This is the Pre-Published Version.

https://doi.org/10.1016/j.mtener.2018.10.004

Dynamically Self-activated Catalyst for Direct Synthesis of Hydrogen Peroxide (H₂O₂)

Mingzi Sun, Xinyue Liu and Bolong Huang*

Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic

University, Hong Hum, Kowloon, Hong Kong SAR, China.

*Email: bhuang@polyu.edu.hk

KEYWORDS: DSHP, Passivation, Self-activate, RuNi, DFT,

Understanding the mechanism of the dynamic process of direct synthesis of hydrogen peroxide

(DSHP) will facilitate finding the highly efficient catalyst to overcome the challenges of present

research. Beyond the presently known catalysts for DSHP, we predict a self-activated and novel

catalyst RuNi through density functional theory (DFT) calculations. Detailed calculations have

been carried out on the dynamic adsorption processes of RuNi (111) surface regarding the binding

energies and surface configurations. The over-activity of Ru atoms in cleavage of adsorbates and

intermediates can be balanced by the presence of Ni atoms. Most importantly, the natural

enhancement of DSHP is based on the self-activation through the formation of the passivation film

on the surface, which plays an essential role in the inhabitation of undesired O-O bond dissociation

and the optimization of the binding energies of H₂O₂ and O₂. Hence, we have proposed a

mechanism of realizing efficient DSHP based on the dynamically self-activated RuNi catalyst,

which can provide guidance and inspiration for further experiments on searching for novel catalyst

candidates.

Introduction

Hydrogen peroxide(H_2O_2), an environmentally friendly oxidant, has been considered as an alternative to replace the traditional oxidants including chlorinated oxidizers and strong acids in many chemical synthesis and industrials processes. However, 90% of the H_2O_2 in the world is produced by the anthraquinone oxidation (AO) process that confronts intense energy consumption, tedious separation procedures, and high costs. This complicated method includes four main steps: hydrogenation, oxidation, hydrogen peroxide extraction and working solution treatment, which still suffers from low mass transfer efficiency in reactors, the inevitable loss of product due to organic contamination, and heavier equipment. All these issues will decrease process sustainability, increase production and maintenance costs so that alternative method to avoid these drawbacks with high efficiency is urgently needed presently. As a one-pot process, DSHP ($H_2 + O_2 \rightarrow H_2O_2$) becomes the simplest way to synthesize this oxidant that can lead to a significant reduction in the capital investment and operating costs. To achieve large-scale production, research on finding a highly efficient catalyst for DSHP has become intense in recent years. The basic reactions of DSHP are shown as the follows:

$$\mathbf{H_2} \to \mathbf{H}^* + \mathbf{H}^* \tag{1}$$

$$\mathbf{0_2} \to \mathbf{0} - \mathbf{0}^* \tag{2}$$

$$\mathbf{0} - \mathbf{0}^* + \mathbf{H}^* + \mathbf{H}^* \to \mathbf{H}_2 \mathbf{0}_2 \tag{3}$$

Main concerns about this method are focusing on the formation of side product H_2O induced by decomposition of both O_2 and H_2O_2 , which will significantly lower the selectivity and productivity as shown in **Figure 1**. The non-dissociation of O-O bond during the adsorption of oxygen molecule has been considered as the determining step for the generation of H_2O_2 . Mavrikakis *et al.* found out that the breakage of the O-O bond in either $H_2O_2^*$ or OOH^* is facile to realize and carries a

majority of rate control. After breaking the O-O bond, the following H-transfer to O*/OH* adsorbates reaction will form H₂O*consequently.⁵ Such dissociation of O-O bonds on transition metal surfaces can be attributed to the electrons transfer to the oxygen p* antibonding orbitals and the hybridization between p-O₂ and d-metal orbitals. ¹⁰ These detrimental reactions demonstrate that a high H₂O₂ selectivity and productivity can only be achieved by decreasing or even inhibiting the presence of OH* intermediates through low rate O-O bond cleavage. Meanwhile, a stable reaction rate of adding hydrogen atoms to adsorbed oxygen molecules is needed as well. Hence, transition metals and related alloys as active catalysts that have become the most potential candidates. 11-14 Presently, Pd-related alloys are the mainstream in catalyst research for direct synthesis of H₂O₂ with the highest selectivity and productivity. ^{12, 15, 16} Chang et al. summarized that reasonable adsorption energy of oxygen as well as a positive energy barrier for dissociating oxygen molecules that make Pd the ideal catalyst. 17 Moreover, the addition of another metal can significantly affect the properties of their constituent elements in lattice parameters, electronic interactions and spatial configuration, which is appealing as catalysts. Many transition metals have been chosen to optimize the performance of Pd catalyst, and Au is the most popular one. 13, 18-20 However, as the price of Pd and Au keeps increasing and has become similar with Pt recently, the potential Pd-free catalyst has become desired as Pt-free catalysts, which is insufficient. 14, 21

Among other transition metals, Ru has a unique electron configuration as 4d⁷5s¹ that can result in a much wider range of valence states and more complicated coordinated geometries, which has made them important catalysts in many chemical reactions.^{22, 23} In addition, Ru is a well-known catalyst in hydrogenation, which is similar to Pd, so we could expect that Ru should exhibit relatively close or even better performance. The Ni-related catalyst is another potential choice that shows a stronger tolerance to electrolyte dissolution and lower material cost.²⁴ Therefore, Ru, Ni

and RuNi alloy as the catalyst or additive metal to catalyst alloy have been widely studied in direct gasoline oxidation in fuel cells and hydrogenation.²⁵⁻²⁸ The presence of Ni can improve the catalytic performance of the Ru monometallic catalysts in terms of both activity and selectivity to the product of interest via a synergic effect between Ru and Ni.²⁹ The high stability of Ni-related and Ru-Ni catalysts under different reactions have also been tested in previous research.³⁰⁻³² However, even though the beneficial effects of additive metal to catalysts are real and certain, the detailed mechanisms are still under dispute. Inspired by these previous findings, RuNi bimetallic catalyst has the potential to be a novel choice of catalyst for application in the direct synthesis of H₂O₂.

