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Abstract— Machine Learning (ML) has disrupted a wide range of 

science and engineering disciplines in recent years. ML 

applications in optical communications and networking are also 

gaining more attention, particularly in the areas of nonlinear 

transmission systems, optical performance monitoring (OPM) and 

cross-layer network optimizations for software-defined networks 

(SDNs). However, the extent to which ML techniques can benefit 

optical communications and networking is not clear and this is 

partly due to an insufficient understanding of the nature of ML 

concepts. This review article aims to describe the mathematical 

foundations of basic ML techniques from communication theory 

and signal processing perspectives, which in turn will shed light on 

the types of problems in optical communications and networking 

that naturally warrant ML use. This will be followed by an 

overview of ongoing ML research in optical communications and 

networking with a focus on physical layer issues. 

Index Terms—Machine learning, deep learning, artificial 

intelligence, optical communications, software-defined networks, 

optical performance monitoring. 

I. INTRODUCTION

Artificial intelligence (AI) makes use of computers/machines to 

perform cognitive tasks, i.e., the ones requiring knowledge, 

perception, learning, reasoning, understanding and other 

similar cognitive abilities. An AI system is expected to do three 

things: (i) store knowledge, (ii) apply the stored knowledge to 

solve problems, and (iii) acquire new knowledge via experience. 

The three key components of an AI system include knowledge 

representation, machine learning (ML), and automated 

reasoning. ML is a branch of AI which is based on the idea that 

patterns and trends in a given data set can be learned 

automatically through algorithms. The learned patterns and 

structures can then be used to make decisions or predictions on 

some other data in the system of interest [1]. 

ML is not a new field as ML-related algorithms exist at least 

since the 1970s. However, tremendous increase in 

computational power over the last decade, recent 

groundbreaking developments in theory and algorithms 

surrounding ML, and easy access to an overabundance of all 

types of data worldwide (thanks to three decades of Internet 

growth) have all contributed to the advent of modern deep 

learning (DL) technology, a class of advanced ML approaches 

that displays superior performance in an ever-expanding range 

of domains. In the near future, ML is expected to power  
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numerous aspects of modern society such as web searches, 

computer translation, content filtering on social media 

networks, healthcare, finance, and laws [2]. 

ML is an interdisciplinary field which shares common 

threads with the fields of statistics, optimization, information 

theory, and game theory. Most ML algorithms perform one of 

the following two types of pattern recognition tasks as shown 

in 
 (a)   (b) 

  (c)   (d) 
Fig. 1. In the first type, the algorithm tries to find some 

functional description of given data with the aim of predicting 

values for new inputs, i.e., regression problem. The second type 

attempts to find suitable decision boundaries to distinguish 

different data classes, i.e., classification problem [3], which is 

more commonly referred to as clustering problem in ML 

literature. ML techniques are well known for performing 

exceptionally well in scenarios in which it is too hard to 

explicitly describe the problem’s underlying physics and 

mathematics. 

 (a)   (b) 
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                                   (c)                                                   (d) 
Fig. 1. Given a data set, ML attempts to solve two main types of problems: (a) 

functional description of given data and (b) classification of data by deriving 

appropriate decision boundaries. (c) Laser frequency offset and phase 
estimation for quadrature phase-shift keying (QPSK) systems by raising the 

signal phase 𝜙 to the 4th power and performing regression to estimate the slope 

and intercept. (d) Decision boundaries for a received QPSK signal distribution. 

 

Optical communication researchers are no strangers to 

regressions and classifications. Over the last decade, coherent 

detection and digital signal processing (DSP) techniques have 

been the cornerstone of optical transceivers in fiber-optic 

communication systems. Advanced modulation formats such as 

16 quadrature amplitude modulation (16-QAM) and above 

together with DSP-based estimation and compensation of 

various transmission impairments such as laser phase noise 

have become the key drivers of innovation. In this context, 

parameter estimation and symbol detection are naturally 

regression and classification problems, respectively, as 

demonstrated by examples in                

          
                                  (a)                                                     (b) 

                
                                   (c)                                                   (d) 

Fig. 1(c) and (d). Currently, most of these parameter 

estimation and decision rules are derived from probability 

theory and adequate understanding of the problem’s underlying 

physics. As high-capacity optical transmission links are 

increasingly being limited by transmission impairments such as 

fiber nonlinearity, explicit statistical characterizations of 

inputs/outputs become difficult. An example of 16-QAM multi-

span dispersion-free transmissions in the presence of fiber 

nonlinearity and inline amplifier noise is shown in  

Fig. 2(a). The maximum likelihood decision boundaries in 

this case are curved and virtually impossible to derive 

analytically. Consequently, there has been an increasing 

amount of research on the application of ML techniques for 

fiber nonlinearity compensation (NLC). Another related area 

where ML flourishes is short-reach direct detection systems that 

are affected by chromatic dispersion (CD), laser chirp and other 

transceiver components imperfections, which render the overall 

communication system hard to analyze. 

 

        
                           (a)                                                                 (b)    
Fig. 2. (a) Probability distribution and corresponding optimal decision 

boundaries for received 16-QAM symbols in the presence of fiber nonlinearity 
are hard to characterize analytically. (b) Probability distribution of received 64-

QAM signal amplitudes. The distribution can be used to monitor optical signal-

to-noise ratio (OSNR) and identify modulation format. However, this task will 
be extremely difficult if one relies on analytical modeling. 

 

Optical performance monitoring (OPM) is another area with 

an increasing amount of ML-related research. OPM is the 

acquisition of real-time information about different channel 

impairments ubiquitously across the network to ensure reliable 

network operation and/or improve network capacity. Often, 

OPM is cost-limited so that one can only employ simple 

hardware components and obtain partial signal features to 

monitor different channel parameters such as OSNR, optical 

power, CD, etc. [4]. In this case, the mapping between input and 

output parameters is intractable from underlying 

physics/mathematics, which in turn warrants ML. An example 

of OSNR monitoring using received signal amplitudes 

distribution is shown in  

Fig. 2(b). 

Besides physical layer-related developments, optical 

network architectures and operations are also undergoing major 

paradigm shifts under the software-defined networking (SDN) 

framework and are increasingly becoming complex, transparent 

and dynamic in nature [5]. One of the key features of SDNs is 

that they can assemble large amounts of data and perform so-
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called big data analysis to estimate the network states as shown 

in  

Fig. 3. This in turn can enable (i) adaptive provisioning of 

resources such as wavelength, modulation format, routing path, 

etc., according to dynamic traffic patterns and (ii) advance 

discovery of potential components faults so that preventative 

maintenance can be performed to avoid major network 

disruptions. The data accumulated in SDNs can span from 

physical layer (e.g., OSNR of a certain channel) to network 

layer (e.g., client-side speed demand) and obviously have no 

underlying physics to explain their interrelationships. 

Extracting patterns from such cross-layer parameters naturally 

demands the use of data-driven algorithms such as ML. 

  

 

Fig. 3. Dynamic network resources allocation and link capacity maximization 

via cross-layer optimization in SDNs. 

 

This review paper is intended for the researchers in optical 

communications with a basic background in probability theory, 

communication theory and standard DSP techniques used in 

fiber-optic communications such as matched filters, maximum 

likelihood/maximum a posteriori (MAP) detection, 

equalization, adaptive filtering, etc. In this regard, a large class 

of ML techniques such as Kalman filtering, Bayesian learning, 

hidden Markov models (HMMs), etc., are actually standard 

statistical signal processing methods, and hence will not be 

covered here. We will first introduce artificial neural networks 

(ANNs) and support vector machines (SVMs) from 

communication theory and signal processing perspectives. This 

will be followed by other popular ML techniques like K-means 

clustering, expectation-maximization (EM) algorithm, 

principal component analysis (PCA), independent component 

analysis (ICA), as well as more recent DL approaches such as 

deep neural networks (DNNs), convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs). The analytical 

derivations presented in this paper are slightly different from 

those in standard introductory ML text to better align with the 

fields of communications and signal processing. We will then 

provide an overview of applications of ML techniques in 

various aspects of optical communications and networking.  

We emphasize that this is by no means an exhaustive and in-

depth discussion on state-of-the-art ML techniques and their 

respective challenges. Also, the views presented are not the 

only way to understand the fundamental properties of ML 

methods. By discussing ML through the language of 

communications and DSP, we hope to provide a more intuitive 

understanding of ML, its relation to optical communications 

and networking, and why/where/how it can play a unique role 

in specific areas of optical communications and networking. 

The rest of the paper is organized as follows. In Section II, 

we will illustrate the fundamental conditions that warrant the 

use of a neural network and discuss the technical details of 

ANNs and SVMs. Section III will describe a range of basic 

unsupervised ML techniques and briefly discuss reinforcement 

learning (RL). Section IV will be devoted to more recent ML 

algorithms. Section V will provide an overview of existing ML 

applications in optical communications and networking while 

Section VI will discuss their future role. Links for online 

resources and codes for standard ML algorithms will be 

provided in Section VII. Section VIII will conclude the paper. 

A video presentation of the paper is available at [6]. 

II. ANNS AND SVMS  

What are the conditions that need ML for classification?  

Fig. 4 shows three scenarios with 2-dimensional (2D) data 𝐱 =
[𝑥1 𝑥2]

T and their respective class labels depicted as ‘o’ and ‘’ 

in the figure. In the first case, classifying the data is 

straightforward: the decision rule is to see whether 𝜎(𝑥1 − 𝑐) 
or 𝜎(𝑥2 − 𝑐) is greater or less than 0 where 𝜎(⋅) is the decision 

function as shown. The second case is slightly more 

complicated as the decision boundary is a slanted straight line. 

However, a simple rotation and shifting of the input, i.e., 𝐖𝐱+
𝐛 will map one class of data to below zero and the other class 

above. Here, the rotation and shifting are described by matrix 

𝐖 and vector 𝐛, respectively. This is followed by the decision 

function 𝜎(𝐖𝐱 + 𝐛). The third case is even more complicated. 

The region for the ‘green’ class depends on the outputs of the 

‘red’ and ‘blue’ decision boundaries. Therefore, one will need 

to implement an extra decision step to label the ‘green’ region. 

The graphical representation of this ‘decision of decisions’ 

algorithm is the simplest form of an ANN [7]. The intermediate 

decision output units are known as hidden neurons and they 

form the hidden layer. 
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Fig. 4. The complexity of classification problems depends on how the different 
classes of data are distributed across the variable space. 

 

A. Artificial Neural Networks (ANNs)   

Let {(𝐱(1), 𝐲(1)), (𝐱(2), 𝐲(2)), … (𝐱(𝐿), 𝐲(𝐿))} be a set of L 

input-output pairs of M and K dimensional column vectors. 

ANNs are information processing systems comprising of an 

input layer, one or more hidden layers, and an output layer. The 

structure of a single hidden layer ANN with M input, H hidden 

and K output neurons, respectively, is shown in 

 

 

Fig. 5. Neurons in two adjacent layers are interconnected where 

each connection has a variable weight assigned. Such ANN 

architecture is the simplest and most commonly-used one [7]. 

The number of neurons M in the input layer is determined by 

the dimension of the input data vectors x(l). The hidden layer 

enables the modeling of complex relationships between the 

input and output parameters of an ANN. There are no fixed 

rules for choosing the optimum number of neurons for a given 

hidden layer and the optimum number of hidden layers in an 

ANN. Typically, the selection is made via experimentation, 

experience and other prior knowledge of the problem. These are 

known as the hyperparameters of an ANN. For regression 

problems, the dimension K of the vectors 𝐲(𝑙) depends on the 

actual problem nature. For classification problems, K typically 

equals to the number of class labels such that if a data point 𝐱(𝑙) 
belongs to class k, 𝐲(𝑙) = [0 0⋯0 1 0⋯0 0]T where the ‘1’ is 

located at the kth position. This is called one-hot encoding. The 

ANN output 𝐨(𝑙) will naturally have the same dimension as 

𝐲(𝑙)  and the mapping between input x (𝑙)  and 𝐨(𝑙)  can be 

expressed as 

𝐨(𝑙) = 𝜎2(𝐫(𝑙)) 
= 𝜎2(𝐖2𝐮(𝑙) + 𝐛2) 
= 𝜎2(𝐖2 𝜎1(𝐪(𝑙)) + 𝐛2) 
= 𝜎2(𝐖2 𝜎1(𝐖1 𝐱(𝑙) + 𝐛1) + 𝐛2) 

(1) 

 

where 𝜎1(2)(⋅) are the activation functions for the hidden and 

output layer neurons, respectively. W1 and W2 are matrices 

containing the weights of connections between the input and 

hidden layer neurons and between the hidden and output layer 

neurons, respectively, while b1 and b2 are the bias vectors for 

the hidden and output layer neurons, respectively. For a vector 

𝐳 = [𝑧1 𝑧2  ⋯ 𝑧𝐾]  of length 𝐾 , 𝜎1(⋅)  is typically an element-

wise nonlinear function such as the sigmoid function 
 

𝜎1(𝐳) = [
1

1 + 𝑒−𝑧1
     

1

1 + 𝑒−𝑧2
 ⋯    

1

1 + 𝑒−𝑧𝐾
]. (2) 

 

As for the output layer neurons, 𝜎2(⋅) is typically chosen to be 

a linear function for regression problems. In classification 

problems, one will normalize the output vector o(𝑙) using the 

softmax function, i.e., 
 

𝐨(𝑙) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖2 𝐮(𝑙) + 𝐛2) (3) 

where 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐳) =
1

∑ 𝑒𝑧𝑘𝐾
𝑘=1

[𝑒𝑧1    𝑒𝑧2  ⋯  𝑒𝑧𝐾] . (4) 

The softmax operation ensures that the ANN outputs conform 

to a probability distribution for reasons we will discuss below. 

