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ABSTRACT 

Accurate measurement of dynamic displacement is important to the structural health 

monitoring and safety assessment of supertall structures. However, the displacement 

of a supertall structure is difficult to be accurately measured using the conventional 

methods because they are either inaccurate or inconvenient to be set up in practice. 

This study provides an accurate and economical method to measure dynamic 

displacement of supertall structures accurately by fusing acceleration and strain data, 

which are generally available in the structural health monitoring system. Dynamic 

displacement is first derived from the measured longitudinal strains based on 

geometric deformation without requiring mode shapes. An optimization technique is 

utilized to optimize the deployment of strain sensors for higher accuracy of the strain-

derived displacement. The strain-derived displacement is then combined with 

measured acceleration via a multi-rate Kalman filtering approach. Applications to a 

numerical supertall structure and a laboratory cantilever beam verify that the proposed 

method accurately estimates displacement including both high-frequency and pseudo-

static components, under different noise cases and sampling rates. A full-scale field 

test on the 600 m-high Canton Tower is implemented to validate the applicability of 

the proposed method to real supertall structures. Error analysis demonstrates that the 

data fusion displacement has higher accuracy than the GPS-measured displacement in 

the time and frequency domains. 

 

Keywords: structural health monitoring, dynamic displacement, supertall structure, 

multi-rate Kalman filtering, data fusion, geometric deformation  
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1. Introduction 

Dynamic displacement of a supertall structure is an intuitive response that results from 

external loads, such as winds and earthquakes1. Since the dynamic displacement is 

directly related to the structural deformation, it provides useful information for 

structural health monitoring (SHM) and condition assessment2,3. Different from 

normal buildings and bridges, supertall structures suffer risks of error accumulation, 

i.e. a small error of the displacement measurement at the bottom will cause large 

measurement error at the top of the structure. Therefore, the accurate measurement of 

structural displacement is an important topic in SHM, deformation control and damage 

detection of supertall structures4,5. 

 

In the past decades, significant efforts have been made toward the development of 

dynamic displacement measurement. Structural dynamic displacement is generally 

measured directly or indirectly. With direct methods, structural displacement is 

directly measured by devices such as linear variable differential transducers (LVDTs), 

global position systems (GPSs) and vision-based systems. Moreu et al.6 assessed 

bridge conditions under traffic using displacement measured by LVDTs, which is 

required to contact with the target structure and firm supports. GPSs have been widely 

used in the SHM of supertall structures in the past decades7. The applications of GPSs 

are limited when high accuracy of displacement is required. Vision-based methods 

generally measure structural displacement at multiple points simultaneously, whereas 
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the measurement accuracy is dependent on a good visual condition8,9. These direct 

methods are sometimes difficult to be applied to supertall structures. For example, it 

is usually difficult to set a support at the tall buildings for the LVDTs. The displacement 

measured from GPSs is not sufficiently accurate, and the invisibility caused by 

occlusion of the scaffold limits the implementation of the vision-based methods. 

 

Indirect methods estimate the displacement by the transformation from acceleration10 

or strain11,12,13. Acceleration is usually accurate at the high-frequency component with 

high sampling rates, and many researchers obtain structural dynamic displacement via 

double integration of measured acceleration data14. The error that accumulates from 

the double integration causes base-line drift, especially for long-term SHM15. Another 

limit of the acceleration-based approach is that the acceleration cannot estimate the 

pseudo-static displacement16. Strain responses have also been used to calculate 

displacement via the strain–displacement relations. Wang et al.17 used the strain-based 

mode shape to measure the dynamic displacement of a simply supported beam 

structure. Shin et al.18 proposed a displacement measurement method for a simply 

supported beam using FBG strain sensors based on mode superposition. These strain-

based methods require accurate mode shapes of the structures, which are inaccessible 

and time consuming for large-scale supertall structures. 

 

Recently, some researchers have combined the direct and indirect methods to improve 

the accuracy of dynamic displacement measurement. Smyth and Wu1 developed a 
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multi-rate Kalman filtering method that calculated displacement accurately by fusing 

measured displacement with acceleration. This method also has a merit of fusing 

acceleration and displacement with different sampling rates19. Kim et al.20,21 improved 

the accuracy of displacement measurements by fusing the displacement measured by 

a terrestrial laser scanner with the velocity measured by a laser Doppler vibrometer. 

They also proposed a two-stage Kalman filtering algorithm to acquire dynamic 

displacement by combining high-sampling acceleration and low-sampling 

displacement data22. The above data fusion methods combine the direct and indirect 

methods, whereas the implementation of the direct methods are limited by the visibility 

and installation conditions for supertall structures. Data fusion of different indirect 

methods has also been conducted for displacement measurements. Park et al.23,24 fused 

mode shape-based displacement with acceleration to monitor dynamic displacement 

of a simply supported bridges through an extension finite impulse response filter. Cho 

et al.25 proposed a Kalman filtering method that combines acceleration and mode 

shape-based displacement to obtain dynamic displacement of bridges. Those data 

fusion methods require mode shapes and focus on displacement estimation of bridges, 

which are different from supertall structures in structural configuration, boundary 

conditions and loading forms. Therefore, those data fusion methods to bridges are 

limited to be used in supertall structures. 

