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The atomic catalysts (AC) are emerging as a highly attractive research topic, especially in 

sustainable energy fields. Lack of a full picture of the hydrogen evolution reaction (HER) 

impedes the future development of potential electrocatalysts. In this work, the systematic 

investigation of HER process of graphdyine (GDY) based AC has been presented regarding 

the adsorption energies, adsorption trend, electronic structures, reaction pathway, and active 

sites. This comprehensive work innovatively reveals GDY based AC for HER covering all the 

transition metals (TM) and lanthanide (Ln) metals, supplying the screening of potential 

catalysts. The density functional theory (DFT) calculations have carefully explored the HER 

performance beyond the comparison of sole H adsorption. Therefore, the screened catalysts 

candidates not only match with experimental results but also provide significant references for 

novel catalysts. Moreover, we also innovatively utilize the machine learning (ML) technique 

bag-tree approach based on the fuzzy model for data separation and converse prediction of the 

This is the peer reviewed version of the following article: Sun, M., Dougherty, A. W., Huang, B., Li, Y., Yan, C.-H., Accelerating Atomic Catalyst Discovery by Theoretical Calculations-
Machine Learning Strategy. Adv. Energy Mater. 2020, 10, 1903949. , which has been published in final form at https://doi.org/10.1002/aenm.201903949. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a 
derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be 
linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services 
and websites other than Wiley Online Library must be prohibited.

This is the Pre-Published Version.



  

2 
 

HER performances, which indicates a similar result of the theoretical calculations. From two 

independent theoretical perspectives (DFT and ML), this work proposes pivotal guidelines for 

experimental catalyst design and synthesis. The proposed advanced research strategy shows 

great potential as a general approach in other energy-related areas. 

 
1. Introduction 

To actualize the goal of the sustainable energy system as the solution for the present energy 

crisis, searching for the economic electrocatalyst for the efficient production of hydrogen and 

oxygen by water-splitting is becoming the focus of the scientific community.[1] In particular, 

the hydrogen evolution reaction (HER) process is of pivotal significance for fuel generation in 

many energy conversion systems.[2] Presently, Pt-based electrocatalysts are still the dominant 

selections for the HER, which demands the more potential candidates due to the high cost and 

limited resources. As an alternative for Pt, the high electroactivity and highly stable materials 

with low costs have attracted tremendous attention, especially on the transition metal-based 

catalysts.[3] Meanwhile, the non-metal electrocatalysts have also made great progress in recent 

years.[4] However, compared to the performance of Pt-based electrocatalysts, those 

electrocatalysts still cannot satisfy the present requirements for efficient catalysts for practical 

applications. To overcome such challenge, atomic catalyst (AC) with the maximum explosion 

of actives sites based on the minimum usage of electroactive metals have become the optimal 

solutions for the future sustainable energy solutions.[5] In recent years, many noble metal 

based AC (i.e Pt, Au, Ru) have been reported with great potential in different 

electrocatalysis.[6] Due to the high surface energy, the aggregation of AC is the main 

challenge during the synthesis and electrocatalytic process, which significantly lowers the 

active sites, electron transfer efficiency as well as the durability of the electrocatalysts. Thus, 

searching for stable anchoring AC with the appropriate support is a pivotal strategy to develop 

future electrocatalysts.  
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To achieve stable anchoring AC, various supports have been considered. For example, metal 

oxides have been reported by many groups in stabilizing the single transition metals.[5a, 6a, 6d, 7] 

Zhang and his groups have actualized both Ir and Pt AC on the FeOx, which showed high 

electroactivity for water gas shift reactions and CO oxidations, respectively. The single-atom 

transition metals show strong interactions with the FeOx to facilitate the generation of surface 

defects, leading to remarkable performance.[8] Li et al. have investigated the CeO2 support for 

