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Abstract—Recent years have witnessed advances of Internet of 
Things (IoT) technologies and their applications to enable 
contactless sensing and elderly care in smart homes. Continuous 
and real-time respiration monitoring is one of the important 
applications to promote assistive living for elders during sleep and 
attracted wide attention in both academia and industry. Most of 
the existing respiration monitoring systems require expensive and 
specialized devices to sense chest displacement. However, chest 
displacement is not a direct indicator of breathing and thus false 
detection may often occur. In this paper, we design and implement 
a real-time and contactless respiration monitoring system by 
directly sensing the exhaled airflow from breathing using 
ultrasound signals with off-the-shelf speaker and microphone. 
Exhaled airflow from breathing can be regarded as air turbulence, 
which scatters the sound wave and results in Doppler effect. Our 
system works as an acoustic radar which transmits sound wave 
and detects the Doppler effect caused by breathing airflow. We 
mathematically model the relationship between the Doppler 
frequency change and the direction of breathing airflow. Based on 
this model, we design a Minimum Description Length (MDL) 
based algorithm to effectively capture the Doppler effect caused 
by exhaled airflow. We conduct extensive experiments with 25 
participants (7 elders, 2 young kids and 16 adults, including 11 
females and 14 males) in four different rooms. The participants 
take four different sleep postures (lying on one’s back, on 
right/left side and on one’s stomach) in different positions of the 
bed. Experiment results show that our system achieves a median 
error lower than 0.3 breaths/min (2%) for respiration monitoring 
and can accurately identify Apnea. The results also demonstrate 
that the system is robust to different respiration styles (shallow, 
normal and deep), respiration rate variation, ambient noise, 
sensing distance variation (within 0.7 m) and transmitted signal 
frequency variation. 

Index Terms—Respiration Detection, Doppler Effect, Acoustic 
Sensing, Contactless Sensing. 
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I. INTRODUCTION

Non-intrusive vital signs monitoring is an important topic for 
smart home and smart healthcare [1-4]. Respiration rate is a 
vital sign that informs health conditions, indicates progression 
towards recovery, and tracks decline of illness. Abnormal 
respiratory events such as obstructive or central sleep 
apnea-hypopnea are quite common in the elders [25-27]. These 
respiration disorders reduce sleep quality and even threaten 
one’s life. In particular, chronic obstructive pulmonary disease 
(COPD) is the third most common cause of death for people 
aged 65 and above [8]. Thus, it is crucial to monitor one’s 
respiration continuously and accurately in real-time at home for 
elders, especially those living alone, with respiratory diseases. 

The traditional way to monitor vital signs requires a person 
to visit hospitals or wear dedicated respiration monitoring 
devices such as thoracic impedance pneumography [9] or 
capnography [10]. However, these methods are quite costly and 
also intrusive, preventing these systems from large scale 
deployment at home settings. In order to develop cost-effective 
and non-intrusive respiration monitoring systems during sleep, 
researchers turn their attention to contactless sensing [4-7]. The 
approaches based on laser [12], microwave [14], commodity 
Wi-Fi [15, 16, 32-38] or acoustic devices [13, 31, 44] to 
monitor respiration rate in a contact-free manner. These 
approaches typically measure respiration by detecting the 
displacement of human chest. However, the chest movement is 
hard to measure with current approaches when a user is covered 
by a thick blanket or quilt during sleep.  In addition, for a user 
suffering from obstructive sleep Apnea (OSA), the respiration 
may stop (i.e., no exhaled airflow), but the chest can still move 
as if the user is breathing normally [28]. As such, current 
approaches based on chest movement detection cannot 
accurately monitor respirations or reliably detect abnormalities.  
Considering the cost and functional requirements of respiration 
monitoring in home settings, an ideal respiration monitoring 
system should: (1) directly sense breathing airflow, rather than 
chest movement, (2) leverage the existing cheap commodity 
devices, and (3) be non-intrusive and ideally contact-free. 

In this paper, we design and implement a contact-less human 
respiration monitoring system using commodity speaker and 
microphone. The system directly senses exhaled airflow with a 
pair of acoustic transceiver which consists of one speaker and 
one microphone. The speaker transmits inaudible sound waves 
(i.e., disturb-free design) to be received by the microphone. Our 
motivation is based on the observation that exhaled airflow 
from breathing causes signal changes in the received sound 
waves. Our aim is to detect such changes for respiration 
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monitoring. Note that our system does not require users to wear 
any devices.  

Building an acoustic-based respiration system entails many 
practical challenges. First, although exhaled airflow would 
cause changes in sound waves, it still remains elusive to 
reliably monitor respirations by analyzing the received sound 
waves. Besides, without a comprehensive theoretical model to 
capture the inherent influences of respirations to the received 
sound waves, it is hard to configure the monitoring system to 
accurately monitor and reliably detect the sound waves. Second, 
a user may change sleep postures and the direction of exhaled 
airflow may vary during sleep. It is difficult to quantify the 
influence of changing airflow directions. Third, many real-life 
factors (e.g., body movement and wind) in the environment 
may cause changes in the airflow from breathing, affecting 
detection accuracy. 

This paper aims to overcome these challenges. We first 
conduct several experiments to: 1) study the feasibility of 
sensing exhaled airflow leveraging the off-the-shelf acoustic 
devices, and 2) investigate the characteristics of sound wave 
changes during human breathing. Based on our empirical study, 
we then build a theoretical model to describe the relationship 
between the variation pattern of Doppler shifts and the direction 
of breathing airflow. Based on our theoretical model, we 
optimize the system parameters to effectively catch the Doppler 
shift to substantially enhance detection performance. We then 
profile the Doppler shift using Power Density Spectrum (PSD) 
in a specific band derived from the model mentioned above. 
Afterwards, to meet the real-time requirement, PSD is 
compressed exploiting Minimum Description Length (MDL) 
principle [24]. To reduce the dimension of PSD while keeping 
sensitivity for exhaled airflow, the compressing method 
segments PSD into several bands and ensures that the PSD 
segment in the same band has similar sensitivity for exhaled 
airflow. Finally, we leverage the periodicity of respiration to 
differentiate body movement or other noise factors to further 
improve the robustness and accuracy of our system in real 
practical scenarios. A demo video is provided at 
https://tinyurl.com/ybncm2jz, which verifies the feasibility of 
sensing exhaled airflow using commodity acoustic devices 
(00:00 - 03:47), illustrates the theoretical model described in 
Section III.A (03:48 - 04:57), and records one measurement 
study (04:58 - 08:22). The contributions of this paper can be 
summarized as follows: 

1) We design and implement a respiration monitoring system 
which directly senses breathing airflow by leveraging 
commodity microphone and speaker. 

2) We model the relationship between the exhaled airflow 
direction and the Doppler frequency change pattern. Based on 
the model, we design an MDL-based compressing algorithm to 
effectively capture the Doppler Effect caused by exhaled 
airflow.  

