
1

Abstract— Machine Learning (ML) has disrupted a wide range of

science and engineering disciplines in recent years. ML

applications in optical communications and networking are also

gaining more attention, particularly in the areas of nonlinear

transmission systems, optical performance monitoring (OPM) and

cross-layer network optimizations for software-defined networks

(SDNs). However, the extent to which ML techniques can benefit

optical communications and networking is not clear and this is

partly due to an insufficient understanding of the nature of ML

concepts. This review article aims to describe the mathematical

foundations of basic ML techniques from communication theory

and signal processing perspectives, which in turn will shed light on

the types of problems in optical communications and networking

that naturally warrant ML use. This will be followed by an

overview of ongoing ML research in optical communications and

networking with a focus on physical layer issues.

Index Terms—Machine learning, deep learning, artificial

intelligence, optical communications, software-defined networks,

optical performance monitoring.

I. INTRODUCTION

Artificial intelligence (AI) makes use of computers/machines to

perform cognitive tasks, i.e., the ones requiring knowledge,

perception, learning, reasoning, understanding and other

similar cognitive abilities. An AI system is expected to do three

things: (i) store knowledge, (ii) apply the stored knowledge to

solve problems, and (iii) acquire new knowledge via experience.

The three key components of an AI system include knowledge

representation, machine learning (ML), and automated

reasoning. ML is a branch of AI which is based on the idea that

patterns and trends in a given data set can be learned

automatically through algorithms. The learned patterns and

structures can then be used to make decisions or predictions on

some other data in the system of interest [1].

ML is not a new field as ML-related algorithms exist at least

since the 1970s. However, tremendous increase in

computational power over the last decade, recent

groundbreaking developments in theory and algorithms

surrounding ML, and easy access to an overabundance of all

types of data worldwide (thanks to three decades of Internet

growth) have all contributed to the advent of modern deep

learning (DL) technology, a class of advanced ML approaches

that displays superior performance in an ever-expanding range

of domains. In the near future, ML is expected to power

 Manuscript received July, 2018. This work was supported by Hong Kong
Government General Research Fund under project number PolyU 152757/16E

as well as by National Natural Science Foundation China under project numbers

61435006 and 61401020. (Corresponding author: Faisal Nadeem Khan.)
 F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau are with Photonics Research

Centre, (Need to separate us and Prof. Lu into EE and EIE)The Hong Kong

numerous aspects of modern society such as web searches,

computer translation, content filtering on social media

networks, healthcare, finance, and laws [2].

ML is an interdisciplinary field which shares common

threads with the fields of statistics, optimization, information

theory, and game theory. Most ML algorithms perform one of

the following two types of pattern recognition tasks as shown

in
 (a) (b)

 (c) (d)
Fig. 1. In the first type, the algorithm tries to find some

functional description of given data with the aim of predicting

values for new inputs, i.e., regression problem. The second type

attempts to find suitable decision boundaries to distinguish

different data classes, i.e., classification problem [3], which is

more commonly referred to as clustering problem in ML

literature. ML techniques are well known for performing

exceptionally well in scenarios in which it is too hard to

explicitly describe the problem’s underlying physics and

mathematics.

 (a) (b)

Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. (e-
mail: fnadeem.khan@yahoo.com; remi.qr.fan@gmail.com

chao.lu@polyu.edu.hk; eeaptlau@polyu.edu.hk).

An Optical Communication’s Perspective on

Machine Learning and its Applications

Faisal Nadeem Khan, Qirui Fan, Chao Lu, and Alan Pak Tao Lau

This is the Pre-Published Version.
The following publication F. N. Khan, Q. Fan, C. Lu and A. P. T. Lau, "An Optical Communication's Perspective on Machine Learning and Its
Applications," in Journal of Lightwave Technology, vol. 37, no. 2, pp. 493-516, 15 Jan.15, 2019 is available at https://doi.org/10.1109/
JLT.2019.2897313.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mailto:fnadeem.khan@yahoo.com

 2

 (c) (d)
Fig. 1. Given a data set, ML attempts to solve two main types of problems: (a)

functional description of given data and (b) classification of data by deriving

appropriate decision boundaries. (c) Laser frequency offset and phase
estimation for quadrature phase-shift keying (QPSK) systems by raising the

signal phase 𝜙 to the 4th power and performing regression to estimate the slope

and intercept. (d) Decision boundaries for a received QPSK signal distribution.

Optical communication researchers are no strangers to

regressions and classifications. Over the last decade, coherent

detection and digital signal processing (DSP) techniques have

been the cornerstone of optical transceivers in fiber-optic

communication systems. Advanced modulation formats such as

16 quadrature amplitude modulation (16-QAM) and above

together with DSP-based estimation and compensation of

various transmission impairments such as laser phase noise

have become the key drivers of innovation. In this context,

parameter estimation and symbol detection are naturally

regression and classification problems, respectively, as

demonstrated by examples in

 (a) (b)

 (c) (d)

Fig. 1(c) and (d). Currently, most of these parameter

estimation and decision rules are derived from probability

theory and adequate understanding of the problem’s underlying

physics. As high-capacity optical transmission links are

increasingly being limited by transmission impairments such as

fiber nonlinearity, explicit statistical characterizations of

inputs/outputs become difficult. An example of 16-QAM multi-

span dispersion-free transmissions in the presence of fiber

nonlinearity and inline amplifier noise is shown in

Fig. 2(a). The maximum likelihood decision boundaries in

this case are curved and virtually impossible to derive

analytically. Consequently, there has been an increasing

amount of research on the application of ML techniques for

fiber nonlinearity compensation (NLC). Another related area

where ML flourishes is short-reach direct detection systems that

are affected by chromatic dispersion (CD), laser chirp and other

transceiver components imperfections, which render the overall

communication system hard to analyze.

 (a) (b)
Fig. 2. (a) Probability distribution and corresponding optimal decision

boundaries for received 16-QAM symbols in the presence of fiber nonlinearity
are hard to characterize analytically. (b) Probability distribution of received 64-

QAM signal amplitudes. The distribution can be used to monitor optical signal-

to-noise ratio (OSNR) and identify modulation format. However, this task will
be extremely difficult if one relies on analytical modeling.

Optical performance monitoring (OPM) is another area with

an increasing amount of ML-related research. OPM is the

acquisition of real-time information about different channel

impairments ubiquitously across the network to ensure reliable

network operation and/or improve network capacity. Often,

OPM is cost-limited so that one can only employ simple

hardware components and obtain partial signal features to

monitor different channel parameters such as OSNR, optical

power, CD, etc. [4]. In this case, the mapping between input and

output parameters is intractable from underlying

physics/mathematics, which in turn warrants ML. An example

of OSNR monitoring using received signal amplitudes

distribution is shown in

Fig. 2(b).

Besides physical layer-related developments, optical

network architectures and operations are also undergoing major

paradigm shifts under the software-defined networking (SDN)

framework and are increasingly becoming complex, transparent

and dynamic in nature [5]. One of the key features of SDNs is

that they can assemble large amounts of data and perform so-

 3

called big data analysis to estimate the network states as shown

in

Fig. 3. This in turn can enable (i) adaptive provisioning of

resources such as wavelength, modulation format, routing path,

etc., according to dynamic traffic patterns and (ii) advance

discovery of potential components faults so that preventative

maintenance can be performed to avoid major network

disruptions. The data accumulated in SDNs can span from

physical layer (e.g., OSNR of a certain channel) to network

layer (e.g., client-side speed demand) and obviously have no

underlying physics to explain their interrelationships.

Extracting patterns from such cross-layer parameters naturally

demands the use of data-driven algorithms such as ML.

Fig. 3. Dynamic network resources allocation and link capacity maximization

via cross-layer optimization in SDNs.

This review paper is intended for the researchers in optical

communications with a basic background in probability theory,

communication theory and standard DSP techniques used in

fiber-optic communications such as matched filters, maximum

likelihood/maximum a posteriori (MAP) detection,

equalization, adaptive filtering, etc. In this regard, a large class

of ML techniques such as Kalman filtering, Bayesian learning,

hidden Markov models (HMMs), etc., are actually standard

statistical signal processing methods, and hence will not be

covered here. We will first introduce artificial neural networks

(ANNs) and support vector machines (SVMs) from

communication theory and signal processing perspectives. This

will be followed by other popular ML techniques like K-means

clustering, expectation-maximization (EM) algorithm,

principal component analysis (PCA), independent component

analysis (ICA), as well as more recent DL approaches such as

deep neural networks (DNNs), convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). The analytical

derivations presented in this paper are slightly different from

those in standard introductory ML text to better align with the

fields of communications and signal processing. We will then

provide an overview of applications of ML techniques in

various aspects of optical communications and networking.

We emphasize that this is by no means an exhaustive and in-

depth discussion on state-of-the-art ML techniques and their

respective challenges. Also, the views presented are not the

only way to understand the fundamental properties of ML

methods. By discussing ML through the language of

communications and DSP, we hope to provide a more intuitive

understanding of ML, its relation to optical communications

and networking, and why/where/how it can play a unique role

in specific areas of optical communications and networking.

The rest of the paper is organized as follows. In Section II,

we will illustrate the fundamental conditions that warrant the

use of a neural network and discuss the technical details of

ANNs and SVMs. Section III will describe a range of basic

unsupervised ML techniques and briefly discuss reinforcement

learning (RL). Section IV will be devoted to more recent ML

algorithms. Section V will provide an overview of existing ML

applications in optical communications and networking while

Section VI will discuss their future role. Links for online

resources and codes for standard ML algorithms will be

provided in Section VII. Section VIII will conclude the paper.

A video presentation of the paper is available at [6].

II. ANNS AND SVMS

What are the conditions that need ML for classification?

Fig. 4 shows three scenarios with 2-dimensional (2D) data 𝐱 =
[𝑥1 𝑥2]

T and their respective class labels depicted as ‘o’ and ‘’

in the figure. In the first case, classifying the data is

straightforward: the decision rule is to see whether 𝜎(𝑥1 − 𝑐)
or 𝜎(𝑥2 − 𝑐) is greater or less than 0 where 𝜎(⋅) is the decision

function as shown. The second case is slightly more

complicated as the decision boundary is a slanted straight line.

However, a simple rotation and shifting of the input, i.e., 𝐖𝐱+
𝐛 will map one class of data to below zero and the other class

above. Here, the rotation and shifting are described by matrix

𝐖 and vector 𝐛, respectively. This is followed by the decision

function 𝜎(𝐖𝐱 + 𝐛). The third case is even more complicated.

The region for the ‘green’ class depends on the outputs of the

‘red’ and ‘blue’ decision boundaries. Therefore, one will need

to implement an extra decision step to label the ‘green’ region.

The graphical representation of this ‘decision of decisions’

algorithm is the simplest form of an ANN [7]. The intermediate

decision output units are known as hidden neurons and they

form the hidden layer.

 4

Fig. 4. The complexity of classification problems depends on how the different
classes of data are distributed across the variable space.

A. Artificial Neural Networks (ANNs)

Let {(𝐱(1), 𝐲(1)), (𝐱(2), 𝐲(2)), … (𝐱(𝐿), 𝐲(𝐿))} be a set of L

input-output pairs of M and K dimensional column vectors.

ANNs are information processing systems comprising of an

input layer, one or more hidden layers, and an output layer. The

structure of a single hidden layer ANN with M input, H hidden

and K output neurons, respectively, is shown in

Fig. 5. Neurons in two adjacent layers are interconnected where

each connection has a variable weight assigned. Such ANN

architecture is the simplest and most commonly-used one [7].

The number of neurons M in the input layer is determined by

the dimension of the input data vectors x(l). The hidden layer

enables the modeling of complex relationships between the

input and output parameters of an ANN. There are no fixed

rules for choosing the optimum number of neurons for a given

hidden layer and the optimum number of hidden layers in an

ANN. Typically, the selection is made via experimentation,

experience and other prior knowledge of the problem. These are

known as the hyperparameters of an ANN. For regression

problems, the dimension K of the vectors 𝐲(𝑙) depends on the

actual problem nature. For classification problems, K typically

equals to the number of class labels such that if a data point 𝐱(𝑙)
belongs to class k, 𝐲(𝑙) = [0 0⋯0 1 0⋯0 0]T where the ‘1’ is

located at the kth position. This is called one-hot encoding. The

ANN output 𝐨(𝑙) will naturally have the same dimension as

𝐲(𝑙) and the mapping between input x (𝑙) and 𝐨(𝑙) can be

expressed as

𝐨(𝑙) = 𝜎2(𝐫(𝑙))
= 𝜎2(𝐖2𝐮(𝑙) + 𝐛2)
= 𝜎2(𝐖2 𝜎1(𝐪(𝑙)) + 𝐛2)
= 𝜎2(𝐖2 𝜎1(𝐖1 𝐱(𝑙) + 𝐛1) + 𝐛2)

(1)

where 𝜎1(2)(⋅) are the activation functions for the hidden and

output layer neurons, respectively. W1 and W2 are matrices

containing the weights of connections between the input and

hidden layer neurons and between the hidden and output layer

neurons, respectively, while b1 and b2 are the bias vectors for

the hidden and output layer neurons, respectively. For a vector

𝐳 = [𝑧1 𝑧2 ⋯ 𝑧𝐾] of length 𝐾 , 𝜎1(⋅) is typically an element-

wise nonlinear function such as the sigmoid function

𝜎1(𝐳) = [
1

1 + 𝑒−𝑧1

1

1 + 𝑒−𝑧2
 ⋯

1

1 + 𝑒−𝑧𝐾
]. (2)

As for the output layer neurons, 𝜎2(⋅) is typically chosen to be

a linear function for regression problems. In classification

problems, one will normalize the output vector o(𝑙) using the

softmax function, i.e.,

𝐨(𝑙) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖2 𝐮(𝑙) + 𝐛2) (3)

where

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐳) =
1

∑ 𝑒𝑧𝑘𝐾
𝑘=1

[𝑒𝑧1 𝑒𝑧2 ⋯ 𝑒𝑧𝐾] . (4)

The softmax operation ensures that the ANN outputs conform

to a probability distribution for reasons we will discuss below.

To train the ANN is to optimize all the parameters 𝜃 =
{𝐖1,𝐖2, 𝐛1, 𝐛2} such that the difference between the actual

ANN outputs o and the target outputs y is minimized. One

commonly-used objective function (also called loss function in

ML literature) to optimize is the mean square error (MSE)

𝐸 =
1

𝐿
∑𝐸(𝑙)

𝐿

𝑙=1

=
1

𝐿
∑‖𝐨(𝑙) − 𝐲(𝑙)‖2
𝐿

𝑙=1

 (5)

Like most optimization procedures in practice, gradient descent

is used instead of full analytical optimization. In this case, the

parameter estimates for n+1th iteration are given by

Fig. 5. Structure of a single hidden layer ANN with input vector x(l), target
vector y(l) and actual output vector o(l).

𝜃(𝑛+1) = 𝜃(𝑛) − 𝛼
𝜕𝐸

𝜕𝜃
|
𝜃(𝑛)

 (6)

where the step size 𝛼 is known as the learning rate. Note that

for computational efficiency, one can use a single input-output

pair instead of all the 𝐿 pairs for each iteration in Eq. (6). This

is known as stochastic gradient descent (SGD) which is the

standard optimization method used in common adaptive DSP

such as constant modulus algorithm (CMA) and least mean

squares (LMS) algorithm. As a trade-off between

computational efficiency and accuracy, one can use a mini-

batch of data {(𝐱(𝑛𝑃 + 1), 𝐲(𝑛𝑃 + 1)), ((𝐱(𝑛𝑃 + 2), 𝐲(𝑛𝑃 +

2)))… (𝐱(𝑛𝑃 + 𝑃), 𝐲(𝑛𝑃 + 𝑃))} of size 𝑃 for the nth iteration

instead. This can reduce the stochastic nature of SGD and

 5

improve accuracy. When all the data set has been used, the

update algorithm will have completed one epoch. However, it

is often the case that one epoch equivalent of updates is not

enough for all the parameters to converge to their optimal

values. Therefore, one can reuse the data set and the algorithm

goes through the 2nd epoch for further parameter updates. There

is no fixed rule to determine the number of epochs required for

convergence [8].