 

At present, there is still no efficient and accurate method to measure the dynamic 

displacement of supertall structures. This study develops a displacement estimation 
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method for a supertall structure by fusing strain-derived displacement and acceleration 

via Kalman filtering. Different from previous researches, this study derives the strain–

displacement formulas directly from the structural geometric deformation without 

requiring mode shapes, which is more accessible to practical supertall structures. In 

addition, a technique is used to optimize sensor deployment by minimizing the error 

of the strain-derived displacement. The proposed strain–displacement formulas are 

also capable to obtain the structural displacement at different heights of the structure. 

Accelerometer and strain sensors are commonly installed in SHM system to measure 

structural acceleration and strain26, therefore the proposed method is performed on 

standard SHM system without additional instruments. The proposed method 

accurately estimates dynamic displacement including high-frequency and pseudo-

static components by fusing high-sampling rate acceleration and low-sampling rate 

strain via a multi-rate Kalman filtering. A smoothing process is used to further improve 

the accuracy of the multi-rate data fusion displacement. The accuracy of the proposed 

data fusion method is verified through a simulation of a supertall structure and a 

laboratory test of a cantilever beam. Finally, the performance and applicability of the 

proposed method to practical structure is validated by a field test on the 600 m-high 

Canton Tower. 

 

2. Displacement measurement from geometric deformation 

In this section, the horizontal dynamic displacement is first estimated from the 

longitudinal strain. Different from the mode shape-based approaches17,18,25, the 
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proposed approach derives displacement directly from the structural geometric 

deformation, which is generally available for supertall structures, such as Canton 

Tower26 and Shanghai Tower27. Additionally, an optimization technique is proposed to 

obtain the optimal arrangement of strain sensors. 

 

2.1 Derivation of strain-derived displacement 

A supertall structure has a large slenderness ratio and the bottom is fixed, which can 

thus be simulated with a cantilever beam26. Therefore, a cantilever beam model is used 

here to derive the strain-based displacement formulas (Figure 1). The beam model is 

divided into n sub-elements, and the i-th sub-element connects Point i−1 and Point i. 

The strain sensors are located at n+1 Points (from Point 0 to Point n) along the beam. 

Each sub-element is divided into a number of micro-units. Vibration of the beam-like 

structure generates bending deformation, which leads to tension or compression strain 

along the longitudinal direction on the two sides of the beam. The tension strain is 

regarded as positive and the compression strain is negative. The strain of a micro-unit 

is measured in practice. The deformation of a micro-unit is an angular rotation 

resulting in the strain difference on the two sides of the micro-unit. The horizontal 

displacement of a sub-element is integrated from the deformations of all micro-units 

within the sub-element. Finally, the horizontal displacement of Point n is calculated by 

summing up the horizontal displacements of all sub-elements below Point n. 

Accordingly, the strain-derived displacement is derived from the longitudinal strain 
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data by the following three steps. 

 

The first step is to calculate the angular rotation of the micro-unit. As shown in Figure 

2, the bending deformation of the micro-unit leads to the strain difference on the two 

sides of the beam, and the angular rotation is calculated by the strain difference as 

 ( )l r dh dhd
s s

ε ε εθ
− ∆

= =  (1) 

where dθ is the angular rotation, lε  and rε  are longitudinal strains at the left and 

right sides of the micro-unit, respectively. l rε ε ε∆ = −  is the strain difference on the 

two sides of the micro-unit. s is the width of the micro-unit in the horizontal direction, 

and dh is the length of the micro-unit in the longitudinal direction. 

 

The second step is to calculate the horizontal displacement of the sub-element by 

integrating the deformations of the micro-units. In this step, the strain difference and 

bending moment diagrams of the beam are used to calculate the displacement of the 

sub-element through diagram multiplication28. Figure 3 shows the strain difference 

diagram acquired from the deformations of the micro-units and the bending moment 

diagram obtained by loading a unit horizontal force at Point n. The bending moment 

at Point i is the multiplication of the unit force with the arm of the unit force to Point 

i, i.e., the distance between the unit force and the Point i. 

 
1 1

n n

i unit j j
j i j i

M f h h
= + = +

= =∑ ∑  (2) 
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where iM  is the bending moment at Point i and hj is the length of the sub-elements 

above Point i. The unit force funit = 1. Concerning on the i-th sub-element plotted in 

Figure 4, the horizontal displacement of the i-th sub-element is an integration of the 

deformation of micro-units within the sub-element. Based on the assumption that the 

strain variation between Point i−1 and Point i is linear26, the integration is presented 

by the multiplication of the areas of the strain difference with the corresponding 

bending moment28. To simplify the multiplication, the strain difference can be divided 

into a triangle and a rectangle, with areas of A1 and A2 (Figure 4(a)). The corresponding 

bending moments of the triangle and rectangle are y1 and y2, respectively (Figure 4(b)). 