To train the ANN is to optimize all the parameters 𝜃 =
{𝐖1,𝐖2, 𝐛1, 𝐛2}  such that the difference between the actual 

ANN outputs o and the target outputs y is minimized. One 

commonly-used objective function (also called loss function in 

ML literature) to optimize is the mean square error (MSE)  

𝐸 =
1

𝐿
∑𝐸(𝑙)

𝐿

𝑙=1

=
1

𝐿
∑‖𝐨(𝑙) − 𝐲(𝑙)‖2
𝐿

𝑙=1

 (5) 

Like most optimization procedures in practice, gradient descent 

is used instead of full analytical optimization. In this case, the 

parameter estimates for n+1th iteration are given by 

 
 

Fig. 5. Structure of a single hidden layer ANN with input vector x(l), target 
vector y(l) and actual output vector o(l). 

 

𝜃(𝑛+1) = 𝜃(𝑛) − 𝛼
𝜕𝐸

𝜕𝜃
|
𝜃(𝑛)

 (6) 

 

where the step size 𝛼 is known as the learning rate. Note that 

for computational efficiency, one can use a single input-output 

pair instead of all the 𝐿 pairs for each iteration in Eq. (6). This 

is known as stochastic gradient descent (SGD) which is the 

standard optimization method used in common adaptive DSP 

such as constant modulus algorithm (CMA) and least mean 

squares (LMS) algorithm. As a trade-off between 

computational efficiency and accuracy, one can use a mini-

batch of data {(𝐱(𝑛𝑃 + 1), 𝐲(𝑛𝑃 + 1)), ((𝐱(𝑛𝑃 + 2), 𝐲(𝑛𝑃 +

2)))… (𝐱(𝑛𝑃 + 𝑃), 𝐲(𝑛𝑃 + 𝑃))} of size 𝑃 for the nth iteration 

instead. This can reduce the stochastic nature of SGD and 
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improve accuracy. When all the data set has been used, the 

update algorithm will have completed one epoch. However, it 

is often the case that one epoch equivalent of updates is not 

enough for all the parameters to converge to their optimal 

values. Therefore, one can reuse the data set and the algorithm 

goes through the 2nd epoch for further parameter updates. There 

is no fixed rule to determine the number of epochs required for 

convergence [8]. 

The update algorithm is comprised of following main steps: 

(i) Model initialization: All the ANN weights and biases are 

randomly initialized, e.g., by drawing random numbers from a 

normal distribution with zero mean and unit variance; (ii) 

Forward propagation: In this step, the inputs x are passed 

through the network to generate the outputs o using Eq. (1). The 

input can be a single data point, a mini-batch or the complete 

set of 𝐿 inputs. This step is named so because the computation 

flow is in the natural forward direction, i.e., starting from the 

input, passing through the network, and going to the output; (iii) 

Backward propagation and weights/biases update: For 

simplicity, let us assume SGD using 1 input-output pair 
(𝐱(𝑛), 𝐲(𝑛)) for the n+1th iteration, sigmoid activation function 

for the hidden layer neurons and linear activation function for 

the output layer neurons such that 𝐨(𝑛) = 𝐖2 𝐮(𝑛) + 𝐛2. The 

parameters 𝐖2, 𝐛2  will be updated first followed by 𝐖1, 𝐛1 . 

Since 𝐸(𝑛) = ‖𝐨(𝑛) − 𝐲(𝑛)‖2  and 
𝜕𝐸(𝑛)

𝜕𝐨(𝑛)
= 2(𝐨(𝑛) − 𝐲(𝑛)) , 

the corresponding update equations are 

𝐖2
(𝑛+1)

= 𝐖2
(𝑛)
− 2𝛼∑

𝜕𝑜𝑘(𝑛)

𝜕𝐖2

𝐾

𝑘=1

(𝑜𝑘(𝑛) − 𝑦𝑘(𝑛))1 

𝐛2
(𝑛+1) = 𝐛2

(𝑛) − 2𝛼
𝜕𝐨(𝑛)

𝜕𝐛2
(𝐨(𝑛) − 𝐲(𝑛))  

(7) 

where 𝑜𝑘(𝑛) and 𝑦𝑘(𝑛) denote the kth element of vectors 𝐨(𝑛) 

and 𝐲(𝑛), respectively. In this case, 
𝜕𝐨(𝑛)

𝜕𝐛2
 is the Jacobian matrix 

in which the 𝑗th row and mth column is the derivative of the mth 

element of 𝐨(𝑛) with respect to the 𝑗th element of 𝐛2. Also, the 

𝑗th  row and mth column of the matrix 
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
 denotes the 

derivative of 𝑜𝑘(𝑛) with respect to the 𝑗th row and mth column 

of 𝐖2. Interested readers are referred to [9] for an overview of 

matrix calculus. Since 𝐨(𝑛) = 𝐖2 𝐮(𝑛) + 𝐛2 , 
𝜕𝐨(𝑛)

𝜕𝐛2
 is simply 

the identity matrix. For 
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
, its 𝑘th  row is equal to 𝐮(𝑛)T 

(where (⋅)T denotes transpose) and is zero otherwise. Eq. (7) 

can be simplified as 
  

𝐖2
(𝑛+1) = 𝐖2

(𝑛) − 2𝛼(𝐨(𝑛) − 𝐲(𝑛))𝐮(𝑛)T 

𝐛2
(𝑛+1) = 𝐛2

(𝑛) − 2𝛼(𝐨(𝑛) − 𝐲(𝑛)).  
(8) 

With the updated 𝐖2
(𝑛+1)

and 𝐛2
(𝑛+1)

, one can calculate  

𝐖1
(𝑛+1) = 𝐖1

(𝑛) − 2𝛼∑
𝜕𝑜𝑘(𝑛)

𝜕𝐖1

𝐾

𝑘=1

(𝑜𝑘(𝑛) − 𝑦𝑘(𝑛)) 

𝐛1
(𝑛+1) = 𝐛1

(𝑛) − 2𝛼
𝜕𝐨(𝑛)

𝜕𝐛1
(𝐨(𝑛) − 𝐲(𝑛)).  

(9) 

 
1 One can also express the update of 𝐖2 using 3rd-order tensor notation 

𝜕𝒐(𝑛)

𝜕𝐖2
 

as supposed to ∑
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
𝑘 . 

Since the derivative of the sigmoid function is given by 𝜎1
′(𝐳) =

𝜎1(𝐳) ∘ (𝟏 − 𝜎1(𝐳))  where ∘  denotes element-wise 

multiplication and 𝟏 denotes a column vector of 1’s with the 

same length as 𝐳, 
  

𝜕𝐨(𝑛)

𝜕𝐛1
=
𝜕𝐪(𝑛)

𝜕𝐛1

𝜕𝐮(𝑛)

𝜕𝐪(𝑛)

𝜕𝐨(𝑛)

𝜕𝐮(𝑛)
 

= diag{𝐮(𝑛) ∘ (𝟏 − 𝐮(𝑛))} ⋅ (𝐖2
(𝑛+1))

T
 

(10) 

where  diag{𝐳}  denotes a diagonal matrix with diagonal 

vector 𝐳. Next, 
  

𝜕𝑜𝑘(𝑛)

𝜕𝐖1

=∑
𝜕𝑜𝑘(𝑛)

𝜕𝑢𝑗(𝑛)

𝜕𝑢𝑗(𝑛)

𝜕𝑞𝑗(𝑛)

𝜕𝑞𝑗(𝑛)

𝜕𝐖1
𝑗

 

=∑𝑤2,𝑘,𝑗
(𝑛+1)𝑢𝑗(𝑛)(1 − 𝑢𝑗(𝑛))

𝜕𝑞𝑗(𝑛)

𝜕𝐖1
𝑗

 

(11) 

where 𝑤2,𝑘,𝑗
(𝑛+1)

 is the 𝑘th row and 𝑗th column entry of 𝐖2
(𝑛+1)

. 

For 
𝜕𝑞𝑗(𝑛)

𝜕𝐖1
, its 𝑗th row is 𝐱(𝑛)T and is zero otherwise. Eq. (11) 

can be simplified as 
  

𝜕𝑜𝑘(𝑛)

𝜕𝐖1

= ((𝐰2,𝑘
(𝑛+1))

T
∘ 𝐮(𝑛) ∘ (𝟏 − 𝐮(𝑛))) 𝐱(𝑛)T (12) 

 

where 𝐰2,𝑘
(𝑛+1)

 is the 𝑘th row of 𝐖2
(𝑛+1)

. Since the parameters 

are updated group by group starting from the output layer back 

to the input layer, this algorithm is called back-propagation 

(BP) algorithm (Not to be confused with the digital back-

propagation (DBP) algorithm for fiber NLC). The weights and 

biases are continuously updated until convergence.  

For the learning and performance evaluation of an ANN, the 

data sets are typically divided into three groups: training, 

validation and testing. The training data set is used to train the 

ANN. Clearly, a larger training data set is better since the more 

data an ANN sees, the more likely it is that it has encountered 

examples of all possible types of input. However, the learning 

time also increases with the training data size. There is no fixed 

rule for determining the minimum amount of training data 

needed since it often depends on the given problem. A rule of 

thumb typically used is that the size of the training data should 

be at least 10 times the total number of weights [1]. The purpose 

of the validation data set is to keep a check on how well the 

ANN is doing as it learns since during training there is an 

inherent danger of over-fitting (or over-training). In this case, 

instead of finding the underlying general decision boundaries 

as shown in Fig. 6(a), the ANN tends to perfectly fit the training 

data (including any noise components of them) as shown in Fig. 

6(b). This in turn makes the ANN customized for a few data 

points and reduces its generalization capability, i.e., its ability 

to make predictions about new inputs which it has never seen 

before. The overfitting problem can be avoided by constantly 

examining ANN’s error performance during the course of 

training against an independent validation data set and 

enforcing an early termination of the training process if the 

validation data set gives large errors. Typically, the size of the 
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validation data set is just a fraction ( 1/3) of that of training 

data set. Finally, the testing data set evaluates the performance 

of the trained ANN. Note that an ANN may also be subjected 

to under-fitting problem which occurs when it is under-trained 

and thus unable to perform at an acceptable level as shown in 

Fig. 6(c). Under-fitting can again lead to poor ANN 

generalization. The reasons for under-fitting include 

insufficient training time or number of iterations, inappropriate 

choice of activation functions, and/or insufficient number of 

hidden neurons used. 

 

   
                (a)                                    (b)                                    (c)     

Fig. 6. Example illustrating ANN learning processes with (a) no over-fitting or 
under-fitting, (b) over-fitting, and (c) under-fitting. 

 

It should be noted that given an adequate number of hidden 

neurons, proper nonlinearities, and appropriate training, an 

ANN with one hidden layer has great expressive power and can 

approximate any continuous function in principle. This is called 

the universal approximation theorem [10]. One can intuitively 

appreciate this characteristic by considering the classification 

problem in Fig. 7. Since each hidden neuron can be represented 

as a straight-line decision boundary, any arbitrary curved 

boundary can be approximated by a collection of hidden 

neurons in a single hidden layer ANN. This important property 

of an ANN enables it to be applied in many diverse applications. 
 

B. Choice of Activation Functions   

The choice of activation functions has a significant effect on the 

training dynamics and final ANN performance. Historically, 

sigmoid and hyperbolic tangent have been the most commonly- 

used nonlinear activation functions for hidden layer neurons. 

However, the rectified linear unit (ReLU) activation function 

 
Fig. 7. Decision boundaries for appropriate data classification obtained using 
an ANN. 

 

has become the default choice among ML community in recent 

years. The above-mentioned three functions are given by 

Sigmoid: 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

Hyperbolic tangent: 𝜎(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

Rectified linear unit: 𝜎(𝑧) = max(0, 𝑧) 
 

(13) 

and their plots are shown in  

Fig. 8. Sigmoid and hyperbolic tangent are both differentiable. 

However, a major problem with these functions is that their 

gradients tend to zero as |z| becomes large and thus the 

activation output gets saturated. In this case, the weights and 

biases updates for a certain layer will be minimal, which in turn 

will slow down the weights and biases updates for all the 

preceding layers. This is known as vanishing gradient problem 

and is particularly an issue when training ANNs with large 

number of hidden layers. To circumvent this problem, ReLU 

was proposed since its gradient does not vanish as z increases. 

Note that although ReLU is not differentiable at z = 0, it is not 

a problem in practice since the probability of having an entry 

exactly equal to 0 is generally very low. Also, as the ReLU 

function and its derivative are 0 for z < 0, around 50% of hidden 

neurons’ outputs will be 0, i.e., only half of total neurons will 

be active when the ANN weights and biases are randomly 

initialized. It has been found that such sparsity of activation not 

only reduces computational complexity (and thus training time) 

but also leads to better ANN performance [11]. Note that while 

using the ReLU activation function, the ANN weights and 

biases are often initialized using the method proposed by He et 

al. [12]. On the other hand, the Xavier initialization technique 

[13] is more commonly employed for the hyperbolic tangent 

activation function. These heuristics-based approaches 

initialize the weights and biases by drawing random numbers 

from a truncated normal distribution (instead of a standard 

normal distribution) with variance which depends on the size of 

the previous ANN layer.  
 