Au, which unravels the critical role of single Au atom in gold nanocatalysis and supplied 

rational design methodology.[9] On the other hand, the non-metal 2D materials are also 

becoming the ideal support for AC due to the following merits including specific anchoring 

sites to stabilize the single atoms, the sufficient and flexible surface area to allow the high 

loading of catalytic sites, and the superior electron transfer capability to facilitate 

electrocatalysis. In particular, 2D materials such as graphene, C3N4, BN and carbon matrix 

also demonstrate superior electrocatalysis performances.[6b, 10] 

 

Recently, the graphdyine (GDY) has emerged as the novel electrocatalysts owing to their 

unique structural and electronic features. GDY possesses abundant benzene rings with sp2-

hybridized carbon atoms and the diacetylenic groups with sp-hybridized carbon atoms as the 

connection chains, which exhibits excellent chemical/mechanical stability [11]. Such a 

structure demonstrates a porous 2D structure with sufficient space for the anchoring of the AC.  

Compared with traditional 2D carbon materials, the unique electronic structure in GDY 

endows the materials with great potential in the electrocatalyst. Moreover, GDY also delivers 

an ideal electronic structure, which displays a high electronic conductivity and charge carrier 

mobility, leading to their remarkable performance in both electrocatalysis and 

photocatalysis.[12] Especially, they have been reported as the optimal support to re[13]alize the 

zero valence AC [14]. The potential of GDY in the HER electrocatalysts is still waiting to be 
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unraveled since only a few works have reported the synthesis of GDY based atomic catalysts 

(GDY-AC) [14a, 15]. Until now, most of the research of GDY is investigated case by case, 

which lacks the whole picture of the appropriate selection of anchoring metals. This challenge 

still suffers from limited experimental works and theoretical guidance to efficiently screen out 

the efficient electrocatalyst. In conventional routine calculations, the adsorption energy of the 

single H atom has usually been seen as the most pivotal parameters to evaluate the HER 

performance. However, such simple calculations cannot completely reveal the HER 

mechanism accurately since the multi-parameters in different reaction processes are equally 

crucial. The machine-learning (ML) technique is emerging as a promising solution to 

efficiently tackle the problem in the complex, multidimensional, and dynamic process in 

catalysis. [16] Recently, the ML technique has supplied key information in the design, 

synthesis, characterization and different applications of catalytic materials. Beyond 

discovering novel materials, ML technique also enables a deeper understanding of the 

underlying correlation between the material structure and their catalytic properties, which is 

beneficial for the establishment of the design principle and modification strategy to further 

improve the electrocatalytic efficiency. 

 

In this work, we introduce the theoretical calculations with machine learning techniques to 

map out the potential GDY-AC electrocatalyst to achieve the efficient HER, which aims to 

reveal a comprehensive mapping regarding the HER mechanism and adsorption energies. We 

firstly comprehensively calculate the adsorption energies of H-species during HER on GDY-

M (transition metal and lanthanide metals) for the first time regarding different active sites. 

Then we evaluate and screen out the potential GDY-AC electrocatalysts to reveal their 

electronic structures. Following the holistic mapping of all the GDT-AC systems, we 

introduce the machine learning technique to demonstrate the prediction of adsorption energies 

by consideration of multi parameters. This work supplies an innovative theoretical 
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understanding and guidance of GDY-based AC for HER through two independent approaches 

of theoretical investigations and machine learning techniques, which facilitates searching for 

more potential electrocatalysts to achieve efficient HER. 

 

2. Results and Discussion 

2.1. GDY-Transition metal Atomic Catalyst 

Based on the first-principle DFT calculations to study the HER mechanism, we have 

considered the key steps including Volmer, Heyrovsky, and Tafel reactions, which are all 

essential in affecting the HER performances rather than one simple parameter. Initially, the 

overall reaction energies for all the transition metals by comparing the initial adsorption of H 

and final desorption of H2 are displayed, which demonstrate the reaction trend from a direct 

perspective. For 3d transition metals, we notice that most metals show higher energies of 

desorption than the initial adsorptions, however, the energy difference is relatively small, 

except for Mn and Zn. These results indicate that Mn and Zn cannot be a good potential 

candidate for GDY-AC due to the low energetic preference of the HER process. Notably, Ni 

is the only metal that shows spontaneous reaction trend in 3d elements, indicating the overall 

good HER performance, which is also consistent with our previous work (Figure 2a).[14a] In 

comparison, the 4d elements show a much larger energy difference between the initial 

adsorption and final desorption process, especially in from Y to Rh. Similar with Ni, Pd and 