The calculation of the displacement of the i-th sub-element is presented as 

 1 1 2 20 0

1 1 ( )i ih h

ix Md M dh A y A y
s s

θ ε∆ = = ∆ = +∫ ∫  (3) 

where ix∆  is the horizontal displacement of the i-th sub-element. A1, A2, y1 and y2 

in equation (3) are presented as 

 1
1

( )
2

i i ihA ε ε−∆ −∆
= , 2 i iA hε= ∆ , 1

1
(2 )

3
i iM My − +

= , 1
2

( )
2

i iM My − +
=   (4) 

Substituting equations (4) into (3) leads to 

 1 1 1 1(2 2 )
6

i
i i i i i i i i i

i

hx M M M M
s

ε ε ε ε− − − −∆ = ∆ + ∆ + ∆ + ∆  (5) 

 

Consequently, the third step is to calculate the horizontal displacement of Point n by 

the integration of the displacements of all sub-elements below Point n as 
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 1 1 1 1
1

1 (2 2 )
6

n
i

sd i i i i i i i i
i i

hx M M M M
s

ε ε ε ε− − − −
=

 
= ∆ + ∆ + ∆ + ∆ 

 
∑  (6) 

where sdx  is the strain-derived displacement of Point n. Hereinafter, the subscript sd 

means the items derived from strain. The horizontal displacement of the supertall 

structure at any heights can also be achieved by altering the location of the unit force 

to the required Point. In order to simplify the derivation of the strain–displacement 

formulas, the strain sensors are assumed to be aligned along the structure. The 

distribution of the sensors and the magnitude of strain may affect the accuracy of the 

strain-derived displacement, which will be investigated in the case studies. In practice, 

errors from the alignment deviation can be compensated by piecewise linear 

interpolation technique29 and least squares method30. 

 

2.2 Optimization of sensor deployment 

The quantity and location of the strain sensors would affect the accuracy of the strain-

derived displacement. Therefore, hence the sensor deployment should be optimized 

for achieving higher more accurate displacement fusionaccuracy. The strain-derived 

displacement in equation (6) is a multivariate function, where the variables Δεi (i = 1, 

2,…, n) are independent to each other. Consequently, the error of the strain-derived 

displacement is can be quantified by the standard deviation of the measurement error 

in each strain sensor, that is, 
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1

22
2 2

1
n

sd sd
sd

n

x x
ε εσ σ σ

ε ε∆ ∆

  ∂ ∂
= + ⋅⋅⋅⋅ ⋅ ⋅ +   ∂∆ ∂∆   

 (7) 

where sdσ   is the standard deviation that quantifies the error of the strain-derived 

displacement. In equation (7), 2 2 2
i li riε ε εσ σ σ∆ = + , where liε

σ  and riεσ  are the standard 

deviations of the measurement error of strain sensors at Point i. Substituting equation 

(6) into equation (7) leads to 

 
1

12 2 2 2 2 4 2
1 1 1 11

1 1

1 (3 ) + [ ( 3 ) (3 )]
6 i n

n n
n

sd i i j i j i ni
j i j i

h H h h h h h h h h
s ε ε εσ σ σ σ−

∆ + + ∆ ∆=
= + = +

= − + + − +∑ ∑ ∑  (8) 

Since H and 2
iε

σ∆  are known and σsd is a multivariate function of hi (i = 1, 2…, n), the 

optimal deployment of the strain sensors can be obtained by solving the following 

optimization problem to minimizing e the standard deviation of the strain-derived 

displacement. 

 
1

( ) min ( )

=
s.t.

j sd j

n

j
j

low j up

f h h

h H

h h h

σ

=

=




 ≤ ≤

∑  (9) 

where f(hj) and s.t. are the objective function and constraints, respectively. hlow and hup 

are the lower and upper limit bounds of hi. Besides, the constraints can be expanded 

according to the practical condition. In consequence, Tthe above objective function 

can be solved via nonlinear programming methods32. 

 

3. Displacement measurement using Kalman filtering 
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This section develops the Kalman filtering algorithm to fuse the strain-derived 

displacement derived in Section 2 and measured acceleration to estimate dynamic 

displacement accurately. Note that the displacement and acceleration construct the 

state equation of the state-space model in Kalman filtering algorithm1,19,24. The 

Kalman filtering algorithm includes two components: (i) the state-space model and (ii) 

the recursive filtering algorithm. The state-space model constructs the relationship 

between the inputs (acceleration and strain) and the output (displacement) in the 

discrete time domain. The recursive filtering algorithm is an optimal estimator, which 

estimates optimal displacement based on the state-space model via the minimum root-

mean square principle27.  

 

3.1 State-space model 

Denote the displacement, velocity and acceleration of the structure at time step k−1 as 

( 1)x k − , ( 1)x k −  and ( 1)x k − , respectively. The displacement at time step k is 

derived from the displacement, velocity, acceleration and a system noise at time step 

k−1 as 

 21( ) ( 1) ( 1) ( 1) ( 1)
2 dx k x k x k t x k t w k= − + − ∆ + − ∆ + −   (10) 

where wd(k−1) is the system noise18 introduced in displacement and Δt is the time 

interval between adjacent time steps. The velocity at time step k is calculated from the 

velocity and acceleration at time step k−1 as 

 ( ) ( 1) ( 1) ( 1)vx k x k x k t w k= − + − ∆ + −    (11) 

where wv(k−1) is the system noise introduced in velocity. The system noises wd(k−1) 
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and wv(k−1) are assumed as zero-mean Gaussian white noise19. The measured 

displacement is written as the summation of the real displacement and measurement 

noise as 

 ( ) ( ) ( )mx k x k v k= +  (12) 

where xm(k) is the measured displacement that identifies with xsd(k) in this study. v(k) 

is the measurement noise caused by measurement error of the sensor, which is also 

assumed as zero-mean Gaussian white noise19. 