3) We design an auto-correlation based method to 
characterize the periodicity of the Doppler effect and 
differentiate respirations from nonperiodic Apnea and body 
movement. 

4) We conduct extensive experiments to evaluate our system 
in four different rooms with 25 participants.  The participants 
take four different sleep postures (lying on one’s back, on 
right/left side and on one’s stomach) in different positions of 

the bed. The experiment results show that our system achieves a 
median error lower than 0.3 breaths/min (2%) for respiration 
monitoring and can accurately identify Apnea. We also conduct 
extensive experiments to evaluate system robustness in various 
scenarios and the results show that the system is robust to 
different respiration styles (shallow, normal and deep), 
respiration rate variation, ambient noise, sensing distance 
variation (within 0.7 m) and transmitted signal frequency 
variation (within the band [20KHz, 21KHz]). 

II. RELATED WORK  

A. Contact-based Methods 
The traditional vital sign monitoring systems require hospital 

visits and contact-based monitoring devices. For instance, 
thoracic impedance pneumography [9] needs to attach 
electrodes on a subject’s chest and measures the change of 
electrical impedance during the subject’s respiration. 
Capnography [10] utilizes the partial pressure of carbon 
dioxide to monitor a subject’s respiration. Both devices need to 
be operated by medical specialists in hospitals and clinics and 
incur high deployment costs, which are not affordable for large 
scale deployment in ordinary homes. Moreover, they require 
subjects’ direct contact with the devices and cause 
inconvenience for everyday use. Other works [19] adopt 
wearable sensing systems and build bed sensing systems with 
pressure sensors [20]. However, they still need specialized 
devices and are not suitable for large-scale deployment [21]. 

B. Contactless Method 
Compared to the contact-based approaches, the contactless 

methods do not require direct contact with monitoring devices. 
In the literature, most of the contactless solutions leverage 
various signals to detect chest movement during respiration, 
such as laser [12], ultrasonic sensors [13] and radio frequency 
technologies, like microwave [14], WiFi [15, 16, 32-38] and 
RFID [46]. All these works detect respiration by measuring the 
chest movement displacement during respiration. However, the 
chest movement is hard to measure with current approaches 
when a user is covered by thick blanket or quilt during sleeping. 
Moreover, these methods assume that chest movement is a 
reliable indicator of respiration.  However, such an assumption 
may not always hold in practice. For instance, the users 
suffering obstructive sleep Apnea (OSA) could stop breathing 
(i.e., no exhaled airflow) but their chests may still move as if 
the users were breathing normally [28]. It can be 
life-threatening if a monitoring system considers such chest 
movements without exhaled airflows as normal.  

Additionally, visual analysis based methods have also been 
investigated. For instance, camera-based method [11] utilizes a 
Time-of-Flight camera to record subjects’ daily activities and 
adopts computer vision algorithms to analyze subjects’ 
respiration. The main problem is that the camera based methods 
may raise users’ privacy concerns. Besides, camera-based 
methods highly rely on good lighting conditions. 

Acoustic based approaches [53] have recently attracted wide 
attention. The method proposed in [30] detects respiration by 
recording breathing sound with earphone. However, users may 
not be willing to wear earphone when they sleep. The methods 
proposed in [31,44] detect respiration by measuring chest 
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displacement during breathing with acoustic signals. As 
mentioned above, these methods cannot reliably monitor 
respiration if a user is covered by blanket or in case of OSA. 
The work [18] requires a specialized device to generate and 
receive high frequency (40KHz) ultrasound signals. 
Commodity speakers however typically transmit in the 
spectrum between 20 Hz to 20 kHz [48]. Moreover, many 
existing respiration detection approaches are designed for a 
controlled sleep posture, and thus do not work well when users 
change their postures during sleep. 

III. ACOUSTIC DOPPLER SHIFT CAUSED BY EXHALED 
AIRFLOW 

Theoretically, the basic principle supporting acoustic 
respiration detection is that the intermittent exhaled airflow of 
respiration can be seen as turbulence and cause the Doppler 
frequency shift. In this section we intend to answer the 
following questions: 1) why exhaled airflow incurs acoustic 
Doppler shift, and 2) what is the relationship between the 
speed and direction of exhaled airflow and the Doppler 
shift. In order to answer the above questions, we first derive a 
mathematical model to quantify the Doppler frequency shift 
caused by exhaled airflow. To verify the derived model, we 
conduct real experiments using commodity microphone and 
speaker. Finally, we study various factors that may interfere the 
acoustic Doppler frequency shift, e.g., body movements, wind, 
etc. 

A. Acoustic Doppler Shift Caused by Exhaled Airflow 
The exhaled airflow can be regarded as turbulence, which is 

able to scatter ultrasound signals. As turbulence contains many 
unsteady vortices moving irregularly [29], the velocity of 
turbulence at time , i.e.,  is generally composed of two 
parts: average velocity  and fluctuating velocity , i.e., 

.  During breathing, the average velocity of 
exhaled airflow mainly contributes to , whose direction and 
norm are relatively steady, while the irregularly moving 
vortices mainly contribute to , whose direction and norm 
change over time. Projecting  to the line between the 
scatterer and the device, suppose the angle of ,  and  
are ,  and , respectively, the projection result of  
can be denoted as: 

 
The traditional Doppler shift [47] is given by  

 

Replacing  with the projection of , i.e., 
, we can finally derive the Doppler shift 

caused by exhaled airflow as: 

 

 

 is positive if the scatterer moves towards the device. 
Otherwise,   is negative. 

According to our empirical results, the value of 
 can be roughly estimated as 0.9 m/s by setting  

in Eq. (3) as . Then, the value of  can be roughly 
estimated as 1.3 m/s by setting  in Eq. (3) as 0. Referring to 
`the above model, we have the following observations. When 
angle  is close to 0, we have 

, so . 
So we can only observe the frequency shift above the transmit 
frequency .  When angle α changes from 0 to  gradually, 
we will observe that the frequency shift above  decreases and 
the frequency shift below  starts occurring. When angle α 
stabilizes at around , we have 

, due to the randomness of 
 in time domain and space, we will observe symmetric 

frequency shifts below and above f simultaneously. 
The Doppler frequency shift variation when  changes from 

 to  and the Doppler frequency shift variation when  
changes from 0 to  are symmetric with respect to transmit 
frequency . 