To screen out more possible catalysts for DSHP, utilizing the DFT calculation can accelerate the processing speed by saving time on the traditional methods including synthesis and testing a large amount of different and unknown transition metal combinations. Moreover, DFT can provide guidance for future experimental works to improve certain catalyst performances, which have been used in investigating the mechanism of DSHP on Pd-related alloys in many previous works. ^{5, 33, 34} Hence, in this work, we will apply DFT calculations to explore the potential of an alloy catalyst with their mechanism ahead of experiments, which can benefit further experimental tests and supply further experiences on predicting new catalysts through efficient DFT methods. In this work, we propose the mechanism of the RuNi alloy as a potential catalyst in the direct synthesis of H₂O₂ through DFT calculations. The adsorption behaviours of primary reactants have been calculated in detail under the pure surface condition and oxygen-covered conditions. We highlight the effect of the oxygen coverage as the main factor that that allows this surface to be successfully applied to direct oxidation of hydrogen to generate H₂O₂.

Calculation Setup

Slab Models

The periodic RuNi catalyst surface will be cleaved from the fcc crystal structure model of Ni with half of the atoms replaced by Ru atoms since the co-deposited bimetal alloy has been confirmed to show primary Ni fcc structure.²⁷ We apply (111) surface model to be the representative model for the catalyst simulations since this surface has been proven as the most active surface in other transition metal catalyst for direct synthesis of H₂O₂.^{5, 35} The slab models consist a total of four layers with 144 atoms (i.e. Ru₇₂Ni₇₂) entirely in a repeated 3x3 supercell, in which two upper layers are allowed for total relaxation, and bottom two layers are fixed as the bulk. The vacuum distance of the unit cell has been set as 8.0 Å the same as the catalyst layers to avoid interruption between the periodic unit cell to observe the adsorption and de-adsorption behaviors on the surface.

Calculation Setting

All the calculations for adsorption behaviors and electronic structures within density functional theory (DFT) will be carried out through CASTEP package codes.³⁶ The generalized gradient approximation (GGA) and PBE functional basis sets are chosen with 380 eV cut-off energy in a plane-wave basis set. ^{37, 38} The ultrasoft pseudopotentials will be applied to describe the ex-change correlation energy and potential. The RRKJ method is chosen for the optimization of the pseudopotentials.³⁹ The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm was applied for geometry optimization through all calculations. Reciprocal space integration was performed using Monkhost-Pack k-point grids of 2×2×2 k-points in the Brillouin zone. Different orbital projectors that Ru with (4s, 4d, 4p, 5s), Ni with (3d, 4s) states and O with (2s, 2p) atoms to represent their valence states. The spin-polarization has been included in the calculation. The transition states

were performed with the complete linear and quadratic synchronous transit QST method that is embedded in CASTEP.

The binding energies (E_B) are calculated based on the difference between the total energy of the adsorbed surface and the total energy of the pure phase of adsorbate and the clean surface of RuNi (111) as Equation (4).

$$E_B = E_{total}(Adsorbed Surface) - E_{total}(Adsorbate) - E_{total}(Pristine Surface)$$
 (4)

The chemical adsorption is using the similar equation as when there is one more adsorbate on the surface. The convergence settings for all the geometry optimization will be as follows: the energy tolerance for geometry relaxations requires that total energy will not exceed 5.0×10^{-5} eV/atom; maximum ionic Hellmann–Feynman force and maximum ionic stress will be restricted within 0.1 eV/Å and 0.2 GPa, respectively. The maximum ionic displacement should be within 5.0×10^{-3} Å.

Results and Discussion

Adsorption Behaviors

The dissociation speed of hydrogen molecules will happen quickly on catalyst surfaces, which has been proven by former reports on Pd-related catalysts.^{40, 41} As shown in Eq. (1), the adsorption of H₂ will determine the generation speed of H₂O₂ via providing flexible hydrogen atoms near the surface, which has been investigated and summarized in **Table 1**. The binding energies of H₂ on the surface are very similar such that it shows no strong preference on the adsorption sites. Ni top sites are slightly more favorable for adsorption as shown in **Figure 2**. The geometry relaxation reveals that the strong interaction between the surface and H₂ will result in the dissociation of hydrogen molecules, in which the dissociated H atoms will be stabilized near the bridge top after

relaxation with 2.498 Å between H atoms. In contrast, the adsorption of single H atom displays even slightly higher binding energies than H₂, which represents that the H atoms would prefer to dissociate near the surface instead of being firmly fixed by chemical bonds with the surface. Moreover, the continuous adsorption of H₂ and the concentration of H atoms on the surface will not be influenced by the adsorption competition. The chemical adsorption energies of H₂ are not too negative that can prevent the over-binding situation to ensure the further reaction with adsorbed oxygen molecules. Such results have laid a solid foundation for next step reaction.

Conventionally, the adsorption of O_2 is believed to be the critical factor that influences the selectivity to H_2O_2 (**Equation (5)**). As the previously proposed mechanism stated⁴², the breakage of O-O bonds has led to the result that the single O atom adsorbs one dissociative H* to form intermediate OH* and side product H_2O as **Equation (6)-(7)**.

$$0 - 0 \to 0^* + 0^* \tag{5}$$

$$O^* + H^* \to OH^* \tag{6}$$

$$0H^* + H^* \to H_2 0^*$$
 (7)

Hence, the low cleavage rate of O_2 is critical for achieving high selectivity and productivity of H_2O_2 . As listed in **Table 2**, O_2 adsorption shows distinct selectivity for the active site on the surface, in which the threefold coordinated hollow site surrounded by three metal atoms is the most preferable and stable adsorption site. Compared with binding energies of H_2 listed in **Table 1**, O_2 shows much lower binding energies than that of H_2 with the catalyst surface, implying a much stronger physicochemical trend to react. This also means that at the first stage of adsorption on the pure catalyst surface, O_2 has more advantage than H_2 when competing on adsorption with

the surface. Geometry relaxation displays visible O-O bond cleavage on the hollow site with an O-O distance of 4.324 Å as **Figure 2**. This adsorption behaviour is similar to oxygen adsorption on the pure Ru surface.⁴³ On all the active sites of RuNi (111), O₂ will undergo quick dissociation and become very stable at the hollow site as the oxygen coverage. Converse to the hydrogen atom, the oxygen atom displays strong potential in forming chemical bonding on the surface due to the sharp decrease in chemical adsorption energies compared with their binding energies. This result suggests that after molecule dissociation, oxygen atoms will be strongly bonded on the hollow site of RuNi (111) surface forming an oxidation-like state, which is in agreement with that RuNi nanoparticle will easily form atmospheric oxides.²⁷ Similar results attained from XPS results on Ru-related catalysts also proved the existence of Ru(IV).⁴⁴