 

To build the state-space model, the displacement and velocity are defined as state 

variables to construct the state vector as 

 [ ]( ) ( ) ( ) Tk x k x k=X   (13) 

where the superscript T is the transpose of a vector. Combining equations (10)─(13), 

the state-space model for the data fusion of acceleration and strain-derived 

displacement is expressed as 

 ( ) ( 1) ( 1) ( 1)k k x k k= − + − + −X AX B w  (14) 

 ( ) ( ) ( )sdx k k v k= +HX  (15) 

where the matrices A, B, H and w(k-1) in equations (14) and (15) are denoted as 

 
1
0 1

t∆ 
=  
 

A , 
2( ) 2t
t

 ∆
=  ∆ 

B , [ ]1 0=H , 
( 1)

( 1)
( 1)

d

v

w k
k

w k
− 

− =  − 
w  (16) 

The system noise vector w(k−1) and the measurement noise v(k) are Gaussian white 

noise with the covariance matrix of Q and R respectively as 
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3 2

2

( ) 3 ( ) 2
( ) 2

t t
q

t t
 ∆ ∆

=  ∆ ∆ 
Q , r

t
=
∆

R  (17) 

where q and r are the variance of acceleration noise and displacement noise, 

respectively. 

 

3.2 Recursive filtering algorithm 

The accelerometer is installed at the identical location of the required displacement. 

The measured acceleration fuses the strain-derived displacement via the recursive 

filtering to estimate the required displacement. For instance, if the displacement at the 

top of the structure is estimated, an accelerometer is required to be installed at the top. 

The recursive filtering algorithm has two processes, namely, estimating and updating 

processes. In the estimating process, the state vector at time step k is predicted from 

the filtered state vector and measured acceleration at time step k-1: 

 ˆ( ) ( 1) ( 1)mk k x k= − + −X AX B  (18) 

where ( )kX , ˆ ( 1)k −X  and ( 1)mx k −  are the predicted state vector, the filtered 

state vector and the measured acceleration, respectively. The covariance matrix is an 

error evaluation of the prediction, which is calculated by 

 ˆ( ) ( 1) Tk k= − +P ΑP A Q  (19) 

where ( )kP  is the covariance matrix of the prediction error and ˆ ( 1)k −P  is the 

covariance matrix of the filtering error. 
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In the updating process, the strain-derived displacement in equation (6) corrects the 

predicted displacement in equation (18). The correction is a weighted data fusion based 

on the minimum mean-square error principle, which is represented as 

 ˆ ( ) ( ) ( ) ( ) ( )sdk k k x k k = + − X X K HX  (20) 

In consequence, the displacement is expressed by a data fusion of measured 

acceleration and strains. The Kalman gain K(k) serves as an optimal weight between 

the predicted displacement and the strain-derived displacement. It is calculated by 

 
1

( ) ( ) ( ) +T Tk k k
−

 =  K P H HP H R  (21) 

The covariance matrix of the filtered estimation is calculated by 

 ˆ ( ) ( ) ( )Tk k k = − P I K H P  (22) 

The target of the filtering algorithm is to obtain the optimal displacement by 

minimizing the trace of the estimation covariance matrix ˆ ( )kP . The minimum 

estimation covariance is obtained when the Kalman gain is equal to the optimal value; 

therefore, the displacement estimation converges to the real displacement. Figure 5 

shows the framework of the proposed Kalman filtering approach presented above. The 

displacement is predicted in the estimating process, and then is fused with the strain-

derived displacement in the updating process. The two processes of the Kalman 

filtering repeat alternatively at every time step to obtain the real-time optimal 

displacement.  
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The accuracy of the estimated displacement depends on the selection of q and r, thus 

the noise variances need to be determined ahead before the operation of the Kalman 

filtering. In this study, a maximum likelihood estimation approach33 is utilized to 

determine the noise parameter for the simulation signals and the measurement data. 

The standard deviation of the measured acceleration and the strain-derived 

displacement are regarded as the initial values for estimation of parameter q and r. 

 

3.3 Multi-rate Kalman filtering with smoothing 

A multi-rate Kalman filtering approach is required when acceleration and strain are 

measured at different sampling rates or when the strain data are intermittent. In 

practice, acceleration data usually have a higher sampling rate than strain data. The 

sampling rates of acceleration and strain data are denoted as fa and fs, respectively. 

Denote D = fa/fs as the ratio of sampling rates hereinafter. 

 

Figure 6 indicates the flowchart of the multi-rate Kalman filtering. In the multi-rate 

Kalman filtering, the estimating process is performed solely when acceleration data 

are available while strain data are absent. In this situation, the updating processes are 

absent and thus the filtered displacement is equivalent to the predicted displacement. 