B. Empirical Verification of Acoustic Doppler Shift Caused by 
Exhaled Airflow 

In this section we conduct two experiments to verify 1) the 
feasibility of sensing exhaled airflow using commodity 
acoustic devices, 2) the theoretical model described in Section 
III.A 
Experimental settings: We bind a speaker (JBL Jembe, 6 Watt, 
80 dB) and a microphone (SAMSON Meteor Mic, 16 bit, 48 
KHz) as a simple acoustic radar, as shown in Fig. 1(a). The 
device is placed in front of a subject facing toward the effective 
sensing area where the exhaled airflow passes (as shown in Fig. 
1(b)) at a distance of 50 cm. The speaker transmits inaudible 
ultrasound waves at  continuously. The speaker 
sends ultrasound signals which are scattered in the effective 
sensing area due to the exhaled airflow of the subject. 
Meanwhile, the microphone records ultrasound signals (with 
the sampling rate of 48 KHz with 16 bits). 
Experimental protocol: The subject is asked to breathe 
naturally first, and then wears a face mask and keeps breathing. 
This process is repeated twice. The power density spectrum 
(PSD) of the reflected ultrasound signal is shown 
synchronously. 
Experiment results: The experiment process was recorded in 
the demo video provided at the end of Section I.C (the part 
00:00 - 03:47). From this experiment we observe: 1) when the 
subject breathes naturally without face mask, the echo Power 
Density Spectrum (PSD) shows clear periodical amplitude 
variation, i.e., micro-Doppler shift around 20KHz with 
respiration. Note that the ultrasound signal backward scattered 
by exhaled airflow is only a very small part of the echo and its 
power is low. The main part of the echo is the ultrasound signal 
reflected from the static room environment. This could explain 
the reason that even though the signal backward scattered by 
exhaled airflow embedded Doppler effect. The main frequency 
of the echo keeps the same as transmitted signal at a frequency 
of 20KHz. While breathing with face mask, the exhaled airflow 
is blocked and the micro-Doppler effect disappears. The 
experimental results demonstrate that exhaled airflow can 
indeed cause Doppler shifts. 
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Next, we verify our theoretical model and conduct the 
following experiments. 
Experimental settings: To facilitate the adjustment of the 
acoustic beam direction, the acoustic transceiver (as shown in 
Fig. 1(a)) is fixed on a tripod facing toward the effective 
sensing area where the exhaled airflow passes (as shown in Fig. 
1(c)).  
Experimental protocol: To verify our theoretical model, we 
first collect ultrasound echo signals in the following four 
scenarios: breathing at different angles α = 0,  , , and 

, respectively, where α denotes the angle between the 
exhaled airflow direction and the acoustic beam direction. We 
then compute the Power Spectrum Density (PSD) of the 
received ultrasound echo in each scenario to observe the 
micro-Doppler shift.  
Experiment results: As shown in Fig. 1(d) ~ (g), the results of 
the Doppler shift with different angle  match the results 
derived from our model. For   (Fig. 1(d)), we only 
observe a relatively strong frequency shift above transmitting 
frequency 20 KHz. For  (Fig. 1(d)), the frequency 
shift above 20KHz reduces. When  (Fig. 1(e)), the 
frequency shift below 20KHz starts to appear. While  
(Fig. 1(f)), we observe almost symmetrical frequency shifts on 
both sides of 20KHz. The experiment process was recorded in 
the demo video provided at the end of Section I.C (the part 
03:48 - 04:57) 

Our experiments demonstrate that the Doppler 
frequency shift varies with the angle between the exhaled 
airflow direction and the acoustic beam direction. With the 
angle changes, the frequency shift may appear on one side 
or two sides of the transmitting frequency. 

C. Other Factors Interfering Acoustic Doppler shift 
Other factors may interfere with the acoustic Doppler 

frequency shift caused by exhaled airflow. We now discuss two 
factors: body movement and wind. 
1) Body Movement 

The Doppler frequency shift caused by human body 
movement is much stronger than the Doppler frequency shift 
caused by exhaled airflow. When body movement exists, the 
Doppler frequency shift caused by exhaled airflow will be hard 
to detect. 
2) Wind 

The exhaled airflow is the direct detecting target in our 
system. When there exists wind in the effective sensing area (as 
shown in Fig. 1(b)), the exhaled airflow will be disturbed and 
influence the respiration monitoring accuracy. 

In reality, when a person sleeps, most of these interference 
factors can be eliminated or well controlled. (1) A person will 
generally keep stable and her respiration rate can be roughly 
estimated while she is moving or turning for a short while 
during sleep. To mitigate the problem caused by body 
movement, we can suspend respiration detection when body 
movement occurs and activate it for detecting respiration after 
the body movement disappears.  (2) People who need 
respiration monitoring could be asked to avoid fans or direct 
airflow blowing directly towards their bodies, especially for the 
elders and kids.  

IV. RESPIRATION DETECTION EXPLOITING PERIODICAL 
ACOUSTIC DOPPLER SHIFT 

As mentioned in Section III.C, to design a respiration 
detection system that is robust to breathing direction variation, 
we need to 1) effectively capture the Doppler frequency shift 
regardless of the breathing direction, and 2) identify the 
Doppler frequency shifts due to respiration from the received 
ultrasound signals. We employ Power Spectrum Density (PSD) 
to capture the Doppler shift in a specific frequency band 
derived from the model in Eq. (3). We notice that human 
respiration is generally periodical, while Apnea and the 
interferences such as body movement have no periodicity. 
Based on this observation, we differentiate respiration from 
other arhythmical factors by leveraging the rhythmicity of 
human respiration.  

             
(a)                                     (b)                                                           (c)                                                                                    (d) 

                   
(e)                                                                                 (f)                                                                                  (g) 

Fig. 1. The variation of Doppler frequency shift caused by exhaled airflow as radius angle varies. (a) the device we use, (b) the effective sensing area on the body of 
subject, (c) panorama of experimental environment (d) radius angle , (e) , (f) ,  (g) . 
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Based on the above idea, we propose a framework (as shown 
in Fig. 2) which consists of three key steps. In the first step, we 
profile the Doppler frequency shift using Power Spectrum 
Density (PSD). Next, in order to meet real-time requirement, 
we compress PSD into a short vector base on the Minimum 
Description Length (MDL) principle. Finally, we measure the 
periodicity of the elements in the short vector to detect whether 
the subject is breathing without body movement or Apnea. If 
the subject is detected as breathing without body movement or 
Apnea, we locate each breath as the peak of Doppler frequency 
shift. Otherwise, we use variance of Doppler shift to 
differentiate Apnea and body movement. We now describe the 
three key steps in details. 

A. Profiling Doppler shift using PSD 
Power Spectrum Density (PSD) is an effective tool to profile 

the Doppler shift of the echo. We firstly construct a sliding 
window to buffer the echo. The sliding window abandons the 
obsolete echo sample and accepts the latest one continuously. 
Then we use a high-pass filter to filter out the ambient noise. 
Afterwards, we compute PSD to profile Doppler effect.  

According to our empirical study, the value of average 
velocity  is about 1.3 m/s, the value of maximum of 
fluctuating velocity of exhaled airflow, i.e.,  is 
about 0.9 m/s. Based on the model described in Eq. (3), the 
theoretical upper bound of Doppler shift caused by exhaled 
airflow ( , ) is 257Hz. Due to the randomness of 
fluctuating velocity  of exhaled airflow in time domain 
and space, the upper bound of Doppler shift during 1 second is 
about 200Hz in practice. Therefore, we only retain the PSD in 
the frequency band [ ]. As our emitted 
frequency is configured as an inaudible frequency of 20 KHz, 
this range is [19800Hz, 20200Hz]. 