The update algorithm is comprised of following main steps:

(i) Model initialization: All the ANN weights and biases are

randomly initialized, e.g., by drawing random numbers from a

normal distribution with zero mean and unit variance; (ii)

Forward propagation: In this step, the inputs x are passed

through the network to generate the outputs o using Eq. (1). The

input can be a single data point, a mini-batch or the complete

set of 𝐿 inputs. This step is named so because the computation

flow is in the natural forward direction, i.e., starting from the

input, passing through the network, and going to the output; (iii)

Backward propagation and weights/biases update: For

simplicity, let us assume SGD using 1 input-output pair
(𝐱(𝑛), 𝐲(𝑛)) for the n+1th iteration, sigmoid activation function

for the hidden layer neurons and linear activation function for

the output layer neurons such that 𝐨(𝑛) = 𝐖2 𝐮(𝑛) + 𝐛2. The

parameters 𝐖2, 𝐛2 will be updated first followed by 𝐖1, 𝐛1 .

Since 𝐸(𝑛) = ‖𝐨(𝑛) − 𝐲(𝑛)‖2 and
𝜕𝐸(𝑛)

𝜕𝐨(𝑛)
= 2(𝐨(𝑛) − 𝐲(𝑛)) ,

the corresponding update equations are

𝐖2
(𝑛+1)

= 𝐖2
(𝑛)
− 2𝛼∑

𝜕𝑜𝑘(𝑛)

𝜕𝐖2

𝐾

𝑘=1

(𝑜𝑘(𝑛) − 𝑦𝑘(𝑛))1

𝐛2
(𝑛+1) = 𝐛2

(𝑛) − 2𝛼
𝜕𝐨(𝑛)

𝜕𝐛2
(𝐨(𝑛) − 𝐲(𝑛))

(7)

where 𝑜𝑘(𝑛) and 𝑦𝑘(𝑛) denote the kth element of vectors 𝐨(𝑛)

and 𝐲(𝑛), respectively. In this case,
𝜕𝐨(𝑛)

𝜕𝐛2
 is the Jacobian matrix

in which the 𝑗th row and mth column is the derivative of the mth

element of 𝐨(𝑛) with respect to the 𝑗th element of 𝐛2. Also, the

𝑗th row and mth column of the matrix
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
 denotes the

derivative of 𝑜𝑘(𝑛) with respect to the 𝑗th row and mth column

of 𝐖2. Interested readers are referred to [9] for an overview of

matrix calculus. Since 𝐨(𝑛) = 𝐖2 𝐮(𝑛) + 𝐛2 ,
𝜕𝐨(𝑛)

𝜕𝐛2
 is simply

the identity matrix. For
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
, its 𝑘th row is equal to 𝐮(𝑛)T

(where (⋅)T denotes transpose) and is zero otherwise. Eq. (7)

can be simplified as

𝐖2
(𝑛+1) = 𝐖2

(𝑛) − 2𝛼(𝐨(𝑛) − 𝐲(𝑛))𝐮(𝑛)T

𝐛2
(𝑛+1) = 𝐛2

(𝑛) − 2𝛼(𝐨(𝑛) − 𝐲(𝑛)).
(8)

With the updated 𝐖2
(𝑛+1)

and 𝐛2
(𝑛+1)

, one can calculate

𝐖1
(𝑛+1) = 𝐖1

(𝑛) − 2𝛼∑
𝜕𝑜𝑘(𝑛)

𝜕𝐖1

𝐾

𝑘=1

(𝑜𝑘(𝑛) − 𝑦𝑘(𝑛))

𝐛1
(𝑛+1) = 𝐛1

(𝑛) − 2𝛼
𝜕𝐨(𝑛)

𝜕𝐛1
(𝐨(𝑛) − 𝐲(𝑛)).

(9)

1 One can also express the update of 𝐖2 using 3rd-order tensor notation

𝜕𝒐(𝑛)

𝜕𝐖2

as supposed to ∑
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
𝑘 .

Since the derivative of the sigmoid function is given by 𝜎1
′(𝐳) =

𝜎1(𝐳) ∘ (𝟏 − 𝜎1(𝐳)) where ∘ denotes element-wise

multiplication and 𝟏 denotes a column vector of 1’s with the

same length as 𝐳,

𝜕𝐨(𝑛)

𝜕𝐛1
=
𝜕𝐪(𝑛)

𝜕𝐛1

𝜕𝐮(𝑛)

𝜕𝐪(𝑛)

𝜕𝐨(𝑛)

𝜕𝐮(𝑛)

= diag{𝐮(𝑛) ∘ (𝟏 − 𝐮(𝑛))} ⋅ (𝐖2
(𝑛+1))

T

(10)

where diag{𝐳} denotes a diagonal matrix with diagonal

vector 𝐳. Next,

𝜕𝑜𝑘(𝑛)

𝜕𝐖1

=∑
𝜕𝑜𝑘(𝑛)

𝜕𝑢𝑗(𝑛)

𝜕𝑢𝑗(𝑛)

𝜕𝑞𝑗(𝑛)

𝜕𝑞𝑗(𝑛)

𝜕𝐖1
𝑗

=∑𝑤2,𝑘,𝑗
(𝑛+1)𝑢𝑗(𝑛)(1 − 𝑢𝑗(𝑛))

𝜕𝑞𝑗(𝑛)

𝜕𝐖1
𝑗

(11)

where 𝑤2,𝑘,𝑗
(𝑛+1)

 is the 𝑘th row and 𝑗th column entry of 𝐖2
(𝑛+1)

.

For
𝜕𝑞𝑗(𝑛)

𝜕𝐖1
, its 𝑗th row is 𝐱(𝑛)T and is zero otherwise. Eq. (11)

can be simplified as

𝜕𝑜𝑘(𝑛)

𝜕𝐖1

= ((𝐰2,𝑘
(𝑛+1))

T
∘ 𝐮(𝑛) ∘ (𝟏 − 𝐮(𝑛))) 𝐱(𝑛)T (12)

where 𝐰2,𝑘
(𝑛+1)

 is the 𝑘th row of 𝐖2
(𝑛+1)

. Since the parameters

are updated group by group starting from the output layer back

to the input layer, this algorithm is called back-propagation

(BP) algorithm (Not to be confused with the digital back-

propagation (DBP) algorithm for fiber NLC). The weights and

biases are continuously updated until convergence.

For the learning and performance evaluation of an ANN, the

data sets are typically divided into three groups: training,

validation and testing. The training data set is used to train the

ANN. Clearly, a larger training data set is better since the more

data an ANN sees, the more likely it is that it has encountered

examples of all possible types of input. However, the learning

time also increases with the training data size. There is no fixed

rule for determining the minimum amount of training data

needed since it often depends on the given problem. A rule of

thumb typically used is that the size of the training data should

be at least 10 times the total number of weights [1]. The purpose

of the validation data set is to keep a check on how well the

ANN is doing as it learns since during training there is an

inherent danger of over-fitting (or over-training). In this case,

instead of finding the underlying general decision boundaries

as shown in Fig. 6(a), the ANN tends to perfectly fit the training

data (including any noise components of them) as shown in Fig.

6(b). This in turn makes the ANN customized for a few data

points and reduces its generalization capability, i.e., its ability

to make predictions about new inputs which it has never seen

before. The overfitting problem can be avoided by constantly

examining ANN’s error performance during the course of

training against an independent validation data set and

enforcing an early termination of the training process if the

validation data set gives large errors. Typically, the size of the

 6

validation data set is just a fraction ( 1/3) of that of training

data set. Finally, the testing data set evaluates the performance

of the trained ANN. Note that an ANN may also be subjected

to under-fitting problem which occurs when it is under-trained

and thus unable to perform at an acceptable level as shown in

Fig. 6(c). Under-fitting can again lead to poor ANN

generalization. The reasons for under-fitting include

insufficient training time or number of iterations, inappropriate

choice of activation functions, and/or insufficient number of

hidden neurons used.

 (a) (b) (c)

Fig. 6. Example illustrating ANN learning processes with (a) no over-fitting or
under-fitting, (b) over-fitting, and (c) under-fitting.

It should be noted that given an adequate number of hidden

neurons, proper nonlinearities, and appropriate training, an

ANN with one hidden layer has great expressive power and can

approximate any continuous function in principle. This is called

the universal approximation theorem [10]. One can intuitively

appreciate this characteristic by considering the classification

problem in Fig. 7. Since each hidden neuron can be represented

as a straight-line decision boundary, any arbitrary curved

boundary can be approximated by a collection of hidden

neurons in a single hidden layer ANN. This important property

of an ANN enables it to be applied in many diverse applications.

B. Choice of Activation Functions

The choice of activation functions has a significant effect on the

training dynamics and final ANN performance. Historically,

sigmoid and hyperbolic tangent have been the most commonly-

used nonlinear activation functions for hidden layer neurons.

However, the rectified linear unit (ReLU) activation function

Fig. 7. Decision boundaries for appropriate data classification obtained using
an ANN.

has become the default choice among ML community in recent

years. The above-mentioned three functions are given by

Sigmoid: 𝜎(𝑧) =
1

1 + 𝑒−𝑧

Hyperbolic tangent: 𝜎(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

Rectified linear unit: 𝜎(𝑧) = max(0, 𝑧)

(13)

and their plots are shown in

Fig. 8. Sigmoid and hyperbolic tangent are both differentiable.

However, a major problem with these functions is that their

gradients tend to zero as |z| becomes large and thus the

activation output gets saturated. In this case, the weights and

biases updates for a certain layer will be minimal, which in turn

will slow down the weights and biases updates for all the

preceding layers. This is known as vanishing gradient problem

and is particularly an issue when training ANNs with large

number of hidden layers. To circumvent this problem, ReLU

was proposed since its gradient does not vanish as z increases.

Note that although ReLU is not differentiable at z = 0, it is not

a problem in practice since the probability of having an entry

exactly equal to 0 is generally very low. Also, as the ReLU

function and its derivative are 0 for z < 0, around 50% of hidden

neurons’ outputs will be 0, i.e., only half of total neurons will

be active when the ANN weights and biases are randomly

initialized. It has been found that such sparsity of activation not

only reduces computational complexity (and thus training time)

but also leads to better ANN performance [11]. Note that while

using the ReLU activation function, the ANN weights and

biases are often initialized using the method proposed by He et

al. [12]. On the other hand, the Xavier initialization technique

[13] is more commonly employed for the hyperbolic tangent

activation function. These heuristics-based approaches

initialize the weights and biases by drawing random numbers

from a truncated normal distribution (instead of a standard

normal distribution) with variance which depends on the size of

the previous ANN layer.

Fig. 8. Common activation functions used in ANNs.
C. Choice of Loss Functions

The choice of loss function E has a considerable effect on the

performance of an ANN. The MSE is a common choice in

adaptive signal processing and other DSP in

telecommunications. For regression problems, MSE works well

in general and is also easy to compute. On the other hand, for

classification problems, the cross-entropy loss function defined

as

 7

𝐸 = −
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔(𝑜𝑘(𝑙))

𝐾

𝑘=1

𝐿

𝑙=1

 (14)

is often used instead of the MSE [10]. The cross-entropy

function can be interpreted by viewing the softmax output 𝐨(𝑙)

and the class label with one-hot encoding 𝐲(𝑙) as probability

distributions. In this case, 𝐲(𝑙) has zero entropy and one can

subtract the zero-entropy term from Eq. (14) to obtain

𝐸 = −
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔(𝑜𝑘(𝑙))

𝐾

𝑘=1

𝐿

𝑙=1

+
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔(𝑦𝑘(𝑙))

𝐾

𝑘=1

𝐿

𝑙=1⏟
=0

=
1

𝐿
∑∑𝑦𝑘(𝑙)𝑙𝑜𝑔 (

𝑦𝑘(𝑙)

𝑜𝑘(𝑙)
)

𝐾

𝑘=1

𝐿

𝑙=1

(15)

which is simply the Kullback-Leibler (KL) divergence between

the distributions 𝐨(𝑙) and 𝐲(𝑙) averaged over all input-output

pairs. Therefore, the cross-entropy is in fact a measure of the

similarity between ANN outputs and the class labels. The cross-

entropy function also leads to simple gradient updates as the

logarithm cancels out the exponential operation inherent in the

softmax calculation, thus leading to faster ANN training. The

Appendix shows the derivation of BP algorithm for the single

hidden layer ANN in

Fig. 5 with cross-entropy loss function and softmax activation

function for the output layer neurons.

In many applications, a common approach to prevent over-

fitting is to reduce the magnitude of the weights as large weights

produce high curvatures which make the decision boundaries

overly complicated. This can be achieved by including an extra

regularization term in the loss function, i.e.,

𝐸′ = 𝐸 + 𝜆‖𝐖‖2 (16)

where ‖𝐖‖2 is the sum of squared element-wise weights. The

parameter λ, called regularization coefficient, defines the

relative importance of the training error E and the regularization

term. The regularization term thus discourages weights from

reaching large values and this often results in significant

improvement in ANN’s generalization ability [14].

D. Support Vector Machines (SVMs)

In many classification tasks, it often happens that the two data

categories are not easily separable with straight lines or planes

in the original variable space. SVM is an ML technique that

preprocesses the input data 𝐱(𝑖) and transforms it into

(sometimes) a higher-dimensional space 𝐯(𝑖) = 𝜑(𝐱(𝑖)) ,

called feature space, where the data belonging to two different

classes can be separated easily by a simple straight plane

decision boundary or hyperplane [15]. An example is shown in

Fig. 9 where one class of data lies within a circle of radius 3 and

the other class lies outside. When transformed into the feature

Fig. 9. Example showing how a linearly inseparable problem (in the original 2D data
space) can undergo a nonlinear transformation and becomes a linearly separable one in the

3-dimensional (3D) feature space.

space 𝐯 = (𝑣1, 𝑣2, 𝑣3) = (𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2), the two data classes

can be separated simply by the hyperplane 𝑣3 = 9.

Let us first focus on finding the right decision hyperplane

after the transformation into feature space as shown in

Fig. 10(a). The right hyperplane should have the largest (and

also equal) distance from the borderline points of the two data

classes. This is graphically illustrated in

Fig. 10(b). Had the data points been generated from two

probability density functions (PDFs), finding a hyperplane with

maximal margin from the borderline points is conceptually

analogous to finding a maximum likelihood decision boundary.

The borderline points, represented as solid dot and square in

Fig. 10(b), are referred to as support vectors and are often

most informative for the classification task.

(a)

 8

(b)

Fig. 10. (a) Maping from input space to a higher-dimensional feature space using a

nonlinear kernel function . (b) Separation of two data classes in the feature space through

an optimal hyperplane.

