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Abstract. Clay minerals are prevalent in rock discontinuities and have significant 

effects on mechanical, hydraulic and seismic properties of rock masses. Understanding 

seismic behaviours across individual clay-rich rock joints is of great importance in the 

fields of geology and earth sciences. However, the wave responses of individual clay-

rich rock joints have not been well understood until now. This paper reports a laboratory 

investigation of ultrasonic S-wave propagation and attenuation across single rock joints 

filled with bentonite clays with varying degree of water saturation. In this study, a series 

of acoustic measurements were conducted on specimens of the bentonite clay-filled rock 

joint using a self-developed ultrasonic pulse-transmission test system that equipped with 

a S-wave transducer pair with a dominant frequency of 250 kHz. Based on the obtained 

laboratory data, the wave velocity, transmission ratio and the time-frequency-energy 

distribution of the S-waves transmitted through the bentonite clay-filled joint were 

calculated and evaluated. The experimental results show that the degree of water 

saturation of the bentonite clay greatly affects S-wave responses of the filled rock joint. 

In particular, an increase in the degree of saturation causes a nonlinear decrease in S-

wave velocity. In addition, as the water saturation of the bentonite clay increases, the 

wave attenuation decreases; the minimum wave attenuation is reached at a saturation 

degree of 71.4% and then the attenuation increases slightly. Additionally, with the 

increase of the water saturation, the magnitudes of the S-wave energy transmitted across 

the bentonite clay-filled joint firstly increases and then decreases. The S-wave energy 

is mostly stored in the frequency range of 150 - 300 kHz regardless of the degree of 
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water saturation of the bentonite clay. This finding indicates that the frequency partition 

of the transmitted S-waves rarely changes with the changing water saturation. The 

present work could not only compensate for the lack of laboratory-based research on 

wave behaviours across clay-rich rock joints but also provides insights into the 

interpretation of acoustic data from field tests for detecting, characterizing and 

monitoring rock discontinuities. 

 

1.  Introduction 

Rock joints are pervasive in the Earth’ crust, and are often filled with gas, water, oil, quartz sand and 

clay, etc. Filled rock joints are known to highly affect the mechanical, hydraulic and seismic 

characteristics of rock masses [1]. Understanding wave propagation and attenuation across filled rock 

joints is of great interest to geologists, geophysicists, seismologists, and engineers from fields related to 

rock mechanics and earth sciences. 

In recent years, wave behaviors across filled rock joints were widely studied in the laboratory. With 

respect to the P-wave attributes of filled rock joints, Li and her coworkers [2,3] performed a series of 

split Hopkinson pressure bar (SHPB) tests on single rock joints filled with sand and found that P-wave 

transmission across the rock joint decreased as the joint thickness and water content of the filling sand 

layer increased. Wu et al. [4] conducted SHPB tests on single rock joints filled with the clay-sand 

mixture. Their test results showed that the P-wave transmission increased and then decreased with 

increasing clay weight fraction. More recently, Yang et al. [5-7] conducted massive ultrasonic tests on 

individual fluid-filled rock joints and reported that P-wave velocity and transmission were enhanced to 

some extent by the substitution of air with liquid. On the other hand, regarding S-wave responses of 

filled rock joints, Liu et al. [8] developed a split shear plates apparatus and used it to investigate the 

effects of the normal stress, joint thickness, and particle size of filling sand on S-wave propagation 

through single rock joints. They found that the higher normal stress, S-wave transmission across single 

rock joints filled with quartz sand increased as the normal stress increased, the joint thickness decreased, 

and the particles became finer.  

Despite of the progress in wave propagation across filled rock joints, the S-wave responses of 

individual rock joints filled with clay materials remain unknown. Note that the rock joint surfaces are 

often coated with thin layers of clay, and the liquid-clay interaction can lead to various degrees of 

swelling, dispersion and migration and then alter characteristics of rock joints [9]. Hence, it is necessary 

to conduct more investigations into the S-wave propagation and attenuation across clay-rich rock joints. 