From Figure 3a, we can see that even after being covered with oxygen atoms on the surface, the total density of states (TDOS) display a very similar pattern without a noticeable difference. Hence, we use the projected density of states (PDOS) of the adsorbed oxygen atoms with neighbouring metal atoms that are influenced by the adsorption behaviour to unravel the actual orbital interaction between adsorbate and the surface. It is noted that the overlapping of orbitals occurs between O-2p orbitals and d orbitals of surface metals, suggesting very active electron transfer. This modified electron density is similar with the work of Laasonen *et al.* of O₂ adsorption on the Pd (111) surface. To support that Ru is more active in the interaction with oxygen atoms, Figure 3b shows a more detailed PDOS of surface metal. Between 5~7 eV below Fermi level, the O-2p orbital and Ru-4d orbital significantly overlap with each other, implying a strong interaction. Similar overlap is also found near 1~2 eV above the Fermi level. Yang *et al.* demonstrated that the overlapping between the orbitals of transition metals and O-p_σ orbitals would facilitate the ion transfer. However, such orbital overlaps can be rarely found between O atoms and Ni atoms,

which is also a crucial contributor to the total d orbital DOS. The surface configuration in **Figure 2** clearly illustrated that Ru atoms are more unstable on the surface and causes distortion induced by the surface adsorbates. It is worth considering that the transfer of electron density between the molecule and the surface will be profoundly affected by the surface configurations. ^{47, 48} The overlapping between Ni-3d and Ru-4d implies a weakening binding of Ni-O and Ni-H. Overall, these results all demonstrate that Ru plays as the main active sites to transfer electrons and form strong binding with adsorbates. Ni atoms can balance the catalyst activity and maintain the surface structure due to their excellent stability and high tolerance in different environments.

The stability and desorption on the surface of H₂O₂ are of great importance in determining the final productivity of H₂O₂. The dissociation of H₂O₂ should be largely suppressed meanwhile the binding effect of surface should not be too strong to hinder the releasing of formed H₂O₂ from the surface. On the pristine RuNi (111) surface, the decomposition of H₂O₂ will happen on all active sites, accompanying strong interaction between Ru and O on the surface that results in the cleavage of the O-O bond. As shown in Table 3, all the binding energies of H₂O₂ at different positions are close with the binding energies of H₂, in which the bridge top shows the lowest binding energy as shown in Figure 2. The initial state is at bridge top and the OH* intermediates have been bonded to Ru and hollow sites after geometry relaxation. The distance between oxygen atoms increases from 1.485 Å to 3.341 Å. The generation of intermediate OH* is the origin of the H₂O generation. 17, 49 To achieve higher H₂O₂ generation efficiency, such O-O bond dissociation should be suppressed so as to prevent the formation of detrimental intermediate O* and OH*. As the main side product to influence the efficiency of DSHP, we also compare the formation of H₂O and H₂O₂ to explore their relationship on the surface. In the left part of Figure 4a, the formation of H₂O₂ and H₂O has been revealed based on the energy comparison between the adsorption of the adsorbed species H* and O* and product molecules H_2O_2 and H_2O at the four adsorption sites (Pd, Cu, bridge, hollow). Due to the lower adsorption energies of both products than the adsorption energies of the component species, formation of both H_2O_2 and H_2O are energetically favorable. Notably, the H_2O_2 shows overall lower energies than H_2O , implying that the formation competition between H_2O_2 and H_2O might lead to the lower efficiency of DSHP. For the chemisorption energies summarized in the right part of **Figure 4a**, the energies of O adsorption can be primarily downshifted when more O atoms participate. In comparison with other species as H, H_2 and H_2O , the chemisorption of O_2 and O atoms is relatively favorable with higher stability on the surface, which can lay the foundation of later high coverage of passivation layer on the surface.

Further investigation of the binding energies associated with adsorbate positions is discussed in **Figure 4b**, in which Ru atoms on the surface exhibit the predominant role in reacting with oxygen atoms rather than Ni. Notably, we find out that when oxygen molecule is vertical above Ru top site, oxygen molecule will become parallel above Ru under the strong interaction from Ru atom. After relaxation, Ru atom will rise from the surface and form stable bonds with the oxygen molecule. Such observations are in accordance with the electronic structure calculations in **Figure 3b**. The nanoparticle RuNi model (**Figure 4c**) has also been proven that exhibits the similar high activity of dissociating the O-O bonds in both Ru and Ni sites. To interpret the mechanism between microscopic behaviors and macroscopic experimental observations in a more detailed and reasonable method, we will carry out the investigation of the effect of such oxidation states on enhancing the catalyst performance. To summarize the possibility of such a pristine surface, we define the typical reactions towards H₂O₂ including the possibilities of intermediate H₂O related reactions (R1-R6) as follows:

$$\begin{cases} (H_2 + O_2)_{far} \to (H_2 + O_2)_{close} \\ (H_2 + O_2)_{close} \to H_2O_2 \end{cases}$$
 (R1)

$$\begin{cases} 2H_2 + 2O_2 \rightarrow 2H_2O + O_2 \\ 2H_2 + O_2 \rightarrow 2H_2O + 2O \\ 2H_2O + 2O \rightarrow 2H_2O_2 \end{cases}$$
 (R2)

$$\begin{cases}
2H_2O + O_2 \rightarrow 2OH + 2H + O_2 \\
2OH + 2H + O_2 \rightarrow 2OH + 2H + 2O \\
2OH + 2H + 2O \rightarrow 2OOH + 2H \\
2OOH + 2H \rightarrow 2H_2O_2
\end{cases}$$
(R3)

$$\begin{cases} H_2 + O_2 \to 2H + 2O \\ 2H + 2O \to H_2O_2 \end{cases}$$
 (R4)

$$\begin{cases} 2H_2O + O_2 \to 2H_2O + 2O \\ 2H_2O + 2O \to 2H_2O_2 \end{cases}$$
 (R5)

$$\begin{cases} H_2 + O_2 \rightarrow 2H + 2O \\ 2H + 2O \rightarrow H_2O + O \\ H_2O + O \rightarrow H_2O_2 \end{cases}$$
 (R6)