More technically, in the feature space, a general hyperplane

is defined as 𝐰T𝐯 + 𝑏 = 0. If it classifies all the data points

correctly, all the blue points will lie in the region 𝐰T𝐯 + 𝑏 > 0

and the red points will lie in the region 𝐰T𝐯 + 𝑏 < 0. We seek

to find a hyperplane 𝐰T𝐯 + 𝑏 = 0 that maximizes the margin

𝑑 as shown in

Fig. 10(b). Without loss of generality, let the point 𝐯(𝑖) reside

on the hyperplane 𝐰T𝐯 + 𝑏 = 1 and is closest to the

hyperplane 𝐰T𝐯 + 𝑏 = 0 on which 𝐯+ resides. Since the

vectors 𝐯(𝑖) − 𝐯+, 𝐰 and the angle 𝜙 are related by 𝑐𝑜𝑠𝜙 =

𝐰T(𝐯(𝑖) − 𝐯+) (‖𝐰‖‖𝐯(𝑖) − 𝐯+‖)⁄ , the margin 𝑑 is given as

𝑑 = ‖𝐯(𝑖) − 𝐯+‖𝑐𝑜𝑠𝜙

= ‖𝐯(𝑖) − 𝐯+‖ ⋅
𝐰T(𝐯(𝑖) − 𝐯+)

‖𝐰‖‖𝐯(𝑖) − 𝐯+‖

=
𝐰T(𝐯(𝑖) − 𝐯+)

‖𝐰‖
=
𝐰T𝐯(𝑖) − 𝐰T𝐯+

‖𝐰‖

=
𝐰T𝐯(𝑖) + 𝑏

‖𝐰‖
=

1

‖𝐰‖
.

(17)

Therefore, we seek to find 𝐰, 𝑏 that maximize 1/‖𝐰‖ subject

to the fact that all the data points are classified correctly. To

characterize the constraints more mathematically, one can first

assign the blue class label to 1 and red class label to −1. In this

case, if we have correct decisions for all the data points, the

product 𝑦(𝑖)(𝐰T𝐯(𝑖) + 𝑏) will always be greater than 1 for all

i. The optimization problem then becomes

argmin
𝐰,𝑏

1

‖𝐰‖

subject to 𝑦(𝑙)(𝐰T𝐯(𝑙) + 𝑏) ≥ 1, 𝑙 = 1, 2, … , 𝐿

(18)

and thus standard convex programming software packages such

as CVXOPT [16] can be used to solve Eq. (18).

Let us come back to the task of choosing the nonlinear

function 𝜑(⋅) that maps the original input space 𝐱 to feature

space 𝐯. For SVM, one would instead find a kernel function

𝐾(𝐱(𝑖), 𝐱(𝑗)) = 𝜑(𝐱(𝑖)) ⋅ 𝜑(𝐱(𝑗)) = 𝐯(𝑖)T𝐯(𝑗) that maps to

the inner product. Typical kernel functions include:

• Polynomials: 𝐾(𝐱(𝑖), 𝐱(𝑗)) = (𝐱(𝑖)T𝐱(𝑗) + 𝑎)𝑏 for

some scalars 𝑎, 𝑏

• Gaussian radial basis function: 𝐾(𝐱(𝑖), 𝐱(𝑗)) =

exp (−𝑎‖𝐱(𝑖) − 𝐱(𝑗)‖2) for some scalar a

• Hyperbolic tangent: 𝐾(𝐱(𝑖), 𝐱(𝑗)) =

tanh(𝑎𝐱(𝑖)T𝐱(𝑗) + 𝑏) for some scalars 𝑎, 𝑏.

The choice of a kernel function is often determined by the

designer’s knowledge of the problem domain [3]. Note that a

larger separation margin typically results in better

generalization of the SVM classifier. SVMs often demonstrate

better generalization performance than conventional ANNs in

various pattern recognition applications. Furthermore, multiple

SVMs can be applied to the same data set to realize non-binary

classifications such as detecting 16-QAM signals [17][18][19]

(to be discussed in more detail in Section V).

It should be noted that ANNs and SVMs can be seen as two

complementary approaches for solving classification problems.

While an ANN derives curved decision boundaries in the input

variable space, the SVM performs nonlinear transformations of

the input variables followed by determining a simple decision

boundary or hyperplane as shown in

Fig. 11.

III. UNSUPERVISED AND REINFORCEMENT LEARNING

The ANN and SVM are examples of supervised learning

approach in which the class labels 𝐲 of the training data are

known. Based on this data, the ML algorithm generalizes to

 9

Fig. 11. Example showing how an ANN determines a curved decision boundary

in the original input space while an SVM obtains a simple decision boundary

in the transformed feature space.

react accurately to new data to the best possible extent.

Supervised learning can be considered as a closed-loop

feedback system as the error between the ML algorithm’s actual

outputs and the targets is used as a feedback signal to guide the

learning process.

In unsupervised learning, the ML algorithm is not provided

with correct labels of the training data. Rather, it learns to

identify similarities between various inputs with the aim to

either categorize together those inputs which have something in

common or to determine some better representation/description

of the original input data. It is referred to as “unsupervised”

because the ML algorithm is not told what the output should be

rather it has to come up with it itself [20]. One example of

unsupervised learning is data clustering as shown in

Fig. 12.

Fig. 12. Data clustering based on unsupervised learning.

Unsupervised learning is becoming more and more important

because in many real circumstances it is practically not possible

to obtain labeled training data. In such scenarios, an

unsupervised learning algorithm can be applied to discover

some similarities between different inputs for itself.

Unsupervised learning is typically used in tasks such as

clustering, vector quantization, dimensionality reduction, and

features extraction. It is also often employed as a preprocessing

tool for extracting useful (in some particular context) features

of the raw data before supervised learning algorithms can be

applied. We hereby provide a review of few key unsupervised

learning techniques.

A. K-means Clustering

Let {𝐱(1), 𝐱(2), … 𝐱(𝐿)} be the set of data points which is to be

split into K clusters 𝐶1, 𝐶2, … 𝐶𝐾 . K-means clustering is an

iterative unsupervised learning algorithm which aims to

partition L observations into K clusters such that the sum of

squared errors for data points within a group is minimized [14].

An example of this algorithm is graphically shown in

Fig. 13. The algorithm initializes by randomly picking K

locations 𝛍(𝑗), j = 1, 2, ..., K as cluster centers. This is followed

by two iterative steps. In the first step, each data point 𝐱(𝑖) is

assigned to the cluster Ck with the minimum Euclidean distance,

i.e.,

𝐶𝑘 = {𝐱(𝑖): ‖𝐱(𝑖) − 𝛍(𝑘)‖ < ‖𝐱(𝑖) − 𝛍(𝑗)‖

  𝑗 ∈ {1, 2, . . . , 𝐾}\{𝑘}}
(19)

In the second step, the new center of each cluster Ck is

calculated by averaging out the locations of data points that are

assigned to cluster Ck, i.e.,

𝛍(𝑘) = ∑ 𝐱(𝑖)

𝐱(𝑖)∈ 𝐶𝑘

 (20)

The two steps are repeated iteratively until the cluster centers

converge. Several variants of K-means algorithm have been

proposed over the years to improve its computational efficiency

as well as to achieve smaller errors. These include fuzzy K-

means, hierarchical K-means, K-means++, K-medians, K-

medoids, etc.

Fig. 13. Example to illustarte initialization and two iterations of K-means algorithm. The

data points are shown as dots and cluster centers are depicted as crosses.

B. Expectation-Maximization (EM) Algorithm

One drawback of K-means algorithm is that it requires the use

of hard decision boundaries whereby a data point can only be

assigned to one cluster even though it might lie somewhere

midway between two or more clusters. The EM algorithm is an

improved clustering technique which assigns a probability to

 10

the data point belonging to each cluster rather than forcing it to

belong to one particular cluster during each iteration [20]. The

algorithm assumes that a given data distribution can be modeled

as a superposition of K jointly Gaussian probability

distributions with distinct means and covariance matrices

𝛍(𝑘), 𝚺(𝑘) (also referred to as Gaussian mixture models). The

EM algorithm is a two-step iterative procedure comprising of

expectation (E) and maximization (M) steps [3]. The E step

computes the a posteriori probability of the class label given

each data point using the current means and covariance matrices

of the Gaussians, i.e.,

𝑝𝑖𝑗 = 𝑝(𝐶𝑗|𝐱(𝑖))

=
𝑝(𝐱(𝑖)|𝐶𝑗)𝑝(𝐶𝑗)

∑ 𝑝(𝐱(𝑖)|𝐶𝑘)𝑝(𝐶𝑘)
𝐾
𝑘=1

=
𝑵(𝐱(𝑖)|𝛍(𝑘), 𝚺(𝑘))

∑ 𝑵(𝐱(𝑖)|𝛍(𝑘), 𝚺(𝑘))𝐾
𝑘=1

(21)

where 𝑵(𝐱(𝑖)|𝛍(𝑘), 𝚺(𝑘)) is the Gaussian PDF with mean and

covariance matrix 𝛍(𝑘), 𝚺(𝑘) . Note that we have inherently

assumed equal probability 𝑝(𝐶𝑗) of each class, which is a valid

assumption for most communication signals. In scenarios

where this assumption is not valid, e.g., the one involving

probabilistic constellation shaping (PCS), the actual non-

uniform probabilities 𝑝(𝐶𝑗) of individual symbols shall instead

be used in Eq. (21). The M step attempts to update the means

and covariance matrices according to the updated soft-labelling

of the data points, i.e.,

𝛍(𝑗) =
∑ 𝑝𝑖𝑗𝐱(𝑖)
𝐿
𝑖=1

∑ 𝑝𝑖𝑗
𝐿
𝑖=1

𝚺(𝑘) =∑𝑝𝑖𝑗(𝐱(𝑖) − 𝛍(𝑗))(𝐱(𝑖) − 𝛍(𝑗))
T

𝐿

𝑖=1

(22)

 A graphical illustration of EM algorithm and its convergence

process is shown in

Fig. 14. Fig. 14(a) shows the original data points in green which

are to be split into two clusters by applying EM algorithm. The

two Gaussian probability distributions are initialized with

random means and unit covariance matrices and are depicted

using red and blue circles. The results after first E step are

shown in Fig. 14(b) where the posterior probabilities in Eq. (21)

are expressed by the proportion of red and blue colors for each

data point. Fig. 14(c) depicts the results after first M step where

the means and covariance matrices of the red and blue Gaussian

distributions are updated using Eq. (22), which in turn uses the

posterior probabilities computed by Eq. (21). This completes

the 1st iteration of the EM algorithm. Fig. 14(d) to (f) show the

results after 2, 5 and 20 complete EM iterations, respectively,

where the convergence of the algorithm and consequently

effective splitting of the data points into two clusters can be

clearly observed.

Fig. 14. Example showing the concept of EM algorithm. (a) Original data points and

initialization. Results after (b) first E step; (c) first M step; (d) 2 complete EM iterations; (e)

5 complete EM iteratons; and (f) 20 complete EM iterations [3].
C. Principal Component Analysis (PCA)

Principal component analysis is an unsupervised learning

technique for features extraction and data representation

[21][22]. PCA is often used as a preprocessing tool in many

pattern recognition applications for the extraction of limited but

most critical data features. The central idea behind PCA is to

project the original high-dimensional data onto a lower-

dimensional feature space that retains most of the information

in the original data as shown in

 (a) (b) (c)

Fig. 15. The reduced dimensionality feature space is spanned by

a small (but most significant) set of orthonormal eigenvectors,

called principal components (PCs). The first PC points in the

direction along which the original data has the greatest

variability and each successive PC in turn accounts for as much

of the remaining variability as possible. Geometrically, we can

think of PCA as a rotation of the axes of the original coordinate

system to a new set of orthogonal axes which are ordered based

on the amount of variation of the original data they account for,

thus achieving dimensionality reduction.

 (a) (b) (c)

Fig. 15. Example to illustarte the concept of PCA. (a) Data points in the original 3D data

space; (b) Three PCs ordered according to the variability in original data; (c) Projection of

data points onto a plane defined by the first two PCs while discarding the third one.

 11

More technically, consider a data set {𝐱(1), 𝐱(2), … 𝐱(𝐿)}
with L data vectors of M dimensions. We will first compute the

mean vector 𝐱̅ =
1

𝐿
∑ 𝐱(𝑖)𝐿
𝑖=1 and the covariance matrix 𝚺 can

then be estimated as

𝚺 ≈
1

𝐿
∑(𝐱(𝑖) − 𝐱̅)(𝐱(𝑖) − 𝐱̅)T
𝐿

𝑖=1

 (23)

where 𝚺 can have up to M eigenvectors (i) and corresponding

eigenvalues i. We then sort the eigenvalues in terms of their

magnitude from large to small and choose the first S (where S

<< M) corresponding eigenvectors such that

∑𝜆𝑖

𝑆

𝑖=1

/∑𝜆𝑖

𝑀

𝑖=1

> 𝑅 (24)

where R is typically above 0.9 [22]. Note that, as compared to

the original M-dimensional data space, the chosen eigenvectors

span only an S-dimensional subspace that in a way captures

most of the data information. One can understand such

procedure intuitively by noting that for a covariance matrix,

finding the eigenvectors with large eigenvalues corresponds to

finding linear combinations or particular directions of the input

space that give large variances, which is exactly what we want

to capture. A data vector x can then be approximated as a

weighted-sum of the chosen eigenvectors in this subspace, i.e.,

𝐱 ≈∑𝑤𝑖𝛍(𝑖)

𝑆

𝑖=1

 (25)

where 𝛍(𝑖), 𝑖 = 1, 2, … , 𝑆 are the chosen orthogonal

eigenvectors such that

𝛍T(𝑚)𝛍(𝑙) = {
1 𝑖𝑓 𝑙 = 𝑚
0 𝑖𝑓 𝑙 ≠ 𝑚

} (26)

Multiplying both sides of Eq. (25) with 𝛍T(𝑘) and then using

Eq. (26), we get

𝑤𝑘 = 𝛍
T(𝑘)𝐱, 𝑘 = 1, 2, … , 𝑆 (27)

The vector w = [w1 w2…wS]T of weights describing the

contribution of each chosen eigenvector 𝛍(𝑘) in representing x

can then be considered as a feature vector of x.

D. Independent Component Analysis (ICA)

Another interesting technique for features extraction and data

representation is ICA. Unlike PCA which uses orthogonal and

uncorrelated components, the components in ICA are instead

required to be statistically independent [1]. In other words, ICA

seeks those directions in the feature space that are most

independent from each other.

 (a) (b)

Fig. 16 illustrates the conceptual difference between PCA and

ICA. Finding the independent components (ICs) of the

observed data can be useful in scenarios where we need to

separate mutually independent but unknown source signals

from their linear mixtures with no information about the mixing

coefficients. An example is the task of polarization

demultiplexing at the receiver using DSP. For a data set

{𝐱(1), 𝐱(2), … , 𝐱(𝐿)}, one seeks to identify a collection of basis

vectors 𝐯(1), 𝐯(2), … 𝐯(𝑆) so that 𝐱 ≈ ∑ 𝑤𝑘𝐯(𝑘)
𝑆
𝑘=1 and the

empirical distributions of 𝑤𝑘 , 𝑘 = 1, 2, … , 𝑆 across all the data

𝐱 are statistically independent. This can be achieved by

minimizing the mutual information between different 𝑤𝑘.

ICA is used as a preprocessing tool for extracting data

features in many pattern recognition applications and is shown

to outperform conventional PCA in many cases [23]. This is

expected because unlike PCA which is derived from second-

order statistics (i.e., covariance matrix) of the input data, ICA

takes into account high-order statistics of the data as it considers

complete probability distribution.