 

Fig. 8. Common activation functions used in ANNs. 
C. Choice of Loss Functions   

The choice of loss function E has a considerable effect on the 

performance of an ANN. The MSE is a common choice in 

adaptive signal processing and other DSP in 

telecommunications. For regression problems, MSE works well 

in general and is also easy to compute. On the other hand, for 

classification problems, the cross-entropy loss function defined 

as    
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𝐸 = −
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔(𝑜𝑘(𝑙))

𝐾

𝑘=1

𝐿

𝑙=1

 (14) 

 

is often used instead of the MSE [10]. The cross-entropy 

function can be interpreted by viewing the softmax output 𝐨(𝑙) 

and the class label with one-hot encoding 𝐲(𝑙) as probability 

distributions. In this case, 𝐲(𝑙) has zero entropy and one can 

subtract the zero-entropy term from Eq. (14) to obtain 

 

𝐸 = −
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔(𝑜𝑘(𝑙))

𝐾

𝑘=1

𝐿

𝑙=1

+
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔(𝑦𝑘(𝑙))

𝐾

𝑘=1

𝐿

𝑙=1⏟                
=0

 

=
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔 (

𝑦𝑘(𝑙)

𝑜𝑘(𝑙)
)

𝐾

𝑘=1

𝐿

𝑙=1

 

(15) 

 

which is simply the Kullback-Leibler (KL) divergence between 

the distributions 𝐨(𝑙) and 𝐲(𝑙) averaged over all input-output 

pairs. Therefore, the cross-entropy is in fact a measure of the 

similarity between ANN outputs and the class labels. The cross-

entropy function also leads to simple gradient updates as the 

logarithm cancels out the exponential operation inherent in the 

softmax calculation, thus leading to faster ANN training. The 

Appendix shows the derivation of BP algorithm for the single 

hidden layer ANN in 

 
 

Fig. 5 with cross-entropy loss function and softmax activation 

function for the output layer neurons. 

In many applications, a common approach to prevent over-

fitting is to reduce the magnitude of the weights as large weights 

produce high curvatures which make the decision boundaries 

overly complicated. This can be achieved by including an extra 

regularization term in the loss function, i.e., 
  

𝐸′ = 𝐸 + 𝜆‖𝐖‖2 (16) 
 

where ‖𝐖‖2 is the sum of squared element-wise weights. The 

parameter λ, called regularization coefficient, defines the 

relative importance of the training error E and the regularization 

term. The regularization term thus discourages weights from 

reaching large values and this often results in significant 

improvement in ANN’s generalization ability [14]. 
 

D. Support Vector Machines (SVMs) 

In many classification tasks, it often happens that the two data 

categories are not easily separable with straight lines or planes 

in the original variable space. SVM is an ML technique that 

preprocesses the input data 𝐱(𝑖)  and transforms it into 

(sometimes) a higher-dimensional space 𝐯(𝑖) = 𝜑(𝐱(𝑖)) , 

called feature space, where the data belonging to two different 

classes can be separated easily by a simple straight plane 

decision boundary or hyperplane [15]. An example is shown in 

 

Fig. 9 where one class of data lies within a circle of radius 3 and 

the other class lies outside. When transformed into the feature  

 

Fig. 9. Example showing how a linearly inseparable problem (in the original 2D data 
space) can undergo a nonlinear transformation and becomes a linearly separable one in the 

3-dimensional (3D) feature space.   
 

space 𝐯 = (𝑣1, 𝑣2, 𝑣3) = (𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2), the two data classes 

can be separated simply by the hyperplane 𝑣3 = 9. 

Let us first focus on finding the right decision hyperplane 

after the transformation into feature space as shown in  

Fig. 10(a). The right hyperplane should have the largest (and 

also equal) distance from the borderline points of the two data 

classes. This is graphically illustrated in  

Fig. 10(b). Had the data points been generated from two 

probability density functions (PDFs), finding a hyperplane with 

maximal margin from the borderline points is conceptually 

analogous to finding a maximum likelihood decision boundary. 

The borderline points, represented as solid dot and square in  

Fig. 10(b), are referred to as support vectors and are often 

most informative for the classification task. 

  

  
(a)                                             
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(b) 

Fig. 10. (a) Maping from input space to a higher-dimensional feature space using a 

nonlinear kernel function . (b) Separation of two data classes in the feature space through 

an optimal hyperplane. 

 

More technically, in the feature space, a general hyperplane 

is defined as 𝐰T𝐯 + 𝑏 = 0. If it classifies all the data points 

correctly, all the blue points will lie in the region 𝐰T𝐯 + 𝑏 > 0 

and the red points will lie in the region 𝐰T𝐯 + 𝑏 < 0. We seek 

to find a hyperplane 𝐰T𝐯 + 𝑏 = 0 that maximizes the margin 

𝑑 as shown in  

Fig. 10(b). Without loss of generality, let the point 𝐯(𝑖) reside 

on the hyperplane 𝐰T𝐯 + 𝑏 = 1  and is closest to the 

hyperplane 𝐰T𝐯 + 𝑏 = 0  on which 𝐯+  resides. Since the 

vectors 𝐯(𝑖) − 𝐯+, 𝐰  and the angle 𝜙  are related by 𝑐𝑜𝑠𝜙 = 

𝐰T(𝐯(𝑖) − 𝐯+) (‖𝐰‖‖𝐯(𝑖) − 𝐯+‖)⁄ , the margin 𝑑 is given as 
  

𝑑 = ‖𝐯(𝑖) − 𝐯+‖𝑐𝑜𝑠𝜙 

= ‖𝐯(𝑖) − 𝐯+‖ ⋅
𝐰T(𝐯(𝑖) − 𝐯+)

‖𝐰‖‖𝐯(𝑖) − 𝐯+‖
 

=
𝐰T(𝐯(𝑖) − 𝐯+)

‖𝐰‖
=
𝐰T𝐯(𝑖) − 𝐰T𝐯+

‖𝐰‖
 

=
𝐰T𝐯(𝑖) + 𝑏

‖𝐰‖
=

1

‖𝐰‖
. 

(17) 

 

Therefore, we seek to find 𝐰, 𝑏 that maximize 1/‖𝐰‖ subject 

to the fact that all the data points are classified correctly. To 

characterize the constraints more mathematically, one can first 

assign the blue class label to 1 and red class label to −1. In this 

case, if we have correct decisions for all the data points, the 

product 𝑦(𝑖)(𝐰T𝐯(𝑖) + 𝑏) will always be greater than 1 for all 

i. The optimization problem then becomes 
 

argmin
𝐰,𝑏

1

‖𝐰‖
 

subject to 𝑦(𝑙)(𝐰T𝐯(𝑙) + 𝑏) ≥ 1,   𝑙 = 1, 2, … , 𝐿 

(18) 

   
and thus standard convex programming software packages such 

as CVXOPT [16] can be used to solve Eq. (18).   

Let us come back to the task of choosing the nonlinear 

function 𝜑(⋅) that maps the original input space 𝐱 to feature 

space 𝐯. For SVM, one would instead find a kernel function 

𝐾(𝐱(𝑖), 𝐱(𝑗)) = 𝜑(𝐱(𝑖)) ⋅ 𝜑(𝐱(𝑗)) = 𝐯(𝑖)T𝐯(𝑗)  that maps to 

the inner product. Typical kernel functions include:  

• Polynomials: 𝐾(𝐱(𝑖), 𝐱(𝑗)) = (𝐱(𝑖)T𝐱(𝑗) + 𝑎)𝑏  for 

some scalars 𝑎, 𝑏  

• Gaussian radial basis function: 𝐾(𝐱(𝑖), 𝐱(𝑗)) =

exp (−𝑎‖𝐱(𝑖) − 𝐱(𝑗)‖2) for some scalar a 

• Hyperbolic tangent: 𝐾(𝐱(𝑖), 𝐱(𝑗)) =

tanh(𝑎𝐱(𝑖)T𝐱(𝑗) + 𝑏) for some scalars 𝑎, 𝑏.  

The choice of a kernel function is often determined by the 

designer’s knowledge of the problem domain [3]. Note that a 

larger separation margin typically results in better 

generalization of the SVM classifier. SVMs often demonstrate 

better generalization performance than conventional ANNs in 

various pattern recognition applications. Furthermore, multiple 

SVMs can be applied to the same data set to realize non-binary 

classifications such as detecting 16-QAM signals [17][18][19] 

(to be discussed in more detail in Section V).  

It should be noted that ANNs and SVMs can be seen as two 

complementary approaches for solving classification problems. 

While an ANN derives curved decision boundaries in the input 

variable space, the SVM performs nonlinear transformations of 

the input variables followed by determining a simple decision 

boundary or hyperplane as shown in  

 
 

Fig. 11.  

III. UNSUPERVISED AND REINFORCEMENT LEARNING 

The ANN and SVM are examples of supervised learning 

approach in which the class labels 𝐲 of the training data are 

known. Based on this data, the ML algorithm generalizes to  
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Fig. 11. Example showing how an ANN determines a curved decision boundary 

in the original input space while an SVM obtains a simple decision boundary 

in the transformed feature space. 

 

react accurately to new data to the best possible extent. 

Supervised learning can be considered as a closed-loop 

feedback system as the error between the ML algorithm’s actual 

outputs and the targets is used as a feedback signal to guide the 

learning process.  

In unsupervised learning, the ML algorithm is not provided 

with correct labels of the training data. Rather, it learns to 

identify similarities between various inputs with the aim to 

either categorize together those inputs which have something in 

common or to determine some better representation/description 

of the original input data. It is referred to as “unsupervised” 

because the ML algorithm is not told what the output should be 

rather it has to come up with it itself [20]. One example of 

unsupervised learning is data clustering as shown in 

 
Fig. 12. 

 

 

Fig. 12. Data clustering based on unsupervised learning. 

 

Unsupervised learning is becoming more and more important 

because in many real circumstances it is practically not possible 

to obtain labeled training data. In such scenarios, an 

unsupervised learning algorithm can be applied to discover 

some similarities between different inputs for itself. 

Unsupervised learning is typically used in tasks such as 

clustering, vector quantization, dimensionality reduction, and 

features extraction. It is also often employed as a preprocessing 

tool for extracting useful (in some particular context) features 

of the raw data before supervised learning algorithms can be 

applied. We hereby provide a review of few key unsupervised 

learning techniques. 
 

A. K-means Clustering 

Let {𝐱(1), 𝐱(2), … 𝐱(𝐿)} be the set of data points which is to be 

split into K clusters 𝐶1, 𝐶2, … 𝐶𝐾 . K-means clustering is an 

iterative unsupervised learning algorithm which aims to 

partition L observations into K clusters such that the sum of 

squared errors for data points within a group is minimized [14]. 

An example of this algorithm is graphically shown in 

 

 

Fig. 13. The algorithm initializes by randomly picking K 

locations 𝛍(𝑗), j = 1, 2, ..., K as cluster centers. This is followed 

by two iterative steps. In the first step, each data point 𝐱(𝑖) is 

assigned to the cluster Ck with the minimum Euclidean distance, 

i.e., 
 

𝐶𝑘 = {𝐱(𝑖): ‖𝐱(𝑖) − 𝛍(𝑘)‖ < ‖𝐱(𝑖) − 𝛍(𝑗)‖ 

                                                          𝑗 ∈ {1, 2, . . . , 𝐾}\{𝑘}}   
(19) 

In the second step, the new center of each cluster Ck is 

calculated by averaging out the locations of data points that are 

assigned to cluster Ck, i.e., 

𝛍(𝑘) = ∑ 𝐱(𝑖)

𝐱(𝑖)∈ 𝐶𝑘

 (20) 

The two steps are repeated iteratively until the cluster centers 

converge. Several variants of K-means algorithm have been 

proposed over the years to improve its computational efficiency 

as well as to achieve smaller errors. These include fuzzy K-

means, hierarchical K-means, K-means++, K-medians, K-

medoids, etc. 

 

 
 
Fig. 13. Example to illustarte initialization and two iterations of K-means algorithm. The 

data points are shown as dots and cluster centers are depicted as crosses. 