Cd show the only energetically favorable HER performance. More importantly, the desorption 

energy of H2 on GDY-Pd is highly close to the neutral line (E = 0 eV), supporting the 

efficient generation (Figure 2b). For the 5d metal-based GDY-AC, we notice that most 

metals are not the appropriate selections due to the overall endothermic HER, which requires 

the large applied potential to overcome. However, Pt shows a distinct behavior with other 5d 

metals, which shows a high energetic favorable reaction trend with a neglectable energy cost 
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for the final desorption of formed H2. Although Hg shows an exothermic reaction trend, the 

hinder for the initial H adsorption leads to the low efficiency of HER (Figure 2c).  

 

Then, we move to the chemisorption of H as an important indicator for the preference of H 

coverage (Figure 2d-2f). For most of the transition metals, the chemisorption of H is 

energetically favorable, which demonstrates a durable H adsorption capability as a pivotal 

foundation for Heyrovsky reactions in HER. For 3d metals, we notice that the only Cu shows 

a negative trend for further H adsorption. It is worth noticed that Ni not only shows both 

spontaneous and mild adsorption trend for H, which prevents the GDY-Ni from the 

overbinding effect of H. The strong binding trend for H on GDY-Zn induces the overbinding, 

which leads to the large energy cost for final desorption of H2, supporting our previous 

findings (Figure 2d). The similar overbinding effects are discovered in Mo and Ru. Both Y 

and Ag shows the energy increase for chemisorption of H. Meanwhile, GDY-Pd shows a 

slightly lower adsorption trend than GDY-Cd (Figure 2e). Interestingly, although GDY-Au 

shows an extremely strong H adsorption, the chemisorption trend is still unfavorable, 

indicating a low efficiency of HER. The Pt and Hg show the most facile chemisorption trend 

of H, which further confirms their potential for efficient HER (Figure 2f). To reveal a more 

direct trend of the overall reaction of HER, we sketch out the energy difference between the 

initial adsorption and the final desorption of GDY-AC. For 3d metals, Zn locates at the valley 

point, indicating the most the energy unfavorable of HER. To achieve efficient HER without 

overbinding, the energy difference between the initial adsorption and desorption should 

remain in a small range of variation. The ultra-positive or ultra-negative variation leads to 

either the poor efficiency for H2 formation or the overbinding effect, which both significantly 

affect HER performance. The large positive variation of the energy difference represents the 

final formation of H2 requires a large energy cost, which lowers the formation efficiency. On 

the contrary, the ultra-negative variation indicates that the initial adsorption of H* is too 
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strong, which results in the overbinding effect with low conversion efficiency to HER. From 

3d-5d, the valley points are gradually decreasing. For 3d, Ni, Fe, Co are the most possible 

candidate for HER. Sc and Cr show slightly larger energy variation (Figure 2g). For 4d 

metals, Cd and Pd shows the smallest energy difference, supporting our conclusion at the 

chemisorption. In contrast, Ru locates at the middle valley point, demonstrating a relatively 

weak reduction capability to achieve the HER, which is highly consistent with the 

understanding of typical Ru catalysts as the efficient and widely used water-splitting catalysts 

(Figure 2h). Au exhibits the lowest point in 5d metals and the energy variation further 

increases. Only Pt shows a high potential for the HER with a nearly zero-energy variation. 

Compared to 3d, most 4d and 5d metals show the energy variation larger than 0.4 eV, 

indicating a slightly lower HER efficiency (Figure 2i).  