B. Compressing PSD 
For convenience in the following description, we define the 

part of echo PSD within the frequency band [19800Hz, 
20200Hz] as effective PSD vector.  

From the overview of the proposed system (as shown in Fig. 
2), we can see that measuring the periodicity of Doppler shift is 
the key procedure in step 3. Our intuition to measure the 
periodicity of Doppler shift is to measure the periodicity of 
each frequency bin (i.e., one element in the PSD vector). 

However, the high dimension of PSD vector1  leads to high 
computational overhead. We also observe that PSD values in 
some adjacent bins exhibit similar trends, meaning that the 
values in adjacent bins can be positively correlated. Based on 
these observations, we propose to group the PSD values in 
adjacent bins into a frequency band so as to enhance signal 
strength and reduce computational overhead. Ideally, the 
frequency bins grouped into a frequency bands should exhibit 
similar trends (named preciseness requirement), and 
meanwhile we want to minimize the total number of frequency 
bands (named conciseness requirement). 

The sensitivity and informativeness of each frequency bin 
can be evaluated with its variance. For example, in our 
implementation, the iteration period of respiration detection 
system is 0.1 second, i.e., respiration detection system produces 
a 300-dimension1 effective PSD vector per 0.1 second. If we 
collect the effective PSD vectors when monitoring respiration 
for 50 seconds, the system accumulates 50/0.1=500 effective 
PSD vectors, i.e. a 500×300 matrix.  The sensitivity of ith 
frequency bin can be measured as the variance of the ith column 
of 500×300 matrix. Larger variance indicates higher sensitivity 
and thus more informative in respiration monitoring. For 
example, Fig. 3(a) shows a set of effective PSD vectors during 
5 minutes while breathing and Fig. 3(b) shows the variance 
(highlighted as the red line). Thus, the problem is transformed 
to segmenting the variance curve of effective PSD vectors with 
respect to the above two objectives, i.e., conciseness and 
preciseness. 

As a matter of fact, the two requirements are contradictory to 
each other. For example, if each bin is placed into an 
independent band, preciseness is maximized but conciseness is 
minimized. In contrast, if all the bins are grouped into the same 
band, conciseness is maximized but preciseness is minimized. 
Therefore, we need to find an optimal tradeoff between 
conciseness and preciseness. To address this problem, we adopt 
the Minimum Description Length (MDL) [24] which allows us 
to strike a balance between the two requirements.  

In particular, the MDL cost is defined as , 
where  is the partition strategy,  denote the data;  is the 
cost of the partition strategy;  is the cost of the data 

 
1  The dimension of effective PSD vector .   = 

48KHz is sampling rate;   is the width of frequency band [
].  NFFT is number of FFT points when computing PSD. In 

our implementation, we set NFFT as the length of data, i.e.,  . 
 = 0.75 second is the buffer length in our system implementation. So 

 

 
Fig. 2. Overview of the proposed framework 
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                          (a)                                                          (b) 
Fig. 3.  Sensitivity of PSD for exhaling. (a) PSDs during breathing, (b) 
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lines show an optimum partition employing the method based on MDL
principle. 
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description using partition strategy H [24].  The best partition 
strategy  is to minimize the MDL cost .  

Given:  
1) the variance of all the frequency bins in effective PSD 

vector during the specific time slot,  , 
where  is variance of the point at frequency ; 

2) partition strategy : suppose  will be segmented into 
 bands, and the cut-points are , 

where .  are in the 
ascending order, i.e., . The 
elements of  in each band  are compressed as: 

then, the cost of partition strategy , is defined as: 

The cost of the data description using partition strategy , 
 is defined as: 

  ( )

We can see that  measures the conciseness and  
measures the preciseness. As mentioned previously, we need to 
find a segmenting strategy that can minimize the MDL cost (i.e., 

). In practice, the computation cost to find the 
optimal segmenting strategy is prohibitively high since we need 
to consider every subset of the points in the variance curve. 
Therefore, we adopt the approximate method [23] to get an 
approximate solution which provides a near-optimal grouping 
strategy (approximately 80% optimal) in much shorter time. In 
Fig. 3(b), the blue dotted lines show the near-optimal grouping 
result obtained using the approximate method. 

We evaluate the performance of the grouping method with 
the four most common sleep postures (sleeping on one’s back, 
on left side, on right side and on one’s stomach). We collect 
four datasets, each of which contains data collected under each 
of the four sleep postures. We also combine the four datasets to 
form a mixed dataset. Then, we conduct the following 
experiments to validate the effectiveness of our segmenting 
method. The experiment settings in this section is the same as 
those in Section III. 
Experimental protocol: Firstly, we compute four segmenting 
strategies by applying our method to the breathing dataset of all 
four sleep postures (lying on one’s back, on right/left side and 
on one’s stomach) as well as the mix ed dataset, respectively 
(as shown in Table 1 we denote these five segmenting strategies 
as Segback, Segleft, Segright, Segstomach and Segmixed). Secondly, we 
create three uniform segmenting strategies with the segment 
number 8, 10, 12 (as shown in Table 1 we denote them as 
Seguniform-8, Seguniform-10, Seguniform-12). Finally, we replace the 
above eight segmenting strategies into our framework one by 

one, and test the framework performance with the four different 
sleep postures. 
Experimental results: Table 1 shows the respiration detection 
error using different segmenting strategies on different sleep 
posture datasets, i.e., Segmixed. We observe that the segmenting 
strategy computed by applying our segmenting method to the 
mixed breathing dataset achieves smallest error rate, while 
other seven segmenting strategies miss part of breaths in some 
datasets. The error rate 0.3 (2%) of Segmixed when sleeping on 
one’s stomach is caused by the fact that when sleeping on one’s 
stomach, the Doppler shift is relatively weak than the Doppler 
shift when sleeping on left of right side. Weak Doppler shift 
will affect the accuracy of respiration monitoring. Nevertheless, 
our method is able to detect the Doppler shift in both sides of 
transmitted frequency and finally achieves error rate 2%, which 
is accurate enough for many respiration monitoring 
applications. 

With the best segmenting strategy computed from the mixed 
dataset with our method, we compress effective PSD vector as a 
vector composed of the median values of all the segments. 