 

B. Expectation-Maximization (EM) Algorithm 

One drawback of K-means algorithm is that it requires the use 

of hard decision boundaries whereby a data point can only be 

assigned to one cluster even though it might lie somewhere 

midway between two or more clusters. The EM algorithm is an 

improved clustering technique which assigns a probability to 
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the data point belonging to each cluster rather than forcing it to 

belong to one particular cluster during each iteration [20]. The 

algorithm assumes that a given data distribution can be modeled 

as a superposition of K jointly Gaussian probability 

distributions with distinct means and covariance matrices 

𝛍(𝑘), 𝚺(𝑘) (also referred to as Gaussian mixture models). The 

EM algorithm is a two-step iterative procedure comprising of 

expectation (E) and maximization (M) steps [3]. The E step 

computes the a posteriori probability of the class label given 

each data point using the current means and covariance matrices 

of the Gaussians, i.e.,  

𝑝𝑖𝑗 = 𝑝(𝐶𝑗|𝐱(𝑖)) 

=
𝑝(𝐱(𝑖)|𝐶𝑗)𝑝(𝐶𝑗)

∑ 𝑝(𝐱(𝑖)|𝐶𝑘)𝑝(𝐶𝑘)
𝐾
𝑘=1

 

=
𝑵(𝐱(𝑖)|𝛍(𝑘), 𝚺(𝑘))

∑ 𝑵(𝐱(𝑖)|𝛍(𝑘), 𝚺(𝑘))𝐾
𝑘=1

 

(21) 

 

where 𝑵(𝐱(𝑖)|𝛍(𝑘), 𝚺(𝑘)) is the Gaussian PDF with mean and 

covariance matrix 𝛍(𝑘), 𝚺(𝑘) . Note that we have inherently 

assumed equal probability 𝑝(𝐶𝑗) of each class, which is a valid 

assumption for most communication signals. In scenarios 

where this assumption is not valid, e.g., the one involving 

probabilistic constellation shaping (PCS), the actual non-

uniform probabilities 𝑝(𝐶𝑗) of individual symbols shall instead 

be used in Eq. (21). The M step attempts to update the means 

and covariance matrices according to the updated soft-labelling 

of the data points, i.e.,  
 

𝛍(𝑗) =
∑ 𝑝𝑖𝑗𝐱(𝑖)
𝐿
𝑖=1

∑ 𝑝𝑖𝑗
𝐿
𝑖=1

 

𝚺(𝑘) =∑𝑝𝑖𝑗(𝐱(𝑖) − 𝛍(𝑗))(𝐱(𝑖) − 𝛍(𝑗))
T  

𝐿

𝑖=1

 

(22) 

  A graphical illustration of EM algorithm and its convergence 

process is shown in 

 

Fig. 14. Fig. 14(a) shows the original data points in green which 

are to be split into two clusters by applying EM algorithm. The 

two Gaussian probability distributions are initialized with 

random means and unit covariance matrices and are depicted 

using red and blue circles. The results after first E step are 

shown in Fig. 14(b) where the posterior probabilities in Eq. (21) 

are expressed by the proportion of red and blue colors for each 

data point. Fig. 14(c) depicts the results after first M step where 

the means and covariance matrices of the red and blue Gaussian 

distributions are updated using Eq. (22), which in turn uses the 

posterior probabilities computed by Eq. (21). This completes 

the 1st iteration of the EM algorithm. Fig. 14(d) to (f) show the 

results after 2, 5 and 20 complete EM iterations, respectively, 

where the convergence of the algorithm and consequently 

effective splitting of the data points into two clusters can be 

clearly observed. 
  

 

Fig. 14. Example showing the concept of EM algorithm. (a) Original data points and 

initialization. Results after (b) first E step; (c) first M step; (d) 2 complete EM iterations; (e) 

5 complete EM iteratons; and (f) 20 complete EM iterations [3]. 
C. Principal Component Analysis (PCA) 

Principal component analysis is an unsupervised learning 

technique for features extraction and data representation 

[21][22]. PCA is often used as a preprocessing tool in many 

pattern recognition applications for the extraction of limited but 

most critical data features. The central idea behind PCA is to 

project the original high-dimensional data onto a lower-

dimensional feature space that retains most of the information 

in the original data as shown in  

             (a)                                     (b)                                          (c) 

Fig. 15. The reduced dimensionality feature space is spanned by 

a small (but most significant) set of orthonormal eigenvectors, 

called principal components (PCs). The first PC points in the 

direction along which the original data has the greatest 

variability and each successive PC in turn accounts for as much 

of the remaining variability as possible. Geometrically, we can 

think of PCA as a rotation of the axes of the original coordinate 

system to a new set of orthogonal axes which are ordered based 

on the amount of variation of the original data they account for, 

thus achieving dimensionality reduction. 

 

 
             (a)                                     (b)                                          (c) 

Fig. 15. Example to illustarte the concept of PCA. (a) Data points in the original 3D data 

space; (b) Three PCs ordered according to the variability in original data; (c) Projection of 

data points onto a plane defined by the first two PCs while discarding the third one. 
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More technically, consider a data set {𝐱(1), 𝐱(2), … 𝐱(𝐿)} 
with L data vectors of M dimensions. We will first compute the 

mean vector 𝐱̅ =
1

𝐿
∑ 𝐱(𝑖)𝐿
𝑖=1  and the covariance matrix 𝚺 can 

then be estimated as 

𝚺 ≈
1

𝐿
∑(𝐱(𝑖) − 𝐱̅)(𝐱(𝑖) − 𝐱̅)T
𝐿

𝑖=1

 (23) 

where 𝚺 can have up to M eigenvectors (i) and corresponding 

eigenvalues i. We then sort the eigenvalues in terms of their 

magnitude from large to small and choose the first S (where S 

<< M) corresponding eigenvectors such that  

∑𝜆𝑖

𝑆

𝑖=1

/∑𝜆𝑖

𝑀

𝑖=1

> 𝑅 (24) 

where R is typically above 0.9 [22]. Note that, as compared to 

the original M-dimensional data space, the chosen eigenvectors 

span only an S-dimensional subspace that in a way captures 

most of the data information. One can understand such 

procedure intuitively by noting that for a covariance matrix, 

finding the eigenvectors with large eigenvalues corresponds to 

finding linear combinations or particular directions of the input 

space that give large variances, which is exactly what we want 

to capture. A data vector x can then be approximated as a 

weighted-sum of the chosen eigenvectors in this subspace, i.e., 

𝐱 ≈∑𝑤𝑖𝛍(𝑖)

𝑆

𝑖=1

 (25) 

where 𝛍(𝑖), 𝑖 = 1, 2, … , 𝑆  are the chosen orthogonal 

eigenvectors such that 

𝛍T(𝑚)𝛍(𝑙) = {
1  𝑖𝑓  𝑙 = 𝑚
0  𝑖𝑓  𝑙 ≠ 𝑚

}  (26) 

Multiplying both sides of Eq. (25) with 𝛍T(𝑘) and then using 

Eq. (26), we get 

𝑤𝑘 = 𝛍
T(𝑘)𝐱,    𝑘 = 1, 2, … , 𝑆 (27) 

The vector w = [w1 w2…wS]T of weights describing the 

contribution of each chosen eigenvector 𝛍(𝑘) in representing x 

can then be considered as a feature vector of x. 
 

D. Independent Component Analysis (ICA) 

Another interesting technique for features extraction and data 

representation is ICA. Unlike PCA which uses orthogonal and 

uncorrelated components, the components in ICA are instead 

required to be statistically independent [1]. In other words, ICA 

seeks those directions in the feature space that are most 

independent from each other.  

                  
                              (a)                                                     (b) 

Fig. 16 illustrates the conceptual difference between PCA and 

ICA. Finding the independent components (ICs) of the 

observed data can be useful in scenarios where we need to 

separate mutually independent but unknown source signals 

from their linear mixtures with no information about the mixing 

coefficients. An example is the task of polarization 

demultiplexing at the receiver using DSP. For a data set 

{𝐱(1), 𝐱(2), … , 𝐱(𝐿)}, one seeks to identify a collection of basis 

vectors 𝐯(1), 𝐯(2), … 𝐯(𝑆)  so that 𝐱 ≈ ∑ 𝑤𝑘𝐯(𝑘)
𝑆
𝑘=1  and the 

empirical distributions of 𝑤𝑘 , 𝑘 = 1, 2, … , 𝑆 across all the data 

𝐱  are statistically independent. This can be achieved by 

minimizing the mutual information between different 𝑤𝑘. 

ICA is used as a preprocessing tool for extracting data 

features in many pattern recognition applications and is shown 

to outperform conventional PCA in many cases [23]. This is 

expected because unlike PCA which is derived from second-

order statistics (i.e., covariance matrix) of the input data, ICA 

takes into account high-order statistics of the data as it considers 

complete probability distribution. 

        

                  
                              (a)                                                     (b) 
Fig. 16. Example 2D data fitted using (a) PCs bases and (b) ICs bases. As shown, the 

orthogonal basis vectors in PCA may not be efficient while representing non-orthogonal 

density distributions. In contrast, ICA does not necessitate orthogonal basis vectors and can 
thus represent general types of densities more effectively. 

 

We would like to highlight here that the dimensionality of 

the transformed space in ML techniques can be higher or lower 

than the original input space depending upon the nature of the 

problem at hand. If the objective of the transformation is to 

simply reduce the input data dimensionality (e.g., for 

decreasing the computational complexity of the learning 

system) then the dimensionality of the transformed space 

should be lower than that of original one. On the other hand, a 

transformation to a higher-dimensional space may be desirable 

if the data classes can be separated more easily by a classifier 

in the new space. 
 

E. Reinforcement Learning (RL) 

In this learning type, the input of the ML model (called 

observation) is associated with a reward or reinforcement signal. 

The output (called action) determines the value of the next 

observation and hence the reward through the predefined 

action-observation relationship of a particular problem. The 

objective here is to learn a sequence of actions that optimizes 

the final reward. However, unlike supervised learning, the 

model is not optimized through SGD-like approaches. Rather, 

the model tries different actions until it finds a set of parameters 

that lead to better rewards. In RL, the model is rewarded for its 

good output result and punished for the bad one. In this way, it 

can learn to choose actions which can maximize the expected 

reward [24]. Like supervised learning, RL can also be regarded 

as a closed-loop feedback system since the RL model’s actions 

will influence its later inputs. RL is particularly useful in 

solving interactive problems in which it is often impossible to 

attain examples of desired behavior which are not only correct 
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but are also representative of all the possible situations in which 

the model may have to act ultimately. In an uncharted territory, 

an RL model should be able to learn from its own experiences 

instead of getting trained by an external supervisor with a 

training data set of labeled examples.  

Due to their inherent self-learning and adaptability 

characteristics, RL algorithms have been considered for various 

tasks in optical networks including network self-configuration, 

adaptive resource allocation, etc. In these applications, the 

actions performed by the RL algorithms may include choosing 

spectrum or modulation format, rerouting data traffic, etc., 

while the reward may be the maximization of network 

throughput, minimization of latency or packet loss rate, etc. (to 

be discussed in more detail in Section V). Currently, there are 

limited applications of RL in the physical layer of optical 

communication systems. This is because in most cases the 

reward (objective function) can be explicitly expressed as a 

continuous and differentiable function of the actions. An 

example is the CMA algorithm where the actions are the filter 

tap weights and the objective is to produce output signals with 

a desired amplitude. For such optimization procedures, we 

simply refer to them as adaptive signal processing instead of 

RL. 

IV. DEEP LEARNING TECHNIQUES 

A. Deep Learning vs. Conventional Machine Learning 

The recent emergence of DL technologies has taken ML 

research to a whole new level. DL algorithms have 

demonstrated comparable or better performance than humans in 

a lot of important tasks including image recognition, speech 

recognition, natural language processing, information retrieval, 

etc. [2][25]. Loosely speaking, DL systems consist of multiple 

layers of nonlinear processing units (thus deeper architectures) 

and may even contain complex structures such as feedback and 

memory. DL then refers to learning the parameters of these 

architectures for performing various pattern recognition tasks.  

One way to interpret DL algorithms is that they automatically  

learn and extract higher-level features of data from lower-level 

ones as the input propagates through various layers of nonlinear 

processing units, resulting in a hierarchical representation of 

data. For example, while performing a complex human face 

recognition task using a DL-based multilayer ANN (called 

DNN), the first layer might learn to detect edges, the second 

layer can learn to recognize more complex shapes such as 

circles or squares which are built from the edges. The third layer 

may then recognize even more complex combinations and 

arrangements of shapes such as the location of two ovals and a 

triangle in between, which in turn starts to resemble parts of a 

human face with two eyes and a nose. Such an ability to 

automatically discover and learn features at increasingly high 

levels of abstraction empowers DL systems to learn complex 

relationships between inputs and outputs directly from the data 

instead of using human-crafted features.  

As an example of this notion of hierarchical learning, Fig. 17 

shows the use of a DNN as well as a conventional ANN on 

signal’s eye-diagrams to monitor OSNR. In the first approach, 

the eye-diagrams are directly applied as images at the input of 

the DNN, as shown in Fig. 17(a), and it is made to automatically 

learn and discover OSNR-sensitive features without any human 

intervention. The extracted features are subsequently exploited 

by DNN for OSNR monitoring. In contrast, with conventional 

ANNs, prior knowledge in optical communications is utilized 

in choosing suitable features for the task, e.g., the variances of 

“1” and “0” levels and eye-opening can be indicative of OSNR. 

Therefore, these useful features are manually extracted from the 

eye-diagrams and are then used as inputs to an ANN for the 

estimation of OSNR as shown in Fig. 17(b). For completeness, 

Fig. 17(c) shows an analytical and non-ML approach to 

determine OSNR by finding the powers and noise variances that 

best fit the noise distributions of “1” and “0” levels knowing 

that they follow Rician distribution. In this case, a specific 

 

 

(a) 

 

 

(b) 
 

 

(c) 

Fig. 17. Example illustrating OSNR monitoring using eye-diagrams’ features 
by applying (a) DNN, (b) conventional ANN, and (c) analytical modeling and 

parameters fitting.   

 

Fig. 18. Conceptual differences between rule-based systems, conventional ML, 
and DL approaches for pattern recognition. 
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mathematical formula or computational instruction is pre-coded 

into the program and there is nothing to learn from the input 

data.  

Fig. 18 compares the underpinning philosophies of the three 

different approaches discussed above. Note that, in principle, 

there is no hard rule on how many layers are needed for an ML 

model in a given problem. In practice, it is generally accepted 

that when more underlying physics/mathematics of the problem 

is used to identify and extract the suitable data features as inputs, 

the ML model tends to be simpler. 