 

2.2. GDY-Lanthanide metal atomic catalyst 

Beyond the transition metals, the lanthanide elements are also investigated since rare earth has 

been applied as superior catalysts.[7e, 17] Notably, most element shows the moderate energy 

variation between the initial adsorption and final desorption. Interestingly, the most widely 

used electrocatalyst Ce shows the poor thermodynamic trend for HER, which is ascribed to 

their strong oxidation capability rather than transfer electrons from H. In contrast, several 

other elements display great potential for promoting the HER including Sm, Eu, Gd and Ho, 

in which Sm, Eu, and Ho shows the overall spontaneous reaction in generating H2 (Figure 3a). 

Moreover, a more direct reaction trend of the HER reaction based on GDY-Ln 

electrocatalysts. Pm shows the abnormal energy variation due to the extremely high energy 

cost for the initial H adsorption. Besides Pm, La, and Ce, all the lanthanide ions show the 

energy variation in a limited range, in which Sm, Gd, and Eu locate closest to the natural line. 

Pr, Tm, and Ho are also potential candidates with slightly larger energy (Figure 3b). To 

further screen the potential electrocatalyst, the energy pathway of the HER process regarding 
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the transition state energies are illustrated to reveal a practical thermodynamic energetic trend 

of the Ln-GDY for HER. We have considered the chemisorption energies for the H* to 

examine the formation efficiency of H2. Although some atomic catalysts show the similar H* 

adsorption, the different chemisorption energies result in the distinct HER performances.[18] 

Notably, both Sm and Eu only require small energy costs within 0.2 eV for the adsorption of 

the second H atom. Meanwhile, the desorption of H2 only requires subtle energy cost, which 

endows them great potential in facilitating the HER. Pm shows a dramatic energy drop for the 

consecutive adsorption of H atoms, which laid a formidable energetic impedance for the 

desorption of H2. For Ce and La, they all meet an evident uphill thermodynamic trend for the 

formation of H2, which lowers HER efficiency (Figure 3c). As the atomic radius becomes 

smaller, the energy variation range of consecutive H adsorption becomes larger. Tm shows 

facile adsorption of the second H atom on the surface with 0.2 eV energy cost for the 

formation of H2. Although Dy and Gd show the overall spontaneous reaction trend of 

formation of H2, however, the obvious energetic unfavorable for the reaction [2H* →*H2] 

excludes them from the HER electrocatalyst candidate (Figure 3d). Therefore, based on the 

careful investigation of the reaction energy change, we have screened out GDY-Eu and GDY-

Sm as two validate electrocatalysts to achieve the superior HER performances, which supplies 

valuable references and guidance for the experimental synthesis. 

 

2.3. Electronic structures 

After the comparison from the energetic view, we also investigate the electronic structures 

based on the projected partial density of states (PDOSs) to further unravel the reaction trend. 

The Fermi level is the surface where all the electrons below the Fermi level are localized. 

With closer position to the EF, the electrons meet smaller barriers to be depleted to 

delocalization and further transfer to the adsorbates within the HER process. Therefore, the 

closer position to the EF correlates to the higher electroactivity in promoting the electron 
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transfer for electrocatalysis.  For the 3d metals, the d orbitals show a very diverse trend. From 

Sc to V, the dominant peak of 3d locates above the Fermi level (EF). Compare to Mn, Cr 

shows a much closer position to the EF, which is similar to the positions of Ni, Co, and Fe, 

indicating a good electron transfer capability as well. For Cu and Zn with d10 electronic 

configurations, both 3d orbitals are electron-rich, locating at a deep position from EF, which 

significantly limits the electron transfer pathway (Figure 4a). For 4d elements, the gradual 

shift of the 4d dominant peaks is noticed. From Mo to Rh, the evident gap between t2g and eg 

demonstrate the barrier for electron transfer in HER. Pd shows the high electroactivity due to 

the dominant 4d peak close to EF. Ag and Cd show similar electronic structures with Cu and 

Zn, demonstrating the low possibility of Cd to be the electrocatalyst (Figure 4b). From the 

PDOSs, Os, Ir, and Pt both show the electroactivity due to the close positions of d orbitals to 

EF. Distinct from Zn and Cd, the dominant 5d peak of Hg shift towards EV-4.5 eV (EV =0), 

which is similar to the Au-5d (Figure 4c). Then, we further demonstrate the detailed PDOSs 

of the screened electrocatalyst. Compared to Ni, the Co-3d peak is even closer to EV, 

illustrating the even stronger electron transfer capability for HER. The Co-3d peak locates at 

EV-0.5 eV while Ni-3d peak locates EV-1.0 eV (Figure 4d-4e). GDY-Pd also exhibits a 

similar d orbital position with high electroactivity, which supports our previous work.[15b] 

Moreover, GDY-Pt demonstrates a slightly lower 5d position at EV-1.5 eV (Figure 4f-4g). 