The present study aims to study the S-wave responses of single rock joints filled with bentonite clay 

with varying water saturation degrees in the laboratory. For this purpose, a self-designed ultrasonic test 

system equipped with a S-wave transducer pair with the central frequency of 250 kHz was adopted to 

conduct substantial ultrasonic tests on the bentonite-filled rock joint. The collected testing data were 

processed to evaluate the wave velocity, transmission ratio and the time-frequency-energy distribution 

of the transmitted S-waves across the bentonite-filled rock joint. The findings of the current work could 

improve the understanding of S-wave attributes of clay-rich rock joints and provide additional insights 

for interpreting acoustic data obtained from field tests on filled rock joints. 

2.  Experiments 

2.1.  Sample description 

In this study, gabbro from Shanxi province, China was chosen to prepare the jointed rock specimen. The 

basic physical and mechanical properties of the selected gabbro rock were reported in our previous work 

[5-7]. Following the method described in the previous studies [5-7], the rock specimen of the height 

about 100 mm with a planar open joint was produced by combining two identical rock cylinders using 

a small polymethyl methacrylate (PMMA) tube with the help of 3M DP460NS epoxy adhesive. The 
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diameter and height of those two rock cylinders were 50 mm and 49 mm, respectively, indicating that 

the joint thickness was around 2 mm. The PMMA tube had a pre-set hole of diameter 2 mm for adding 

wet bentonite clay into the synthetic rock joint. In addition, an intact rock specimen with the same 

dimensions as the jointed rock specimen was manufactured using the same rock material to obtain 

reference pulses. Additionally, bentonite clay mined from Germany was utilized to prepare a series of 

filling bentonite specimens with different water saturation degrees. The fully water-saturated bentonite 

specimen was first produced using oven-dried bentonite clay powders. Then, the prepared fully water-

saturated bentonite was separated into five equal parts with identical weights. These bentonite specimens 

were air-dried for 72, 90, 108, 126, 144h to obtain partially water-saturated bentonite specimens with 

different degrees of water saturation. Information about those specimens is summarized in Table 1. The 

prepared bentonite clay specimens were subsequently filled into the synthetic rock joint in sequence to 

generate various bentonite-filled rock joints for ultrasonic tests. 

 

Table 1. Basic properties of the bentonite clay specimens used in the study. 

No. of soil 
samples 

Degree of saturation 
Sr (%) 

Bulk density 
ρ (Mg/m3) 

Dynamic viscosity 
η (Pa·s) 

Shear modulus  
G (Pa) 

BC-1 59.2 1.304 2634.05 8275.10 
BC-2 65 1.295 1770.43 5562.02 
BC-3 71.4 1.287 1347.99 4553.82 
BC-4 79.1 1.279 996.80 3131.53 
BC-5 87.1 1.273 552.82 1376.67 

 

2.2.  Experimental procedure 

 

 

Figure 1. Schematic of the experimental system used in this study. 

 

The ultrasonic pulse-transmission test system adopted in this study mainly consists of an Olympus 

pulser/receiver (model 5077PR), a Tektronix digital oscilloscope (model DPO 2012B), an ultrasonic S-

wave transducer pair with a dominant frequency of 250 kHz, a personal computer (PC) equipped with 

an exclusive software, and loading configuration, as shown in Figure 1. Before each test, the transducer 

pair and tested specimen are clamped by the steel loading frame, and then a small constant stress (0.7 
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MPa) was applied on the assembly of the tested specimen and transducers via the loading system to 

ensure good contact at the interfaces. During the test, the pulser/receiver first emitted a square pulse 

with an amplitude of  200 V and a width of 10 µs at a repetition rate of 100 Hz. This pulse was converted 

to an input signal with a dominant frequency of 250 kHz by one transducer connected to the 

pulser/receiver. After propagating through the tested specimen, the transmitted pulse was detected by 

the other transducer connected to the pulser/receiver. Subsequently, 64 transmitted signals were stacked 

and averaged by the digital oscilloscope to collect the transmitted pulse at a high signal-to-noise ratio. 