It should be noted that deep architectures are more efficient 

or more expressive than their shallow counterparts [26]. For 

example, it has been observed empirically that compared to a 

shallow neural network, a DNN requires much fewer number 

of neurons and weights (i.e., around 10 times less connections 

in speech recognition problems [27]) to achieve the same 

performance.   

A major technical challenge in DL is that the conventional 

BP algorithm and gradient-based learning methods used for 

training shallow networks are inherently not effective for 

training networks with multiple layers due to the vanishing 

gradient problem [2]. In this case, different layers in the 

network learn at significantly different speeds during the 

training process, i.e., when the layers close to the output are 

learning well, the layers close to the input often get stuck. In the 

worst case, this may completely stop the network from further 

learning. Several solutions have been proposed to address the 

vanishing gradient problem in DL systems. These include: (i) 

choosing specific activation functions such as ReLU [11], as 

discussed earlier; (ii) pretraining of network one layer at a time 

in a greedy way and then fine-tuning the entire network through 

BP algorithm [28]; (iii) using some special architectures such as 

long short-term memory (LSTM) networks [29]; (iv) applying 

network optimization approaches which avoid gradients (e.g., 

global search methods such as genetic algorithm). The choice of 

a given solution typically depends on the type of DL model 

being trained and the degree of computational complexity 

involved. 
 

B. Deep Neural Networks (DNNs) 

Unlike shallow ANNs, DNNs contain multiple hidden layers 

between input and output layers. The structure of a simple three 

hidden layers DNN is shown in 

 
Fig. 19 (top). DNNs can be trained effectively using the BP 

algorithm. To avoid vanishing gradient problem during training 

of DNNs, following two approaches are typically adopted. In 

the first method, the ReLU activation function is simply used 

for the hidden layers neurons due to its non-saturating nature. 

In the second approach, a DNN is first pretrained one layer at a 

time and then the training  

 

Fig. 19. Schematic diagram of a three hidden layers DNN (top). Two 

autoencoders used for the pretraining of first two hidden layers of the DNN 

(bottom). The decoder parts in both autoencoders are shown in grey color with 
dotted weight lines. 
 

process is fine-tuned using BP algorithm [28]. For pretraining 

of hidden layers of the DNNs, autoencoders are typically 

employed which are essentially feed-forward neural networks. 

 
Fig. 19 (bottom) shows two simple autoencoders used for the 

unsupervised pretraining of first two hidden layers of the DNN. 

First, hidden layer-1 of the DNN is pretrained in isolation using 

autoencoder-1 as shown in the figure. The first part of 

autoencoder-1 (called encoder) maps input vectors x to a hidden 

representation f1 while the second part (called decoder) reverses 

this mapping in order to synthesize the initial inputs x. Once 

autoencoder-1 learns these mappings successfully, hidden 

layer-1 is considered to be pretrained. The original input vectors 

x are then passed through the encoder of autoencoder-1 and the 

corresponding representations f1 (also called feature vectors) at 

the output of pretrained hidden layer-1 are obtained. Next, 
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vectors f1 are utilized as inputs for the unsupervised pretraining 

of hidden layer-2 using autoencoder-2, as depicted in the figure. 

This procedure is repeated for the pretraining of hidden layer-3 

and the corresponding feature vectors f3 are then used for the 

supervised pretraining of final output layer by setting the 

desired outputs y as targets. After isolated pretraining of hidden 

and output layers, the complete DNN is trained (i.e., fine-tuned) 

using BP algorithm with x and y as inputs and targets, 

respectively. By adopting this autoencoders-based hierarchical 

learning approach, the vanishing gradient problem can be 

successfully bypassed in DNNs. 
 

C. Convolutional Neural Networks (CNNs) 

CNNs are a type of neural network primarily used for pattern 

recognition within images though they have also been applied 

in a variety of other areas such as speech recognition, natural 

language processing, video analysis, etc. The structure of a 

typical CNN is shown in Fig. 20(a) comprising of a few 

alternating convolutional and pooling layers followed by an 

ANN-like structure towards the end of the network. The 

convolutional layer consists of neurons whose outputs only 

depend on the neighboring pixels of the input as opposed to 

fully-connected (FC) layers in typical ANNs as shown in Fig. 

20(b). That is why it is called local network, local connected 

network or local receptive field in ML literature. The weights 

are also shared across the neurons in the same layer, i.e., each 

neuron undergoes the same computation 𝐰T(⋅) + 𝑏  but the 

input is a different part of the original image. This is followed 

by a decision-like nonlinear activation function and the output  

 
 

(a) 

 

           
(b) 

 

 
(c) 

Fig. 20. (a) A simple CNN architecture comprising of two sets of convolutional and 

pooling layers followed by an FC layer on top. (b) In a CNN, a node in the next layer 

is connected to a small subset of nodes in the previous layer. The weights (indicated by 
colors of the edges) are also shared among the nodes. (c) Nonlinear down-sampling of 

feature maps via a max-pooling layer.  

 

 
 

Fig. 21. Convolution followed by an activation function in a CNN. Viewing 

the  𝐰T(⋅) + 𝑏 operation as cross-correlating  a 2D function 𝑔(𝑠𝑥, 𝑠𝑦) with the 

input image, the overall feature map indicates which location in the original image 

best resembles 𝑔(𝑠𝑥, 𝑠𝑦). 

 

is called a feature map or activation map. For the same input 

image/layer, one can build multiple feature maps, where the 

features are learned via a training process. A parameter 

called stride defines how many pixels we slide the 𝐰T(⋅) +
𝑏  filter across the input image horizontally/vertically per 

output. The stride value determines the size of a feature 

map. Next, a max-pooling or sub-sampling layer operates 

over the feature maps by picking the largest value out of 4 

neighboring neurons as shown in Fig. 20(c). Max-pooling 

is essentially nonlinear down-sampling with the objective to 

retain the largest identified features while reduce the 

dimensionality of the feature maps. 

The 𝐰T(⋅) + 𝑏  operation essentially multiplies part of 

the input image with a 2D function 𝑔(𝑠𝑥 , 𝑠𝑦) and sums the 

results as shown in Fig. 21. The sliding of 𝑔(𝑠𝑥 , 𝑠𝑦) over all 

spatial locations is the same as convolving the input image 

with 𝑔(−𝑠𝑥 , −𝑠𝑦)  (hence the name convolutional neural 

networks). Alternatively, one can also view the 𝐰T(⋅) + 𝑏 

operation as cross-correlating 𝑔(𝑠𝑥 , 𝑠𝑦)  with the input 

image. Therefore, a high value will result if that part of the 

input image resembles 𝑔(𝑠𝑥 , 𝑠𝑦) . Together with the 

decision-like nonlinear activation function, the overall 

feature map indicates which location in the original image 

best resembles 𝑔(𝑠𝑥 , 𝑠𝑦), which essentially tries to identify 

and locate a certain feature in the input image. With this 

insight, the interleaving convolutional and sub-sampling 

layers can be intuitively understood as identifying higher-

level and more complex features of the input image. 

The training of a CNN is performed using a modified BP 

algorithm which updates convolutional filters’ weights and 

also takes the sub-sampling layers into account. Since a lot 

of weights are supposedly identical as the network is 

essentially performing the convolution operation, one will 

update those weights using the average of the corresponding 

gradients.  

 

D. Recurrent Neural Networks (RNNs) 

In our discussion up to this point, different input-output pairs 

(𝐱(𝑖), 𝐲(𝑖)) and (𝐱(𝑗), 𝐲(𝑗)) in a data set are assumed to have 

no relation with each other. However, in a lot of real-world 

applications such as speech recognition, handwriting 

recognition, stock market performance prediction, inter-symbol 

interference (ISI) cancellation in communications, etc., the 

sequential data has important spatial/temporal dependence to be 

learned. An RNN is a type of neural network that performs 
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pattern recognition for data sets with memory. RNNs have 

feedback connections, as shown in Fig. 22, and thus enable the 

information to be temporarily memorized in the networks [30]. 

This property allows RNNs to analyze sequential data by 

making use of their inherent memory.  
 

 
Fig. 22. Schematic diagram of an RNN and the unfolding in time. 

 

Consider an RNN as shown in Fig. 22 with an input 𝐱(𝑡), an 

output 𝐨(𝑡) and a hidden state 𝐡(𝑡) representing the memory of 

the network, where the subscript t denotes time. The model 

parameters 𝐖1 , 𝐖2  and 𝐖r  are input, output and recurrent 

weight matrices, respectively. An RNN can be unfolded in time 

into a multilayer network [31], as shown in Fig. 22. Note that 

unlike a feed-forward ANN which employs different 

parameters for each layer, the same parameters 𝐖1, 𝐖2, 𝐖r are 

shared across all steps which reflects the fact that essentially 

same task is being performed at each step but with different 

inputs. This significantly reduces the number of parameters to 

be learned. The hidden state 𝐡(𝑡) and output 𝐨(𝑡) at time step t 

can be computed as 

𝐡(𝑡) = 𝜎1(𝐖1 𝐱(𝑡) +𝐖r 𝐡(𝑡 − 1) + 𝐛1) (28) 

  

𝐨(𝑡) = 𝜎2(𝐖2 𝐡(𝑡) + 𝐛2) (29) 
 

where b1 and b2 are the bias vectors while 𝜎1(⋅) and 𝜎2(⋅) are 

the activation functions for the hidden and output layer neurons, 

respectively. Given a data set 
{(𝐱(1), 𝐲(1)), (𝐱(2), 𝐲(2)), … (𝐱(𝐿), 𝐲(𝐿))}  of input-output 

pairs, the RNN is first unfolded in time to represent it as a 

multilayer network and then BP algorithm is applied on this 

graph, as shown in Fig. 23, to compute all the necessary matrix 

derivatives {
𝜕𝐸

𝜕𝐖1
,
𝜕𝐸

𝜕𝐖2
,
𝜕𝐸

𝜕𝐖r
,
𝜕𝐸

𝜕𝐛1
,
𝜕𝐸

𝜕𝐛2
}. The loss function can be 

cross-entropy or MSE. The matrix derivative 
𝜕𝐸

𝜕𝐖r
 is a bit more 

complicated to calculate since 𝐖r is shared across all hidden 

layers. In this case,  

𝜕𝐸

𝜕𝐖r
=∑

𝜕𝐸(𝑡)

𝜕𝐖r

𝐿

𝑡=1

=∑
𝜕𝐸(𝑡)

𝜕𝐡(𝑡)

𝜕𝐡(𝑡)

𝜕𝐖r

𝐿

𝑡=1

=∑
𝜕𝐸(𝑡)

𝜕𝐡(𝑡)
∑

𝜕𝐡(𝑡)

𝜕𝐡(𝑙)

𝑡

𝑙=1

𝜕𝐡(𝑙)

𝜕𝐖r

𝐿

𝑡=1

 (30) 

where most of the derivatives in Eq. (30) can be easily 

computed using Eqs. (28) and (29). The Jacobian 
𝜕𝐡(𝑡)

𝜕𝐡(𝑙)
 is further 

decomposed into 
𝜕𝐡(𝑡)

𝜕𝐡(𝑡−1)

𝜕𝐡(𝑡−1)

𝜕𝐡(𝑡−2)
⋯

𝜕𝐡(𝑙+1)

𝜕𝐡(𝑙)
 so that efficient 

updates naturally involve the flow of matrix derivatives from 

the last data point (𝐱(𝐿), 𝐲(𝐿)) back to the first (𝐱(1), 𝐲(1)). 
This algorithm is called back-propagation through time (BPTT) 

[32]. 

 

 

Fig. 23. Flow of gradient signals in an RNN. 

    
In the special case when the nonlinear activation function is 

absent, the RNN structure resembles a linear multiple-input 

multiple-output (MIMO) channel with memory 1 in 

communication systems. Optimizing the RNN parameters will 

thus be equivalent to estimating the channel memory given 

input and output signal waveforms followed by maximum 

likelihood sequence detection (MLSD) of additional received 

signals. Consequently, an RNN may be used as a suitable tool 

for channel characterization and data detection in nonlinear 

channels with memory such as long-haul transmission links 

with fiber Kerr nonlinearity or direct detection systems with 

CD, chirp or other component nonlinearities. Network traffic 

prediction may be another area where RNNs can play a useful 

role. 

One major limitation of conventional RNNs in many 

practical applications is that they are not able to learn long-term 

dependencies in data (i.e., dependencies between events that are 

far apart) due to the so called exploding and vanishing gradient 

problems encountered during their training. To overcome this 

issue, a special type of RNN architecture called long short-term 

memory (LSTM) network is designed which can model and 

learn temporal sequences and their long-range dependencies 

more accurately through better storing and accessing of 

information [29]. An LSTM network makes decision on 

whether to forget/delete or store the information based on the 

importance which it assigns to the information. The assigning 

of importance takes place through weights which are 

determined via a learning process. Simply put, an LSTM 

network learns over time which information is important and 

which is not. This allows LSTM network’s short-term memory 

to last for longer periods of time as compared to conventional 

RNNs which in turn leads to improved sequence learning 

performance. 

V. APPLICATIONS OF ML TECHNIQUES IN OPTICAL 

COMMUNICATIONS AND NETWORKING 

Fig. 24 shows some significant research works related to the use 

of ML techniques in fiber-optic communications. A brief 

discussion on these works is given below. 
 