The recursive filtering algorithm at time step k is thus simplified as 

 ˆ ˆ( ) ( ) ( 1) ( 1)mk k k x k= = − + −X X AX B  (23) 

 ˆ ˆ( ) ( ) ( 1) Tk k k= = − +P P ΑP A Q  (24) 
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Meanwhile, the updating process works together with the estimating process when 

both acceleration and strain data are available. The absence of the updating process 

leads to error of the multi-rate fused displacement, and the error increases as the 

difference of sampling rates increases. Thus, Kalman smoothing is introduced to 

diminish the displacement error. There are three kinds of Kalman smoothing 

algorithms, including the fixed-point smoothing, fixed-lag smoothing and fixed-

interval smoothing20. Fixed-point smoothing amends the state vectors at a specific 

point using the entire sequence of measurements. Fixed-lag smoothing corrects the 

state vectors at a fixed time lag from the current observation process. Fixed-interval 

smoothing corrects the state vectors at a fixed time interval, and it can also be used as 

fixed-lag smoothing. The smoothing used in the proposed multi-rate Kalman filtering 

approach is a fixed-interval smoothing based on the Rauch–Tung–Striebel algorithm1. 

In fact, the fixed-interval smoothing is an inverse filtering process that starts from the 

current time step and filters backward at a fixed interval of time steps. The backward 

steps for the smoothing should be big enough to diminish the displacement error due 

to the absence of the updating process. For example, the number of backward steps is 

set as 10 when D = 10. The smoothed displacement is obtained by 

 ˆ( ) ( ) ( ) ( 1) ( 1)k k k k k∗ ∗ ∗ ∗ ∗ = + ⋅ + − + X X G X X   (25) 

where ( )k∗X  is the smoothed state vector, and k* = k+p−1, k+p−2, … k (p is a round 

number of fa/fs). ( )k∗G  is the smoothing gain calculated by 

 1ˆ( ) ( ) ( 1)Tk k k∗ ∗ ∗ −= +G P A P  (26) 
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In real-life measurement, the multi-rate data fusion with smoothing technique is also 

advantageous to deal with the drift of the acceleration data. The drift of the acceleration 

data is reduced not only in the updating process by the strain-derived displacement, 

but also in the smoothing process by the filtered displacement. 

 

3.4 Accuracy evaluation 

The accuracy of the estimated displacement is evaluated using the normalised root 

mean square error (NRMSE) as 

 ( ) ( )2 2

1 1
NRMSE ( ) ( ) ( ) 100%

N N

est ref ref
k k

x k x k x k
= =

= − ×∑ ∑  (27) 

where xest(k) is the displacement estimated from strain or data fusion, and xref(k) 

denotes the reference value. 

 

In case of reference of displacement is difficult or unable to acquire, the standard 

deviation of the data fusion displacement is calculated to quantify its accuracy. By 

considering the state space model in Section 3.1, the standard deviation of the data 

fusion displacement is calculated by 

 
22

2 2( t)
2fusion sd accσ σ σ

 ∆
= +  

 
 (28) 

where the σsd and σacc are standard deviation of the strain-derived displacement and 

acceleration, respectively. 
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4. The simulation of Wuhan Yangtze Navigation Centre 

Wuhan Yangtze Navigation Centre is a 66-floor frame-core wall supertall structure 

with a height of 335 m34,35. Figure 7 shows the structure and its finite element model. 

The cross section of the structure is a square with an outer frame of 50 m × 50 m and 

the inner core wall of 30 m × 30 m (Figure 8). The excitation imposed on the top floor 

comprises high-frequency and pseudo-static ingredients for generating dynamic and 

pseudo-static displacements. A sampling rate of 100 Hz is used in the simulation. The 

displacement response calculated from the numerical model via dynamic analysis is 

regarded as reference. The horizontal dynamic displacement is estimated by the 

proposed method, and then compared with the reference. 

 

The displacement at Floor 66 is first calculated by the strain data using the method 

described in Section 2. According to the locations of the strain measurement points, 

the model of Wuhan Yangtze Navigation Centre is divided into sub-elements, and each 

measured storey is regarded as a micro-unit. The strains on two sides of the micro-

units are measured to acquire the strain differences. The angular rotation of a micro-

unit is calculated by the strain difference via equation (1). By the diagram 

multiplication, the horizontal displacement of a sub-element is obtained by integrating 

the angular rotation of micro-units via equation (5). Afterwards, the horizontal 

displacement at Floor 66 is obtained by integrating the displacements of all sub-

elements via equation (6). 
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To investigate the influence of the sensor quantity on the accuracy of the strain-derived 

displacement, Table 1 summarises the NRMSEs of the strain-derived displacement of 

four different quantity schemes. The NRMSE of the strain-derived displacement is 

around 5% for schemes 1─3, while the NRMSE raises to 7.22% for scheme 4. 

Therefore, at least four strain sensors are thus required for a successful displacement 

estimation. Next, the sensor deployment is optimized via nonlinear programming 

proposed in Section 2.2. In this simulation, the standard deviations of each point are 

assumed to be equal at 1 με. The optimal hi (i=1, 2, 3) estimated via equation (9) are 

25.5 m, 144.5 m and 165 m, respectively. Therefore, the strain sensors are suggested 

to be located at 0 m, 25.5 m, 170.0 m and 335 m. In this case, the NRMSE of the strain-

derived displacement is 5.02%, which shows a higher accuracy than that of scheme 3 

(5.18%). This sensor deployment is selected to verify the accuracy of the data fusion 

displacement. 

