. (13),
we directly visualize the particle motions for T = 0.16 in a
video in the Supplemental Material [28]. It can be seen that
isolated voids are trapped. In sharp contrast, a pair of voids
nearby to each other moves vigorously. Figure 7(b) shows the
void trajectories in the same simulation which become very
compact with numerous dead ends indicating confined motions
of the voids due to enhanced disorder. The trajectory of each
isolated void induces no or few displaced particles (pink and
red) as most particles have not hopped or have returned to
their original positions. In contrast, the pair of voids nearby to
each other induces significantly more extensive intertwining
trajectories and vigorous particle displacements. Such pairs
dominate the dynamics for the α � 2 regime. At longer times,
isolated voids typically remain trapped locally by the disorder
unless visited and untrapped by other mobile pairs. Pairs of
voids may split and new pairs may emerge but these occur at
a longer time scale. Dynamic heterogeneity induced by highly
mobile pairs of voids among trapped isolated voids is thus
strong. Figure 6(b) suggests that α may reach 3 and beyond
at even lower T indicating dynamics dominated by triplets of
voids, etc.

FIG. 7. (a) A snapshot from a small-scale simulation on a 40 × 40
lattice with 1592 particles and 8 voids, i.e., φv = 0.005. It shows
the final positions of voids (black squares) after a short simulation
duration of �τ = 10−3 at T = 0.5. Particles with net displacements
0, 1, and >1 during the period are shaded in white, pink, and
red, respectively. Each thin line shows the trajectory of a void
and is colored randomly. (b) Similar to (a) with T = 0.16 and
�τ = 5 × 104. In both (a) and (b), the particle MSD during the
period is about 0.5. Particle dynamics are shown in videos in the
Supplemental Material [28].

The dynamics of an isolated void at low T typically involve
motions confined along low-energy paths. Note that n hops by a
single void typically corresponds to n single hops by n particles
as shown in Fig. 1. A trapped void hence typically leads
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FIG. 8. Probabilities Pret and P2 for returning and nonreturning
second hops against 1/T for φv = 0.01.

to bistablelike back-and-forth hops by a few particles. Such
repetitive motions observed in MD simulations of polymers
have been argued as the main cause of super-Arrhenius
slowdown [29]. We have adapted the method in Ref. [29]
to quantify these repetitions. Specifically, after a particle has
hopped, we measure the probability Pret that its next hop
returns itself to the original site. The probability P2 that it
next hops instead to a new site is also measured. The results
for φv = 0.01 are plotted in Fig. 8. They follow Pret + P2 = 1
within 0.01% and the minor deviations are due to particles
without a second hop during the observed period. At large
T , we find empirically that Pret � 1/2 applicable for small
φv noting that the random walks of voids induce correlated
walks of particles [30]. We have checked that Pret approaches
towards the particle random walk value 1/4 at large φv . As
T decreases, Pret increases monotonically reaching 0.96 for
the lowest T studied. The trend strikingly resembles those
from polymer simulations [29]. This resemblance also strongly
supports the physical relevance of DPLM. Such a high Pret

means that most hops are reversed and irrelevant to long-time
dynamics. The repetition thus must contribute significantly to
the slowdown. As T → 0, our results support Pret → 1. Most
hopping particles then form two-level systems (TLS) known
to be relevant to glass at very low T [31].

V. CONCLUSION

We have developed DPLM as a lattice gas model based
on distinguishable particles for studying glassy dynamics.
In the glassy phase, the particle diffusion coefficient scales
nonlinearly with the void density in the low void density limit.
This implies that isolated voids are essentially trapped and
the dynamics of a void is dominated by facilitation by other
voids nearby. Particle hopping becomes increasingly repetitive
at low temperature.

DPLM is defined by a simple, generic, and physically
motivated system energy function. It has both nontrivial
energetics and kinetics. It can be efficiently simulated and
equilibrium states can be directly generated at arbitrary
temperature and density. Its glassy state does not rely on
frustration on a specific lattice type. These may render DPLM

a unique prototypical model for the further study of glassy
dynamics and aging in disordered systems.