A. Optical Performance Monitoring (OPM)  

Optical communication networks are becoming increasingly 

complex, transparent and dynamic. Reliable operation and 

efficient management of these complex fiber-optic networks 

require incessant and real-time information of various channel 

impairments ubiquitously across the network, also known as 

OPM [33]. OPM is widely regarded as a key enabling 

technology for SDNs. Through OPM, SDNs can become aware 

of the real-time network conditions and subsequently adjust 

different transceiver/network elements parameters such as 
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launched powers, data rates, modulation formats, spectrum 

assignments, etc., for optimized transmission performance [4]. 

Unfortunately, conventional OPM techniques have shown 

limited success in simultaneous and independent monitoring of 

multiple transmission impairments since the effects of different 

impairments are often difficult to separate analytically. Another 

crucial OPM requirement is low complexity since the OPM 

devices need to be deployed ubiquitously across optical 

networks. ML techniques are proposed as an enabler for 

realizing low complexity (and hence low cost) multi-

impairment monitoring in optical networks and have already 

shown tremendous potential. 

Most existing ML-based OPM techniques adopt a supervised 

learning approach utilizing training data sets of labeled 

examples during the offline learning process of selected ML 

models. The training data may, e.g., consist of signal 

representations like eye-diagrams, asynchronous delay-tap 

plots (ADTPs), amplitude histograms (AHs), etc., and their 

corresponding known impairments values such as CD, 

differential group delay (DGD), OSNR, etc., serving as data 

labels, as shown in Fig. 25. During the training phase, the inputs 

to an ML model are the impairments-indicative feature vectors 

x of eye-diagrams/ADTPs/AHs while their corresponding 

labels y are used as the targets as shown in Fig. 26(a). The ML 

model then learns the mapping between input features and the 

labels. Note that in case of eye-diagrams, the features can be 

parameters like eye-closure, Q-factor, root-mean-square jitter, 

crossing amplitude, etc. [34]. On the other hand, for 

AHs/ADTPs, the empirical one-dimensional (1D)/2D 

histograms  can be treated as features [35][36]. Once the offline  

 

Fig. 24. Some key applications of ML in fiber-optic communications. 

 

 
Fig. 25. Impairments-dependent patterns reflected by (a) eye-diagrams [34], 

(b) ADTPs [35] and (c) AHs [36], and their corresponding known 

impairments values which serve as data labels during the training process. 

 

 
Fig. 26. (a) ML model during the offline training phase with feature vectors 
x as inputs and the labels y as targets. (b) Trained ML model used for online 

OPM with feature vectors x as inputs and the impairments estimates o as 

outputs. 
training process is completed, the ML model can be used for 

real-time monitoring (as the computations involved are 

relatively simple) in deployed networks as shown in Fig. 26(b). 

ML algorithms have been applied successfully for cost-

effective multi-impairment monitoring in optical networks. Wu 

et al. [34] exploited impairments-sensitive features of eye-

diagrams using an ANN for simultaneous monitoring of OSNR, 

CD and DGD. Similarly, Anderson et al. [35] demonstrated 

joint estimation of CD and DGD by applying kernel-based ridge 

regression on ADTPs. In [37], we showed that the raw 

empirical moments of asynchronously sampled signal 
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amplitudes are sensitive to OSNR, CD and DGD. The first five 

empirical moments of received signal amplitudes are thus used 

as input features to an ANN for multi-impairment monitoring. 

Unlike [34][35], which can only determine the magnitude of the 

CD, this technique enables monitoring of both magnitude and 

sign of accumulated CD. In [38], the low-frequency part of the 

received signal’s RF spectrum is used as input to an ANN for 

OSNR monitoring in the presence of large inline 

uncompensated CD. Apart from supervised learning, 

unsupervised ML techniques have also been employed for 

OPM. In [39], PCA and statistical distance measurement based 

pattern recognition is applied on ADTPs for joint OSNR, CD 

and DGD monitoring as well as identification of bit-rate and 

modulation format of the received signal. 
The emergence of SDNs imposes new requirements on OPM 

devices deployed at the intermediate network nodes. As a lot of 
OSNR/CD/polarization-mode dispersion (PMD) monitoring 
techniques are modulation format dependent, the OPM devices 
are desired to have modulation format identification (MFI) 
capabilities in order to select the most suitable monitoring 
technique. Although the modulation format information of a 
signal can be obtained from upper-layer protocols in principle, 
it is practically not available for OPM task at the intermediate 
network nodes because the OPM units are often stand-alone 
devices and can only afford limited complexity [4]. Note that 
MFI may also be beneficial for digital coherent receivers in 
elastic optical networks (EONs) since it can enable fast 
switching between format-dependent carrier recovery modules 
as conventional supervisory channels may not be able to provide 
modulation format information that quickly [40]. Reported ML-
based MFI techniques in the literature include K-means 
algorithm [41], ANNs [36][42], variational Bayesian 
expectation-maximization (VBEM) [43], and DNN [44] based 
methods. 

 
(a) 

           
                            (b)                                                           (c) 
 

 

(d) 
Fig. 27. (a) Receiver DSP configuration with the DNN-based OSNR monitoring and 

MFI stage shown in red color. (b) True versus estimated OSNRs for 112 Gb/s PM 16-

QAM signals. (c) MFI accuracies (in number of instances and percertange of correct 
identifications) for different modulation formats in the absence of fiber nonlinear 

effects [45]. (d) Effect of fiber nonlinearity on the MFI accuracies [44]. 

 

Recently, DL algorithms have also been applied for OPM. In 

[45], we demonstrated joint OSNR monitoring and MFI in 

digital coherent receivers, as shown in Fig. 27(a), using DNNs 

in combination with AHs depicted in Fig. 25(c). The DNNs 

automatically extracted OSNR and modulation format sensitive 

features of AHs and exploited them for the joint estimation of 

these parameters. The OSNR monitoring results for one signal 

type are shown in Fig. 27(b) and it is clear from the figure that 

OSNR estimates are quite accurate. The confusion table/matrix 

in Fig. 27(c) summarizes MFI results (in the absence of fiber 

nonlinear effects) for 57 test cases used for evaluation. The 

upper element in each cell of this table represents the number 

of instances of correct/incorrect identifications for a given 

actual modulation format while the bottom element shows 

percentage of correct/incorrect identifications for a given actual 

modulation format. It is evident from the table that no errors are 

encountered in the identification of all three modulation formats 

under consideration. The performance of this technique in the 

presence of fiber nonlinearity is shown in Fig. 27(d) and it is 

clear from the figure that identification accuracies decrease 

slightly in this case [44]. However, they still remain higher than 

99%, thus showing the resilience of this technique against fiber 

nonlinear effects. Since this technique uses DL algorithms 

inside standard digital coherent receiver, it avoids extra 

hardware costs. Similarly, Tanimura et al. [46] applied DNN on 

asynchronously sampled raw data for OSNR monitoring in a 

coherent receiver. Using a deep 5-layers architecture and a large 

training data set of 400,000 samples, the DNN is shown to learn 

and extract useful OSNR-sensitive features of incoming signals 

without involving any manual feature engineering. An 

extension of this method is presented in [47] where the DNN-

based monitor is enhanced using the dropout technique [48] at 

the inference time (unlike typical approach of using dropout 

during training) so that multiple “thinned” DNNs with slightly 

different configurations provide multiple OSNR estimates. This 

in turn enables them to compute confidence intervals of the 

OSNR estimates as an auxiliary output. In [49], raw eye-

diagrams are treated as images (comprising of various pixels) 

and are processed using a CNN for automatic extraction of 

features which are then used for joint OSNR monitoring and 

MFI. This technique exhibits better performance than 

conventional ML approaches. 

Open issues: While ML-based OPM has received significant 

attention over the last few years, there are certain issues which 

still need to be addressed. For example, accurate OSNR 

monitoring in long-haul transmission systems in the presence 

of fiber nonlinearity is still a challenging task as nonlinear 

distortions are incorrectly treated as noise by most OSNR 

monitoring methods. Developing ML-based techniques to 

estimate actual OSNR irrespective of other transmission 

impairments, channel power, and wavelength-division 

multiplexing (WDM) effects is highly desirable in future 

optical networks. Recently, there have been some initial 

attempts in this regard exploiting amplitude noise covariance of 
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received symbols [50], and features of nonlinear phase noise 

along with time correlation properties of fiber nonlinearities 

[51]. Another open issue is the development of ML-based 

monitoring techniques using only low-bandwidth components 

as this can reduce the computational complexity and cost of 

OPM devices installed at the intermediate network nodes. 

Alternatively, instead of physical deployment of OPM units 

across the network, capturing of various physical layer data 

(such as launched powers, parameters of various optical 

amplifiers and fibers, etc.) via network management and using 

the ML algorithms to uncover complex relationships between 

these parameters and the actual link OSNRs can also be 

investigated. 
 

B. Fiber Nonlinearity Compensation (NLC)  

The optical fiber communication channel is nonlinear due to the 

Kerr effect and thus classical linear systems 

equalization/detection theory is suboptimal in this context. 

Signal propagation in optical fibers in the presence of Kerr 

nonlinearity together with distributed copropagating amplified 

spontaneous emission (ASE) noise 𝑛(𝑡, 𝑧) can be described by 

the stochastic nonlinear Schrödinger equation (NLSE) 
 

∂

∂𝑧
𝑢(𝑡, 𝑧) + 𝑗

𝛽2
2

∂2

∂𝑡2
𝑢(𝑡, 𝑧) = 𝑗𝛾|𝑢(𝑡, 𝑧)|2𝑢(𝑡, 𝑧) + 𝑛(𝑡, 𝑧) (31) 

 

where 𝑢(𝑡, 𝑧)  is the electric field while 𝛽2  and 𝛾  are group 

velocity dispersion (GVD) parameter and fiber nonlinear 

coefficient, respectively. Although the NLSE can be 

numerically evaluated using the split-step Fourier method 

(SSFM) to simulate the waveforms evolution during 

transmission, the interplay between signal, noise, nonlinearity 

and dispersion complicates the analysis. This is also essentially 

the limiting factor of the DBP technique [52]. At present, 

stochastic characteristics of nonlinearity-induced noise depend 

in a complex manner on dispersion, modulation format, 

transmission distance, amplifier and type of optical fiber [53]. 

As an example, two received signal distributions after linear 

compensation of various transceiver and transmission 

impairments are shown in Fig. 28 for long-haul systems with 

and without inline dispersion compensation. From Fig. 28(a), it 

is obvious that the decision boundaries are nonlinear, which 

naturally calls for the use of ML techniques. In contrast, the 

nonlinear noise is more Gaussian-like in dispersion-unmanaged 

transmissions [54], as shown in Fig. 28(b). However, the noise 

is correlated in time and hard to model analytically.  

    

                            
                                 (a)                                                 (b) 
Fig. 28.  Received signal distributions after linear equalization for long-haul 

(a) dispersion-managed [17] and (b) dispersion-unmanaged [53] 

transmissions. 
 

More specifically, consider a transmission link with inline 

distributed erbium-doped fiber amplifiers (EDFAs). Let 𝐲 =

[𝑦1 𝑦2… ] be a symbol sequence with overall transmitted signal 

𝑞(𝑡) = ∑ 𝑦𝑗𝑠(𝑡 − 𝑗𝑇)𝑗  where 𝑠(𝑡) is the pulse shape and 𝑇 is 

the symbol period. The received signal is given by 
 

𝑥(𝑡) = 𝑓NLSE(𝑞(𝑡), 𝑛(𝑡, 𝑧)) (32) 
 

where 𝑓NLSE(⋅) is the input-output mapping characterized by 

the NLSE. It should be noted that electronic shot noise and 

quantization noise also act as additional noise sources but are 

omitted here as ASE noise and its interaction with Kerr 

nonlinearity and dispersion are the dominant noise sources in 

long-haul transmissions. Other WDM effects are also omitted 

here for simplicity. The received signal is sampled to obtain 

𝐱 = [𝑥1 𝑥2… ]. While using ML for NLC, one seeks to develop 

a neural network or generally a mapping function 𝑔(⋅) so that 

the output vector 

𝐨 = 𝑔(𝐱) 
 

(33) 

of ML model is as close as possible to 𝐲.        

There are a few classes of approaches to learn the best 

mapping 𝑔(⋅) . One direction is to completely ignore the 

intricate interactions between nonlinearity, CD and noise in 

NLSE and treat the nonlinear fiber as a black-box system. To 

this end, in [55], we proposed the use of an ANN after CD 

compensation in a digital coherent receiver and applied a 

training technique called extreme learning machine (ELM) that 

avoids SGD-like iterative weights and biases updates [56].  Fig. 

29 shows the simulated Q-factor for 27.59 GBd/s return-to-zero 

(RZ) QPSK transmissions over 2000 km standard single-mode 

fiber (SSMF). The proposed ELM-based approach provides 

comparable performance to DBP but is computationally much 

simpler. 

 
Fig. 29. Q-factor for 27.59 GBd/s RZ-QPSK signals after transmission over 
2000 km SSMF [55]. 

 

For dispersion-managed systems, Zibar et al. [57] 

investigated the use of EM and K-means algorithms to derive 

nonlinear decision boundaries for optimized transmission 

performance. By applying the EM algorithm after regular DSP, 

the distribution of the combined fiber nonlinear distortions, 

laser phase noise and transceiver imperfections can be 

estimated. EM algorithm assumes that each cluster is Gaussian 

distributed with different mean and covariance matrix (the outer 

clusters in Fig. 28(a) are expected to have larger variances) so 

that the received signal distribution is a Gaussian mixture 

model. EM algorithm optimizes the mean and covariance 

matrix parameters iteratively to best fit the observed signal 

distribution in a maximum likelihood sense. The converged 
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mixture model is then used for symbols detection. In contrast, 

the K-means algorithm provides less improvement because it 

assumes that the clusters share the same covariance matrix [58]. 