 

Afterwards, the strain-derived displacement and the acceleration are fused via the 

proposed Kalman filtering approach. In this simulation, the noise parameters estimated 

via the maximum likelihood estimation approach are q = 0.042 m2/s3 and r = 0.0023 

m2·s. The displacement of Floor 66 is predicted via equation (18). The predicted 

displacement is then fused with the strain-derived displacement to obtain the optimal 

displacement. Acceleration-based displacement estimation proposed by Lee et al.32 is 
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used for comparison. Figure 9 compares the displacements of Floor 66 estimated by 

the acceleration, strain and data fusion methods. The acceleration-derived 

displacement has large errors in recovering the pseudo-static displacement. The strain-

derived displacement is close to the reference, and the data fusion displacement 

matches the reference better. The NRMSE of the data fusion displacement of Floors 

66 is 3.64%, which is more accurate than the strain-derived displacements. The 

confidence level of the data fusion displacement consists of a mean value and a 

covariance. The filtered displacement is the mean value. The square root of the upper 

diagonal element of the covariance matrix in equation (22) is the covariance, which 

indicates the uncertainty of the filtered displacement. The uncertainty of the data 

fusion displacement is ±1.2 mm. 

 

Gaussian white noises of 5%─20% are added to the strain and acceleration data to 

investigate the influence of measurement noise on the accuracy of the data fusion 

method. Table 2 compares the NRMSEs of the strain-derived and data fusion 

displacements at different noise levels. The NRMSEs of the acceleration-derived 

displacement with different noises are around 65.5%, which are relatively larger than 

other displacements. This is because the acceleration-derived displacement fails to 

estimate the pseudo-static displacement. The NRMSEs of the strain-derived 

displacement increases from 5.03% to 8.72% as the noise increases, while the 

NRMSEs of the data fusion displacement increases slightly from 4.06% to 5.05%. 
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Therefore, the data fusion method is more robust to measurement noise than the strain-

derived method. 

 

In practice, the sampling rate of acceleration data is generally higher than that of strain 

data. Therefore, the multi-rate Kalman filtering approach with smoothing proposed in 

Section 3.3 is used to fuse the acceleration data and strain-derived displacement with 

different sampling rates. The sampling rate of acceleration is set to 100 Hz, and the 

sampling rates of strain are 10, 2, 1 and 0.5 Hz, i.e. D = 10, 50, 100 and 200, 

respectively. A 10% Gaussian white noise is used to simulate a reasonably working 

noise in practical environment1. Figure 10 compares the displacements obtained by the 

strain-derived method and the multi-rate data fusion approach when D = 200. The 

strain-derived displacement contains only a few displacement points and fails to 

capture the high-frequency component of the dynamic displacement. The acceleration-

derived displacement fails to estimate the pseudo-static component, which leads to 

large error. The multi-rate data fusion displacement approximates the exact 

displacement with slight error. The slight error comes from the absence of updating 

process during the time interval of strain data. The smoothing technique diminishes 

the error, and the smoothed displacement is in good agreement with the reference. As 

shown in Table 3, the NRMSE increases slightly from 3.23% to 5.63% as D increases 

from 10 to 100, and then rises to 8.37% as D is 200, which remains accurate. 

Consequently, the proposed multi-rate Kalman filtering and smoothing technique fuses 
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high-frequency acceleration and low-frequency strain to accurately obtain dynamic 

displacement including both high-frequency and pseudo-static components. 

 

5. Experiment on a cantilever beam 

A steel cantilever beam (Figure 11) is tested in the laboratory to validate the accuracy 

of the proposed displacement measurement method. The beam is 800 mm long with a 

rectangular cross section of 50 mm × 5 mm. The material constants of the beam are 

Young’s modulus = 210 GPa and Poisson’s ratio = 0.3. Ten resistance-type strain 

sensors are installed on two sides of the beam (node 0 to 9), with an equal distance of 

80 mm between adjacent sensors. Acceleration and horizontal displacement data of 

Point 1 are measured by accelerometer and laser displacement meter, respectively. The 

location of the accelerometer and laser displacement meter is then moved to Point 2 

for measurement. The laser-measured displacement is regarded as reference. The 

structure is excited by two loading cases. Case 1 is an acceleration excitation generated 

by an exciter that contacts the beam via a steel bar. Case 2 is an excitation that includes 

high-frequency and pseudo-static components. The high-frequency component is 

generated by an exciter similar to Case 1, and the pseudo-static component is generated 

by manual push. This loading type is selected to highlight the merit of the proposed 

strain-derived method in estimating pseudo-static displacement. The displacement is 

first derived by from the strain and then fused with the acceleration by the Kalman 

filtering approach. The noise parameters used in the experiment are as follows: q = 
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2.51 mm2/s3 and r = 0.07 mm2·s for Case 1 and q = 1.71 mm2/s3 and r = 0.13 mm2·s 

for Case 2. 