 (a) (b)
Fig. 16. Example 2D data fitted using (a) PCs bases and (b) ICs bases. As shown, the

orthogonal basis vectors in PCA may not be efficient while representing non-orthogonal

density distributions. In contrast, ICA does not necessitate orthogonal basis vectors and can
thus represent general types of densities more effectively.

We would like to highlight here that the dimensionality of

the transformed space in ML techniques can be higher or lower

than the original input space depending upon the nature of the

problem at hand. If the objective of the transformation is to

simply reduce the input data dimensionality (e.g., for

decreasing the computational complexity of the learning

system) then the dimensionality of the transformed space

should be lower than that of original one. On the other hand, a

transformation to a higher-dimensional space may be desirable

if the data classes can be separated more easily by a classifier

in the new space.

E. Reinforcement Learning (RL)

In this learning type, the input of the ML model (called

observation) is associated with a reward or reinforcement signal.

The output (called action) determines the value of the next

observation and hence the reward through the predefined

action-observation relationship of a particular problem. The

objective here is to learn a sequence of actions that optimizes

the final reward. However, unlike supervised learning, the

model is not optimized through SGD-like approaches. Rather,

the model tries different actions until it finds a set of parameters

that lead to better rewards. In RL, the model is rewarded for its

good output result and punished for the bad one. In this way, it

can learn to choose actions which can maximize the expected

reward [24]. Like supervised learning, RL can also be regarded

as a closed-loop feedback system since the RL model’s actions

will influence its later inputs. RL is particularly useful in

solving interactive problems in which it is often impossible to

attain examples of desired behavior which are not only correct

 12

but are also representative of all the possible situations in which

the model may have to act ultimately. In an uncharted territory,

an RL model should be able to learn from its own experiences

instead of getting trained by an external supervisor with a

training data set of labeled examples.

Due to their inherent self-learning and adaptability

characteristics, RL algorithms have been considered for various

tasks in optical networks including network self-configuration,

adaptive resource allocation, etc. In these applications, the

actions performed by the RL algorithms may include choosing

spectrum or modulation format, rerouting data traffic, etc.,

while the reward may be the maximization of network

throughput, minimization of latency or packet loss rate, etc. (to

be discussed in more detail in Section V). Currently, there are

limited applications of RL in the physical layer of optical

communication systems. This is because in most cases the

reward (objective function) can be explicitly expressed as a

continuous and differentiable function of the actions. An

example is the CMA algorithm where the actions are the filter

tap weights and the objective is to produce output signals with

a desired amplitude. For such optimization procedures, we

simply refer to them as adaptive signal processing instead of

RL.

IV. DEEP LEARNING TECHNIQUES

A. Deep Learning vs. Conventional Machine Learning

The recent emergence of DL technologies has taken ML

research to a whole new level. DL algorithms have

demonstrated comparable or better performance than humans in

a lot of important tasks including image recognition, speech

recognition, natural language processing, information retrieval,

etc. [2][25]. Loosely speaking, DL systems consist of multiple

layers of nonlinear processing units (thus deeper architectures)

and may even contain complex structures such as feedback and

memory. DL then refers to learning the parameters of these

architectures for performing various pattern recognition tasks.

One way to interpret DL algorithms is that they automatically

learn and extract higher-level features of data from lower-level

ones as the input propagates through various layers of nonlinear

processing units, resulting in a hierarchical representation of

data. For example, while performing a complex human face

recognition task using a DL-based multilayer ANN (called

DNN), the first layer might learn to detect edges, the second

layer can learn to recognize more complex shapes such as

circles or squares which are built from the edges. The third layer

may then recognize even more complex combinations and

arrangements of shapes such as the location of two ovals and a

triangle in between, which in turn starts to resemble parts of a

human face with two eyes and a nose. Such an ability to

automatically discover and learn features at increasingly high

levels of abstraction empowers DL systems to learn complex

relationships between inputs and outputs directly from the data

instead of using human-crafted features.

As an example of this notion of hierarchical learning, Fig. 17

shows the use of a DNN as well as a conventional ANN on

signal’s eye-diagrams to monitor OSNR. In the first approach,

the eye-diagrams are directly applied as images at the input of

the DNN, as shown in Fig. 17(a), and it is made to automatically

learn and discover OSNR-sensitive features without any human

intervention. The extracted features are subsequently exploited

by DNN for OSNR monitoring. In contrast, with conventional

ANNs, prior knowledge in optical communications is utilized

in choosing suitable features for the task, e.g., the variances of

“1” and “0” levels and eye-opening can be indicative of OSNR.

Therefore, these useful features are manually extracted from the

eye-diagrams and are then used as inputs to an ANN for the

estimation of OSNR as shown in Fig. 17(b). For completeness,

Fig. 17(c) shows an analytical and non-ML approach to

determine OSNR by finding the powers and noise variances that

best fit the noise distributions of “1” and “0” levels knowing

that they follow Rician distribution. In this case, a specific

(a)

(b)

(c)

Fig. 17. Example illustrating OSNR monitoring using eye-diagrams’ features
by applying (a) DNN, (b) conventional ANN, and (c) analytical modeling and

parameters fitting.

Fig. 18. Conceptual differences between rule-based systems, conventional ML,
and DL approaches for pattern recognition.

 13

mathematical formula or computational instruction is pre-coded

into the program and there is nothing to learn from the input

data.

Fig. 18 compares the underpinning philosophies of the three

different approaches discussed above. Note that, in principle,

there is no hard rule on how many layers are needed for an ML

model in a given problem. In practice, it is generally accepted

that when more underlying physics/mathematics of the problem

is used to identify and extract the suitable data features as inputs,

the ML model tends to be simpler.

It should be noted that deep architectures are more efficient

or more expressive than their shallow counterparts [26]. For

example, it has been observed empirically that compared to a

shallow neural network, a DNN requires much fewer number

of neurons and weights (i.e., around 10 times less connections

in speech recognition problems [27]) to achieve the same

performance.

A major technical challenge in DL is that the conventional

BP algorithm and gradient-based learning methods used for

training shallow networks are inherently not effective for

training networks with multiple layers due to the vanishing

gradient problem [2]. In this case, different layers in the

network learn at significantly different speeds during the

training process, i.e., when the layers close to the output are

learning well, the layers close to the input often get stuck. In the

worst case, this may completely stop the network from further

learning. Several solutions have been proposed to address the

vanishing gradient problem in DL systems. These include: (i)

choosing specific activation functions such as ReLU [11], as

discussed earlier; (ii) pretraining of network one layer at a time

in a greedy way and then fine-tuning the entire network through

BP algorithm [28]; (iii) using some special architectures such as

long short-term memory (LSTM) networks [29]; (iv) applying

network optimization approaches which avoid gradients (e.g.,

global search methods such as genetic algorithm). The choice of

a given solution typically depends on the type of DL model

being trained and the degree of computational complexity

involved.

B. Deep Neural Networks (DNNs)

Unlike shallow ANNs, DNNs contain multiple hidden layers

between input and output layers. The structure of a simple three

hidden layers DNN is shown in

Fig. 19 (top). DNNs can be trained effectively using the BP

algorithm. To avoid vanishing gradient problem during training

of DNNs, following two approaches are typically adopted. In

the first method, the ReLU activation function is simply used

for the hidden layers neurons due to its non-saturating nature.

In the second approach, a DNN is first pretrained one layer at a

time and then the training

Fig. 19. Schematic diagram of a three hidden layers DNN (top). Two

autoencoders used for the pretraining of first two hidden layers of the DNN

(bottom). The decoder parts in both autoencoders are shown in grey color with
dotted weight lines.

process is fine-tuned using BP algorithm [28]. For pretraining

of hidden layers of the DNNs, autoencoders are typically

employed which are essentially feed-forward neural networks.

Fig. 19 (bottom) shows two simple autoencoders used for the

unsupervised pretraining of first two hidden layers of the DNN.

First, hidden layer-1 of the DNN is pretrained in isolation using

autoencoder-1 as shown in the figure. The first part of

autoencoder-1 (called encoder) maps input vectors x to a hidden

representation f1 while the second part (called decoder) reverses

this mapping in order to synthesize the initial inputs x. Once

autoencoder-1 learns these mappings successfully, hidden

layer-1 is considered to be pretrained. The original input vectors

x are then passed through the encoder of autoencoder-1 and the

corresponding representations f1 (also called feature vectors) at

the output of pretrained hidden layer-1 are obtained. Next,

 14

vectors f1 are utilized as inputs for the unsupervised pretraining

of hidden layer-2 using autoencoder-2, as depicted in the figure.

This procedure is repeated for the pretraining of hidden layer-3

and the corresponding feature vectors f3 are then used for the

supervised pretraining of final output layer by setting the

desired outputs y as targets. After isolated pretraining of hidden

and output layers, the complete DNN is trained (i.e., fine-tuned)

using BP algorithm with x and y as inputs and targets,

respectively. By adopting this autoencoders-based hierarchical

learning approach, the vanishing gradient problem can be

successfully bypassed in DNNs.

C. Convolutional Neural Networks (CNNs)

CNNs are a type of neural network primarily used for pattern

recognition within images though they have also been applied

in a variety of other areas such as speech recognition, natural

language processing, video analysis, etc. The structure of a

typical CNN is shown in Fig. 20(a) comprising of a few

alternating convolutional and pooling layers followed by an

ANN-like structure towards the end of the network. The

convolutional layer consists of neurons whose outputs only

depend on the neighboring pixels of the input as opposed to

fully-connected (FC) layers in typical ANNs as shown in Fig.

20(b). That is why it is called local network, local connected

network or local receptive field in ML literature. The weights

are also shared across the neurons in the same layer, i.e., each

neuron undergoes the same computation 𝐰T(⋅) + 𝑏 but the

input is a different part of the original image. This is followed

by a decision-like nonlinear activation function and the output

(a)

(b)

(c)

Fig. 20. (a) A simple CNN architecture comprising of two sets of convolutional and

pooling layers followed by an FC layer on top. (b) In a CNN, a node in the next layer

is connected to a small subset of nodes in the previous layer. The weights (indicated by
colors of the edges) are also shared among the nodes. (c) Nonlinear down-sampling of

feature maps via a max-pooling layer.

Fig. 21. Convolution followed by an activation function in a CNN. Viewing

the 𝐰T(⋅) + 𝑏 operation as cross-correlating a 2D function 𝑔(𝑠𝑥, 𝑠𝑦) with the

input image, the overall feature map indicates which location in the original image

best resembles 𝑔(𝑠𝑥, 𝑠𝑦).

is called a feature map or activation map. For the same input

image/layer, one can build multiple feature maps, where the

features are learned via a training process. A parameter

called stride defines how many pixels we slide the 𝐰T(⋅) +
𝑏 filter across the input image horizontally/vertically per

output. The stride value determines the size of a feature

map. Next, a max-pooling or sub-sampling layer operates

over the feature maps by picking the largest value out of 4

neighboring neurons as shown in Fig. 20(c). Max-pooling

is essentially nonlinear down-sampling with the objective to

retain the largest identified features while reduce the

dimensionality of the feature maps.

The 𝐰T(⋅) + 𝑏 operation essentially multiplies part of

the input image with a 2D function 𝑔(𝑠𝑥 , 𝑠𝑦) and sums the

results as shown in Fig. 21. The sliding of 𝑔(𝑠𝑥 , 𝑠𝑦) over all

spatial locations is the same as convolving the input image

with 𝑔(−𝑠𝑥 , −𝑠𝑦) (hence the name convolutional neural

networks). Alternatively, one can also view the 𝐰T(⋅) + 𝑏

operation as cross-correlating 𝑔(𝑠𝑥 , 𝑠𝑦) with the input

image. Therefore, a high value will result if that part of the

input image resembles 𝑔(𝑠𝑥 , 𝑠𝑦) . Together with the

decision-like nonlinear activation function, the overall

feature map indicates which location in the original image

best resembles 𝑔(𝑠𝑥 , 𝑠𝑦), which essentially tries to identify

and locate a certain feature in the input image. With this

insight, the interleaving convolutional and sub-sampling

layers can be intuitively understood as identifying higher-

level and more complex features of the input image.

The training of a CNN is performed using a modified BP

algorithm which updates convolutional filters’ weights and

also takes the sub-sampling layers into account. Since a lot

of weights are supposedly identical as the network is

essentially performing the convolution operation, one will

update those weights using the average of the corresponding

gradients.

D. Recurrent Neural Networks (RNNs)

In our discussion up to this point, different input-output pairs

(𝐱(𝑖), 𝐲(𝑖)) and (𝐱(𝑗), 𝐲(𝑗)) in a data set are assumed to have

no relation with each other. However, in a lot of real-world

applications such as speech recognition, handwriting

recognition, stock market performance prediction, inter-symbol

interference (ISI) cancellation in communications, etc., the

sequential data has important spatial/temporal dependence to be

learned. An RNN is a type of neural network that performs

 15

pattern recognition for data sets with memory. RNNs have

feedback connections, as shown in Fig. 22, and thus enable the

information to be temporarily memorized in the networks [30].

This property allows RNNs to analyze sequential data by

making use of their inherent memory.

Fig. 22. Schematic diagram of an RNN and the unfolding in time.

Consider an RNN as shown in Fig. 22 with an input 𝐱(𝑡), an

output 𝐨(𝑡) and a hidden state 𝐡(𝑡) representing the memory of

the network, where the subscript t denotes time. The model

parameters 𝐖1 , 𝐖2 and 𝐖r are input, output and recurrent

weight matrices, respectively. An RNN can be unfolded in time

into a multilayer network [31], as shown in Fig. 22. Note that

unlike a feed-forward ANN which employs different

parameters for each layer, the same parameters 𝐖1, 𝐖2, 𝐖r are

shared across all steps which reflects the fact that essentially

same task is being performed at each step but with different

inputs. This significantly reduces the number of parameters to

be learned. The hidden state 𝐡(𝑡) and output 𝐨(𝑡) at time step t

can be computed as

𝐡(𝑡) = 𝜎1(𝐖1 𝐱(𝑡) +𝐖r 𝐡(𝑡 − 1) + 𝐛1) (28)

𝐨(𝑡) = 𝜎2(𝐖2 𝐡(𝑡) + 𝐛2) (29)

where b1 and b2 are the bias vectors while 𝜎1(⋅) and 𝜎2(⋅) are

the activation functions for the hidden and output layer neurons,

respectively. Given a data set
{(𝐱(1), 𝐲(1)), (𝐱(2), 𝐲(2)), … (𝐱(𝐿), 𝐲(𝐿))} of input-output

pairs, the RNN is first unfolded in time to represent it as a

multilayer network and then BP algorithm is applied on this

graph, as shown in Fig. 23, to compute all the necessary matrix

derivatives {
𝜕𝐸

𝜕𝐖1
,
𝜕𝐸

𝜕𝐖2
,
𝜕𝐸

𝜕𝐖r
,
𝜕𝐸

𝜕𝐛1
,
𝜕𝐸

𝜕𝐛2
}. The loss function can be

cross-entropy or MSE. The matrix derivative
𝜕𝐸

𝜕𝐖r
 is a bit more

complicated to calculate since 𝐖r is shared across all hidden

layers. In this case,

𝜕𝐸

𝜕𝐖r
=∑

𝜕𝐸(𝑡)

𝜕𝐖r

𝐿

𝑡=1

=∑
𝜕𝐸(𝑡)

𝜕𝐡(𝑡)

𝜕𝐡(𝑡)

𝜕𝐖r

𝐿

𝑡=1

=∑
𝜕𝐸(𝑡)

𝜕𝐡(𝑡)
∑

𝜕𝐡(𝑡)

𝜕𝐡(𝑙)

𝑡

𝑙=1

𝜕𝐡(𝑙)

𝜕𝐖r

𝐿

𝑡=1

 (30)

where most of the derivatives in Eq. (30) can be easily

computed using Eqs. (28) and (29). The Jacobian
𝜕𝐡(𝑡)

𝜕𝐡(𝑙)
 is further

decomposed into
𝜕𝐡(𝑡)

𝜕𝐡(𝑡−1)

𝜕𝐡(𝑡−1)

𝜕𝐡(𝑡−2)
⋯

𝜕𝐡(𝑙+1)

𝜕𝐡(𝑙)
 so that efficient

updates naturally involve the flow of matrix derivatives from

the last data point (𝐱(𝐿), 𝐲(𝐿)) back to the first (𝐱(1), 𝐲(1)).
This algorithm is called back-propagation through time (BPTT)

[32].