These trends further confirm that the electroactivity of GDY-AC follows the order as 3d > 4d 

> 5d, which is in a good agreement with the energetic trend. In addition, the electronic 

structures of screened rare earth candidates are also reflected. Both Eu-4f and Sm-4f orbitals 

are highly electroactive for the electron depletion based reduction. These electronic structures 

are closely consistent with the energetic trends of GDY-Eu and GDY-Sm, which also 

confirms the screening results of catalysts from the energetic mapping (Figure 4h-4i). 

 

2.4. Active sites and reaction energy mapping 
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The determination of active sites in GDY is of great importance as well. To unravel the most 

electroactive sites for the HER, we have summarized the initial H adsorption energies on 

different sites of GDY-AC as shown in Figure 5a. Based on the previous works,[14a, 15b] active 

sites for H mainly concentrate on the C-chain (denoted as C1 and C2) and the single metal 

atom (denoted as M1). Notably, we can see that C2 are the most stable sites for the initial 

adsorption, which is well-matched with our previous reports. For the newly screened 

electrocatalyst, Co and Pt also prefer the C2 sites. On the contrary, the atomic metal position 

is not an ideal position for stable H adsorption (Figure 5a). On the other hand, the lowest 

adsorption energies of formed H2 are also revealed. Obviously, the single metal atom displays 

a strong binding trend with the formed H2, which is possible to induce the overbinding effect. 

C1 shows the most unstable adsorption of H2, which lays a good foundation for the release of 

formed H2 in HER. The active site investigation further confirms that C2 on the GDY chain is 

the most electroactive site, which displays both stable adsorptions of H and the stable 

desorption of H2 (Figure 5b). We also summarize all the chemisorption energies of elements 

along the periodic table order from III group to II group. Overall, the chemisorption shows 

limited regulation with the number of d electrons. However, from the 3d-5d, we indeed notice 

the increase of chemisorption, which demonstrates the H coverage preference is decreasing. 

These behaviors further verify our previous conclusion on the change of electroactivity for 

HER in the periodic table (Figure 5c). In the end, we also carefully map out and compare the 

energy pathway of HER process in all the GDY-TM systems. For 3d metals, both consecutive 

H adsorption and final desorption of H2 are thermodynamically spontaneous while the 

formation of H2 is not energetically favorable, especially for Sc to Mn. The formation cost of 

H2 follows the order of Fe > Co > Ni. In particular, GDY-Ni shows very subtle energy change 

for the HER process, supporting the highly efficient HER observed in experiments (Figure 

5d). The energy cost of [2H* →*H2] is also the main potential determining criteria for 4d 

elements. The energetically favorable candidates are Pd, Ag, and Cd (Figure 5e). 



  

11 
 

Furthermore, the spontaneous reaction trend of [2H* →*H2] only occurs in Pt and Hg. The 

left 5d elements all require high energy costs to the formation of H2, representing the 

anticipated poor HER performance (Figure 5f). The further summary of the energetic reaction 

trend not only confirms our previous screening on the electrocatalysts but also identifies the 

active sites for GDY-AC.  