With above-considering reactions, the energetic preferences and competitions for (a) adsorptions of H_2 and O_2 as well as the bonds scissions, and (b) intermediate H_2O participated reactions are the two keys guiding the direct synthesis of H_2O_2 on the supported catalytic system (nanoalloys). The corresponding energy diagrams in terms of chemisorption energy (ΔG) are shown in **Figure 5** Throughout R1 to R6, we found that pristine RuNi (111) surface (without oxidation passivation) exhibit high barriers in all the H_2O_2 synthesis reactions. Moreover, since the surface is overactive, the formation of H_2O_2 cannot be stabilized on the surface, accompanied by a quick and energy favorable decomposition with an evident energy drop as the arrows show. R1 reaction shows the much stronger adsorption behaviors on H_2 and O_2 as the distance between adsorbates and surface is getting smaller. R2 and R6 all utilize the formation of water as an intermediate, which require

an extremely high energy cost that represents the low possibility of oxidation of water. R4 and R5 show similar energy trend, which both experience the unstable formation of H₂O₂ that lead to the energy downhill to the decomposition of H₂O₂. However, for the reaction R3 that is initiated from H₂O and O₂ with active intermediates like OH or OOH, and ended at H₂O₂, the energy displays a downhill trend but with an exceptionally high energy cost for water adsorption on the surface. In addition, the final step to form H₂O₂ also confronts another barrier. Therefore, all these reactions confirm the difficulties of DSHP directly happening on pristine RuNi (111) surface without any treatment of the surface. To realize the DSHP on such RuNi (111) surface, we believe the further adsorption behaviours will be largely influenced by the surface adsorbates passivation coverage, which will be oxygen atoms according to our preliminary results. In other reports, partial oxidation on Pd or Pt catalysts for DSHP have been proposed to be responsible for the high catalyst activity.², ⁴² In addition, XPS results have proved that transition metals will experience different valance states on the surface. 50 During the synthesis of transition metal catalyst, pre-treatments like hightemperature heating treatment seems to have exhibited important effects but the mechanism has never been clarified.²⁰ Hence, we will discuss the influence from such oxygen passivation coverage and the corresponding effect to the DSHP.

Self-activation with the Passivation film

Previous calculations have shown that the hollow site is most energy favorable for mono oxygen atom after relaxation, so the oxygen passivation layer will be expected to initially form on the hollow sites of the surface. To specify the actual effect induced by such passivation layer, we applied two oxygen atoms at the hollow site and related binding with intermediate adsorbates on top to observe the adsorption process as the start. Based on the hexagonal surface configuration, three different oxygen position arrangements including ortho-, meta- and para-position (**Figure**

6a) are presented to study the adsorption behaviours of O_2 and H_2O_2 . With minor passivation layer coverage, their effect on the later adsorption has been revealed as shown in Figure 6b. Notably, the adsorption behaviours have apparently changed with the suppression of the O-O cleavage induced by over-reactivity of the surface. Within the preservation of the O-O bond, the bond length has slightly increased to 1.290 Å for O₂ and to 1.499 for H₂O₂, respectively. From the O-O bond length, the O-O dissociation will still happen on ortho-position configuration with the highest energy cost of 3.026 eV that might attribute to the facilitation from a strong interaction between two close oxygen atoms. From **Table 4** and **Figure 6c**, it is found that binding energies of O₂ and H₂O₂ have experienced an evident decrease on meta- and para-position oxygen passivation layer, which is in consistency with the surface adsorption behaviours. Thus, more stable oxygen molecules can be easier to bind near the surface. The binding energy of H₂O₂ on meta configuration is -0.464 eV, which will be the best site for desorption of formed H₂O₂ without over-binding. Another possible desorption site is above the para-position coverage configuration with binding energy around -1.267 eV. Even the Ru atoms on the surface are still active with the oxygen atom, both O-O bond in formed H₂O₂ has been maintained with d_{O-O} at 1.481 Å and 1.499 Å. The strong electron transfer behaviours that are supposed to occur on the pristine surface will be relieved by the attached oxygen passivation layer on hollow sites, which prevents the over-interaction to cause decomposition or over-binding of H₂O₂. The passivation layer as the buffer layer become the dominant factor that can activate the surface from over-reactive to the proper catalyst, which can balance and optimize the surface adsorption reactions. Moreover, we notice that the oxygen coverage will rearrange to nearby hollow sites after relaxation, representing such passivation layer is relatively dynamic on the surface. Such preference might due to the repulsive force between oxygen atoms, which means that a low coverage might be able to achieve a high selectivity. Figure

6d further displays the O₂ adsorption energy with related to the different percentage of O-coverage (to quantitatively denote the oxidation state coverage rate), in forms of 0% (without coverage), 4.1% (very light coverage), and 12.5% (light coverage). A clear physicochemical down-trend can be noticed that to stabilize on the surface without any O-O bond cleavage, which indicates the passivation layer will promote the stabilities of O₂ on the surface of RuNi system. The influence of oxygen passivation layer to the dissociation of H₂ should also be taken into account, which will determine the productivity of H₂O₂. However, similar coverage models have proved that the cleavage of H-H bond will not be much affected with binding energy at 3.224 eV, which might be due to the much lower bond strength of H-H bond compared to O-O divalent bond.

Then we move our emphasis to the intermediates since the formation and stability of intermediates are also of importance for the investigation of the complete DSHP process, shown as follows. The relaxed structures of key species during DSHP are shown in **Figure 7a-7e**. The most important intermediates are OOH* that can directly lead to the formation of HOOH* as shown below.

$$0 - 0^* + H^* \to 00H^* \tag{8}$$

$$00H^* + H^* \rightarrow H00H^* \tag{9}$$

Hence, the formation energies of **Equation (8)** and **(9)** have been calculated as 1.05 eV and 0.57 eV, respectively. Especially, we have shown the initial positions of **Equation (8)** and **(9)** in **Figure 7g** and **7h**, in which the nearby free H* with 2.337 Å and 1.937 Å, respectively, will spontaneously migrate to O-O* and OOH* and form O-H bonds that result in the formation of OOH* and HOOH* species near the catalyst surface. Moreover, the dissociation of intermediate OOH* has also been effectively constrained on the oxygen passivated surface. The oxygen coverage configurations are highly related to the adsorption of the O₂, H₂O₂ and all the intermediate species, especially the

ortho-position coverage is the most unfavorable site for DSHP in both energy and selectivity. This can be ascribed to the much higher binding energy in comparison with the other two coverage configurations, accompanied by the undesired O-O cleavage.