C. Online Respiration Detection 
It is a common sense that human respiration is usually 

rhythmical, i.e., relaxed periodicity, while body movement or 
other noise factors discussed in Section III.D are not rhythmical. 
Thus, the Doppler frequency shift embedded in echo PSD 
caused by respiration will inherit the relaxed periodicity. Hence, 
the periodicity of Doppler frequency shift can only occur 
during respiration. Therefore, we aim to exploit the periodicity 
of Doppler frequency shift to detect human respiration. In 
particular, we first measure the periodicity of Doppler 
frequency shift variations based on the compressed effective 
PSD vector. If the Doppler shift variation shows a strong 
periodicity in a specific time window, we can infer that the 
subject is breathing normally. Then we locate each breath as the 
peak of the Doppler shift. Otherwise, we can conclude that 
there is body movement or respiration arrest, i.e., Apnea 
occurring. In latter case, we use variance of Doppler shift to 
differentiate Apnea and body movement. By using a slide 
window, when body movement is detected, the system will 
automatically stop respiration detection, and when there is no 
movement occurring, the system detects the apnea event. 
1) Measuring the Periodicity of Doppler Shift 

The periodicity of Doppler frequency shift is reflected in the 
variation of the echo PSD. We construct a sliding window to 
buffer the compressed effective PSD vector. The sliding 
window abandons the obsolete compressed effective PSD 
vector and accepts the latest one continuously. Suppose the 

TABLE 1.  
RESPIRATION DETECTION ERROR USING DIFFERENT SEGMENT STRATEGY 

 On one’s 
back Left side Right side On one’s stomach 

Segback 0 (0%) 0 (0%) 4.1 (27.3%) 0.6 (4%) 
Segleft 6.8 (45.3%) 0 (0%) 0.3 (2%) 0.3 (2%) 
Segright 7.2 (48%) 0 (0%) 0 (0%) 0 (0%) 

Segstomach 7.9 (52.7%) 0.3 (2%) 0.6 (4%) 0.3 (2%) 
Segmixed 0 (0%) 0 (0%) 0 (0%) 0.3 (2%) 

Seguniform 8 6.9 (46%) 7.4 (49.3%) 8.2 (54.7%) 7.9 (52.7%) 
Seguniform 10 6.8 (45.3%) 9.2 (61.3%) 8.7 (58%) 8.5 (56.7%) 
Seguniform 12 7.4 (49.3%) 7.9 (52.7%) 8.2 (54.7%) 8.1 (54%) 

Error unit: breaths/min (percentage) 
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compressed effective PSD vector is -dimention, and the 
length of the sliding widow is . The system updates a  
matrix in each iteration. We measure the periodicity of each 
column employing autocorrelation function. Given the  (

) column  , where  is the 
element at  row and  column of the matrix, the 
autocorrelation function of   column is defined as follows: 

where  and  are the expectation and standard deviation of the  
 column, respectively. If the column is near periodical 

(shown as the green time window in Fig. 4(a), corresponding to 
breathing quietly), its autocorrelation function (as shown in Fig. 
4(b)) looks like a sinusoid but its amplitude decreases gradually. 
If the column fluctuates randomly and significantly (shown as 
the black time window in Fig. 4(a), corresponding to body 
movement), its autocorrelation function (as shown in Fig. 4(c)) 
looks like an exponential function with a base smaller than 1. If 
the trend of the column is relatively stable (shown as the red 
time window in Fig. 4(a), corresponding to Apnea), its 
autocorrelation function (as shown in Fig. 4(d)) varies 
irregularly.  

Based on the characteristics of the autocorrelation function 
and our observations, we construct a model to recognize 
whether one column of the matrix exhibit strong periodicity. It 
can be used to dynamically filter out weak or none periodical 
columns and also filter interferences due to body movement as 
well as environment noise. In particular, the model works as 
follows. 

Given the autocorrelations, , of the  column, 
indexes of peaks (i.e., local maximums, except for the first peak 
whose values is 1) of the  are denoted as 

,  
 If  , and 

 If   
then the  column exbihits strong periodical.  and  
are two thresholds determined as follows. As human respiration 
rate typically ranges from 12 breaths/min to 40 breaths/min 
(note that, after exercise, human respiration can reach 40 
breaths/min), and the length of slide window is 10 seconds in 
our experiments. Thus, there should be 2~6.7 breaths in one 
sliding window meaning that there are 2~7 peaks in the 
autocorrelation results. Thus, in our experiments, we set 

 and  to filter out body movements and other 
noise 

If the number of strong periodical columns is larger than a 
specific threshold , we can infer that the subject is 
breathing normally. Otherwise, there is body movement or 
respiration arrest, i.e., Apnea happens. In our experiment, 

 works well in distinguishing periodic respirations and 
nonperiodic body movement and Apnea. In next section, we 
describe how to identify normal breathing and Apnea online. 
2) Identifying Breaths and Apnea Online 

As mentioned above, when we infer that the subject is 
breathing normally (i.e., the number of strong periodical 
columns is larger ), the next step is to identify each 
breathing. During exhaling, the Doppler frequency shift will 
first increase and then decrease. The variation of the Doppler 

        
(a)                                                                      (b)                                                (c)                                              (d) 

Fig. 4. Autocorrelation functions of the features corresponding to breathing, body movement and environment noise.  (a) one feature in the 75 seconds time 
window, the green, black and red dotted rectangles correspond to the time windows when breathing without movement, body movement occurring and only 
environment noise respectively. (b) ~ (d) the autocorrelation function of the feature in green, black and red time window respectively. 

 
Fig. 5. Respiration detection results. The blue curve is the variation of the sum of instances of the periodical columns over time. The small red circles mark all 
respirations.  
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frequency shift over time can be described as the sum of 
instances of the periodical columns (as described in Section 
IV.C.1). Thus, the exhaling can be identified as the peak of the 
normalized Doppler frequency shift. When we infer that body 
movement or Apnea happens (i.e., the number of strong 
periodical columns is not larger ), we use the variance of 
Dopper shift to identify Apnea. Even though body movement 
and Apnea both affect the periodicity of Doppler shift, they 
result in very different Doppler shift variation. Body movement 
causes drastic and irregular Doppler shift and Apnea causes no 
Doppler shift. So, we can use variance of normalized Doppler 
shift to identify Apnea. Specifically, if the variance of 
normalized Doppler shift in sliding window, whose length is 7 
seconds, is larger than specific threshold , then body 
movement is detected. Otherwise, Apnea is detected. In our 
experiment, = 0.01 works well in differentiating 
Apnea and body movement. 

Fig. 5 shows an example of the respiration detection results 
in 175 seconds’ time frame. The blue curve is the variation of 
the sum of instances of the periodical columns over time. We 
can see that the system accurately identifies breaths, marked as 
small red circles, body movement (from 27 second to 36, from 
109 second to 116) and Apnea (from 63 second to 78, from 143 
second to 155). By using slide windows, when body movement 
is detected, the system will automatically stop respiration 
detection, and when movement stops, the system automatically 
resumes the detection. 

V. EXPERIMENTAL EVALUATION 
In this section, we conduct comprehensive experiments to 

evaluate the proposed system. First, we introduce the system 
configuration and experiment settings. Then, we briefly 
describe the baseline method. We conduct experiments with 
25 participants (7 elders, 2 young kids and 16 adults, 
including 11 females and 14 males) in four different rooms. 
The participants take four different sleep postures (i.e., on 
one’s back, on right/left side and on one’s stomach) in 
different positions of the bed. We compare our system with 
the baseline method in various experiment settings. In addition, 

we conduct experiments to test whether the system can identify 
Apnea. We also test the system robustness against body 
movement, wind, different respiration styles (shallow, normal 
and deep), respiration rate variation, ambient noise, sensing 
distance variation and transmitted signal frequency variation. 