Fig. 23. Flow of gradient signals in an RNN.

In the special case when the nonlinear activation function is

absent, the RNN structure resembles a linear multiple-input

multiple-output (MIMO) channel with memory 1 in

communication systems. Optimizing the RNN parameters will

thus be equivalent to estimating the channel memory given

input and output signal waveforms followed by maximum

likelihood sequence detection (MLSD) of additional received

signals. Consequently, an RNN may be used as a suitable tool

for channel characterization and data detection in nonlinear

channels with memory such as long-haul transmission links

with fiber Kerr nonlinearity or direct detection systems with

CD, chirp or other component nonlinearities. Network traffic

prediction may be another area where RNNs can play a useful

role.

One major limitation of conventional RNNs in many

practical applications is that they are not able to learn long-term

dependencies in data (i.e., dependencies between events that are

far apart) due to the so called exploding and vanishing gradient

problems encountered during their training. To overcome this

issue, a special type of RNN architecture called long short-term

memory (LSTM) network is designed which can model and

learn temporal sequences and their long-range dependencies

more accurately through better storing and accessing of

information [29]. An LSTM network makes decision on

whether to forget/delete or store the information based on the

importance which it assigns to the information. The assigning

of importance takes place through weights which are

determined via a learning process. Simply put, an LSTM

network learns over time which information is important and

which is not. This allows LSTM network’s short-term memory

to last for longer periods of time as compared to conventional

RNNs which in turn leads to improved sequence learning

performance.

V. APPLICATIONS OF ML TECHNIQUES IN OPTICAL

COMMUNICATIONS AND NETWORKING

Fig. 24 shows some significant research works related to the use

of ML techniques in fiber-optic communications. A brief

discussion on these works is given below.

A. Optical Performance Monitoring (OPM)

Optical communication networks are becoming increasingly

complex, transparent and dynamic. Reliable operation and

efficient management of these complex fiber-optic networks

require incessant and real-time information of various channel

impairments ubiquitously across the network, also known as

OPM [33]. OPM is widely regarded as a key enabling

technology for SDNs. Through OPM, SDNs can become aware

of the real-time network conditions and subsequently adjust

different transceiver/network elements parameters such as

 16

launched powers, data rates, modulation formats, spectrum

assignments, etc., for optimized transmission performance [4].

Unfortunately, conventional OPM techniques have shown

limited success in simultaneous and independent monitoring of

multiple transmission impairments since the effects of different

impairments are often difficult to separate analytically. Another

crucial OPM requirement is low complexity since the OPM

devices need to be deployed ubiquitously across optical

networks. ML techniques are proposed as an enabler for

realizing low complexity (and hence low cost) multi-

impairment monitoring in optical networks and have already

shown tremendous potential.

Most existing ML-based OPM techniques adopt a supervised

learning approach utilizing training data sets of labeled

examples during the offline learning process of selected ML

models. The training data may, e.g., consist of signal

representations like eye-diagrams, asynchronous delay-tap

plots (ADTPs), amplitude histograms (AHs), etc., and their

corresponding known impairments values such as CD,

differential group delay (DGD), OSNR, etc., serving as data

labels, as shown in Fig. 25. During the training phase, the inputs

to an ML model are the impairments-indicative feature vectors

x of eye-diagrams/ADTPs/AHs while their corresponding

labels y are used as the targets as shown in Fig. 26(a). The ML

model then learns the mapping between input features and the

labels. Note that in case of eye-diagrams, the features can be

parameters like eye-closure, Q-factor, root-mean-square jitter,

crossing amplitude, etc. [34]. On the other hand, for

AHs/ADTPs, the empirical one-dimensional (1D)/2D

histograms can be treated as features [35][36]. Once the offline

Fig. 24. Some key applications of ML in fiber-optic communications.

Fig. 25. Impairments-dependent patterns reflected by (a) eye-diagrams [34],

(b) ADTPs [35] and (c) AHs [36], and their corresponding known

impairments values which serve as data labels during the training process.

Fig. 26. (a) ML model during the offline training phase with feature vectors
x as inputs and the labels y as targets. (b) Trained ML model used for online

OPM with feature vectors x as inputs and the impairments estimates o as

outputs.
training process is completed, the ML model can be used for

real-time monitoring (as the computations involved are

relatively simple) in deployed networks as shown in Fig. 26(b).

ML algorithms have been applied successfully for cost-

effective multi-impairment monitoring in optical networks. Wu

et al. [34] exploited impairments-sensitive features of eye-

diagrams using an ANN for simultaneous monitoring of OSNR,

CD and DGD. Similarly, Anderson et al. [35] demonstrated

joint estimation of CD and DGD by applying kernel-based ridge

regression on ADTPs. In [37], we showed that the raw

empirical moments of asynchronously sampled signal

 17

amplitudes are sensitive to OSNR, CD and DGD. The first five

empirical moments of received signal amplitudes are thus used

as input features to an ANN for multi-impairment monitoring.

Unlike [34][35], which can only determine the magnitude of the

CD, this technique enables monitoring of both magnitude and

sign of accumulated CD. In [38], the low-frequency part of the

received signal’s RF spectrum is used as input to an ANN for

OSNR monitoring in the presence of large inline

uncompensated CD. Apart from supervised learning,

unsupervised ML techniques have also been employed for

OPM. In [39], PCA and statistical distance measurement based

pattern recognition is applied on ADTPs for joint OSNR, CD

and DGD monitoring as well as identification of bit-rate and

modulation format of the received signal.
The emergence of SDNs imposes new requirements on OPM

devices deployed at the intermediate network nodes. As a lot of
OSNR/CD/polarization-mode dispersion (PMD) monitoring
techniques are modulation format dependent, the OPM devices
are desired to have modulation format identification (MFI)
capabilities in order to select the most suitable monitoring
technique. Although the modulation format information of a
signal can be obtained from upper-layer protocols in principle,
it is practically not available for OPM task at the intermediate
network nodes because the OPM units are often stand-alone
devices and can only afford limited complexity [4]. Note that
MFI may also be beneficial for digital coherent receivers in
elastic optical networks (EONs) since it can enable fast
switching between format-dependent carrier recovery modules
as conventional supervisory channels may not be able to provide
modulation format information that quickly [40]. Reported ML-
based MFI techniques in the literature include K-means
algorithm [41], ANNs [36][42], variational Bayesian
expectation-maximization (VBEM) [43], and DNN [44] based
methods.

(a)

 (b) (c)

(d)
Fig. 27. (a) Receiver DSP configuration with the DNN-based OSNR monitoring and

MFI stage shown in red color. (b) True versus estimated OSNRs for 112 Gb/s PM 16-

QAM signals. (c) MFI accuracies (in number of instances and percertange of correct
identifications) for different modulation formats in the absence of fiber nonlinear

effects [45]. (d) Effect of fiber nonlinearity on the MFI accuracies [44].

Recently, DL algorithms have also been applied for OPM. In

[45], we demonstrated joint OSNR monitoring and MFI in

digital coherent receivers, as shown in Fig. 27(a), using DNNs

in combination with AHs depicted in Fig. 25(c). The DNNs

automatically extracted OSNR and modulation format sensitive

features of AHs and exploited them for the joint estimation of

these parameters. The OSNR monitoring results for one signal

type are shown in Fig. 27(b) and it is clear from the figure that

OSNR estimates are quite accurate. The confusion table/matrix

in Fig. 27(c) summarizes MFI results (in the absence of fiber

nonlinear effects) for 57 test cases used for evaluation. The

upper element in each cell of this table represents the number

of instances of correct/incorrect identifications for a given

actual modulation format while the bottom element shows

percentage of correct/incorrect identifications for a given actual

modulation format. It is evident from the table that no errors are

encountered in the identification of all three modulation formats

under consideration. The performance of this technique in the

presence of fiber nonlinearity is shown in Fig. 27(d) and it is

clear from the figure that identification accuracies decrease

slightly in this case [44]. However, they still remain higher than

99%, thus showing the resilience of this technique against fiber

nonlinear effects. Since this technique uses DL algorithms

inside standard digital coherent receiver, it avoids extra

hardware costs. Similarly, Tanimura et al. [46] applied DNN on

asynchronously sampled raw data for OSNR monitoring in a

coherent receiver. Using a deep 5-layers architecture and a large

training data set of 400,000 samples, the DNN is shown to learn

and extract useful OSNR-sensitive features of incoming signals

without involving any manual feature engineering. An

extension of this method is presented in [47] where the DNN-

based monitor is enhanced using the dropout technique [48] at

the inference time (unlike typical approach of using dropout

during training) so that multiple “thinned” DNNs with slightly

different configurations provide multiple OSNR estimates. This

in turn enables them to compute confidence intervals of the

OSNR estimates as an auxiliary output. In [49], raw eye-

diagrams are treated as images (comprising of various pixels)

and are processed using a CNN for automatic extraction of

features which are then used for joint OSNR monitoring and

MFI. This technique exhibits better performance than

conventional ML approaches.

Open issues: While ML-based OPM has received significant

attention over the last few years, there are certain issues which

still need to be addressed. For example, accurate OSNR

monitoring in long-haul transmission systems in the presence

of fiber nonlinearity is still a challenging task as nonlinear

distortions are incorrectly treated as noise by most OSNR

monitoring methods. Developing ML-based techniques to

estimate actual OSNR irrespective of other transmission

impairments, channel power, and wavelength-division

multiplexing (WDM) effects is highly desirable in future

optical networks. Recently, there have been some initial

attempts in this regard exploiting amplitude noise covariance of

 18

received symbols [50], and features of nonlinear phase noise

along with time correlation properties of fiber nonlinearities

[51]. Another open issue is the development of ML-based

monitoring techniques using only low-bandwidth components

as this can reduce the computational complexity and cost of

OPM devices installed at the intermediate network nodes.

Alternatively, instead of physical deployment of OPM units

across the network, capturing of various physical layer data

(such as launched powers, parameters of various optical

amplifiers and fibers, etc.) via network management and using

the ML algorithms to uncover complex relationships between

these parameters and the actual link OSNRs can also be

investigated.

B. Fiber Nonlinearity Compensation (NLC)

The optical fiber communication channel is nonlinear due to the

Kerr effect and thus classical linear systems

equalization/detection theory is suboptimal in this context.

Signal propagation in optical fibers in the presence of Kerr

nonlinearity together with distributed copropagating amplified

spontaneous emission (ASE) noise 𝑛(𝑡, 𝑧) can be described by

the stochastic nonlinear Schrödinger equation (NLSE)

∂

∂𝑧
𝑢(𝑡, 𝑧) + 𝑗

𝛽2
2

∂2

∂𝑡2
𝑢(𝑡, 𝑧) = 𝑗𝛾|𝑢(𝑡, 𝑧)|2𝑢(𝑡, 𝑧) + 𝑛(𝑡, 𝑧) (31)

where 𝑢(𝑡, 𝑧) is the electric field while 𝛽2 and 𝛾 are group

velocity dispersion (GVD) parameter and fiber nonlinear

coefficient, respectively. Although the NLSE can be

numerically evaluated using the split-step Fourier method

(SSFM) to simulate the waveforms evolution during

transmission, the interplay between signal, noise, nonlinearity

and dispersion complicates the analysis. This is also essentially

the limiting factor of the DBP technique [52]. At present,

stochastic characteristics of nonlinearity-induced noise depend

in a complex manner on dispersion, modulation format,

transmission distance, amplifier and type of optical fiber [53].

As an example, two received signal distributions after linear

compensation of various transceiver and transmission

impairments are shown in Fig. 28 for long-haul systems with

and without inline dispersion compensation. From Fig. 28(a), it

is obvious that the decision boundaries are nonlinear, which

naturally calls for the use of ML techniques. In contrast, the

nonlinear noise is more Gaussian-like in dispersion-unmanaged

transmissions [54], as shown in Fig. 28(b). However, the noise

is correlated in time and hard to model analytically.

 (a) (b)
Fig. 28. Received signal distributions after linear equalization for long-haul

(a) dispersion-managed [17] and (b) dispersion-unmanaged [53]

transmissions.

More specifically, consider a transmission link with inline

distributed erbium-doped fiber amplifiers (EDFAs). Let 𝐲 =

[𝑦1 𝑦2…] be a symbol sequence with overall transmitted signal

𝑞(𝑡) = ∑ 𝑦𝑗𝑠(𝑡 − 𝑗𝑇)𝑗 where 𝑠(𝑡) is the pulse shape and 𝑇 is

the symbol period. The received signal is given by

𝑥(𝑡) = 𝑓NLSE(𝑞(𝑡), 𝑛(𝑡, 𝑧)) (32)

where 𝑓NLSE(⋅) is the input-output mapping characterized by

the NLSE. It should be noted that electronic shot noise and

quantization noise also act as additional noise sources but are

omitted here as ASE noise and its interaction with Kerr

nonlinearity and dispersion are the dominant noise sources in

long-haul transmissions. Other WDM effects are also omitted

here for simplicity. The received signal is sampled to obtain

𝐱 = [𝑥1 𝑥2…]. While using ML for NLC, one seeks to develop

a neural network or generally a mapping function 𝑔(⋅) so that

the output vector

𝐨 = 𝑔(𝐱)

(33)

of ML model is as close as possible to 𝐲.

There are a few classes of approaches to learn the best

mapping 𝑔(⋅) . One direction is to completely ignore the

intricate interactions between nonlinearity, CD and noise in

NLSE and treat the nonlinear fiber as a black-box system. To

this end, in [55], we proposed the use of an ANN after CD

compensation in a digital coherent receiver and applied a

training technique called extreme learning machine (ELM) that

avoids SGD-like iterative weights and biases updates [56]. Fig.

29 shows the simulated Q-factor for 27.59 GBd/s return-to-zero

(RZ) QPSK transmissions over 2000 km standard single-mode

fiber (SSMF). The proposed ELM-based approach provides

comparable performance to DBP but is computationally much

simpler.

Fig. 29. Q-factor for 27.59 GBd/s RZ-QPSK signals after transmission over
2000 km SSMF [55].

For dispersion-managed systems, Zibar et al. [57]

investigated the use of EM and K-means algorithms to derive

nonlinear decision boundaries for optimized transmission

performance. By applying the EM algorithm after regular DSP,

the distribution of the combined fiber nonlinear distortions,

laser phase noise and transceiver imperfections can be

estimated. EM algorithm assumes that each cluster is Gaussian

distributed with different mean and covariance matrix (the outer

clusters in Fig. 28(a) are expected to have larger variances) so

that the received signal distribution is a Gaussian mixture

model. EM algorithm optimizes the mean and covariance

matrix parameters iteratively to best fit the observed signal

distribution in a maximum likelihood sense. The converged

 19

mixture model is then used for symbols detection. In contrast,

the K-means algorithm provides less improvement because it

assumes that the clusters share the same covariance matrix [58].