Overall, the summarized reaction pathway in **Figure 7(f)** clearly exhibits a thermodynamically favorable DSHP process with a downhill energy trend along the reaction coordinates after selfactivation through the oxygen coverage. At the initial stage of the adsorption process, the H₂ and O₂ will be attracted by the surface since the adsorption cost is much lowered with a close distance to the surface. The balance between the reactivity and stability are critical to the performance of the catalyst. With the passivation layer, the adsorption energies of H₂ remained similar meanwhile the oxygen adsorption has been affected evidently. The binding energy of O₂ has changed from positive to an appropriate negative level, suggesting a spontaneous reaction and a stable binding on the surface as expected. Thus, it can be expected that the free H* migration near the surface should be easy to achieve due to the smaller size of hydrogen atoms and much weaker bonding trend than the O* and O2. In addition, the O-O dissociation is significantly suppressed on such covered surface that can improve the selectivity to H₂O₂ via decreasing the concentration of OH* intermediates. Compared to the dissociation of O-O bond, non-dissociation is much more energy favorable as shown in Table 4. Therefore, the reaction for formation of H₂O₂ has been changed from 2O*+2H* to O-O* + 2H* with energy cost decreased from 3.578 eV to 0.578 eV as shown in Figure 7(f). At the final stage, the continued energy decrease from formed HOOH* to desorbed H₂O₂ as Figure 7e indicated a completely opposite trend with H₂ and O₂, which means the desorption of formed H₂O₂ is energetically favourable. In addition, the side product H₂O displays extremely high energy cost on this RuNi (111) surface, which will be largely suppressed when competing with the DSHP process. Therefore, realizing DSHP with high selectivity on this catalyst

surface can be accomplished, in which the adsorption of H_2 is the rate determining step. The oxygen passivation layer determines the selectivity of H_2O_2 with suppression on the production of H_2O during the proposed DSHP on the RuNi (111) surface.

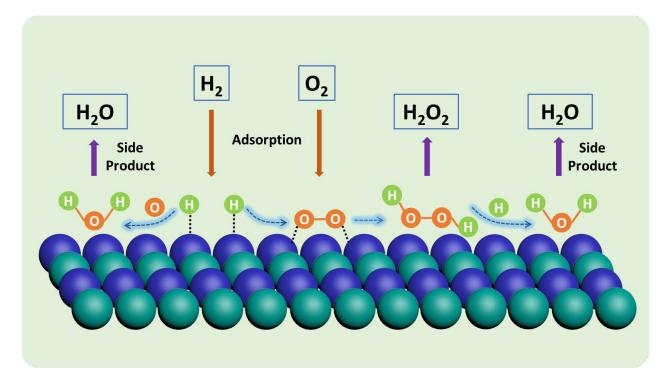
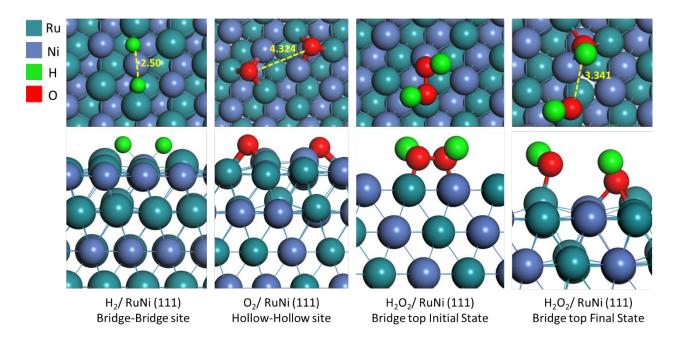
With our calculation results, we can summarize a fundamental mechanism for the direct formation of H₂O₂ on the RuNi (111) (**Figure 8**). At the beginning stage of the DSHP on RuNi (111) surface, O₂ and H₂ will be compete with to each other on the adsorption to the surface and generate mobile O* and H*, in which O₂ has a slight advantage. Once the O-O bond has been cleaved, the O* will be quickly bonded on the hollow site and the formation of passivation film will start. The selectivity and productivity of H₂O₂ will be low at this initial stage since the formation of OH* intermediates induced by formed O*. After the initial stage, RuNi (111) will quickly be covered by oxygen passivation layer as the self-activation. Hence, the following adsorption of O₂ will be further lowered with preservation of the O-O bond, which will lead to enhancement of the selectivity and efficiency of forming H₂O₂. At this middle stage of catalysis, the adsorbed O₂* will attract the relatively free H* to form intermediate OOH* and even H₂O₂*. The generation of H* will continue without influence from oxygen passivation layer. With gradually formed H₂O₂* near the surface, the passivation layer can suppress the decomposition and the preferred de-adsorption of H₂O₂* at the certain active site on RuNi (111) surface can be realized consequently. The whole DSHP process will experience a slow production of H₂O initially and a gradual increase of selectivity and productivity to H₂O₂ at the middle stage as the self-activation starts. As the coverage of the passivation layer has reached a certain level, the selectivity and productivity of H₂O₂ will become stable with the fully activated RuNi surface. In actual experiments, if the alloy can have partial oxidation through pre-treatment, the slow beginning stage in our proposed mechanism will

be much shortened and the efficiency of direct synthesis of H₂O₂ can be obviously increased based on direct activation.

Conclusion

In summary, we have predicted the RuNi (111) surface as a new Pd-free catalyst for DSHP based on the thorough investigation of the dynamic procedure of their self-activation mechanism. The over-activity of the RuNi surfaces or nanosphere particles can be ascribed to the activity of Ru in interacting with adsorbed molecules while Ni plays a role in balancing the activity to prevent excessive electron transfer and remaining the catalyst surface stability. The key factor affecting the selectivity and productivity is the self-activation process induced by partial passivation of the surface with oxygen coverage, which can significantly decrease the energy barrier for oxygen adsorption and suppress the O-O bond cleavage. The decomposition of formed H₂O₂ on the surface can also be successfully suppressed on most active sites under this condition. The self-activation has prevented the situation of the over-binding of H₂O₂ and lead to a reasonable desorption energy of formed H₂O₂. Therefore, RuNi can become the potential new catalyst for DSHP, which can open a new direction for future study in the catalyst area with better performance. The direct observation of the natural self-activation can assist in the comprehension of the dynamic catalytic process of active alloys.

Figure 1.