A. System Configuration and Experiment Settings 
Theoretically, our design is not limited to COTS 

microphones and speakers and should be able to implement 
using smartphones. In practice, we face some technical 
challenges to implement using smartphone. 1) It is hard to 
ensure the that the transmitted acoustic beam passes through the 
exhaled airflow when the smartphone is placed on the 
nightstand or bed. 2) Even though the acoustic beam passes 
through the exhaled airflow, the relatively low power of the 
speaker on smartphone cannot ensure that the microphone 
receive sufficiently strong echo. Therefore, currently we 
implement our respiration monitoring system with commodity 
microphones and speakers. Specifically, our system consists of 
a pair of commodity speaker and microphone (shown in Fig. 
1(a)) which forms an acoustic transceiver.  The speaker is 
programmed to transmit 20 KHz acoustic wave continuously, 
which is inaudible to users. Meanwhile, the microphone 
receives the echo at 48 KHz sampling rate and sends it to the 
connected laptop for data processing and respiration detection. 
For data collection and processing, the transceivers are 
connected to two laptops (Thinkpad T450 with Intel Core 
i5-5200 CPU, 8G RAM; Dell Latitude E6540 with Intel Core 
i7-4800MQ, 4GB RAM). The proposed respiration detection 
algorithms are implemented in Matlab and run on each laptop 
in real-time.  

First of all, we test the maximum detectable areas of one 
transceiver. To this end, we ask each participant to lie on a bed 
and place one transceiver above the subject’s head for 
respiration detection. The experiment settings and 
corresponding results are illustrated in Fig. 6. We can see that 
the effective maximum detection distance is about 100 cm and 
the angle of the detectable area for sleeping on one’s back is 
about 35°. We note that one transceiver cannot fully cover all 
possible facing directions of a subject. As such, we deploy two 

       
(a)                                                                                (b)                                                                                (c) 

Fig. 7. The device layout and detectable facing in different sleep postures. (a) sleep on one’s back, (b) sleep on right side and on one’s stomach while the head (the 
head contour is highlighted as back dashed line) facing right, (c) sleep on left side and on one’s stomach while the head (the head contour is highlighted as back 
dashed line) facing left. 

 
Fig. 8. System settings in real room environment. 
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transceivers at both sides of a subject to fully cover different 
sleeping postures. As shown in Fig. 7, two transceivers are 
placed at the upper-left and upper-right of the head, 
respectively, facing the effective sensing area (as shown in Fig. 
1(b)) with an angle of about 60°. The perpendicular distance 
between mattress and device is about 50 cm and the distance 
between two pairs of devices is about 160 cm. Fig. 8 shows the 
real experiment environment. 

According to the bias and limits of agreement of clinical 
respiration rate monitoring device [49], our targeted error for 
respiration monitoring should be smaller than 1 breaths/min. 
This accuracy is not only enough for general respiration 
monitoring applications but also can be used for the patients 
after surgery [49]. 

B. Baseline Approach 
To the best of our knowledge, the paper in [18] is the only 

existing work that attempts to detect the airflow of respiration 
using ultrasound signals. Thus, we choose it as the baseline for 
comparison. However, the baseline method requires a 
specialized device to generate 40 KHz ultrasound signals. 
Moreover, the respiration detection approach was designed for 
a controlled sleep posture. For fair comparison, 1) the baseline 
approach is implemented using the same devices and 
deployment manner; 2) we adopt the same optimal parameter 
settings and configurations as specified in [18] and fine-tune 
the system. 

C. System Performance Evaluation 
We conduct comprehensive experiments to evaluate our 

system in four different rooms with 25 subjects, who have 
four different sleep postures in different positions of the 
bed and compare the system performance with the baseline 
approach. The experiment process was recorded in the demo 
video provided at the end of Section I.C (the part 04:58 - 08:22). 
In addition, we conduct experiments to test whether the system 
can identify Apnea. 
1) Evaluation with Different Subjects 

We recruit 25 participants (7 elders, 2 young kids and 16 
adults, including 11 females and 14 males) to evaluate the 
effectiveness of our system. To test the system usability for 
users, all participants are asked to set up the system and 
properly adjust facing direction of audio transceivers according 
to the requirements specified in Section V.A. We set aside 15 
minutes for the participants to lie on his/her back so that the 
participants really fall asleep before measurements. We then 
detect the respiration with each subject for about 2 hours. 
During the measurements, two subjects watch the video stream 
to record the ground truth manually. Fig. 9(a) shows the CDF of 
respiration detection error. We can see that the median 
respiration detection error of our approach is 0, while that of the 
baseline approach is around 0.9 breaths/min (6%). In addition, 
the max error of our system is about 0.6 breaths/min (4%), 
while that of the baseline is larger than 2.1 breaths/min (14%).  

In addition, to further verify the proposed system, we use 
Micro-Movement Sensitive Mattress Sleep Monitoring System 
RS-611 (produced by Xinxingyangsheng Technology Co., Ltd. 
Bejing, China) to record the ground truth during the 
experiments. Two subjects are recruited to evaluate system 
performance for about 2 hours. The experimental results show 
that the median error of the proposed system is 0. 

This experimental results indicate: 1) our system is able to 
accurately detect human respiration when the participants sleep 
on his/her back, outperforming the baseline; 2) the system is 
easy to set up for users in practice. 
2) Evaluation with Different Sleep Postures 

Except for sleeping on one’s back, lying on one side and 
sleeping on one’s stomach are also common sleep postures. 
With the same experiment settings, all the 25 subjects are 
recruited to evaluate the performance of our system under the 
condition of subjects lying on one side and sleeping on one’s 
stomach. Fig. 9(b), Fig. 9(c) and Fig. 9(d) show the CDF of 
respiration detection error when the subjects are sleeping on the 
left side, right side and lying on one’s stomach respectively 
(note that here lying on one’s stomach requires the exhaled 
airflow not been blocked or covered by the pillow. Otherwise, 
the system cannot detect respiration. In general, because of 
hypoxia the subject has to change sleep posture if the nose is 
covered by the pillow more than 10 seconds).  The result shows 
that our system outperforms the baseline method with different 
sleep postures in terms of detection accuracy. In particular, the 
median errors of our system are all 0, while the median errors of 
the baseline are 0.3 breaths/min (2%), 0.6 breaths/min (4%) and 
1.2 breaths/min (8%), respectively, for different sleep postures. 
In addition, the max error of our system can be controlled 

                
                            (a)                                                        (b)                                                          (c)                                                      (d) 

Fig. 9. Respiration detection error of 25 subjects with four different sleep postures. (a) sleep on one’s back, (b) facing left, (c) facing right and (d) sleep on one’s 
stomach 