Nevertheless, for dispersion-unmanaged systems, both EM and

K-means algorithms provide minimal performance gain as

optimal decision boundaries in this case are nearly straight lines

as shown in [57]. Li et al. [17] applied SVMs for fiber NLC.

However, since basic SVM is only a binary classifier,

classifying M-QAM signals would require log2M binary SVMs

in this case. Other SVM-related works with different

complexities and performance concerns are reported in

[18][19][59] with a 0.5 ̶ 2 dB gain in Q-factor compared to

linear equalization methods. In [60], the use of an ANN per sub-

carrier to equalize nonlinear distortions in coherent optical

orthogonal frequency-division multiplexing (CO-OFDM)

systems is studied.

Another class of ML techniques incorporates limited amount

of underlying physics to develop better fiber NLC methods. Pan

et al. [61] noted that the received phase distortions of a 16-

QAM signal are correlated across symbols due to nonlinearity

in addition to the effect of slowly varying laser phase noise.

They proposed to interleave the soft forward error correction

(FEC) decoding with a modified EM algorithm. In particular,

the EM algorithm takes the output of the soft-decision low-

density parity-check (LDPC) decoder as input and provides

phase noise estimates 𝜙̂𝑘 which are then used to compensate

the symbols and fed back to the LDPC decoder, thus forming

an adaptive feedback equalizer. An additional regularization

term is added inside the EM algorithm to prevent large phase

jumps.

Finally, ML approaches can also augment well-developed

analytical models and signal processing strategies for NLC.

Häger et al. [62] consider the standard DBP algorithm

𝐖−1 𝜎−1(𝐖−1 𝜎−1(… .)) (34)

where W is a matrix (representing linear CD operation) and

𝜎(𝑧) = 𝑒𝑗𝛾|𝑧|
2
 is the nonlinear phase rotation. However, when

viewed from an ML perspective, this sequence of interleaved

linear and nonlinear operations resembles a standard neural

network structure and hence, all the parameters in W as well as

the nonlinear function parameters can be learned. A dedicated

complex-valued DNN-like model following time-domain DBP

procedures but generalizing the filter of the linear step and the

scaling factor of the nonlinear phase rotation is developed. The

loss function is differentiable with respect to the real and

imaginary parts of the parameters and thus can be learned using

standard BP techniques. The learned DBP algorithm performs

similar to conventional DBP but is computationally simpler.

For high baud rate systems, a sub-band division solution to

reduce the required linear filter size was recently proposed [63].

In another approach, perturbation analysis of fiber nonlinearity

is used to analyze the received signal 𝑥(𝑡) = 𝑥lin(𝑡) + Δ𝑥(𝑡),
where 𝑥lin(𝑡) is the received signal if the system is linear while

the intra-channel four-wave mixing (IFWM) perturbations

Δ𝑥(𝑡) are given by

Δ𝑥(𝑡) =∑𝑃3/2𝐶𝑚,𝑛𝑥lin(𝑡 −𝑚𝑇)𝑥lin
∗ (𝑡 − (𝑚 + 𝑛)𝑇)𝑥lin(𝑡 − 𝑛𝑇)

𝑚,𝑛

 (35)

where 𝑇 is the symbol period, P is the signal power and 𝐶𝑚,𝑛 is

determined by the fiber parameters [64]. From an ML

perspective, the 𝑥lin(𝑡 − 𝑚𝑇)𝑥lin
∗ (𝑡 − (𝑚 + 𝑛)𝑇)𝑥lin(𝑡 − 𝑛𝑇)

triplets and 𝑥(𝑡) can serve as inputs to an ANN to estimate 𝐶𝑚,𝑛

and Δ𝑥(𝑡), which can then be used to pre-distort the transmitted

signal and obtain better results. The proposed technique is

demonstrated in an 11000 km subsea cable transmission and it

outperforms transmitter side perturbation-based pre-distortion

methods by 0.3 dB in both single-channel and WDM systems

[65].

Open issues: Table I shows some key techniques using ML

for fiber NLC. Most of these works incorporate ML as an extra

DSP module placed either at transmitter or receiver. While

effective to a certain extent, it is not clear what is the best

sequence of conventional signal processing and ML blocks in

such a hybrid DSP configuration. One factor driving the choice

of sequence is the dynamic effects such as carrier frequency

offset, laser phase noise, PMD, etc., that are hard to be captured

in the learning process of an ML algorithm. In this case, one can

perform ML-based NLC after linear compensations so as to

avoid tackling these time-varying dynamics in ML. In the other

extreme, RNN structures can embrace all the time-varying

dynamics in principle but it may be an overkill since we do

know their underlying physics and it should be exploited in the

overall DSP design. Also, in case of hybrid configurations, the

accuracy of conventional DSP algorithms such as CMA or

carrier phase estimation (CPE) plays a major role in the quality

of the data sets which ML fundamentally relies on. Therefore,

there are strong dependencies between ML and conventional

Reference,

Year

ML

algorithm

used

Data rate Transmission

link

Modulation

format

Polarization

multiplexing

WDM Experimental

demonstration

[55], 2011 ANN 27.59 GBd/s 2000 km

SSMF

 RZ-QPSK No No No

[57], 2012 EM 14 GBd/s < 800 km

SSMF/DCF

16-QAM Yes No Yes

[60], 2015 ANN 40 Gb/s 200 km
SSMF

16-QAM
CO-OFDM

No No Yes

[62], 2018 Learned

DBP

20 GBd/s 3200 km

SSMF

16-QAM No No No

[65], 2018 Learned
PPD

using DNN

4 × 12.25
GBd/s

11000 km
Trans-Pacific

cable

DSM-PS-
8/16/64-

QAM

Yes Yes Yes

TABLE I Some key ML-based fiber NLC techniques. PPD: pre/post-distortion, DCF: dispersion-compensating fiber, DSM: digital subcarrier modulation,
PS: probabilistic shaped

 20

DSP blocks and the right balance is still an open area of

research. Finally, to the best of our knowledge, an ML-based

single-channel processing technique that outperforms DBP in

practical WDM settings has yet to be developed.

Numerous studies are conducted to also address the

computational complexity issues of conventional and ML

techniques for fiber NLC. For conventional NLC algorithms,

we direct the readers to the survey paper [66]. On the other

hand, the computational complexity of ML algorithms for NLC

varies significantly with the architecture and the training

process used which make comparison with the conventional

techniques difficult. Generally, the training processes are too

complex to be performed online as they require a lot of

iterations and potentially massive training data. For the

inference phase (i.e., using the trained model for real-time data

detection), most ML algorithms proposed involve relatively

simple computations, leading to the perception that ML

techniques are generally simple to implement since offline

training processes are typically not counted towards the

computational complexity. However, in reality, the training

does take up a lot of computational resources and time which

should not be completely disregarded while evaluating the

complexity of ML approaches for NLC.

C. Proactive Fault Detection

Reliable network operations are essential for the carriers to

provide service guarantees, called service-level agreements

(SLAs), to their customers regarding system’s availability and

promised quality levels. Violation of these guarantees may

result in severe penalties. It is thus highly desirable to have an

early warning and proactive protection mechanism

incorporated into the network. This can empower network

operators to know when the network components are beginning

to deteriorate and preventive measures can then be taken to

avoid serious disruptions [33].

Conventional fault detection and management tools in

optical networks adopt a rigid approach where some fixed

threshold limits are set by the system engineers and alarms are

triggered to alert malfunctions if those limits are surpassed.

Such traditional network protection approaches have the

following main drawbacks: (i) These methods protect a network

in a passive manner, i.e., they are unable to forecast the risks

and tend to reduce the damages only after a failure occurs. This

approach may result in the loss of immense amounts of data

during network recovery process once a failure happens. (ii)

The inability to accurately forecast the faults leads to

ultraconservative network designs involving large operating

margins and protection switching paths which in turn result in

an underutilization of the system resources. (iii) They are

unable to determine the root cause of faults. (iv) Apart from

hard failures (i.e., the ones causing major signal disruptions),

several kinds of soft failures (i.e., the ones degrading system

performance slowly and slightly) may also occur in optical

networks which cannot be easily detected using conventional

methods.

 ML-enabled proactive fault management has recently been

conceived as a powerful means to assure reliable network

operation [67]. Instead of using traditional fixed pre-engineered

solutions, this new mechanism relies on dynamic data-driven

operations, leveraging immense amounts of operational data

retrieved through network monitors (e.g., using simple network

management protocol (SNMP)). The data repository may

include network components’ parameters such as optical power

levels at different network nodes, EDFAs’ gains, current drawn

and power consumption of various devices, shelf temperature,

temperatures of various critical devices, etc. ML-based fault

prediction tools are able to learn historical fault patterns in

networks and uncover hidden correlations between various

entities and events through effective data analytics. Such unique

and powerful capabilities are extremely beneficial in realizing

proactive fault discovery and preventive maintenance

mechanisms in optical networks. Fig. 30 illustrates various fault

management tasks powered by the ML-based data analytics in

optical networks including proactive fault detection, fault

classification, fault localization, fault identification, and fault

recovery.

Fig. 30. Fault management tasks enabled by ML-based approaches.

Recently, a few ML-based techniques have been developed

for advanced failure prediction in networks. Wang et al. [68]

demonstrated an ML-based network equipment failure

prediction method in software-defined metropolitan area

networks (SDMANs) using a combination of double

exponential smoothing (DES) and an SVM. Their approach

involves constant monitoring of various physical parameters of

the boards used in WDM nodes. The set of parameters includes

the boards’ power consumption, laser bias current, laser

(a)

(b)

Fig. 31. (a) Fault types typically encountered in commercial fiber-optic

networks. (b) Comparison of fault detection rates and proactive reaction

 21

times of data-driven and condition-based methods for the fault types given
in (a) [70].

temperature offset, and environment temperature. However, to

realize proactive failure detection, DES, which is basically a

time-series prediction algorithm, is used to predict the future

values of these parameters. Next, an SVM-based classifier is

used to learn the relationship between forecasted values of

boards’ parameters and the occurrence of failure events. This

method is shown to predict boards’ failures with an average

accuracy of 95%.

Similarly, in [69], proactive detection of fiber damages is

demonstrated using ML-based pattern recognition. In their

work, the state-of-polarization (SOP) rotation speed is

constantly monitored in a digital coherent receiver and if it

exceeds a certain predefined limit, the system considers it as an

indication of some fiber stress event (leading to certain fiber

damages) and a flag is raised. Next, Stokes parameters’ traces

are recorded which are shown to exhibit unique patterns for

various mechanical stress events on the fiber such as bending,

shaking, etc. These patterns are exploited using a naive Bayes

classifier for their recognition. This technique is shown to

predict various fiber stress events (and thus fiber breaks before

their actual occurrence) with 95% accuracy.

In [70], a cognitive fault detection architecture is proposed

for intelligent network assurance. In their work, an ANN is used

to learn historical fault patterns in networks for proactive fault

detection. The ANN is trained to learn how the monitored

optical power levels evolve over time under normal or abnormal

network operation (i.e., recognize power level abnormalities

due to occurrence of certain faults). The trained ANN is then

shown to detect significant network faults with better detection

accuracies and proactive reaction times as compared to

conventional threshold-based fault detection approaches, as

shown in Fig. 31. An extension of this method is presented in

[71] which makes use of an ANN and shape-based clustering

algorithm to not only proactively detect and localize faults but

also determine their likely root causes. The two-stage fault

detection and diagnosis framework proposed in their work

involves monitoring optical power levels across various

network nodes as well as nodes’ local features such as

temperature, amplifier gain, current draw profiles, etc. In the

first stage, an ANN is applied to detect faults by identifying

optical power level abnormalities across various network

nodes. The faulty node is then localized using network topology

information. In the second stage, the faulty node’s local features

(which are also interdependent) are further analyzed using a

clustering technique to identify potential root causes.

Open issues: Realization of ML-based proactive fault

management in optical networks is still at its nascent stage.

While few techniques for detecting and localizing hard failures

have been proposed and deployed, the development of effective

automated solutions for soft failures is still a relatively

unexplored area. Furthermore, most of the existing works focus

on the detection/localization of faults while the development of

mechanisms which can uncover actual root causes of these

faults as well as facilitate efficient fault recovery process is an

open area for research. Another major problem faced while

implementing ML-based fault detection/prevention is the

unavailability of extensive data sets corresponding to different

faulty operational conditions. This is mainly due to the fact that

current network operators adopt ultraconservative designs with

large operating margins in order to reduce the fault occurrence

probability in their networks. This, however, limits the chances

to collect sufficient examples of various network failure

scenarios. In this context, the development of ML algorithms

which could predict network faults accurately despite using

minimal training data sets is an interesting area for research.

D. Software-Defined Networking (SDN)

Software-defined networking approach centralizes network

management by decoupling the data and control planes. SDN

technologies enable the network infrastructure to be centrally

controlled/configured in an intelligent way by using various

software applications. Data-driven ML techniques naturally fit

in SDNs where abundant data can be captured by accessing the

monitors spanning the whole network. Many studies have

demonstrated the applications of ML in solving particular

problems in SDNs such as network traffic prediction, fault

detection, quality-of-transmission (QoT) estimation, etc. We

refer the readers to two recent survey papers [72][73] for

comprehensive reviews on these topics. In contrast, systematic

integration of those ML applications into an SDN framework

for cross-layer optimization is less reported, which is what we

will focus on here. Morales et al. [74] performed ANN-based

data analytics for robust and adaptive network traffic modeling.

Based on the predicted traffic volume and direction, the virtual

network topology (VNT) is adaptively reconfigured to ensure

that the required grade of service is supported. Compared to

static VNT design approaches, this predictive method decreases

the required number of transponders to be installed at the

routers by 8−42% as shown in Fig. 32, thus reducing energy

consumption and costs. Similarly, Alvizu et al. [76] used ML

to predict tidal traffic variations in a software-defined mobile

Fig. 32. Maximum used transponders versus load [75].

metro-core network. In their work, ANNs are employed to

forecast traffic at different locations of an optical network and

the predicted traffic demands are then exploited to optimize the

online routing and wavelength assignments using a

combination of analytical derivations and heuristics. Energy

savings of ~31% are observed as compared to traditional static

methods used in mobile metro-core networks.

In [77], an RL technique called Q-learning is used to solve

the path and wavelength selection problem in optical burst

switched (OBS) networks. Initially, for each burst to be

transmitted between a given source-destination pair, the

algorithm picks a path and wavelength from the given sets of

paths and wavelengths, respectively, as action and then a

 22

reward which depends on the success or failure of that burst

transmission is determined. In this way, the algorithm learns

over time how to select optimal paths and wavelengths which

can minimize burst loss probability (BLP) for each source-

destination pair. It has been shown that the Q-learning

algorithm reduces BLP significantly as compared to other

adaptive schemes proposed in the literature. Similarly, Chen et

al. [78] applied an RL algorithm, called Q-network, for joint

routing, modulation and spectrum assignment (RMSA)

provisioning in SDNs. In their work, the Q-network self-learns

the best RMSA policies under different network states and

time-varying demands based on the feedback obtained from the

network for the RMSA actions taken in those conditions.

Compared to shortest-path (SP) routing and the first-fit (FF)

spectrum assignment approach, 4 times reduction in request

blocking probability is reported using this method.