 

An investigation about the minimum quantity of strain sensors is provided before the 

optimization of sensor deployment. As shown in Table 6, the quantity of the sensors 

has slight influence on the accuracy of the data fusion displacement when the quantity 

exceeds four. Therefore, five strain sensors are sufficient to estimate displacement 

accurately in the experiment. The optimal deployment of the five sensors is then 

determined by the technique proposed in Section 2.2. The standard deviations of each 

strain sensor are acquired according to the strain data under ambient excitation. The 

result shows that the optimal locations of the five sensors are 0, 8, 16, 40 and 70 cm, 

respectively. Therefore, the strain sensors are installed at node 0, 1, 2, 5 and 9 (Figure 

11(b)) to derive the displacement in the experiment. 

 

Figure 12 shows that the data fusion displacement is more accurate than the strain-

derived and acceleration-derived displacements. Figure 13 shows that the acceleration-

derived displacement fails to estimate the pseudo-static component. The strain-derived 

displacement approximates the reference, and the data fusion displacement is the most 

accurate one. Table 4 shows that the average NRMSEs are 56.05%, 8.16% and 4.85% 

for the acceleration-derived, strain-derived and data fusion displacements, 

respectively. The reason why the acceleration-derived displacement has relatively 
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larger error than those of other displacements is that the acceleration-derived 

displacement fails to estimate the pseudo-static displacement. The proposed data 

fusion method accurately estimate displacement when both the high-frequency and 

pseudo-static components are included. The uncertainties of the data fusion 

displacements are ±0.04 mm for Case 1 and ±0.06 mm for Case 2 according to the 

covariance matrix via equation (22). 

 

The effect of the strain magnitude is also analyzed to evaluate the proposed data fusion 

approach with small strain amplitudes. An overlapping time window with a size of 

0.25 s that moves forward in an increment of 0.005 s is used to calculate the error. 

Figure 14 shows that the NRMSEs at the beginning are about 3% for Case 1 and 0.8% 

for Case 2 (Figure 14(a)). Note that the error magnitudes drop lower than 0.4% for 

Case 1 and lower than 0.3% for Case 2 in the rest period (Figure 14(b)). The reason 

for the relatively large error at the beginning stage is that the beam is unexcited and 

the strain magnitude is close to zero. These observations indicate that a smaller strain 

amplitude suffers larger error magnitude, and the error of the data fusion displacement 

maintains at a low level. 

 

Afterwards, the accuracy of the data fusion displacement with different sampling rates 

of the acceleration and strain data is investigated. The acceleration is sampled at 200 

Hz, and the strain is sampled at 40, 20, 10 and 5 Hz (i.e. D = 5, 10, 20 and 40). The 

smoothing technique presented in Section 3.3 is used in the multi-rate data fusion to 
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reduce the error of the displacement caused by the absence of updating processes. 

Figure 15 compares the displacement obtained using only 10 Hz strain data and a 

fusion of 200 Hz acceleration and 10 Hz strain data for the two loading cases. The 

strain-derived displacement only includes a low-frequency component of the real 

dynamic displacement due to the low sampling rate of strain. The multi-rate data fusion 

supplements sufficient data points to obtain the dynamic displacement, which is in 

good agreement with the reference. As shown in Table 5, the NRMSE of the 

displacement in Case 2 increases significantly from 7.17% to 17.86% due to the low 

sampling rate of strain and the pseudo-static displacement. On the other hand, the 

NRMSE of the smoothed displacement in Case 1 rises slightly from 7.67% to 8.21%, 

as D rises from 5 to 40. Therefore, the proposed multi-rate data fusion with smoothing 

technique is capable to estimate the displacement accurately although considerable 

strain data are missing. 

 

6. Field experiment on a supertall structure 

Validation of the proposed data fusion approach in field test is implemented on the 600 

m-high Canton Tower (Figure 16) in Guangzhou, China. The Canton Tower is a typical 

tube-in-tube supertall structure with a 454 m-high main tower and a 146 m-high steel 

antenna on the top of the main tower36,37. The main tower consists of an oval reinforced 

concrete inner tube and an oval steel outer tube. The oval inner tube has a constant size 

of 14 × 17 m, and the outer tube has a gradually changing size along the height. A 
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sophisticated long-term SHM system has been established in the tower since the 

construction period and become a SHM benchmark to supertall structures38,39,40,41. 

After attempts and comparisons of different approaches, GPS system is chosen as a 

practical way to monitor structural displacement in the long term. The accuracy of the 

GPS-measured displacement is sometimes not sufficient in extreme weathers such as 

storm and typhoon. As shown in Figure 16, a GPS system and an anemometer were 

installed at the top of the main tower (454 m). Strain sensors were installed at four 

faces of the inner tube at 12 sections (Figure 16(b)). Each section has four strain 

sensors: two for the longitudinal strain along the long-axis and the other two for the 

short-axis (Figure 16(c)). Uni-axial accelerometers installed at 446 m are used to 

measure the horizontal acceleration along the long-axis and the short-axis of the inner 

tube. The proposed method uses the sensors of the original SHM system in Canton 

Tower to accurately obtain dynamic displacement without additional instruments 

required. 