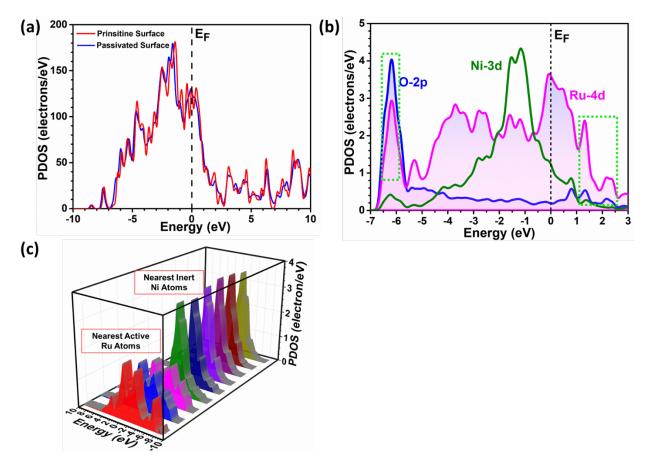

Figure 1. Mechanism of formation of H₂O₂ and side product H₂O on the catalyst surface.

Figure 2.

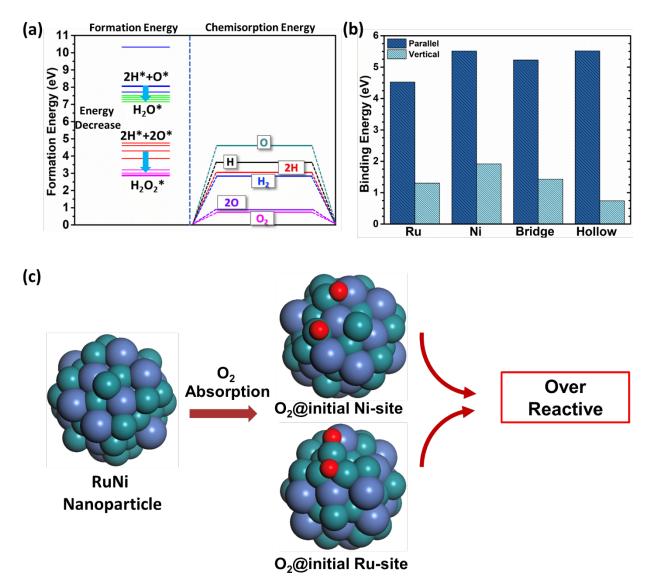

Figure 2. The top view and local view of most energy favourable site for adsorption of H_2 , O_2 , H_2O_2 on the pristine RuNi (111) surface after geometry relaxation.

Figure 3.

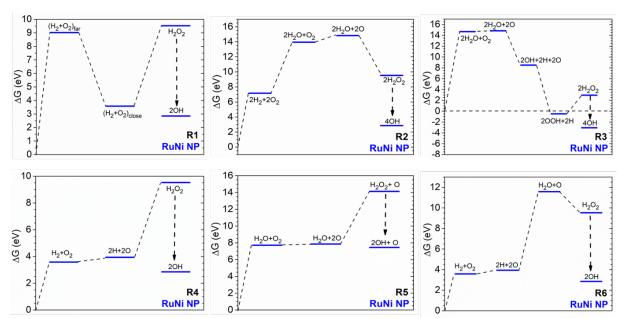

Figure 3. The Comparison of DOS between pristine and the oxygen partially covered RuNi surface. (a) Comparison of TDOS between the pristine surface and the passivated surface. (b) Illustration of the orbital overlap among O-2p orbitals, Ni-3d orbitals and Ru-4d orbitals. (c) The PDOS of d-orbitals of nearest Ru and Ni atoms of the passivation oxygen atoms.

Figure 4.

Figure 4. (a) **(Left)** Pure formation energies of H₂O₂ and H₂O. **(Right)** The chemisorption energy comparison of the RuNi (111) surface system. (b) Diagram of adsorption energies of adsorbed O₂ on RuNi surface at different sites (c) Illustration of over-reacting of RuNi nanoparticles with O₂.

Figure 5.

Figure 5. The energy profile of the proposed six possible reactions (R1 to R6) regarding the changes in free energy (ΔG) simulated on the Ru-rich surface of RuNi.

Figure 6.

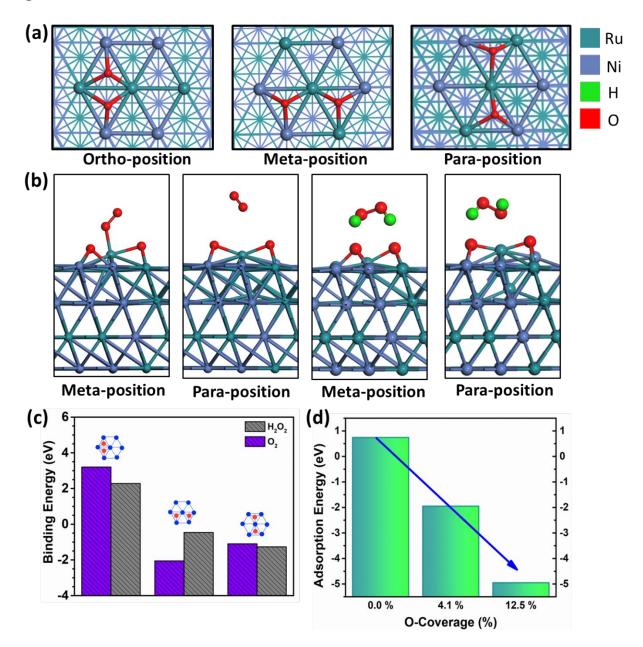


Figure 6. The effect of oxygen passivation layer to the adsorption of O₂ and H₂O₂. (a) Three oxygen coverage configurations as ortho-position, meta-position and para-position. (b) Local view of surface configuration after geometry relaxation of O₂ and H₂O₂ without O-O cleavage. (c) The binding energies of O₂ and H₂O₂ with the partially passivated RuNi surfaces. (d) The O₂ adsorption energy comparison with different O-coverage on the RuNi surface system.

Figure 7.