The definition of DPLM involves no explicit facilitation rule
but facilitation behaviors are observed. It thus provides a strong
microscopic support to dynamic facilitation and KCM. It will
be interesting to deduce the precise coarse-grained lattice
model for DPLM. Dynamic facilitation of voids demonstrated
by DPLM is analogous to the picture of facilitation via pair
interactions of stringlike particle motions motivated by MD
simulations of polymers [29]. In that picture, each string is
initiated by a single void leading to a one-one correspondence
between strings and voids. From Fig. 1, the motion of a void
alters the particle pairings and hence the energy landscape
along its entire path. The energy landscape experienced by
another void nearby is thus altered. Whether the second void
can diffuse across the path of the first void is thus randomly
affected. This demonstrates a form of path interaction of voids
which is essentially equivalent to string interactions observed
in MD [29]. The particle and void dynamics in DPLM as
well as in polymer simulations is recently described on the
same footing by a random local configuration tree theory [32].
Alternatively, it will also be of interest to study DPLM defined
on the Bethe lattice which may allow exact analysis.

In DPLM, each Vijkl is an independent random variable.
More generally, Eq. (2) features a very generic Hamiltonian.
Adopting instead a constant Vijkl ≡ V gives a simple in-
teracting lattice gas. As lattice gas models can be mapped
to spin models with spin-exchange (Kawasaki) dynamics,
it also represents a ferromagnetic or antiferromagnetic spin
model. Alternatively, a particle-dependent Vijkl ≡ Vkl reduces
it to a multispecies lattice gas such as a binary alloy [33].
Limiting to a site-dependent Vijkl ≡ Vij , it becomes a variant
of the Edwards-Anderson (EA) model for spin glass [6]
with Kawasaki dynamics and a random field. In addition,
by continuously varying the correlations between the various
Vijkl , Eq. (2) describes models interpolating between these
systems.
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APPENDIX A: EXACT EQUILIBRIUM STATISTICS

Assuming ergodicity, which is supported by our simulations
in Sec. III, it is possible to derive exact equilibrium states of
DPLM in the thermodynamic limit. This is because the system
follows a Boltzmann distribution which factorizes over the
bonds. More specifically, equilibrium statistics in the ergodic
phase of a system with N particles is described by the canonical
partition function

Z =
∑
{si }

e−βE, (A1)

where the sum is over all possible system states {si} and β =
1/kBT . Noting that si = 0 denotes a void, Z can be rewritten
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as

Z =
∑
{ni }

∑
{si>0}∈PN

e−βE. (A2)

Here, the first sum is over all possible site occupancies {ni}
with ni defined in Eq. (1). The second sum is over the set PN

of the N ! permutations of particle arrangement {si > 0} at the
N occupied sites with ni = 1. Equation (A2) can be recast into

Z =
∑
{ni }

Z{ni }, (A3)

where Z{ni } is the partition function restricted to the specific
site occupation {ni} and is given by

Z{ni } =
∑

{si>0}∈PN

∏
<ij>′

e
−βVijsi sj , (A4)

after applying Eq. (3).

1. Quenched and annealed averaging

The value of primary interest is the quenched average ln Z

where the bar denotes averaging over the time-independent
variables Vijkl . At sufficiently high T , it may agree with the
annealed average ln 〈Z〉a , where 〈·〉a again denotes averaging
over Vijkl which is now reinterpreted as additional time-
dependent system state variables. A detailed derivation of this
agreement will be explained in Appendix A 2.

We first study annealed averages which are much easier to
calculate. Applying annealed averaging to Eq. (A4), we get〈

Z{ni }
〉
a

=
∑

{si>0}∈PN

∏
<ij>′

〈e−βVijsi sj 〉a, (A5)

where we have noted that each Vijsi sj
has a distinct set of

indices and are thus independent random numbers. Defining

e−βU = 〈e−βVijsi sj 〉a, (A6)

U can then be interpreted as the average free energy of a bond
between two NN particles and is given by

U = − 1

β
ln

∫ ∞

−∞
e−βV g(V )dV . (A7)

Substituting Eq. (A6) into Eq. (A5), all terms in the sum
become identical and this trivially gives〈

Z{ni }
〉
a

= N !
∏
〈ij〉′

e−βU . (A8)