 
Fig. 10. The Respiration detection median error in different positions in bed 
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smaller than 0.6 breaths/min (4%), while the maximum error of 
the baseline reaches 2.2 breaths/min (14.7%). This is because 
when a subject sleeps on his/her back, the angle between 
airflow direction and acoustic beam direction is relatively small. 
Thus, the baseline method cannot reliably detect the Doppler 
frequency shift. In contrast, our method is able to detect the 
Doppler shift in both sides of transmitted frequency. Thus, the 
Doppler shift caused by breathing with all four sleep postures 
can be well captured. 
3) Evaluation with Different Positions on Bed 

 In the experiment, the subjects are asked to sleep in different 
positions of the bed, i.e., left part of the bed, middle part of the 
bed and right part of the bed. Fig. 10 shows the CDF of median 
respiration detection error when the subjects are sleeping in 
different positions of the bed. We can see that our method 
outperforms the baseline method and achieves a median 
respiration detection error lower than 0.3 breath/min. 
4) Evaluation with Different Sleep Environments 

We deploy the system in four rooms with different sizes and 
layouts. Fig. 11 (a) ~ (d) show the average respiration detection 
error CDF in the four test rooms, respectively. The median 
detection errors of our system for all four sleep postures in four 
test rooms are 0 breaths/min, while the median errors of the 
baseline are larger than 0.6 breaths/min (4%). There is no 
obvious difference in the four test rooms for both our method 
and the baseline. It indicates that our system is not sensitive to 
the experiment environment. 
5) Apnea Detection Evaluation 

Detecting Apnea is an important objective of monitoring 
respiration during sleep. Even though body movement and 
Apnea both affect the periodicity of Doppler shift, they result in 
very different Doppler shift variation. Body movement causes 
drastic and irregular Doppler shift and Apnea causes no 
Doppler shift. So, we can use the variance of Doppler shift to 
identify Apnea.  

Constrained by legal issues, we could not test our system 
with real Apnea patients in hospitals for now. Instead, we 
simulate Central Apnea (CA) and Obstructive Apnea (OA) 
following the clinical symptom described as “hold breath for a 

while” [31, 39], and simulate Hypopnea event following the 
clinical symptom described as “breathing becomes shallow 
gradually and then recovers” [31]. We recruit 23 participants 
(13 male and 10 female) to test Apnea detection performance. 
Each participant is asked to simulate Apnea and generate body 
movement 10 times during the 30 minutes’ respiration 
monitoring period. Fig. 12(a) and Fig. 12(b) show examples of 
Doppler shift variation when Apnea and Hypopnea happen 
respectively. The experimental results show that the proposed 
system can accurately identify all the simulated Apnea. 

D. System Robustness Testing 
In this section, we conduct experiments to evaluate the 

robustness of our system. Specifically, we test various factors 
which may influence the performance of our system including 
body movement, wind, different respiration styles (shallow, 
normal and deep), respiration rate variation, ambient noise, 
sensing distance variation and transmitted signal frequency 
variation. 
1) Impact of Body Movement 

Body movement generates strong but arhythmical Doppler 
frequency shift variation. The Doppler frequency shift caused 
by exhaled airflow would be submerged. Under this condition, 
it is difficult to detect breathing. To reduce the false alarm rate, 
our system is designed to suspend respiration detection once 
body movement is detected and recover for detecting 
respiration after the body movement disappears. 22 subjects are 
recruited to test whether our system can actually suspend when 
a body movement occurs. We detect subjects’ respiration for 
about 30 minutes. During the detection process, the subjects 
change sleep postures or move limbs several times. Fig. 13 
shows two examples that our system suspends the detection 
while body movement occurs, and resumes detection when 
movement stops. 
2) Impact of Wind 

Our system works by sensing the exhaled airflow. If the wind 
airflow in the effective sensing area (as shown in Fig. 1(b)) is 
large enough, the system cannot work well. To quantitatively 
test the impact of wind, we conduct an experiment using fan to 

                      
(a)                                                          (b)                                                          (c)                                                          (d)   

Fig. 11. Respiration detection error in four rooms of different sizes and layout. 

           
(a)                                                                                                                                (b) 
    Fig. 12 Respiration detection when Apnea happens. (a) Apnea, (b) Hypopnea. 
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generate airflow toward subject’s body. The airflow speed is 
measured by a handheld anemometer (thermal anemometer 
testo 405-V1). We adjust the airflow speed by adjusting the 
distance between the fan and subject. The fan is placed at 
different places with different direction towards subject’s head. 
20 subjects are recruited to test system performance under 
different airflow speed. Fig. 14 shows the respiration detection 
median errors with different airflow speed. We can see that 
when the indoor airflow speed is higher than 1.5 m/s regardless 
of the fan directions towards subject’s head, the system cannot 
detect respiration rate accurately. The experiment results imply 
that our system is sensitive to indoor airflow.  In reality, people 
under monitoring conditions always avoid fans or air 
conditions blowing directly towards their bodies, especially for 
elders and kids. 
3) Impact of Different Respiration Styles 

Breathing strength will affect the system performance. 
Generally, a deeper breath will lead to a lower respiration 
detection error. We recruit 21 subjects, including 4 young kids 
(8 years old on average), 12 adults (26 years old on average) 
and 5 elders (63 years old on average), to test the system 
performance when different subjects breathing with different 
respiration styles. In the first round, the participants breathe 
naturally. In the next two rounds, the subjects are asked to 
intentionally control their breath and take relatively shallow 
and deep breath, respectively. In each round, the system 
monitors their respiration for about 30 minutes. Fig. 15 shows 
the respiration detection median error for each subject category 
in each round. We can see that when breathing naturally and 
deeply, the respiration detection median error for three subject 
categories are all smaller than 0.5 breath/min. Even when the 
adults breathe gently, the median error of the proposed system 
is 0. When young kids and elders breathe gently, the respiration 
detection median error reaches 3.2 breaths/min (21.3%) and 0.9 

breaths/min (6%), respectively. Too gent breaths not only mean 
low velocity, which results in weak Doppler shift (i.e. narrow 
frequency shift in PSD of echo), but also scatters backward 
weak ultrasound signal which results in low energy (i.e., low 
amplitude in PSD of echo). Low energy reflected signals and 
weak Doppler shifts will increase the respiration detection error 
rate. Fortunately, this problem can be mitigated by decreasing 
sensing distance. When we decrease the distance between the 
transceiver and subjects to 40 cm, the median error of all 
subject categories reduces to 0. 
4) Impact of Respiration Rate Change 

As our system detects the breathing rate by measuring the 
periodicity of Doppler shift, respiration rate change will 
weaken the periodicity and may influence our system. In this 
work, we use a sliding window method which can discard 
the obsolete signals and adapt to the change of respiration 
rate. 20 participants are asked to do high intensity exercises 
like push-up, which will increase the respiration rate 
significantly. Then, we let the participants lie on the bed and 
detect their respiration rates until the respiration rates 
gradually fall back to a normal level (10 ~ 15 breathing 
counts per minute). Fig. 16 shows two examples of 
respiration detection results after high intensity exercise. 
The blue lines show the measured Doppler frequency shift 
and the pink lines track the instantaneous respiration rates. 
We can observe that the respiration rates change from about 
40 breaths/min to about 15 breaths/min. Our system 
accurately tracks both rapid breathing and slow breathing 
throughout the process. 