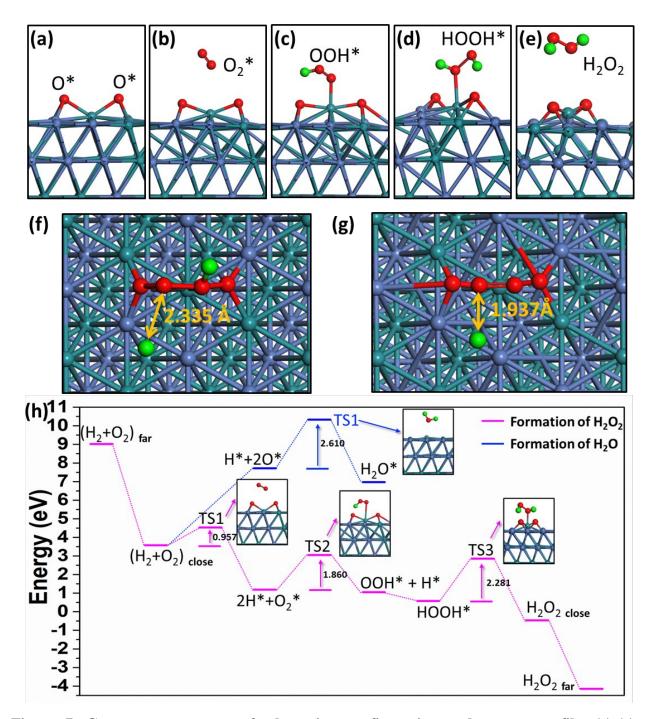
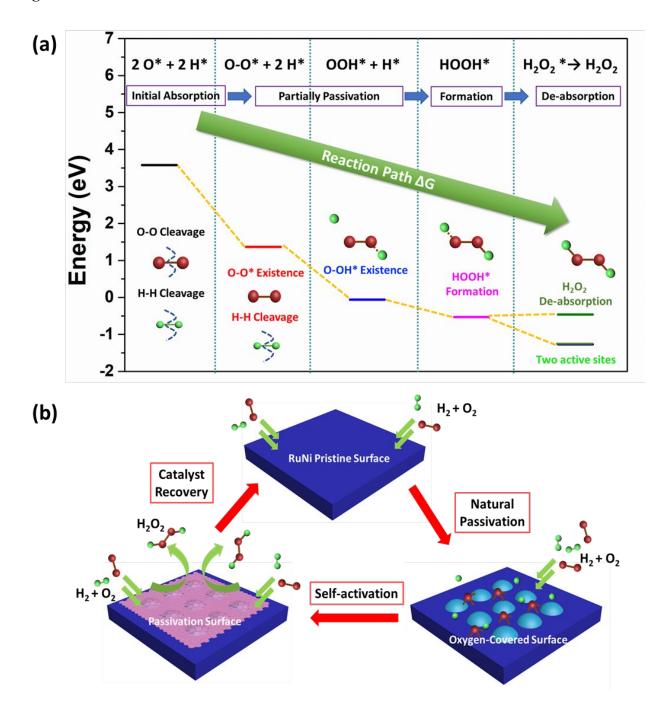



Figure 7. Geometry structures of adsorption configuration and energy profile. (a)-(e)
Optimized structures of key steps in proposed DSHP on RuNi (111). (f)-(g) The initial

configuration of OOH* and HOOH*. (h)DFT calculated energy profile of the reaction coordinates on the RuNi (111) surface. The inset figures are the corresponding structure of transition states.

Figure 8.

Figure 8. (a) The reaction path for direct synthesis of H₂O₂ on the RuNi (111) surface with the oxygen coverage assistance. (b) Illustration of DSHP process on the RuNi (111) surface.

Table 1. Adsorption Energies of H₂ and H atoms on the RuNi (111) surface

Adsorption	H ₂ Binding	H atom Binding	H atom Chemical Adsorption
Site	Energies (eV)	Energies (eV)	Energies (eV)
Ru Top	2.993	3.827	-0.597
Ni Top	2.839	3.796	-0.571
Bridge Top	3.175	3.632	-0.580
Hollow	3.115	3.868	-0.755

Table 2. Adsorption Energies of O2 and O atoms on the RuNi (111) surface

Adsorption Site	O ₂ Binding Energies (eV)	O atom Binding Energies (eV)	O atom Chemical Adsorption Energies (eV)
Ru Top	1.305	5.041	-3.283
Ni Top	1.918	7.490	-6.306
Bridge Top	1.430	4.896	-3.800
Hollow	0.739	4.604	-3.723

Table 3. Adsorption Energies of H₂O₂ on the RuNi (111) surface

Adsorption Site	H ₂ O ₂ Binding Energies (eV)	H ₂ O Binding Energies (eV)
Ru Top	3.202	7.152
Ni Top	2.899	7.410
Bridge Top	2.846	7.286
Hollow Top	3.008	6.973

Table 4. Adsorption Energies of H₂O₂ on the oxygen passivated RuNi (111) surface

Oxygen covered Site	O ₂ Binding	ing H ₂ O ₂		
	Energies	do-o (Å)	De-sorption	do-o (Å)
	(eV)		Energies (eV)	
Ortho-position	3.036	2.654	2.281	4.822

Meta-position	-2.055	1.290	-0.464	1.499
Para-position	-1.099	1.249	-1.267	1.481

Corresponding Author

*Bolong Huang

E-mail: bhuang@polyu.edu.hk

Author Contributions

B.H conceived and led the project. B.H and M.S designed and operated the simulation modelling.

B.H, M.S and X.L wrote the paper.

Acknowledgment

The author BH gratefully acknowledges the support of the Natural Science Foundation of China

(NSFC) for the Youth Scientist grant (Grant No.: NSFC 11504309, NSFC 21771156), and the

Early Career Scheme (ECS) fund (Grant No.: PolyU 253026/16P) from the Research Grant

Council (RGC) in Hong Kong.