In [79], we demonstrated an ML-assisted optical network

planning framework for SDNs. In this work, the network

configuration as well as the real-time information about

different link/signal parameters such as launched power,

EDFAs’ input and output powers, EDFAs’ gains, EDFAs’ noise

figures (NFs), etc., is stored in a network configuration and

monitoring database (NCMDB) as shown in Fig. 33(a). Next,

an ANN is trained using this information where vectors x

comprising of above-mentioned link/signal parameters are

applied at the input of the ANN while actual known OSNR

values y corresponding to those links are used as targets, as

depicted in Fig. 33(b). The ANN is then made to learn the

relationship between these two sets of data by optimizing its

various parameters. After training, the ANN is able to predict

the performance (in terms of OSNR) of various unestablished

lightpaths in the network, as shown in Fig. 33(c), for optimum

network planning. We demonstrated that the ML-based

performance prediction mechanism can be used to increase the

(a)

(b)

(c)

Fig. 33. (a) Schematic diagram of ML-assisted optical network planning
framework for SDNs. (b) ANN model with link/signal parameters as inputs

and estimated OSNRs as outputs. (c) True versus estimated OSNRs using

the ANN model [79].

transmission capacity in an SDN framework by adaptively

configuring a probabilistic shaping-based spectral efficiency

tunable transmitter.

 Open issues: We already observe some benefits of ML-assisted

network state prediction and decision-making in SDNs.

However, some practical concerns need to be addressed when

applying ML in SDNs. Firstly, real networks still require worst-

case performance guarantees, which in turn necessitates a full

understanding of the robustness of the chosen ML algorithms.

Secondly, network characteristics can vary significantly in

different network scenarios. An ML model trained using one

particular data set may not be able to generalize to all network

scenarios and thus the scalability of such a method becomes

questionable.

A number of concerns also need to be addressed to realize

more active use of RL in SDNs. Firstly, it must be shown that

RL algorithms are scalable to handle large and more complex

networks. Secondly, the RL algorithms must demonstrate fast

convergence in real network conditions so as to limit the impact

of non-optimal actions taken during the early learning phase of

these algorithms.

The interpretability of ML methods is another issue as it is

not desirable in practice to adopt an algorithm without really

understanding how and why it works. Consequently, much

needs to be done in understanding the fundamental properties

of ML algorithms and how to properly incorporate them into

SDN framework.

E. Physical Layer Design

Machine learning techniques offer the opportunity to optimize

the design of individual physical components as well as

complete end-to-end fiber-optic communication systems.

Recently, we have seen some noticeable research works in this

regard with quite encouraging results.

In [80], a complete optical communication system including

transmitter, receiver and nonlinear channel is modeled as an

end-to-end fully-connected DNN. This approach enables the

optimization of transceivers in a single end-to-end process

where the transmitter learns waveform representations that are

robust to channel impairments while the receiver learns to

equalize channel distortions. The results for 42 Gb/s intensity

modulation/direct detection (IM/DD) systems show that the

DL-based optimization outperforms the solutions based on two-

and four-level pulse amplitude modulation (PAM2/PAM4) and

conventional receiver equalization, for a range of transmission

distances. Jones et al. [81] proposed an ANN-based receiver for

 23

nonlinear frequency-division multiplexing (NFDM) optical

communication systems. Unlike standard nonlinear Fourier

transform (NFT) based receivers which are vulnerable to losses

and noise in NFDM systems, the ANN-based receiver tackles

these impairments by learning the distortion characteristics of

previously-transmitted pulses and applying them for inference

for future decisions. The results demonstrate improved bit-error

rate (BER) performance as compared to conventional NFT-

based receivers for practical link configurations. In [82], an

ANN is used in receiver DSP for mitigating linear and nonlinear

impairments in IM/DD systems. The ANN infers linear and

nonlinear channel responses simultaneously which are then

exploited for increasing the demodulation reliability beyond the

capability of linear equalization techniques. Using an ANN

along with standard feed-forward equalization (FFE), up to 10

times BER improvement over FFE-only configurations is

demonstrated for 84 GBd/s PAM4 transmission over 1.5 km

SSMF.

VI. FUTURE ROLE OF ML IN OPTICAL COMMUNICATIONS

The emergence of SDNs with their inherent programmability

and access to enormous amount of network-related monitored

data provides unprecedented opportunities for the application

of ML methods in these networks. The vision of future

intelligent optical networks integrates the

programmability/automation functionalities of SDNs with data-

analytics capabilities of ML technologies to realize self-aware,

self-managing and self-healing network infrastructures. Over

the past few years, we have seen an increasing amount of

research on the application of ML techniques in various aspects

of optical communications and networking. As ML is gradually

becoming a common knowledge to the photonics community,

we can envisage some potential significant developments in

optical networks in the near future ushered in by the application

of emerging ML technologies.

Looking to the future, we can foresee a vital role played by

ML-based mechanisms across several diverse functional areas

in optical networks, e.g., network planning and performance

prediction, network maintenance and fault prevention, network

resources allocation and management, etc. ML can also aid

cross-layer optimization in future optical networks requiring

big data analytics since it can inherently learn and uncover

hidden patterns and unknown correlations in big data which can

be extremely beneficial in solving complex network

optimization problems. The ultimate objective of ML-driven

next-generation optical networks will be to provide

infrastructures which can monitor themselves, diagnose and

resolve their problems, and provide intelligent and efficient

services to the end users.

VII. ONLINE RESOURCES FOR ML ALGORITHMS

Standard ML algorithms’ codes and examples are readily

available online and one seldom needs to write their own codes

from the very beginning. There are several off-the-shelf

powerful frameworks available under open-source licenses

such as TensorFlow, Pytorch, Caffe, etc. Matlab, which is

widely used in optical communications researches is not the

most popular programming language among the ML

community. Instead, Python is the preferred language for ML

research partly because it is freely available, multi-platform,

relatively easy to use/read, and has a huge number of

libraries/modules available for a wide variety of tasks. We

hereby report some useful resources including example Python

codes using TensorFlow library to help interested readers get

started with applying simple ML algorithms to their problems.

More intuitive understanding of ANNs can be found at this

visual playground [83]. The Python codes for most of the

standard neural network architectures discussed in this paper

can be found in these Github repositories [84][85] with

examples. For non-standard model design, TensorFlow also

provides low-level programming interfaces for more custom

and complex operations based on its symbolic building blocks,

which are documented in detail in [86].

VIII. CONCLUSIONS

In this paper, we discussed how the rich body of ML

techniques can be applied as a unique and powerful set of signal

processing tools in fiber-optic communication systems. As

optical networks become faster, more dynamic and more

software-defined, we will see an increasing number of

applications of ML and big data analytics in future networks to

solve certain critical problems that cannot be easily tackled

using conventional approaches. A basic knowledge and skills

in ML will thus become necessary and beneficial for

researchers in the field of optical communications and

networking.

APPENDIX

For cross-entropy loss function defined in Eq. (14), the

derivative with respect to the output is given by

𝜕𝐸(𝑛)

𝜕𝑜𝑗(𝑛)
= −

𝑦𝑗(𝑛)

𝑜𝑗(𝑛)
. (36)

With softmax activation function for the output neurons,

𝜕𝑜𝑗(𝑛)

𝜕𝑟𝑘(𝑛)
=
(∑ 𝑒𝑟𝑚(𝑛)𝐾

𝑚=1)𝑒𝑟𝑗(𝑛)𝛿𝑗,𝑘 − 𝑒
𝑟𝑗(𝑛) ⋅ 𝑒𝑟𝑘(𝑛)

(∑ 𝑒𝑟𝑚(𝑛)𝐾
𝑚=1)2

=
(∑ 𝑒𝑟𝑚(𝑛)𝐾

𝑚=1)𝑒𝑟𝑗(𝑛)𝛿𝑗,𝑘 − 𝑒
𝑟𝑗(𝑛) ⋅ 𝑒𝑟𝑘(𝑛)

(∑ 𝑒𝑟𝑘(𝑛)𝐾
𝑘=1)2

= 𝑜𝑗(𝑛)𝛿𝑗,𝑘 − 𝑜𝑗(𝑛)𝑜𝑘(𝑛)

(37)

where 𝛿𝑗,𝑘 = 1 when 𝑗 = 𝑘 and 0 otherwise. Consequently,

𝜕𝐸(𝑛)

𝜕𝑟𝑘(𝑛)
=∑

𝜕𝐸(𝑛)

𝜕𝑜𝑗(𝑛)

𝐾

𝑗=1

𝜕𝑜𝑗(𝑛)

𝜕𝑟𝑘(𝑛)

=∑−
𝑦𝑗(𝑛)

𝑜𝑗(𝑛)
(𝑜𝑗(𝑛)𝛿𝑗,𝑘 − 𝑜𝑗(𝑛)𝑜𝑘(𝑛))

𝐾

𝑗=1

=∑−𝑦𝑗(𝑛) (𝛿𝑗,𝑘 − 𝑜𝑘(𝑛)) = 𝑜𝑘(𝑛) − 𝑦𝑘(𝑛)

𝐾

𝑗=1

(38)

as ∑ 𝑦𝑗(𝑛) = 1
𝐾
𝑗=1 . Therefore,

𝜕𝐸(𝑛)

𝜕𝐫(𝑛)
= 𝐨(𝑛) − 𝐲(𝑛).

 24

Now, since
𝜕𝐫(𝑛)

𝜕𝐛2
,
𝜕𝐫(𝑛)

𝜕𝐛1
,
𝜕𝑟𝑘(𝑛)

𝜕𝐖2
,
𝜕𝑟𝑘(𝑛)

𝜕𝐖1
 are the same as

𝜕𝐨(𝑛)

𝜕𝐛2
,
𝜕𝐨(𝑛)

𝜕𝐛1
,
𝜕𝑜𝑘(𝑛)

𝜕𝐖2
,
𝜕𝑜𝑘(𝑛)

𝜕𝐖1
 for MSE loss function and linear

activation function for the output neurons (as 𝐨(𝑛) = 𝐫(𝑛) for

that case), it follows that the update equations Eq. (8) to Eq.

(12) also hold for the ANNs with cross-entropy loss function

and softmax activation function for the output neurons.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for

their valuable comments and suggestions.

REFERENCES

[1] S. Marsland, Machine Learning: An Algorithmic Perspective, 2nd ed.

Boca Raton, USA: CRC Press, 2015.
[2] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A

review and new perspectives,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, Aug. 2013.
[3] C. M. Bishop, Pattern recognition and Machine Learning. New York,

USA: Springer, 2006.

[4] Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical
performance monitoring: A review of current and future technologies,”

J. Lightwave Technol., vol. 34, no. 2, pp. 525–543, Jan. 2016.

[5] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and W.
Kellerer, “Software defined optical networks (SDONs): A

comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp.

2738–2786, Oct.–Dec. 2016.
[6] https://www.youtube.com/channel/UCLZL8KsCzOODkDKBOI3S2lw

[7] R. A. Dunne, A Statistical Approach to Neural Networks for Pattern

Recognition. Hoboken, USA: John Wiley & Sons, 2007.
[8] I. Kaastra, and M. Boyd, “Designing a neural network for forecasting

financial and economic time series,” Neurocomputing, vol. 10, no. 3, pp.

215–236, Apr. 1996.
[9] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia,

USA, Society for Industrial and Applied Mathematics, 2000.

[10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.

New York, USA: John Wiley & Sons, 2007.

[11] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural

networks,” in Proc. AISTATS, Fort Lauderdale, FL, USA, 2011, vol. 15,
pp. 315–323.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in

Proc. ICCV, Santiago, Chile, 2015, pp. 1026–1034.

[13] X. Glorot, and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, Chia Laguna Resort,

Sardinia, Italy, 2010, pp. 249–256.

[14] A. Webb, Statistical Pattern Recognition, 2nd ed. Chicester, UK: John
Wiley & Sons, 2002.

[15] A. Statnikov, C. F. Aliferis, D. P. Hardin, and I. Guyon, A Gentle

Introduction to Support Vector Machines in Biomedicine. Singapore:
World Scientific, 2011.

[16] M. S. Andersen, J. Dahl, and L. Vandenberghe, CVXOPT: Python

software for convex optimization. [Online]. Available: https://cvxopt.org
[17] M. Li, S. Yu, J. Yang, Z. Chen, Y. Han, and W. Gu, “Nonparameter

nonlinear phase noise mitigation by using M-ary support vector machine

for coherent optical systems,” IEEE Photonics J., vol. 5, no. 6, pp.
7800312–7800312, Dec. 2013.

[18] D. Wang, M. Zhang, Z. Li, Y. Cui, J. Liu, Y. Yang, and H. Wang,

“Nonlinear decision boundary created by a machine learning-based
classifier to mitigate nonlinear phase noise,” in Proc. ECOC, Valencia,

Spain, 2015, Paper P.3.16.

[19] T. Nguyen, S. Mhatli, E. Giacoumidis, L. V. Compernolle, M. Wuilpart,
and P. Mégret, “Fiber nonlinearity equalizer based on support vector

classification for coherent optical OFDM,” IEEE Photonics J., vol. 8, no.

2, pp. 1–9, Apr. 2016.
[20] M. Kirk, Thoughtful Machine Learning with Python. Sebastopol, USA:

O’Reilly Media, 2017.

[21] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, USA:
Springer, 2002.

[22] J. E. Jackson, A User’s Guide to Principal Components. Hoboken, USA:

John Wiley & Sons, 2003.
[23] L. J. Cao, K. S. Chua, W. K. Chong, H. P. Lee, and Q. M. Gu, “A

comparison of PCA, KPCA and ICA for dimensionality reduction in

support vector machine,” Neurocomputing, vol. 55, no. 1–2, pp. 321–
336, Sep. 2003.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. Cambridge, USA: MIT Press, 2018.
[25] Y. Bengio, “Learning deep architectures for AI,” Foundations and

Trends in Machine Learning, vol. 2, no. 1, pp. 1−127, Nov. 2009.

[26] Y. Bengio and O. Delalleau, “On the expressive power of deep
architectures,” in Algorithmic Learning Theory, J. Kivinen, C.

Szepesvári, E. Ukkonen, and T. Zeugmann, Eds. Heidelberg, Germany:

Springer, 2011, pp. 18–36.
[27] L. J. Ba, and R. Caurana, “Do deep nets really need to be deep?,” in Proc.

NIPS, Montreal, Canada, 2014, pp. 2654–2662.

[28] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” J. Machine Learning

Research, vol. 10, pp. 1–40, Jan. 2009.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Massachusetts, USA: MIT Press, 2016.

[30] D. P. Mandic and J. Chambers, Recurrent Neural Networks for

Prediction: Learning Algorithms, Architectures and Stability. Chicester,

UK: John Wiley & Sons, 2001.

[31] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep

recurrent neural networks,” in Proc. ICLR, Banff, Canada, 2014.
[32] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training

recurrent neural networks,” in Proc. ICML, Atlanta, GA, USA, 2013, pp.
1310–1318.

[33] F. N. Khan, Z. Dong, C. Lu, and A. P. T. Lau, “Optical performance

monitoring for fiber-optic communication networks,” in Enabling
Technologies for High Spectral-Efficiency Coherent Optical

Communication Networks, X. Zhou and C. Xie, Eds. Hoboken, USA:

John Wiley & Sons, 2016, Ch. 14.
[34] X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and A. E. Willner,

“Applications of artificial neural networks in optical performance

monitoring,” J. Lightwave Technol., vol. 27, no. 16, pp. 3580–3589, Aug.
2009.

[35] T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J.

C. Li, “Multi impairment monitoring for optical networks,” J. Lightwave
Technol., vol. 27, no. 16, pp. 3729–3736, Aug. 2009.

[36] F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format

identification in heterogeneous fiber-optic networks using artificial
neural networks,” Optics Express, vol. 20, no. 11, pp. 12422–12431, May

2012.