 

2.5. Machine learning (ML) 

In previous work,[19] we have presented the potential approach Fuzzy C-Means (FCM) model 

for the data separation by ML. Based on such a concept, we introduce a more in-depth bag-

tree algorithm in ML techniques to develop the potential strategy for identifying the GDY 

catalysts and determining factors. The input data for ML includes our theoretical calculation 

results, the electronegativity, electron affinity, ionization potential, d/f electrons, active sites, 

and mass numbers. With all these parameters, we compare the predicted values of adsorption 

energies of H, 2H, H2 with our calculated values. The predicted values have shown a 

relatively high accuracy since ML usually requires a much larger database to achieve highly 

accurate results. However, the chemisorption energies of H show abnormal patterns of the 

predicted values, which indicates the limitation of ML in the prediction of H coverage based 

on the present algorithm (Figure 6a-6d). In our previous mapping work, we have proposed 

the concept of the redox energy barrier to quantify the electron transfer capability of GDY-

AC.[19] Thus, we further supply the redox energy barrier of all the elements as a new 

parameter to improve the prediction by ML. For the H adsorption, the prediction shows 

similar results. In comparison, the prediction accuracy of 2H* adsorption energies has been 

improved with closer results. The prediction accuracy for adsorption of H2 shows limited 

changes as well. These results indicate that the adsorption of 2H* tightly correlates to the 

redox energy barrier, which is attributed to the energy transfer in 2H* instead of the non-
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electron exchange physical adsorption. This also explains the pivotal role of [2H* →*H2] 

reaction in HER (Figure 6e-6h). 

 

Finally, we compared the energetic trend between theoretical and ML techniques to validate 

the potential of ML in the future screening of electrocatalysts. Due to the highest ML 

prediction accuracy, we compared the energies of 2H* between theoretical calculation results 

and ML predicted values. Overall, the ML technique reproduces the adsorption energies in 

relatively high accuracy. The overall adsorption energies trend has been well preserved while 

the detailed order between some elements still requires further improvements in the ML 

algorithm. However, the highly similar trend already demonstrates the capability of ML in 

facilitating the prediction of electroactivity of novel catalysts. Both DFT and ML present a 

similar trend in the electroactivities, which validate the screening catalyst candidates for 

future experimental synthesis (Figure 7a-7b). In this work, the innovative investigations of 

both theoretical calculations and ML mapping technique deepens our understanding of the 

atomic catalysts, which open new opportunities in future design and synthesis of efficient AC 

for the experimental scientists as well. 

 

3. Conclusion 

In this work, by taking the GDY-M based systems as the example, we have revealed the HER 

performance based on both DFT calculations and machine learning strategy. Beyond the 

simple comparison of only H adsorption energies, we investigate the HER performance from 

a comprehensive perspective including adsorption energies of all intermediates, electronic 

structures, and active sites. We have successfully predicted the potential GDY based atomic 

catalyst for HER including rare-earth based material for the first time. Meanwhile, it is also 

the first time, we apply the bagged-tree method as the machine learning algorithm to train the 

system to predict the adsorption energies for different AC systems, which is developed based 
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on our previously proposed fuzzy model concept. With a limited database of GDY based AC, 

we have obtained a similar trend of the electroactivity between theoretical calculations and 

machine learning, which not only reveals a full picture of HER process but also opens the 

opportunities of machine-learning driven research strategy for broad fields in future energy-

related applications. 

4. Methods 

Theoretical Calculations: The density functional theory (DFT) has been applied for all the 

calculations to investigate the electronic and energetic of GDY based atomic catalysts within 

the CASTEP codes [20]. For the functionals, the generalized gradient approximation (GGA) 

with the Perdew-Burke-Ernzerhof (PBE) is chosen to reveal the exchange-correlation energy 

of electron interactions [21]. The plane-wave cutoff energy has been set to 380 eV within the 

ultrasoft pseudopotential scheme for all the geometry optimizations [22]. For the k-point mesh 

to achieve the energy minimization, the Broyden-Fletcher-Goldfarb-Shannon (BFGS) 

algorithm is applied [23]. The convergence criteria for the geometry optimizations have been 

set as that the Hellmann-Feynman forces will be less than 0.001 eV/A meanwhile the total 

energy should not exceed 5×10-5 eV per atom. The vacuum space in the z-direction was set as 

15 Å to prevent the interaction between periodic unit cells.  