29

References

- 1. P. B. Walsh, *Tappi J.*, 1991, **74**, 81-83.
- 2. J. M. Campos-Martin, G. Blanco-Brieva and J. L. Fierro, *Angew. Chem. Int. Ed. Engl.*, 2006, **45**, 6962-6984.
- 3. K. P. Bryliakov, Chem. Rev., 2017, 117, 11406-11459.
- 4. J. H. Teles, I. Hermans, G. Franz and R. A. Sheldon, 2015, 1-103.
- 5. A. Plauck, E. E. Stangland, J. A. Dumesic and M. Mavrikakis, *Proc Natl Acad Sci U S A*, 2016, **113**, E1973-1982.
- 6. S. J. Freakley, Q. He, J. H. Harrhy, L. Lu, D. A. Crole, D. J. Morgan, E. N. Ntainjua, J. K. Edwards, A. F. Carley, A. Y. Borisevich, C. J. Kiely and G. J. Hutchings, *Science*, 2016, **351**, 965-968.
- 7. J. K. Edwards, S. J. Freakley, R. J. Lewis, J. C. Pritchard and G. J. Hutchings, *Catal. Today*, 2015, **248**, 3-9.
- 8. Z. Zheng, Y. H. Ng, D. W. Wang and R. Amal, *Adv. Mater.*, 2016, **28**, 9949-9955.
- 9. T. P. Fellinger, F. Hasche, P. Strasser and M. Antonietti, *J. Am. Chem. Soc.*, 2012, **134**, 4072-4075.
- 10. P. A. Gravil, D. M. Bird and J. A. White, *Phys. Rev. Lett.*, 1996, 77, 3933-3936.
- 11. N. M. Wilson and D. W. Flaherty, J. Am. Chem. Soc., 2016, **138**, 574-586.
- 12. Q. Liu, J. C. Bauer, R. E. Schaak and J. H. Lunsford, *Angew. Chem.*, 2008, **120**, 6317-6320.
- 13. Q. Liu, J. C. Bauer, R. E. Schaak and J. H. Lunsford, *Applied Catalysis A: General*, 2008, **339**, 130-136.
- 14. E. N. Ntainjua, S. J. Freakley and G. J. Hutchings, *Top. Catal.*, 2012, **55**, 718-722.
- 15. A. Gervasini, P. Carniti, F. Desmedt and P. Miquel, ACS Catalysis, 2017, 7, 4741-4752.
- 16. J. Zhang, B. Huang, Q. Shao and X. Huang, *ACS Appl Mater Interfaces*, 2018, DOI: 10.1021/acsami.8b03756.
- 17. M. Yan, Z. Q. Huang, Y. Zhang and C. R. Chang, *Phys. Chem. Chem. Phys.*, 2017, **19**, 2364-2371.
- 18. L. Ouyang, G.-j. Da, P.-f. Tian, T.-y. Chen, G.-d. Liang, J. Xu and Y.-F. Han, *J. Catal.*, 2014, **311**, 129-136.
- 19. Y. Nomura, T. Ishihara, Y. Hata, K. Kitawaki, K. Kaneko and H. Matsumoto, *ChemSusChem*, 2008, **1**, 619-621.
- 20. S. J. Freakley, Q. He, J. H. Harrhy, L. Lu, D. A. Crole, D. J. Morgan, E. N. Ntainjua, J. K. Edwards, A. F. Carley, A. Y. Borisevich, C. J. Kiely and G. J. Hutchings, *Science*, 2016, **351**, 965-968.
- 21. S. Maity and M. Eswaramoorthy, *Journal of Materials Chemistry A*, 2016, **4**, 3233-3237.
- 22. J. J. Van Veldhuizen, S. B. Garber, J. S. Kingsbury and A. H. Hoveyda, *J. Am. Chem. Soc.*, 2003, **125**, 12666-12666.
- 23. L. Zhang, X. Chen, P. Xue, H. H. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin and G. Jia, *J. Am. Chem. Soc.*, 2005, **127**, 15998-15999.
- 24. S. De, J. G. Zhang, R. Luque and N. Yan, *Energ Environ Sci*, 2016, **9**, 3314-3347.
- 25. S. Amendola, *Int. J. Hydrogen Energy*, 2000, **25**, 969-975.
- 26. A. Romero, A. Nieto-Márquez and E. Alonso, *Applied Catalysis A: General*, 2017, **529**, 49-59.
- 27. F. Liu, J. Y. Lee and W. J. Zhou, *Small*, 2006, **2**, 121-128.

- 28. E. Antolini, *Energies*, 2017, **10**, 42.
- 29. L. S. Ribeiro, J. J. Delgado, J. J. M. Órfão and M. F. R. Pereira, *Applied Catalysis B: Environmental*, 2017, **217**, 265-274.
- 30. H.-S. Roh, K.-W. Jun, W.-S. Dong, S.-E. Park and Y.-S. Baek, *Catal. Lett.*, 2001, **74**, 31-36.
- 31. L. Zhu, L. Zheng, K. Du, H. Fu, Y. Li, G. You and B. H. Chen, *RSC Adv.*, 2013, **3**, 713-719.
- 32. S. Tada, R. Kikuchi, K. Wada, K. Osada, K. Akiyama, S. Satokawa and Y. Kawashima, *J. Power Sources*, 2014, **264**, 59-66.
- 33. T. Deguchi and M. Iwamoto, *The Journal of Physical Chemistry C*, 2013, **117**, 18540-18548.
- 34. A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W. Hansen, J. Rossmeisl, I. Chorkendorff and I. E. Stephens, *Nano Lett.*, 2014, **14**, 1603-1608.
- 35. P. Tian, L. Ouyang, X. Xu, J. Xu and Y.-F. Han, *Chinese Journal of Catalysis*, 2013, **34**, 1002-1012.
- 36. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, *Zeitschrift Fur Kristallographie*, 2005, **220**, 567-570.
- 37. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Physical Review B*, 1992, **46**, 6671-6687.
- 38. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 39. A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, *Physical Review B*, 1991, **44**, 13175-13176.
- 40. D. Dissanayake, *J. Catal.*, 2003, **214**, 113-120.
- 41. S. Chinta, J. Catal., 2004, **225**, 249-255.
- 42. J. H. Lunsford, *J. Catal.*, 2003, **216**, 455-460.
- 43. S. Schwegmann, A. P. Seitsonen, V. De Renzi, H. Dietrich, H. Bludau, M. Gierer, H. Over, K. Jacobi, M. Scheffler and G. Ertl, *Physical Review B*, 1998, **57**, 15487-15495.
- 44. K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim and A. Wieckowski, *The Journal of Physical Chemistry B*, 2002, **106**, 1869-1877.
- 45. K. Honkala and K. Laasonen, *The Journal of Chemical Physics*, 2001, **115**, 2297-2302.
- 46. J. Kim, X. Yin, K. C. Tsao, S. Fang and H. Yang, *J. Am. Chem. Soc.*, 2014, **136**, 14646-14649.
- 47. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, *Science*, 2011, **334**, 1383-1385.
- 48. Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu and Y. Xie, *Chem*, 2017, **3**, 812-821.
- 49. R. Todorovic and R. J. Meyer, *Catal. Today*, 2011, **160**, 242-248.
- 50. D. Gudarzi, W. Ratchananusorn, I. Turunen, M. Heinonen and T. salmi, *Catal. Today*, 2015, **248**, 69-79.

ToC Figure

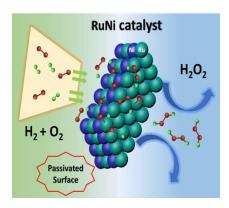


Illustration of RuNi as the efficient catalyst for DSHP