[37] F. N. Khan, T. S. R. Shen, Y. Zhou, A. P. T. Lau, and C. Lu, “Optical
performance monitoring using artificial neural networks trained with

empirical moments of asynchronously sampled signal amplitudes,” IEEE

Photon. Technol. Lett., vol. 24, no. 12, pp. 982–984, Jun. 2012.
[38] T. S. R. Shen, Q. Sui, and A. P. T. Lau, “OSNR monitoring for PM-QPSK

systems with large inline chromatic dispersion using artificial neural

network technique,” IEEE Photon. Technol. Lett., vol. 24, no. 17, pp.
1564–1567, Sep. 2012.

[39] M. C. Tan, F. N. Khan, W. H. Al-Arashi, Y. Zhou, and A. P. T. Lau,

“Simultaneous optical performance monitoring and modulation
format/bit-rate identification using principal component analysis,” J.

Optical Commun. and Networking, vol. 6, no. 5, pp. 441–448, May 2014.

[40] P. Isautier, K. Mehta, A. J. Stark, and S. E. Ralph, “Robust architecture
for autonomous coherent optical receivers”, J. Optical Commun. and

Networking, vol. 7, no. 9, pp. 864–874, Sep. 2015.

[41] N. G. Gonzalez, D. Zibar, and I. T. Monroy, “Cognitive digital receiver
for burst mode phase modulated radio over fiber links,” in Proc. ECOC,

Torino, Italy, 2010, Paper P6.11.

[42] F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-
rate and modulation format identification for next-generation

heterogeneous optical networks,” Optical Fiber Technology, vol. 20, no.

2, pp. 68–74, Mar. 2014.
[43] R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy,

“Stokes space-based optical modulation format recognition in digital

coherent receivers,” IEEE Photon. Technol. Lett., vol. 25, no. 21, pp.

2129−2132, Nov. 2013.

[44] F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau,

“Modulation format identification in coherent receivers using deep
machine learning,” IEEE Photon. Technol. Lett., vol. 28, no. 17, pp.

1886−1889, Sep. 2016.

https://www.youtube.com/channel/UCLZL8KsCzOODkDKBOI3S2lw

 25

[45] F. N. Khan, K. Zhong, X. Zhou, W. H. Al-Arashi, C. Yu, C. Lu, and A.
P. T. Lau, “Joint OSNR monitoring and modulation format identification

in digital coherent receivers using deep neural networks,” Optics

Express, vol. 25, no. 15, pp. 17767–17776, Jul. 2017.
[46] T. Tanimura, T. Hoshida, J. C. Rasmussen, M. Suzuki, and H. Morikawa,

“OSNR monitoring by deep neural networks trained with

asynchronously sampled data,” in Proc. OECC, Niigata, Japan, 2016,
Paper TuB3-5.

[47] T. Tanimura, T. Kato, S. Watanabe, and T. Hoshida, “Deep neural

network based optical monitor providing self-confidence as auxiliary
output,” in Proc. ECOC, Rome, Italy, 2018, Paper We1D.5.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: A simple way to prevent neural networks from
overfitting,” J. Machine Learning Research, vol. 15, no. 1, pp. 1929–

1958, Jun. 2014.

[49] D. Wang, M. Zhang, Z. Li, J. Li, M. Fu, Y. Cui, and X. Chen, “Modulation
format recognition and OSNR estimation using CNN-based deep

learning,” IEEE Photon. Technol. Lett., vol. 29, no. 19, pp. 1667–1670,

Oct. 2017.
[50] A. S. Kashi, Q. Zhuge, J. C. Cartledge, A. Borowiec, D. Charlton, C.

Laperle, and M. O’Sullivan, “Fiber nonlinear noise-to-signal ratio

monitoring using artificial neural networks,” in Proc. ECOC,

Gothenburg, Sweden, 2017, Paper M.2.F.2.

[51] F. J. V. Caballero, D. J. Ives, C. Laperle, D. Charlton, Q. Zhuge, M.

O’Sullivan, and S. J. Savory, “Machine learning based linear and
nonlinear noise estimation,” J. Optical Commun. and Networking, vol.

10, no. 10, pp. D42–D51, Oct. 2018.
[52] E. Ip, “Nonlinear compensation using backpropagation for polarization-

multiplexed transmission,” J. Lightwave Technol., vol. 28, no. 6, pp.

939–951, Mar. 2010.
[53] P. Poggiolini, and Y. Jiang, “Recent advances in the modeling of the

impact of nonlinear fiber propagation effects on uncompensated coherent

transmission systems,” J. Lightwave Technol., vol. 35, no. 3, pp. 458–
480, Feb. 2017.

[54] A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri,

“EGN model of non-linear fiber propagation,” Optics Express, vol. 22,
no. 13, pp. 16335–16362, Jun. 2014.

[55] T. S. R. Shen, and A. P. T. Lau, “Fiber nonlinearity compensation using

extreme learning machine for DSP-based coherent communication
systems,” in Proc. OECC, Kaohsiung, Taiwan, 2011, pp. 816–817.

[56] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:

Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–
501, Dec. 2006.

[57] D. Zibar, O. Winther, N. Franceschi, R. Borkowski, A. Caballero, V.

Arlunno, M. N. Schmidt, N. G. Gonzales, B. Mao, Y. Ye, K. J. Larsen,
and I. T. Monroy, “Nonlinear impairment compensation using

expectation maximization for dispersion managed and unmanaged PDM

16-QAM transmission,” Optics Express, vol. 20, no. 26, pp. B181–B196,
Dec. 2012.

[58] E. Alpaydin, Introduction to Machine Learning, 2nd ed. Cambridge,

USA: MIT Press, 2010.
[59] E. Giacoumidis, S. Mhatli, M. F. C. Stephens, A. Tsokanos, J. Wei, M. E.

McCarthy, N. J. Doran, and A. D. Ellis, “Reduction of nonlinear

intersubcarrier intermixing in coherent optical OFDM by a fast Newton-
based support vector machine nonlinear equalizer,” J. Lightwave

Technol., vol. 35, no. 12, pp. 2391–2397, Jun. 2017.

[60] E. Giacoumidis, S. T. Le, M. Ghanbarisabagh, M. McCarthy, I. Aldaya,
S. Mhatli, M. A. Jarajreh, P. A. Haigh, N. J. Doran, A. D. Ellis, and B. J.

Eggleton, “Fiber nonlinearity-induced penalty reduction in CO-OFDM

by ANN-based nonlinear equalization,” Optics Lett., vol. 40, no. 21, pp.
5113–5116, Nov. 2015.

[61] C. Pan, H. Bülow, W. Idler, L. Schmalen, and F. R. Kschischang, “Optical

nonlinear phase noise compensation for 9 × 32-Gbaud PolDM-16QAM
transmission using a code-aided expectation-maximization algorithm,”

J. Lightwave Technol., vol. 33, no. 17, pp. 3679–3686, Sep. 2015.

[62] C. Häger, and H. D. Pfister, “Nonlinear interference mitigation via deep
neural networks,” in Proc. OFC, San Diego, CA, USA, 2018, Paper

W3A.4.

[63] C. Häger, and H. D. Pfister. “Wideband time-domain digital
backpropagation via subband processing and deep learning,” in Proc.

ECOC, Rome, Italy, 2018, Paper Tu4F.4.

[64] Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen,
“Multiplier-free intrachannel nonlinearity compensating algorithm

operating at symbol rate,” J. Lightwave Technol., vol. 29, no. 17, pp.

2570–2576, Sep. 2011.

[65] V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K.
Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8QAM

live traffic to PS 64-QAM with neural-network based nonlinearity

compensation on 11000 km open subsea cable,” in Proc. OFC, San
Diego, CA, USA, 2018, Paper Th4D.5.

[66] R. Dar, and P. J. Winzer, “Nonlinear interference mitigation: Methods and

potential gain,” J. Lightwave Technol., vol. 35, no. 4, pp. 903–930, Feb.
2017.

[67] F. N. Khan, C. Lu, and A. P. T. Lau, “Optical performance monitoring in

fiber-optic networks enabled by machine learning techniques,” in Proc.
OFC, San Diego, CA, USA, 2018, Paper M2F.3.

[68] Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and Z. Liu,

“Failure prediction using machine learning and time series in optical
network,” Optics Express, vol. 25, no. 16, pp. 18553–18565, Aug. 2017.

[69] F. Boitier, V. Lemaire, J. Pesic, L. Chavarria, P. Layec, S. Bigo, and E.

Dutisseuil, “Proactive fiber damage detection in real-time coherent
receiver,” in Proc. ECOC, Gothenburg, Sweden, 2017, Paper Th.2.F.1.

[70] D. Rafique, T. Szyrkowiec, H. Griesser, A. Autenrieth, and J.-P. Elbers,

“Cognitive assurance architecture for optical network fault
management,” J. Lightwave Technol., vol. 36, no. 7, pp. 1443–1450, Apr.

2018.

[71] D. Rafique, T. Szyrkowiec, A. Autenrieth, and J.-P. Elbers, “Analytics-

driven fault discovery and diagnosis for cognitive root cause analysis,”

in Proc. OFC, San Diego, CA, USA, 2018, Paper W4F.6.

[72] J. Mata, I. de Miguel, R. J. Durán, N. Merayo, S. K. Singh, A. Jukan, and
M. Chamania, “Artificial intelligence (AI) methods in optical networks:

A comprehensive survey,” Optical Switching and Networking, vol. 28,
pp. 43–57, Apr. 2018.

[73] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini,

and M. Tornatore, “An overview on application of machine learning
techniques in optical networks,” IEEE Commun. Surveys Tuts., to be

published. DOI: 10.1109/COMST.2018.2880039.

[74] F. Morales, M. Ruiz, L. Gifre, L. M. Contreras, V. López, and L.
Velasco, “Virtual network topology adaptability based on data analytics

for traffic prediction,” J. Optical Commun. and Networking, vol. 9, no.

1, pp. A35–A45, Jan. 2017.
[75] D. Rafique, and L. Velasco, “Machine learning for network automation:

overview, architecture, and applications”, J. Opt. Commun. Networking,

vol. 10, no. 10, pp. D126–D143, Oct. 2018.
[76] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic with

machine-learning-based prediction for software-defined mobile metro-

core networks,” J. Optical Commun. and Networking, vol. 9, no. 9, pp.
D19–D30, Sep. 2017.

[77] Y. V. Kiran, T. Venkatesh, and C. S. Murthy, “A reinforcement learning

framework for path selection and wavelength selection in optical burst
switched networks,” IEEE J. Selected Areas in Commun., vol. 25, no. 9,

pp. 18–26, Dec. 2007.

[78] X. Chen, J. Guo, Z. Zhu, R. Proietti, A. Castro, and S. J. B. Yoo, “Deep-
RMSA: A deep-reinforcement-learning routing, modulation and

spectrum assignment agent for elastic optical networks,” in Proc. OFC,

San Diego, CA, USA, 2018, Paper W4F.2.
[79] S. Yan et al., “Field trial of machine-learning-assisted and SDN-based

optical network planning with network-scale monitoring database,” in

Proc. ECOC, Gothenburg, Sweden, 2017, Paper Th.PDP.B.4.
[80] B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bulow, D.

Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of

optical fiber communications,” J. Lightwave Technol., vol. 36, no. 20,
pp. 4843–4855, Oct. 2018.

[81] R. T. Jones, S. Gaiarin, M. P. Yankov, and D. Zibar, “Time-domain

neural network receiver for nonlinear frequency division multiplexed

systems,” IEEE Photon. Technol. Lett., vol. 30, no. 12, pp. 1079−1082,

Jun. 2018.

[82] J. Estaran, R. R.-Müller, M. A. Mestre, F. Jorge, H. Mardoyan, A.
Konczykowska, J.-Y. Dupuy, and S. Bigo, “Artificial neural networks

for linear and non-linear impairment mitigation in high-baudrate IM/DD

systems,” in Proc. ECOC, Düsseldorf, Germany, 2016, Paper M.2.B.2.
[83] D. Smilkov, and S. Carter, TensorFlow — A neural network playground.

[Online]. Available: http://playground.tensorflow.org

[84] A. Damien, GitHub repository — TensorFlow tutorial and examples for
beginners with latest APIs. [Online]. Available:

https://github.com/aymericdamien/TensorFlow-Examples

[85] M. Zhou, GitHub repository — TensorFlow tutorial from basic to hard.
[Online]. Available: https://github.com/MorvanZhou/Tensorflow-

Tutorial

[86] TensorFlow, Guide for programming with the low-level TensorFlow

https://www5.shocklogic.com/scripts/jmevent/programme.php?Client_Id=%27CNIT%27&Project_Id=%27ECOC18%27&System_Id=1

 26

APIs. [Online]. Available:
https://www.tensorflow.org/programmers_guide/low_level_intro

Faisal Nadeem Khan was born in Jhang, Pakistan. He received

B.Sc. degree in electrical engineering from University of

Engineering and Technology, Taxila, Pakistan, and M.Sc.

degree in communications technology from University of Ulm,

Ulm, Germany. He received Ph.D. degree in electronic and

information engineering from The Hong Kong Polytechnic

University, Hong Kong. From 2012 to 2015, he was a Senior

Lecturer at the School of Electrical and Electronic Engineering,

Universiti Sains Malaysia. He is currently working at the

Photonics Research Centre, The Hong Kong Polytechnic

University. His research interests include machine learning and

signal processing techniques for high-speed fiber-optic

communication systems. He has authored or coauthored more

than 50 research papers in prestigious international journals and

conferences as well as written one book chapter. He has been

an invited speaker at various prestigious international

conferences including Optical Fiber Communication (OFC)

2018, and Signal Processing in Photonic Communications

(SPPCom) 2017, among others.

Qirui Fan was born in Zhejiang, China, in 1992. He received

the B.Eng. and M.Eng. degrees in electrical engineering from

Hunan University, Changsha, China, in 2014 and 2017,

respectively. Currently, he is a Ph.D. student at the Department

of Electrical Engineering, The Hong Kong Polytechnic

University, Hong Kong. His research interests include machine

learning techniques for fiber nonlinearity compensation.

Chao Lu received the B.Eng. degree in electronic engineering

from Tsinghua University, Beijing, China, in 1985, and the

M.Sc. and Ph.D. degrees from the University of Manchester,

Manchester, U.K., in 1987 and 1990, respectively. In 1991, he

joined, as a Lecturer, the School of Electrical and Electronic

Engineering, Nanyang Technological University, Singapore,

where he has been an Associate Professor since January 1999.

From June 2002 to December 2005, he was seconded to the

Institute for Infocomm Research, Agency for Science,

Technology and Research, Singapore, as a Program Director

and Department Manager, helping to establish a research group

in the area of optical communication and fiber devices. Since

April 2006, he has been a Professor with the Department of

Electronic and Information Engineering, The Hong Kong

Polytechnic University, Hong Kong. His research interests

include optical communication systems and networks, fiber

devices for optical communication, and sensor systems.

Alan Pak Tao Lau received his B.A.Sc. degree in Engineering

Science (Electrical option) and M.A.Sc. degree in Electrical and

Computer Engineering from University of Toronto, Canada, in

2003 and 2004, respectively. He obtained his Ph.D. degree in

Electrical Engineering from Stanford University, USA, in 2008.

He joined The Hong Kong Polytechnic University in 2008 as

an Assistant Professor. He is now a Professor and his current

research interests include long-haul and short-reach coherent

optical communication systems, optical performance

monitoring and machine learning applications in optical

communications and networks. He collaborates extensively

with industry in various aspects of optical communications.