Nevertheless, for dispersion-unmanaged systems, both EM and 

K-means algorithms provide minimal performance gain as 

optimal decision boundaries in this case are nearly straight lines 

as shown in [57]. Li et al. [17] applied SVMs for fiber NLC. 

However, since basic SVM is only a binary classifier, 

classifying M-QAM signals would require log2M binary SVMs 

in this case. Other SVM-related works with different 

complexities and performance concerns are reported in 

[18][19][59] with a 0.5 ̶ 2 dB gain in Q-factor compared to 

linear equalization methods. In [60], the use of an ANN per sub-

carrier to equalize nonlinear distortions in coherent optical 

orthogonal frequency-division multiplexing (CO-OFDM) 

systems is studied.  

Another class of ML techniques incorporates limited amount 

of underlying physics to develop better fiber NLC methods. Pan 

et al. [61] noted that the received phase distortions of a 16-

QAM signal are correlated across symbols due to nonlinearity 

in addition to the effect of slowly varying laser phase noise. 

They proposed to interleave the soft forward error correction 

(FEC) decoding with a modified EM algorithm. In particular, 

the EM algorithm takes the output of the soft-decision low-

density parity-check (LDPC) decoder as input and provides 

phase noise estimates 𝜙̂𝑘  which are then used to compensate 

the symbols and fed back to the LDPC decoder, thus forming 

an adaptive feedback equalizer. An additional regularization 

term is added inside the EM algorithm to prevent large phase 

jumps.  

Finally, ML approaches can also augment well-developed  

 

 

analytical models and signal processing strategies for NLC. 

Häger et al. [62] consider the standard DBP algorithm 
 

𝐖−1 𝜎−1(𝐖−1 𝜎−1(… . )) (34) 

where W is a matrix (representing linear CD operation) and 

𝜎(𝑧) = 𝑒𝑗𝛾|𝑧|
2
 is the nonlinear phase rotation. However, when 

viewed from an ML perspective, this sequence of interleaved 

linear and nonlinear operations resembles a standard neural 

network structure and hence, all the parameters in W as well as 

the nonlinear function parameters can be learned. A dedicated 

complex-valued DNN-like model following time-domain DBP 

procedures but generalizing the filter of the linear step and the 

scaling factor of the nonlinear phase rotation is developed. The 

loss function is differentiable with respect to the real and 

imaginary parts of the parameters and thus can be learned using 

standard BP techniques. The learned DBP algorithm performs 

similar to conventional DBP but is computationally simpler. 

For high baud rate systems, a sub-band division solution to 

reduce the required linear filter size was recently proposed [63]. 

In another approach, perturbation analysis of fiber nonlinearity 

is used to analyze the received signal 𝑥(𝑡) = 𝑥lin(𝑡) + Δ𝑥(𝑡), 
where 𝑥lin(𝑡) is the received signal if the system is linear while 

the intra-channel four-wave mixing (IFWM) perturbations 

Δ𝑥(𝑡) are given by  
 

Δ𝑥(𝑡) =∑𝑃3/2𝐶𝑚,𝑛𝑥lin(𝑡 −𝑚𝑇)𝑥lin
∗ (𝑡 − (𝑚 + 𝑛)𝑇)𝑥lin(𝑡 − 𝑛𝑇)

𝑚,𝑛

 (35) 

where 𝑇 is the symbol period, P is the signal power and 𝐶𝑚,𝑛 is 

determined by the fiber parameters [64]. From an ML 

perspective, the 𝑥lin(𝑡 − 𝑚𝑇)𝑥lin
∗ (𝑡 − (𝑚 + 𝑛)𝑇)𝑥lin(𝑡 − 𝑛𝑇) 

triplets and 𝑥(𝑡) can serve as inputs to an ANN to estimate 𝐶𝑚,𝑛 

and Δ𝑥(𝑡), which can then be used to pre-distort the transmitted 

signal and obtain better results. The proposed technique is 

demonstrated in an 11000 km subsea cable transmission and it 

outperforms transmitter side perturbation-based pre-distortion 

methods by 0.3 dB in both single-channel and WDM systems 

[65]. 

Open issues: Table I shows some key techniques using ML 

for fiber NLC. Most of these works incorporate ML as an extra 

DSP module placed either at transmitter or receiver. While 

effective to a certain extent, it is not clear what is the best 

sequence of conventional signal processing and ML blocks in 

such a hybrid DSP configuration. One factor driving the choice 

of sequence is the dynamic effects such as carrier frequency 

offset, laser phase noise, PMD, etc., that are hard to be captured 

 

in the learning process of an ML algorithm. In this case, one can 

perform ML-based NLC after linear compensations so as to 

avoid tackling these time-varying dynamics in ML. In the other 

extreme, RNN structures can embrace all the time-varying 

dynamics in principle but it may be an overkill since we do 

know their underlying physics and it should be exploited in the 

overall DSP design. Also, in case of hybrid configurations, the 

accuracy of conventional DSP algorithms such as CMA or 

carrier phase estimation (CPE) plays a major role in the quality 

of the data sets which ML fundamentally relies on. Therefore, 

there are strong dependencies between ML and conventional 

Reference, 

Year 

ML 

algorithm 

used 

Data rate Transmission 

link 

Modulation 

format 

Polarization 

multiplexing 

WDM Experimental 

demonstration 

[55], 2011 ANN 27.59 GBd/s 2000 km 

SSMF 

 RZ-QPSK No No No 

[57], 2012 EM 14 GBd/s < 800 km 

SSMF/DCF 

16-QAM Yes No Yes 

[60], 2015 ANN 40 Gb/s 200 km 
SSMF 

16-QAM 
CO-OFDM 

No No Yes 

[62], 2018 Learned 

DBP 

20 GBd/s 3200 km 

SSMF 

16-QAM No No No 

[65], 2018 Learned 
PPD 

using DNN 

4 × 12.25 
GBd/s 

11000 km 
Trans-Pacific 

cable 

DSM-PS-
8/16/64-

QAM 

Yes Yes Yes 

 

 

TABLE I Some key ML-based fiber NLC techniques. PPD:  pre/post-distortion, DCF: dispersion-compensating fiber, DSM: digital subcarrier modulation, 
PS: probabilistic shaped    
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DSP blocks and the right balance is still an open area of 

research. Finally, to the best of our knowledge, an ML-based 

single-channel processing technique that outperforms DBP in 

practical WDM settings has yet to be developed. 

Numerous studies are conducted to also address the 

computational complexity issues of conventional and ML 

techniques for fiber NLC. For conventional NLC algorithms, 

we direct the readers to the survey paper [66]. On the other 

hand, the computational complexity of ML algorithms for NLC 

varies significantly with the architecture and the training 

process used which make comparison with the conventional 

techniques difficult. Generally, the training processes are too 

complex to be performed online as they require a lot of 

iterations and potentially massive training data. For the 

inference phase (i.e., using the trained model for real-time data 

detection), most ML algorithms proposed involve relatively 

simple computations, leading to the perception that ML 

techniques are generally simple to implement since offline 

training processes are typically not counted towards the 

computational complexity. However, in reality, the training 

does take up a lot of computational resources and time which 

should not be completely disregarded while evaluating the 

complexity of ML approaches for NLC. 
 

C. Proactive Fault Detection 

Reliable network operations are essential for the carriers to 

provide service guarantees, called service-level agreements 

(SLAs), to their customers regarding system’s availability and 

promised quality levels. Violation of these guarantees may 

result in severe penalties. It is thus highly desirable to have an 

early warning and proactive protection mechanism 

incorporated into the network. This can empower network 

operators to know when the network components are beginning 

to deteriorate and preventive measures can then be taken to  

avoid serious disruptions [33]. 

Conventional fault detection and management tools in 

optical networks adopt a rigid approach where some fixed 

threshold limits are set by the system engineers and alarms are 

triggered to alert malfunctions if those limits are surpassed. 

Such traditional network protection approaches have the 

following main drawbacks: (i) These methods protect a network 

in a passive manner, i.e., they are unable to forecast the risks 

and tend to reduce the damages only after a failure occurs. This 

approach may result in the loss of immense amounts of data 

during network recovery process once a failure happens. (ii) 

The inability to accurately forecast the faults leads to 

ultraconservative network designs involving large operating 

margins and protection switching paths which in turn result in 

an underutilization of the system resources. (iii) They are 

unable to determine the root cause of faults. (iv) Apart from 

hard failures (i.e., the ones causing major signal disruptions), 

several kinds of soft failures (i.e., the ones degrading system 

performance slowly and slightly) may also occur in optical 

networks which cannot be easily detected using conventional 

methods. 

    ML-enabled proactive fault management has recently been 

conceived as a powerful means to assure reliable network 

operation [67]. Instead of using traditional fixed pre-engineered 

solutions, this new mechanism relies on dynamic data-driven 

operations, leveraging immense amounts of operational data 

retrieved through network monitors (e.g., using simple network 

management protocol (SNMP)). The data repository may 

include network components’ parameters such as optical power 

levels at different network nodes, EDFAs’ gains, current drawn 

and power consumption of various devices, shelf temperature, 

temperatures of various critical devices, etc. ML-based fault 

prediction tools are able to learn historical fault patterns in 

networks and uncover hidden correlations between various 

entities and events through effective data analytics. Such unique 

and powerful capabilities are extremely beneficial in realizing 

proactive fault discovery and preventive maintenance 

mechanisms in optical networks. Fig. 30 illustrates various fault 

management tasks powered by the ML-based data analytics in 

optical networks including proactive fault detection, fault 

classification, fault localization, fault identification, and fault 

recovery. 

  

 
Fig. 30. Fault management tasks enabled by ML-based approaches. 

   
Recently, a few ML-based techniques have been developed 

for advanced failure prediction in networks. Wang et al. [68] 

demonstrated an ML-based network equipment failure 

prediction method in software-defined metropolitan area 

networks (SDMANs) using a combination of double 

exponential smoothing (DES) and an SVM. Their approach 

involves constant monitoring of various physical parameters of 

the boards used in WDM nodes. The set of parameters includes 

the boards’ power consumption, laser bias current, laser  

 
(a) 

 

 
(b) 

Fig. 31. (a) Fault types typically encountered in commercial fiber-optic 

networks. (b) Comparison of fault detection rates and proactive reaction 
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times of data-driven and condition-based methods for the fault types given 
in (a) [70]. 

 

temperature offset, and environment temperature. However, to 

realize proactive failure detection, DES, which is basically a 

time-series prediction algorithm, is used to predict the future 

values of these parameters. Next, an SVM-based classifier is 

used to learn the relationship between forecasted values of 

boards’ parameters and the occurrence of failure events. This 

method is shown to predict boards’ failures with an average 

accuracy of 95%. 

Similarly, in [69], proactive detection of fiber damages is 

demonstrated using ML-based pattern recognition. In their 

work, the state-of-polarization (SOP) rotation speed is 

constantly monitored in a digital coherent receiver and if it 

exceeds a certain predefined limit, the system considers it as an 

indication of some fiber stress event (leading to certain fiber 

damages) and a flag is raised. Next, Stokes parameters’ traces 

are recorded which are shown to exhibit unique patterns for 

various mechanical stress events on the fiber such as bending, 

shaking, etc. These patterns are exploited using a naive Bayes 

classifier for their recognition. This technique is shown to 

predict various fiber stress events (and thus fiber breaks before 

their actual occurrence) with 95% accuracy. 

In [70], a cognitive fault detection architecture is proposed 

for intelligent network assurance. In their work, an ANN is used 

to learn historical fault patterns in networks for proactive fault 

detection. The ANN is trained to learn how the monitored 

optical power levels evolve over time under normal or abnormal 

network operation (i.e., recognize power level abnormalities 

due to occurrence of certain faults). The trained ANN is then 

shown to detect significant network faults with better detection 

accuracies and proactive reaction times as compared to 

conventional threshold-based fault detection approaches, as 

shown in Fig. 31. An extension of this method is presented in 

[71] which makes use of an ANN and shape-based clustering 

algorithm to not only proactively detect and localize faults but 

also determine their likely root causes. The two-stage fault 

detection and diagnosis framework proposed in their work 

involves monitoring optical power levels across various 

network nodes as well as nodes’ local features such as 

temperature, amplifier gain, current draw profiles, etc. In the 

first stage, an ANN is applied to detect faults by identifying 

optical power level abnormalities across various network 

nodes. The faulty node is then localized using network topology 

information. In the second stage, the faulty node’s local features 

(which are also interdependent) are further analyzed using a 

clustering technique to identify potential root causes. 

Open issues: Realization of ML-based proactive fault 

management in optical networks is still at its nascent stage. 

While few techniques for detecting and localizing hard failures 

have been proposed and deployed, the development of effective 

automated solutions for soft failures is still a relatively 

unexplored area. Furthermore, most of the existing works focus 

on the detection/localization of faults while the development of 

mechanisms which can uncover actual root causes of these 

faults as well as facilitate efficient fault recovery process is an 

open area for research. Another major problem faced while 

implementing ML-based fault detection/prevention is the 

unavailability of extensive data sets corresponding to different 

faulty operational conditions. This is mainly due to the fact that 

current network operators adopt ultraconservative designs with 

large operating margins in order to reduce the fault occurrence 

probability in their networks. This, however, limits the chances 

to collect sufficient examples of various network failure 

scenarios. In this context, the development of ML algorithms 

which could predict network faults accurately despite using 

minimal training data sets is an interesting area for research.  
 