 

 
Fig. 13. Two examples of respiration detection process when body movement 
occurs 

 
Fig. 14. Respiration detection error as the speed of interfering airflow varies 
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Fig. 15. Respiration detection error when subjects breathe with different 
respiration styles 

Fig. 16 Two examples of respiration detection process as respiration rate is 
changing 
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5) Impact of Ambient Noise 
The proposed system senses human respiration using 

ultrasound signal. The ambient noise will also be received by 
the system. It is necessary to test whether the ambient noise has 
impact on respiration detection. We test the proposed system in 
several typical real scenes that continues to generate noise. 
Specifically, the real scenes include: 1) talking in low voice; 2) 
talking in normal voice; 3) talking in loud voice; 4) play music 
or video; 5) noise from air condition. 20 subjects are recruited 
to test system performance in the above five scenes. Table 2 
shows the experimental results. We can see that the typical 
ambient noise has no impact on the proposed system. The 
proposed system senses exhaled airflow using 20KHz 
ultrasound signal and capture the Doppler effect in the 
frequency band [19.8KHz, 20.2KHz]. In real scenes, there is 
hardly any ambient noise which can reach such a high 
frequency band. Studies show that the highest frequency of 
human voice is 3KHz [40]; the highest frequency of music is 
16KHz [41]; the highest frequency of the noise produced by air 
condition or other household electric appliances is 8KHz 
[42,43]. The frequencies of all these ambient noises are far 
below the system working frequency band, hence, the ambient 
noise can be easily filtered out using lowpass filter. 
6) Impact of Sensing Distance 

We vary the distance between transceiver and subject, 
ranging from 0.3 m to 1.1 m with an interval of 0.1 m. 21 
subjects are recruited to evaluate the performance of our system. 
At each position, we test for 30 minutes. Fig. 17 shows the 
median respiration detect error as distance varies. We can see 
that within 0.7 m, the system achieves respiration detection 
error smaller than 0.5 breaths/min (3.3%). Beyond 0.7 m, the 
error will increase with the distance mainly due to signal 
attenuation. We hence suggest setting the distance between 
transceiver and subject to a value smaller than 0.7 m. In practice 
user can also make a tradeoff between respiration detection 
error and sensing distance for a specific application 
environment. 
7) Impact of Transmitted Signal Frequency 

The frequency of the transmitted signal should be higher than 
the upper bound of human audibility range, 20KHz, and lower 
than the upper limit of frequency response of commodity 

acoustic device 22KHz. We vary the transmitted signal 
frequency from 20KHz to 22KHz with an interval of 0.5KHz. 
23 subjects are recruited to performance of our system for about 
10 minutes. Fig. 18 shows the median respiration detection 
error as the transmitted signal frequency varies. We can see that 
within 21KHz, the system achieves respiration detection error 
smaller than 1 breaths/min (6.7%). Beyond 21KHz, the error 
will increase with the transmitted signal frequency mainly due 
to the decrease of frequency response of commodity audio 
system. For commodity audio device, beyond 21KHz, the 
system frequency response will decrease dramatically. In our 
system, we set the transmitted signal frequency to 20KHz. In 
practice user can also make a tradeoff between respiration 
detection error and transmitted signal frequency for a specific 
application environment. 

In summary, the proposed system is robust to different 
respiration styles (shallow, normal and deep), respiration rate 
variation, ambient noise, sensing distance variation (within 0.7 
m) and transmitted signal frequency variation (within the band 
[20KHz, 21KHz]), but sensitive to wind and body movement. 
The experimental results are summarized in Table 3. 

E. Discussion 
The experiment results demonstrate that the proposed system 

can detect human respiration with four common sleep postures 
in different positions of the bed. The proposed system is robust 
to different respiration styles (shallow, normal and deep), 
respiration rate variation, ambient noise, sensing distance 
variation (within 0.7 m) and the transmitted signal frequency 
variation (within the band [20KHz, 21KHz]). Yet, we note that 
current implementation can be improved in the following 
aspects:  

Body movement: As presented in Sections V.D, the 
system is sensitive to sporadic body movement during sleep 
and the airflow around the subject. When body movement 
occurs, the weak Doppler shift caused by exhaled airflow 
would be submerged by the drastic and irregular Doppler shift 
caused by body movement; when interference airflow exists in 
the effective sensing area, the exhaled airflow will be disturbed. 
We plan to detect and filter out Doppler shifts caused by body 
movement in the future. 

Multiple users: Current system can only be used to 
monitor a single person lying on the bed at this moment. With 
multiple persons lying on the bed, the exhaled airflow may be 
blocked by other persons. In order to simultaneously monitor 
multiple people, we plan to study the feasibility of using motors 
to adjust acoustic transceivers in the future.  

Apnea detection: We note that due to legal issues, we 
could not evaluate our system with real Apnea patients in 

TABLE 2 
RESPIRATION DETECTION ERROR WITH DIFFERENT AMBIENT NOISE 

Noise Source Error (breaths/min, (percentage)) 
Talking in low voice 0 (0%) 

Talking in normal voice 0.3 (2%) 
Talking in loud voice 0 (0%) 

Play music/video 0.1 (0.67%) 
Noise from air condition 0 (0%) 

 

 
Fig. 17 Respiration detect error as sensing distance is varied 

 
Fig. 18 Respiration detect error as the frequency of transmitted acoustic signal 
is varied 
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hospitals at this moment. The performance evaluation of Apnea 
detection was conducted by simulating the typical symptoms of 
Apnea. To better evaluate the efficacy of Apnea detection, we 
plan to conduct more extensive evaluations by inviting real 
Apnea patients to our lab in future work. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents a continuous and real-time respiration 

monitoring system that is built purely using commodity audio 
devices. It utilizes the Doppler Effect generated by the exhaled 
airflow of breath on the acoustic wave as the respiration 
indicator. We formally model the relationship between the 
exhaled airflow direction and the Doppler frequency change 
pattern. Based on this model, we design a MDL-based 
algorithm to effectively capture the Doppler effect caused by 
exhaled airflows. We implement a practical respiration 
monitoring system with commodity microphone and speaker 
and tested the detection performance in various experiment 
settings. The extensive experiments demonstrate that 1) our 
proposed system achieves low respiration detection error 
(lower than 0.3 breaths/min (2%)) without assuming subject 
sleeping postures and positions in the bed and can accurately 
identify Apnea, and 2) our proposed system is robust to 
different respiration styles (shallow, normal and deep), 
respiration rate variation, ambient noise, sensing distance 
variation (within 0.7 m) and transmitted signal frequency 
variation. In order to further enhance the robustness of 
respiration monitoring performance, we plan to improve the 
system so that it can mitigate the influences caused by sporadic 
body movement during sleep. We also plan to further evaluate 
our system in larger scale deployment in ordinary homes. 
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