It further reduces to〈
Z{ni }

〉
a

= N !e−βNbU , (A9)

where Nb is the number of pairs of bonded particles for
the given site occupation {ni}. Substituting into the annealed
average of Eq. (A3), we get

〈Z〉a = N !
∑
{ni }

e−βNbU . (A10)

The factor N ! results from the particle distinguishability and
is related to the Gibb’s paradox [34]. It is irrelevant and can be
omitted for canonical ensembles with a constant N considered

here. We thus redefine Z by multiplying with a factor 1/N !
and obtain

〈Z〉a =
∑
{ni }

e−βNbU . (A11)

2. Averaging over permutations

As discussed above, it is valid to redefine Z with an
additional factor 1/N !. Specifically, we continue to adopt
Eq. (A3) while Eq. (A4) is replaced by

Z{ni } = 1

N !

∑
{si>0}∈PN

∏
〈ij〉′

e
−βVijsi sj . (A12)

The r.h.s. now involves explicitly an average over particle
permutations among the occupied sites. We will now explain
that this averages out all Vijsi sj

. This is because as emphasized
in Eq. (4), Vijsi sj

with nontrivial indices si and sj is not
quenched. It indeed samples over many different Vijkl as
particles permute, in sharp contrast to the quenched Vijkl at
fixed indices.

Without loss of generality, assume that sites 1 and 2
are occupied nearest neighboring sites. We single out the
permutations concerning sites 1 and 2, giving

Z{ni } = 1

N (N − 1)

N∑
s1,s2=1
s1 �=s2

e−βV12s1s2 ZN−2(s1,s2), (A13)

where ZN−2(s1,s2) is the partition function for the remain
N − 2 sites excluding particles s1 and s2 defined as

ZN−2(s1,s2) = 1

(N − 2)!

×
∑

{si>0}∈PN−2
si �=s1,s2

∏
〈ij〉′

{i,j}�={1,2}

e
−βVijsi sj . (A14)

Since all particles are statistically equivalent, the dependence
of ZN−2(s1,s2) on s1 and s2 is a manifestation of random fluc-
tuations resulting from the random Vijkl . Assuming negligible
fluctuations in ZN−2(s1,s2) at large N , which will be justified
later, we write ZN−2 ≡ ZN−2(s1,s2) and Eq. (A13) reduces to

Z{ni } = e−βUZN−2, (A15)

where U is defined in Eq. (A7). Repeating similar procedures,
a factor e−βU is contributed by every bond and we get

Z{ni } = e−βNbU (A16)

analogous to Eq. (A9) after irrelevant prefactors in the latter
are dropped.

At finite N , Z{ni } for a given set of Vijkl deviates from
the value in Eq. (A16) with a magnitude characterized by
the standard deviation σZ . We will show that σZ becomes
negligible compared with Z{ni } as N increases. At high T ,
this is obvious because fluctuations of each factor e

−βVijsi sj in
Eq. (A12) is small. We thus focus only on the case of low T .
The deduction is nontrivial because terms in Eq. (A12) are
correlated and have large variances increasing with N .

At low T , a term in Eq. (A12) is significant predominantly
when all its factors are relatively large. We thus characterize
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each factor only by whether it is large or small via the
approximation

e
−βVijsi sj � ξij

2kBT
e−βU , (A17)

where

ξij =
{

1 for Vijsi sj
∈ [V0,V0 + 2kBT ]

0 otherwise
(A18)

with V0 = −0.5. Noting that the a priori probability density
g(Vijsi sj

) of Vijsi sj
is uniform in [V0,V0 + 1], we have con-

structed the approximation so that the average e−βU of e
−βVijsi sj

is unchanged. In particular, the probability p that ξij = 1 is

p = 2kBT . (A19)

Equation (A12) is then approximated by

Z{ni } � 1

N !
p−Nbe−βNbUM, (A20)

where

M =
∑

{si>0}∈PN

∏
〈ij〉′

ξij . (A21)

Here, M equals the number of relevant particle permutations
which contribute significantly to Z{ni }. For each of these
permutations, it is easy to see that all interactions are within
kBT from the average value V0 + kBT .