 

The structural responses of the Canton Tower during typhoon Usagi34, which passed 

through Guangzhou on 22 September 2013 are used for the field validation of the 

proposed data fusion method. The maximum 10-min mean wind speed during the day 

was 22 m/s. With an optimization of sensor deployment that similar to the simulation 

and experiment, strain sensors at six sections are selected for the strain-derived 

displacement. The selected sections are No. 1, 2, 4, 6, 8 and 12 section shown in Figure 
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16(b). The longitudinal strains of Point 2 and Point 4 at these six levels are utilized to 

derive the horizontal displacement of the top of the main tower along the short-axis of 

the oval section. The horizontal acceleration measured at 446 m is fused with the 

strain-derived displacement. The sampling rates of strain, acceleration and GPS are 

0.2 Hz, 5 Hz and 1 Hz, respectively. 

 

The first step is to identify the noise parameters of strain and acceleration data by 

calculating the standard deviation26 and maximum likelihood estimation33. The 

standard deviations of strain and acceleration are estimated directly from the measured 

data, and the standard deviation of the strain-derived displacement is calculated via 

equation (8). The standard deviations are then used as the initial values of the 

parameter estimation. The noise parameters for the proposed Kalman filtering are q = 

8.59 mm2/s3 and r = 0.108 mm2·s. 

 

The second step is to fuse the strain-derived displacement and acceleration in 

horizontal direction via the proposed multi-rate Kalman filter algorithm. Figure 18 

compares different displacements obtained from strain, acceleration, data fusion and 

GPS. The data points of the strain-derived displacement are close to the GPS-measured 

displacement, but they cannot estimate the overall characteristics of the dynamic 

displacement due to the low-sampling rate (0.2 Hz). The acceleration-derived 

displacement estimated via the FIR filter32 has errors and high-frequency noise, 
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especially at the peaks and valleys. The data fusion displacement agrees well with the 

GPS-measured displacement. 

 

In field monitoring, the displacement from GPS is adopted for comparison. The 

accuracy of GPS measurement relies on the atmosphere, satellite geometry and multi-

path34. The weather condition during a typhoon reduces the accuracy of the GPS-

measured displacement. According to equation (28), the standard deviation of the data 

fusion displacement is 10.81 mm, which is better than that of the GPS measurements, 

whose error is about a few centimetres in field measurement26, 34. 

 

The fast Fourier transform is performed on the data fusion displacement and the GPS-

measured displacement. Figure 19 compares the frequencies identified from the data 

fusion displacement, GPS-measured displacement and acceleration. A theoretical 

modal analysis34 indicates that the first three modal frequencies of the Canton Tower 

are 0.095 Hz, 0.139 Hz and 0.347 Hz, respectively. Therefore, the sampling rates of 

the acceleration and GPS are sufficient to capture the first three modal frequencies of 

the Canton Tower. As shown in Figure 19, the first modal frequency of the three 

displacements are close to the theoretical value. The acceleration and data fusion 

displacements accurately identify the second modal frequency at 0.1367 Hz, whereas 

the frequency from GPS differs from the theoretical one with a 10% error. In addition, 

the acceleration-derived and data fusion displacements detect the third modal 
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frequency, whereas the GPS fails to do. Consequently, the accuracy of the data fusion 

displacement is higher than that of the GPS-measured displacement both in the time 

and frequency domains. 

 

7. Conclusions 

A new and practical dynamic displacement measurement approach is developed for 

beam-like supertall structures by fusing the measured acceleration and strain. 

Accelerometers and strain sensors are regularly included in standard SHM system of 

supertall structures, so the proposed method does not require additional instruments. 

The horizontal dynamic displacement is first derived from longitudinal strain based on 

geometric deformation instead of mode shapes, and the accuracy of displacement is 

not affected by the model error. An optimization technique is proposed to obtain the 

optimal deployment of the strain sensors to improve the accuracy of the strain-derived 

displacement. These merits make the proposed displacement measurement method of 

a supertall structure efficient and economical. The proposed multi-rate Kalman 

filtering approach combines high-frequency acceleration and low-frequency strain to 

accurately obtain dynamic displacement including both high-frequency and pseudo-

static components, which is significant to practical supertall structures. 

 

The simulation of a supertall structure and the laboratory beam experiment verify that 

the proposed strain-derived method is capable to estimate nonzero mean dynamic 
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displacement with pseudo-static component. The proposed Kalman filtering approach 

considerably improves the accuracy of the strain-derived displacement by reducing the 

measurement noise. The influences of noise and the distribution of strain sensors are 

investigated. Results show that the proposed data fusion method accurately estimates 

displacement in high noise cases. The strain sensors should be installed more 

intensively at the lower floors of a supertall structure than at the upper floors. The 

effect of strain amplitude to the error is also investigated. Smaller strain amplitude has 

larger error, while the error of the data fusion displacement maintains at a low level. 

In addition, the multi-rate Kalman filtering with smoothing is effective for acquiring 

dynamic displacement accurately although the sampling rate of the strain data is low. 

Finally, the field test on the 600 m-high Canton Tower demonstrates the applicability 

and accuracy of the proposed multi-rate Kalman filtering approach to practical 

supertall structures. 
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