D. Software-Defined Networking (SDN) 

Software-defined networking approach centralizes network 

management by decoupling the data and control planes. SDN 

technologies enable the network infrastructure to be centrally 

controlled/configured in an intelligent way by using various 

software applications. Data-driven ML techniques naturally fit 

in SDNs where abundant data can be captured by accessing the 

monitors spanning the whole network. Many studies have 

demonstrated the applications of ML in solving particular 

problems in SDNs such as network traffic prediction, fault 

detection, quality-of-transmission (QoT) estimation, etc. We 

refer the readers to two recent survey papers [72][73] for 

comprehensive reviews on these topics. In contrast, systematic 

integration of those ML applications into an SDN framework 

for cross-layer optimization is less reported, which is what we 

will focus on here. Morales et al. [74] performed ANN-based 

data analytics for robust and adaptive network traffic modeling. 

Based on the predicted traffic volume and direction, the virtual 

network topology (VNT) is adaptively reconfigured to ensure 

that the required grade of service is supported. Compared to 

static VNT design approaches, this predictive method decreases 

the required number of transponders to be installed at the 

routers by 8−42% as shown in Fig. 32, thus reducing energy 

consumption and costs. Similarly, Alvizu et al. [76] used ML 

to predict tidal traffic variations in a software-defined mobile  

 
 

Fig. 32. Maximum used transponders versus load [75]. 
 

metro-core network. In their work, ANNs are employed to 

forecast traffic at different locations of an optical network and 

the predicted traffic demands are then exploited to optimize the 

online routing and wavelength assignments using a 

combination of analytical derivations and heuristics. Energy 

savings of ~31% are observed as compared to traditional static 

methods used in mobile metro-core networks. 

In [77], an RL technique called Q-learning is used to solve 

the path and wavelength selection problem in optical burst 

switched (OBS) networks. Initially, for each burst to be 

transmitted between a given source-destination pair, the 

algorithm picks a path and wavelength from the given sets of 

paths and wavelengths, respectively, as action and then a 
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reward which depends on the success or failure of that burst 

transmission is determined. In this way, the algorithm learns 

over time how to select optimal paths and wavelengths which 

can minimize burst loss probability (BLP) for each source-

destination pair. It has been shown that the Q-learning 

algorithm reduces BLP significantly as compared to other 

adaptive schemes proposed in the literature. Similarly, Chen et 

al. [78] applied an RL algorithm, called Q-network, for joint 

routing, modulation and spectrum assignment (RMSA) 

provisioning in SDNs. In their work, the Q-network self-learns 

the best RMSA policies under different network states and 

time-varying demands based on the feedback obtained from the 

network for the RMSA actions taken in those conditions. 

Compared to shortest-path (SP) routing and the first-fit (FF) 

spectrum assignment approach, 4 times reduction in request 

blocking probability is reported using this method.   

In [79], we demonstrated an ML-assisted optical network 

planning framework for SDNs. In this work, the network 

configuration as well as the real-time information about 

different link/signal parameters such as launched power, 

EDFAs’ input and output powers, EDFAs’ gains, EDFAs’ noise 

figures (NFs), etc., is stored in a network configuration and 

monitoring database (NCMDB) as shown in Fig. 33(a). Next, 

an ANN is trained using this information where vectors x 

comprising of above-mentioned link/signal parameters are 

applied at the input of the ANN while actual known OSNR 

values y corresponding to those links are used as targets, as 

depicted in Fig. 33(b). The ANN is then made to learn the 

relationship between these two sets of data by optimizing its 

various parameters. After training, the ANN is able to predict 

the performance (in terms of OSNR) of various unestablished 

lightpaths in the network, as shown in Fig. 33(c), for optimum 

network planning. We demonstrated that the ML-based 

performance prediction mechanism can be used to increase the  

 
(a) 

 

 
(b) 

 

 
(c)  

Fig. 33. (a) Schematic diagram of ML-assisted optical network planning 
framework for SDNs. (b) ANN model with link/signal parameters as inputs 

and estimated OSNRs as outputs. (c) True versus estimated OSNRs using 

the ANN model [79]. 
 

transmission capacity in an SDN framework by adaptively 

configuring a probabilistic shaping-based spectral efficiency 

tunable transmitter. 

 Open issues: We already observe some benefits of ML-assisted 

network state prediction and decision-making in SDNs. 

However, some practical concerns need to be addressed when 

applying ML in SDNs. Firstly, real networks still require worst-

case performance guarantees, which in turn necessitates a full 

understanding of the robustness of the chosen ML algorithms. 

Secondly, network characteristics can vary significantly in 

different network scenarios. An ML model trained using one 

particular data set may not be able to generalize to all network 

scenarios and thus the scalability of such a method becomes 

questionable.  

A number of concerns also need to be addressed to realize 

more active use of RL in SDNs. Firstly, it must be shown that 

RL algorithms are scalable to handle large and more complex 

networks. Secondly, the RL algorithms must demonstrate fast 

convergence in real network conditions so as to limit the impact 

of non-optimal actions taken during the early learning phase of 

these algorithms. 

The interpretability of ML methods is another issue as it is 

not desirable in practice to adopt an algorithm without really 

understanding how and why it works. Consequently, much 

needs to be done in understanding the fundamental properties 

of ML algorithms and how to properly incorporate them into  

SDN framework.     

E. Physical Layer Design 

Machine learning techniques offer the opportunity to optimize 

the design of individual physical components as well as 

complete end-to-end fiber-optic communication systems. 

Recently, we have seen some noticeable research works in this 

regard with quite encouraging results.    

In [80], a complete optical communication system including 

transmitter, receiver and nonlinear channel is modeled as an 

end-to-end fully-connected DNN. This approach enables the 

optimization of transceivers in a single end-to-end process 

where the transmitter learns waveform representations that are 

robust to channel impairments while the receiver learns to 

equalize channel distortions. The results for 42 Gb/s intensity 

modulation/direct detection (IM/DD) systems show that the 

DL-based optimization outperforms the solutions based on two- 

and four-level pulse amplitude modulation (PAM2/PAM4) and 

conventional receiver equalization, for a range of transmission 

distances. Jones et al. [81] proposed an ANN-based receiver for 
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nonlinear frequency-division multiplexing (NFDM) optical 

communication systems. Unlike standard nonlinear Fourier 

transform (NFT) based receivers which are vulnerable to losses 

and noise in NFDM systems, the ANN-based receiver tackles 

these impairments by learning the distortion characteristics of 

previously-transmitted pulses and applying them for inference 

for future decisions. The results demonstrate improved bit-error 

rate (BER) performance as compared to conventional NFT-

based receivers for practical link configurations. In [82], an 

ANN is used in receiver DSP for mitigating linear and nonlinear 

impairments in IM/DD systems. The ANN infers linear and 

nonlinear channel responses simultaneously which are then 

exploited for increasing the demodulation reliability beyond the 

capability of linear equalization techniques. Using an ANN 

along with standard feed-forward equalization (FFE), up to 10 

times BER improvement over FFE-only configurations is 

demonstrated for 84 GBd/s PAM4 transmission over 1.5 km 

SSMF. 

VI. FUTURE ROLE OF ML IN OPTICAL COMMUNICATIONS 

The emergence of SDNs with their inherent programmability 

and access to enormous amount of network-related monitored 

data provides unprecedented opportunities for the application 

of ML methods in these networks. The vision of future 

intelligent optical networks integrates the 

programmability/automation functionalities of SDNs with data-

analytics capabilities of ML technologies to realize self-aware, 

self-managing and self-healing network infrastructures. Over 

the past few years, we have seen an increasing amount of 

research on the application of ML techniques in various aspects 

of optical communications and networking. As ML is gradually 

becoming a common knowledge to the photonics community, 

we can envisage some potential significant developments in 

optical networks in the near future ushered in by the application 

of emerging ML technologies. 

Looking to the future, we can foresee a vital role played by 

ML-based mechanisms across several diverse functional areas 

in optical networks, e.g., network planning and performance 

prediction, network maintenance and fault prevention, network 

resources allocation and management, etc. ML can also aid 

cross-layer optimization in future optical networks requiring 

big data analytics since it can inherently learn and uncover 

hidden patterns and unknown correlations in big data which can 

be extremely beneficial in solving complex network 

optimization problems. The ultimate objective of ML-driven 

next-generation optical networks will be to provide 

infrastructures which can monitor themselves, diagnose and 

resolve their problems, and provide intelligent and efficient 

services to the end users. 

VII. ONLINE RESOURCES FOR ML ALGORITHMS 

Standard ML algorithms’ codes and examples are readily 

available online and one seldom needs to write their own codes 

from the very beginning. There are several off-the-shelf 

powerful frameworks available under open-source licenses 

such as TensorFlow, Pytorch, Caffe, etc. Matlab, which is 

widely used in optical communications researches is not the 

most popular programming language among the ML 

community. Instead, Python is the preferred language for ML 

research partly because it is freely available, multi-platform, 

relatively easy to use/read, and has a huge number of 

libraries/modules available for a wide variety of tasks. We 

hereby report some useful resources including example Python 

codes using TensorFlow library to help interested readers get 

started with applying simple ML algorithms to their problems. 

More intuitive understanding of ANNs can be found at this 

visual playground [83]. The Python codes for most of the 

standard neural network architectures discussed in this paper 

can be found in these Github repositories [84][85] with 

examples. For non-standard model design, TensorFlow also 

provides low-level programming interfaces for more custom 

and complex operations based on its symbolic building blocks, 

which are documented in detail in [86].  

VIII. CONCLUSIONS 

In this paper, we discussed how the rich body of ML 

techniques can be applied as a unique and powerful set of signal 

processing tools in fiber-optic communication systems. As 

optical networks become faster, more dynamic and more 

software-defined, we will see an increasing number of 

applications of ML and big data analytics in future networks to 

solve certain critical problems that cannot be easily tackled 

using conventional approaches. A basic knowledge and skills 

in ML will thus become necessary and beneficial for 

researchers in the field of optical communications and 

networking. 

APPENDIX 

For cross-entropy loss function defined in Eq. (14), the 

derivative with respect to the output is given by 

𝜕𝐸(𝑛)

𝜕𝑜𝑗(𝑛)
= −

𝑦𝑗(𝑛)

𝑜𝑗(𝑛) 
. (36) 

With softmax activation function for the output neurons,  

𝜕𝑜𝑗(𝑛)

𝜕𝑟𝑘(𝑛)
=
(∑ 𝑒𝑟𝑚(𝑛)𝐾

𝑚=1 )𝑒𝑟𝑗(𝑛)𝛿𝑗,𝑘 − 𝑒
𝑟𝑗(𝑛) ⋅ 𝑒𝑟𝑘(𝑛)

(∑ 𝑒𝑟𝑚(𝑛)𝐾
𝑚=1 )2

 

=
(∑ 𝑒𝑟𝑚(𝑛)𝐾

𝑚=1 )𝑒𝑟𝑗(𝑛)𝛿𝑗,𝑘 − 𝑒
𝑟𝑗(𝑛) ⋅ 𝑒𝑟𝑘(𝑛)

(∑ 𝑒𝑟𝑘(𝑛)𝐾
𝑘=1 )2

 

= 𝑜𝑗(𝑛)𝛿𝑗,𝑘 − 𝑜𝑗(𝑛)𝑜𝑘(𝑛) 

(37) 

where 𝛿𝑗,𝑘 = 1 when 𝑗 = 𝑘 and 0 otherwise. Consequently,  

𝜕𝐸(𝑛)

𝜕𝑟𝑘(𝑛)
=∑

𝜕𝐸(𝑛)

𝜕𝑜𝑗(𝑛)

𝐾

𝑗=1

𝜕𝑜𝑗(𝑛)

𝜕𝑟𝑘(𝑛)
 

=∑−
𝑦𝑗(𝑛)

𝑜𝑗(𝑛) 
(𝑜𝑗(𝑛)𝛿𝑗,𝑘 − 𝑜𝑗(𝑛)𝑜𝑘(𝑛))

𝐾

𝑗=1

 

=∑−𝑦𝑗(𝑛) (𝛿𝑗,𝑘 − 𝑜𝑘(𝑛)) = 𝑜𝑘(𝑛) − 𝑦𝑘(𝑛)

𝐾

𝑗=1

 

(38) 

as ∑ 𝑦𝑗(𝑛) = 1
𝐾
𝑗=1 . Therefore, 

𝜕𝐸(𝑛)

𝜕𝐫(𝑛)
=  𝐨(𝑛) − 𝐲(𝑛). 
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Now, since 
𝜕𝐫(𝑛)

𝜕𝐛2
,  
𝜕𝐫(𝑛)

𝜕𝐛1
,  
𝜕𝑟𝑘(𝑛)

𝜕𝐖2
,  
𝜕𝑟𝑘(𝑛)

𝜕𝐖1
 are the same as 

𝜕𝐨(𝑛)

𝜕𝐛2
,  
𝜕𝐨(𝑛)

𝜕𝐛1
,  
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
,  
𝜕𝑜𝑘(𝑛)

𝜕𝐖1
 for MSE loss function and linear 

activation function for the output neurons (as 𝐨(𝑛) = 𝐫(𝑛) for 

that case), it follows that the update equations Eq. (8) to Eq. 

(12) also hold for the ANNs with cross-entropy loss function 

and softmax activation function for the output neurons. 
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