We now evaluate the statistical properties of M by tackling
the combinatorial problem of counting the relevant permu-
tations. For simplicity, we illustrate further calculations for
a fully occupied N × 1 lattice with interactions only in the
nontrivial dimension, but generalization is straightforward.
First, there are N ways to occupy site 1. For each choice,
there are on average (N − 1)p ways to occupy site 2 in which
ξ12 = 1. It is analogous for the other sites except for i = N

which contributes a factor p2 because both ξN−1,N and ξ1N

must be nonzero. The average of M is thus

M̄ = N · (N − 1)p · (N − 2)p · · · 1p2

= N !pN. (A22)

As a consistency check, substituting Eq. (A22) into Eq. (A20)
and assuming M � M̄ recovers Eq. (A16).

More importantly, we now calculate the standard deviation
σM of M . For each of the N ways to occupy site 1, the number
of ways to occupy site 2 follows a binomial distribution with a
variance (N − 1)p(1 − p). Each of these choices at sites 1 and
2 on average results at (N − 2)!pN−1 relevant ways to permute
the remaining N − 2 particles. Therefore, fluctuations at i = 2
contribute a variance v2 to M given by

v2 = N × (N − 1)p(1 − p) × [(N − 2)!pN−1]2

= (1 − p)M̄2

N (N − 1)p
, (A23)

where we have used Eq. (A22). We next consider fluctuation
at site 3 as a further example. For each of the on average
N (N − 1)p ways to occupy sites 1 and 2, the number of
ways to occupy site 3 follows a binomial distribution with
a variance (N − 2)p(1 − p). Each of these choices at sites 1,
2, and 3 on average results at (N − 3)!pN−2 relevant ways to

permute the remaining N − 3 particles. Fluctuations at site 3
thus contribute a variance v3 to M given by

v3 = N (N − 1)p × (N − 2)p(1 − p) × [(N − 3)!pN−2]2

= (1 − p)M̄2

N (N − 1)(N − 2)p2
. (A24)

Fluctuations at other sites can be similarly calculated. Ne-
glecting correlations between these fluctuations, we get σ 2

M =∑N
i=2 vi which simplifies to

σ 2
M = (1 − p)M̄2

(
1

N (N − 1)p
+ 1

N (N − 1)(N − 2)p2

+ 1

N (N − 1)(N − 2)(N − 3)p3
+ · · ·

)
. (A25)

For large N , all but the first term are negligible and
we get σM � √

(1 − p)/pM̄/N . Since Z{ni } ∝ M accord-
ing to Eq. (A20), the standard deviation of Z{ni } is σZ �√

(1 − p)/pZ{ni }/N . In particular, we have

σZ ∼ Z{ni }
N

. (A26)

To verify this result, we have numerically performed direct
enumeration of 105 values of Z{ni } using either Eq. (A12) or
Eq. (A20) for 105 independent realizations of Vijkl for N � 11
and T � 0.2. In both cases, Eq. (A26) is readily verified.
As a further check of our method, we consider alternative
interactions in the form Vijkl ≡ Vkl , representing particle-
dependent interactions as opposed to site-particle-dependent
ones. Using analogous arguments, we find instead σZ ∼ Z{ni },
which is also well verified numerically by direct enumeration.

It is straightforward to generalize Eq. (A26) to arbitrary
site occupancies ni in 2D. Therefore, for DPLM studied in
this work, Eq. (A16) admits corrections only of order 1/N and
is essentially exact for large N . Substituting Eq. (A16) into
Eq. (A3), we get

Z =
∑
{ni }

e−βNbU , (A27)

where all Vijkl-dependent correction terms are of higher
orders in 1/N . Note that similar arguments also imply that
ZN−2(s1,s2) defined in Eq. (A14) has negligible fluctuations
and this justifies the assumption used in deriving Eq. (A15).

We emphasize that we have not at this point performed
the ensemble average over Vijkl and Z in Eq. (A27) have
already become independent of Vijkl due to the averaging over
particle permutations. This is quite analogous to self-averaging
behaviors exhibited by many systems. Here, sample to sample
fluctuations of Z hence vanish and all quenched averaging
becomes trivial, i.e., ln Z = ln Z. A further comparison of
Eq. (A27) with Eq. (A11) gives

ln Z = ln Z = ln〈Z〉a. (A28)

This shows the identical statistical properties of quenched and
annealed ensembles in the ergodic phase for large N .