The adsorption energy was calculated according to the equation below:  

                                               Eads = Etotal − Eslab − Eadsorbate                                          (1) 

where the Eads  is the adsorption energy, Etotal  is the total energy of the system with 

adsorbate, Eslab  is the energy of the optimized GDY and Eadsorbate  is the energy of the 

isolated adsorbate in the gas phase. In this framework, the free energy of the electron-proton 

pair (H+ + e–) can be referenced to the chemical potential of gaseous H2 at equilibrium (0 V vs 

standard hydrogen electrode). The change of free energy can be calculated as follows, 

                                                                ΔG = ΔE + ΔEZPE – TΔS                                         (2) 
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where ΔE is the electronic energy difference directly obtained by DFT calculations. ΔEZPE is 

the change in the zero-point energy (ZPE), T is the temperature and ΔS is the entropy change. 

Considering the substrate vibration, the zero point energy of the GDY is around 1.5 eV to 3.0 

eV for different atomic catalyst systems. Thus, with the consideration of thermal perturbation 

effect under different temperatures, some of the adsorption energies obtain a positive value. 

 

Machine Learning Algorithms: We introduce a possible algorithm in machine-learning to 

classify the complex database and screen out potential candidates. The Fuzzy C-Means 

(FCM) algorithm has a strong ability to classify a data-set into groups based on data-

clustering, whilst maintaining any inherent uncertainty between these groups. The FCM 

algorithm is an unsupervised learning concept. The optimization objective function of the 

standard FCM algorithm J = ∑ ∑ ui,j
p �xi − cj�

2M
j=1

N
i=1  has an important uncertainty term 

ui,j
p  which is known as the membership function and i, j represent the vector.  

 

JSAFCM =  � � � uk|i,j
p

Ω

k=1
�ηi,jck�

2M

j=1

N

i=1
+  λ� � (ηi,j − Γ(ηi,j))2

M

j=1

N

i=1
                     (3) 

 

Additionally, one must note that the FCM algorithm works much like other clustering 

algorithms, such that, it forms classes by looking at a particular distance metric between the 

data points and the class-cluster mean. The class cluster Mean in J = ∑ ∑ ui,j
p �xi − cj�

2M
j=1

N
i=1 is 

denoted by c, and the distance between the data-point and the mean is often found using 

distance metrics such as the Euclidean distance. Eq. (3) shows a modified FCM algorithm 

which considers this spatial relationship between the data-points, ηi,j is a local data term that 

biases certain data-points likelihood to belonging to a cluster based on the amount of other 

similar-valued data, which exist locally to it.  An additional term Γ, which is a filter response 
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around a local area of any data-point x, is also added to the equation for Lagrangian 

optimization of ηi,j. 

 

To further enhance results, if a data-set has some clusters which are not easily linearly 

separable, we can further develop a machine-learning algorithm to utilize Kernel functions. 

Essentially, the kernel function is a mapping function, which can take any n-dimensional data-

set and map it to a higher N-dimensional one to allow for easier separation. In the case of the 

FCM, by combining the ability of Kernel function with its ability to model uncertainties 

within data-sets, we can significantly increase the likelihood of correctly classifying a data-set, 

which has unusually distributed and overlapping features. One such example of a Kernel-

based version of Eq. (1) is shown in Eq. (2), where K is the radial basis function Kernel [24]. 

𝐽𝐽𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = � � � 𝑢𝑢𝑘𝑘|𝑖𝑖,𝑗𝑗
𝑝𝑝

𝛺𝛺

𝑘𝑘=1
(1 − 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝜂𝜂𝑖𝑖,𝑗𝑗𝑐𝑐𝑘𝑘))

𝐾𝐾

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆� � �1 − 𝐾𝐾�𝜂𝜂𝑖𝑖,𝑗𝑗, 𝜂𝜂𝑖𝑖,𝑗𝑗𝐷𝐷𝑖𝑖∈𝜙𝜙��
𝐾𝐾

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
                                                             (4) 

 

With the abovementioned data separation model, we further apply the more detailed machine 

learning algorithm to realize the pathway in this work. Due to the small size of the available 

dataset, and the need for the results to be interpretable, we had initially chosen to use 

commercially available machine learning toolboxes within MATLAB to train a model for 

prediction. The reason behind a desire for interpretability is for gaining further insight into the 

dataset for future algorithm development, i.e. which features are heavily influencing 

prediction and where should we focus future data acquisition. 

 

The bagged-tree method [25] was empirically found to give the best results without obvious 

over-fitting for this dataset. For example, it would be possible to obtain "near-perfect" results 
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for a small amount of input data using an algorithm such as mixed Gaussian models. However, 

this was practically observed to have an obvious overfitting problem on training data leading 

to poor validation results. One advantage that the decision tree method is that all the actions 

are fully under control and well-understood, which supplies significant knowledge to guide 

future models. 

 

As an ensemble learning method, bagging is advantageous for small size datasets due to its 

smoothing operation and combination of weak learners to form an overall strong learner. 

Bagging uses multiple individual decision trees which would be the so-called "weak learner", 

and when a new classification needs to be performed, it is done so on each of the individual 

trees. The final classification is decided to be the one that gained the most votes from each of 

the individual tees.[26] 

 

All of the models trained in this work were done so using 20-fold cross-validation, which was 

found empirically to give the best results overall. As can be seen from the results, the 

predicted versus real values track relatively well with few outliers, representing the validity of 

such a model for prediction.  
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Figure 1. Schematic Figure for the introduction of machine-learning for screening GDY 

based AC for HER.  
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Figure 2. DFT calculations for energies diagram of GDY-transition-metal based AC. The 

energy of initial adsorption and final desorption of (a) 3d, (b) 4d and (c) 5d transition metals 

based GDY AC. Without considering the energy changes within the HER process, the direct 

comparison of the final and initial reactions demonstrates the reaction preference. The 

chemisorption trend of H on (d) 3d, (e) 4d and (f) 5d transition metals based GDY AC. The 

volcano plot of the HER reaction energy of (g) 3d, (h) 4d and (i) 5d transition metals. 
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Figure 3. DFT calculations for energies diagram of GDY-lanthanide-metal based AC. (a) 

The energy of initial adsorption and final desorption of HER on the lanthanide-based GDY 

AC. Without considering the energy changes within the HER process, the direct comparison 

of the final and initial reactions demonstrates the reaction preference. (b) The volcano plot of 

the reaction energy of HER. (c, d) The free energy diagram of the HER process. 
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Figure 4. Electronic structures for GDY-metal based AC. The PDOSs of GDY-transition-

metal based AC of (a) 3d, (b) 4d and (c) 5d. (d-i) The PDOSs of screened AC for HER. (d) 

PDOS of GDY-Co. (e) PDOS of GDY-Ni. (f) PDOS of GDY-Pd. (g) PDOS of GDY-Pt. (h) 

PDOS of GDY-Sm. (i) PDOS of GDY-Eu.   
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Figure 5. DFT mapping of active sites and reaction energies for GDY-metal based AC. 

(a) Mapping of the preferable initial adsorption sites for H* in HER. (b) Mapping of the final 

desorption sites for H2 in HER. (c) Mapping of the chemisorption energies for GDY-

transition-metal based AC. Mapping of the reaction energies of HER for (d) 3d, (e) 4d and (f) 

5d GDY-transition-metal based AC. 
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Figure 6. Introduction of machine learning for transition metal AC on GDY. (a) – (d) 

The machine learning predicted values and comparison with theoretical calculations by 

considering the fundamental chemical properties of each metal. (e)–(g) The improved 

machine learning predicted values and comparison with theoretical calculations by further 

considering the redox barrier of electron transfer. 
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Figure 7. Comparison of (a) theoretical calculation and (b) Machine learning prediction 

values of 2H adsorption energies.  
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With the assistance of theoretical calculations and machine learning, an advanced mapping 
approach for GDY based atomic catalysts is proposed. This strategy has predicted several 
novel electrocatalysts for achieving efficient HER for the first time, which supplies directional 
guidelines for the synthesis and modulation of potential catalysts through an effective 
theoretical approach. 
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