3. Equilibrium properties

Let ZLG be the partition function of a simple identical-
particle lattice gas with a NN particle interaction energy U . It
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is easy to see that ZLG is in fact identical to Z in Eq. (A27),
i.e.,

Z = ZLG. (A29)

Therefore, DPLM and simple lattice gas have exactly the
same equilibrium particle occupation statistics despite the
very different dynamics. A simple lattice gas has a gas-liquid
phase transition at the vaporization temperature Tv , which
depends on U and thus on the distribution g. The lattice
gas can be further mapped to the 2D Ising model with
an exchange J = −U/4 [33]. Applying Onsager’s solution
Tv = 2J/ ln(1 + √

2) for the 2D Ising model [34], we get

Tv = −U

4 ln(1 + √
2)

, (A30)

where U is given in Eq. (A7) evaluated at T = Tv . Solving
Eqs. (A7) and (A30) numerically, we get Tv � 0.132. We have
verified this value of Tv using small-scale DPLM simulations
at, e.g., φv = 0.5. Since Tv is below T studied in our main
simulations, the systems considered here correspond to lattice
gases in the gaseous phase, in which particles are only slightly
attractive and neither particles nor voids in dilute concentration
aggregate.

We now derive the equilibrium distribution of the inter-
actions for annealed ensembles, which is identical to that of
quenched ensembles according to Eq. (A28). Restricting our
consideration to a given site occupancy {ni}. We study the
equilibrium properties of the remaining state variables si > 0
and Vijkl . They follow the Boltzmann probability distribution

Peq({si},{Vijkl}) ∝ e−βE
∏

<i,j>,k,l

g(Vijkl), (A31)

where the product is over all NN sites i and j and all particles
k and l. Applying Eq. (3), we get

Peq({si},{Vijkl}) ∝
⎡
⎣∏

〈i,j〉′
e
−βVijsi sj g

(
Vijsi sj

)⎤⎦

×
⎡
⎣ ∏

{〈i,j〉,k,l}∈C

g(Vijkl)

⎤
⎦. (A32)

Here, the first product is restricted to bonded NN sites i

and j . Thus, the realized interaction Vijsi sj
which describes

an existing bond in the state {si} follows the Boltzmann
distribution

peq

(
Vijsi sj

) = 1

N e
−βVijsi sj g

(
Vijsi sj

)
, (A33)

where N = ∫
e−βV g(V )dV is a normalization constant. The

second product in Eq. (A32) is over the complementary set
C of unrealized interactions Vijkl which do not represent any
existing bond in the state {si}. This equation also implies that
these unrealized interactions simply follow g(Vijkl).

We now further derive some other useful results. Adopting
annealed ensemble, all si in the r.h.s. of Eq. (A32) are dummy
indices of identical independent variables. All permutations of
si are indeed equivalent and only amount to different labeling
of the particles. To see this mathematically, we note that after

integrating Peq({si},{Vijkl}) over all Vijkl , we get a uniform
probability distribution

Peq({si}) = 1/N! (A34)

demonstrating the equivalence of all N ! permutations {si} for
annealed ensembles as expected.

In addition, the average interaction between bonded parti-
cles is 〈

Vijsi sj

〉 =
∫

Vpeq(V )dV, (A35)

where peq is given in Eq. (A33). Using Eq. (3), the average
energy per particle is then 〈E〉/N = 〈Nb/N〉〈Vijsi sj

〉. For
small φv with mostly isolated voids, the average number of
bonds per particle is 〈Nb/N〉 � 2(1 − φv). This gives

〈E〉
N

= 2(1 − φv)
∫

Vpeq(V )dV. (A36)

APPENDIX B: SIMULATION DETAILS

We will describe both elementary and accelerated sim-
ulation approaches, which have been checked to generate
statistically identical results. Our main simulations are all
performed using accelerated algorithms. Each of them at lattice
size L = 100 takes up to about 20 hours to run on an Intel
Xeon processor core. Data for each set of values of T and
φv are typically averaged over five similar independent runs.
Additional shorter runs recording particle positions at a higher
time resolution are also needed to obtain correlation data at
short time.

1. Elementary kinetic Monte Carlo method

Simulations can be performed using a standard kinetic
Monte Carlo approach. At each time step �t , the following
procedures can be performed:

(1) Randomly choose a site i.
(2) Randomly choose a site j which is a NN of i.
(3) If ni = 1 and nj = 0 is false, reject this step.
(4) Accept particle hop from i to j with probability

4L2w�t where w is calculated using Eq. (5).
Here, �t must be small and satisfies 4L2w�t � 1 for all

possible configurations.

2. Rejection-free method

The simple kinetic Monte Carlo algorithm above is ineffi-
cient due to too many rejected move attempts. A rejection-free
method [35] is much more efficient. Let Nv = L2 − N be the
number of voids. We optimize our algorithm for φv � 0 which
is most demanding due to the slow dynamics. The number of
possible hops is 4Nv in general. The associated hopping rates
w are calculated using Eq. (5) and stored at the lowest level of
a complete binary tree. Each parent node then stores the sum
of the two immediate children. Note that an exchange of two
voids is unphysical and is assigned a rate 0.

For each time step �t , one of the 4Nv possible hops
is randomly selected with a relative probability w. It is
straightforward to select the hop efficiently by randomly
descending the binary tree using the node values as the relative
probabilistic weights. The hop is then executed. A few hopping
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rates associated with the hopping particle and its neighbors
are recalculated since the local configuration has changed.
The binary tree is then also updated accordingly. It is easy
to see that �t is time dependent and follows �t = 1/wroot,
where wroot is the value at the root of the binary tree and
equals the sum of all the 4Nv rates [36].

3. Two-step interaction energy tabulation

A nontrivial point in the programming for DPLM is that
the total number of Vijkl is of order N2L2 ∼ N3. This requires
too much memory storage for large N . For medium values of
N , Vijkl can be sampled only when needed and stored using
a hash data structure. In our main simulations with a large
N ∼ L2 = 104, it is necessary to adopt a two-step tabulation
method to be explained below.

As an approximate scheme, we put

Vijkl = v(Qi(k),Qj (l)). (B1)

Here, each Qi for site i is an independent random permutation
function mapping the set 1,2, . . . ,N to itself. The function
v thus involves only order N2 tabulated random numbers
sampled from g which are independent from each other except
when the symmetry v(k,l) = v(l,k) applies. Before simulation
starts, the functions v and Qi are randomly sampled and stored.
The memory requirement significantly decreases from order
N3 to order N2. The method does introduce some unwanted
correlations between the ideally independent Vijkl . However,
we have checked in medium scale simulations that it gives
results statistically identical to those using the hash-table
method.

4. Elementary initial thermalization

A straightforward approach is to generate each Vijkl

independently from the probability distribution g taking into
account the symmetry Vijkl = Vjilk . The system state is
initialized at infinite temperature by putting each particle
randomly onto an unoccupied site in the L × L lattice with
uniform probability. This gives ni and si at time t = 0.
Thermalization kinetic Monte Carlo steps, typically performed
using the rejection-free method explained above, are then
conducted at the target temperature T until equilibrium is
attained.

During thermalization, equilibrium is indicated by the
stabilization of various statistical measures such as the average
particle energy E/N . We have checked numerically that
equilibration can be performed successfully under various
conditions and a particularly demanding example in the glassy
phase is illustrated in Fig. 9(a). The solid curves show E/N

against t from two typical runs for T = 0.17 and φv = 0.01.
They stabilize towards the average equilibrium value 〈E〉/N
given in Eq. (A36). Figure 9(b) shows the evolution of the
probability distribution pt (Vijsi sj

) of the realized interaction
Vijsi sj

at time t from the same runs. It crossovers smoothly from
the initial distribution g toward the equilibrium distribution peq

in Eq. (A33). From both Figs. 9(a) and 9(b), the system can be
deemed equilibrium for the given T and φv for t � 2.5 × 105.
The results verify numerically Eq. (A36) and Eq. (A33). More
importantly, they hence also verify the agreement between
quenched and annealed averages used in their derivations.

0 1 2 3 4 5

105

-0.7

-0.65

-0.6

-0.55

-0.5(a)

-0.5 0 0.5
10-2

10-1

100

101(b)

FIG. 9. (a) Plot of energy per particle E/N against time t

from four independent runs adopting elementary (solid curves) and
direct (dashed curves) initialization algorithms. The black dotted
line shows 〈E〉/N from Eq. (A36). (b) A semi-log plot of the
probability distribution pt (Vijsi sj ) of realized interaction Vijsi sj at time
t from simulations adopting the elementary initialization algorithm.
pt (Vijsi sj ) for t � 256000 has converged to peq from Eq. (A33)
indicated by the black dashed line. For both (a) and (b), T = 0.170
and φv = 0.01.

5. Direct initialization method

System equilibration at large N using thermalization Monte
Carlo steps explained above can take very long runtime at
low T . This is a major difficulty for many lattice models and
most MD simulations of glass. Being able to directly construct
equilibrium states is thus a highly desirable property. This is
possible for KCM with trivial energetics, nonspatial models
[37,38], and some frustrated spin models defined on triangular
or related lattices [39]. It is also possible for MD simulations of
a system with long-range shifted interactions [23,24]. DPLM is
in our knowledge the only finite-dimensional and energetically
nontrivial lattice model of glass defined on a general lattice
with this capability.

First, we calculate the particle occupancy ni and the particle
index si at every site i. We start by simulating a simple
identical-particle lattice gas because of the equivalent particle
statistics [see Eq. (A29)]. It is performed with a constant NN
particle interaction energy U given in Eq. (A7) and we use
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the same computer code for DPLM with Vijkl reduced to the
constant U . Similar to the elementary initial thermalization
approach described above, we initialize the particle positions
randomly and then equilibrate the simple lattice gas by a
thermalization run. It is computationally very efficient because
of the absence of glassification at arbitrary T . The thermalized
particle positions give si and ni at time t = 0. Note that due
to the identical-particle nature of this part of the simulation,
only ni is of interest. The precise particle permutation as
specified by si for the occupied sites is irrelevant because
all permutations are equally probable [see Eq. (A34)].

Second, we randomly generate Vijkl from the annealed
ensemble, which is statistically identical to the quenched en-
semble [see Eq. (A28)]. Specifically, we sample all unrealized
Vijkl from the distribution g while realized interactions Vijsi sj

appearing in the state {si} are sampled from the Boltzmann
distribution peq given by Eq. (A33). This completes the
generation of an equilibrium state at T .

In Fig. 9(a), the two dashed curves show the particle energy
E/N from two typical runs using this direct initialization
method. They support that the systems have attained equilib-
rium energy once constructed and this numerically verifies the
method. Note that at finite N , interactions from this approach
differ in principle from that based on the elementary method
in Appendix B 4 in which all interactions are sampled from
g. Nevertheless, since the total number of Vijkl is of order
N3 while the number of bonds is of order N , the fraction

of realized interactions sampled from peq is only of order
1/N2. The fraction thus approaches zero at large N and
this demonstrations the equivalence of the elementary and
the direct methods. Even after using our two-step tabulation
approximation in Eq. (B1), the fraction increases to order 1/N

and still vanishes for large N . This approach of determining the
particle arrangement ni and si before generating the interaction
Vijkl is closely analogous to a planting method in Refs. [23,24].

6. Software reliability

Correct software implementation is highly nontrivial be-
cause minor programming mistakes may affect the particle
dynamics only occasionally and can be very difficult to spot.
One helpful consistency check is to measure the probability
distribution of the interaction energy Vijsi sj

at equilibrium and
compare with the exact distribution in Eq. (A33). We have
also conducted more general Boltzmann distribution tests [36]
by performing long simulations using a small lattice with
all but several particles frozen. Then, only a few thousand
different configurations will be realized. We measure the total
occurrence durations and the system energies of all these
configurations and make sure that the results agree with the
Boltzmann distribution within the expected statistical errors.
With these tests, we believe that our software implementation
is highly reliable.
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