The recorded transmitted pulses were eventually saved on a hard disk by the PC. For all the test cases, 

measurements were performed five times to guarantee the reliability and stability of the received data. 

Vaseline was applied to the interfaces between the S-wave transducers and the tested specimen to ensure 

good coupling. 

3.  Results and discussion 

3.1.  S-wave velocity across single rock joints filled with wet bentonite clay 

The methods presented in ASTM D2845-08 [10] and reported by Fratta and Santamarina [11] were used 

to calculate the S-wave velocities across single bentonite-filled rock joint and the corresponding rock 

specimen are calculated from the experimental data obtained in this study. In Figure 2, the calculated S-

wave velocities are plotted as a function of the degree of water saturation of bentonite clay. The tendency 

of the S-wave velocity across the whole jointed rock specimen resembles that across the bentonite-filled 

rock joint, indicating that the bentonite-filled rock joint dominates the wave behaviours in the rock 

specimen. Figure 2 also shows that the S-wave velocity decreases nonlinear with increasing degree of 

water saturation of the bentonite clay. This phenomenon can be attributed to the reduction in the shear 

modulus of the bentonite clay induced by the increase in water saturation (see Table 1). Specifically, the 

effect of clay hydration is strengthened by an increase in water saturation, resulting in the greater 

consumption of surface energy consumption and thus weaker stiffness of grain contacts in the bentonite 

clay [12]. On the other hand, matric suction diminishes with water saturation, reducing the interparticle 

contact forces in the bentonite clay [13]. Consequently, the shear modulus of the bentonite clay 

decreases with increasing water saturation, resulting in a decrease in the S-wave velocity across the 

bentonite-filled rock joint. 

 

 

 

 

Figure 2. S-wave velocity across the bentonite-

filled rock joint and corresponding rock specimen. 

Figure 3. S-wave transmission ratio across 

individual bentonite-filled rock joints. 

3.2.  S-wave transmission ratio across single rock joints filled with wet bentonite clay 

According to Nagata et al. [14], the transmission ratio of S-waves across single bentonite-filled rock 

joints can be computed as the ratio between the peak-to-peak amplitudes of the initial pulses of 



11th Conference of Asian Rock Mechanics Society
IOP Conf. Series: Earth and Environmental Science 861 (2021) 022041

IOP Publishing
doi:10.1088/1755-1315/861/2/022041

5

 

 

 

 

 

 

transmitted S-waves across the jointed rock specimen and the intact rock reference. In Figure 3, the 

calculated S-wave transmission ratio across single bentonite-filled rock joints is shown with respect to 

the water saturation degree of the filling bentonite clay. The S-wave transmission ratio increases with 

water saturation and reaches its peak at a water saturation of around 71.4%. Subsequently, the 

continuously increasing water saturation causes a decrease in the S-wave transmission ratio as the water 

saturation degree increases continuously to 87.1%. These observations indicate that wave attenuation 

caused by single bentonite-filled rock joints first decreases and then increases with progressively 

increasing water saturation. The reduction in the wave attenuation is mainly attributed to the gradual 

decrease in the viscosity of the bentonite clay with an increasing degree of water saturation (see Table 

1). More specifically, as the water saturation degree increases, the friction loss caused by the relative 

fluid-solid motion and solid-solid motion in the bentonite clay gradually diminishes, causing less wave 

attenuation across the bentonite-filled rock joint [15]. In contrast, the enhancement of the wave 

attenuation can be explained by the fact that the shear modulus decreases significantly with increasing 

water saturation, leading to greater wave reflection at the clay-rock interface [16]. 

3.3.  Time-frequency analysis on the transmitted S-wave across single rock joints filled with wet 

bentonite clay 

Based on the continuous-wavelet transform (CWT) technique [17], the time-frequency-energy 

distribution of the S-wave transmitted across single bentonite-filled rock joints was obtained. Figure 4 

shows the typical time-frequency-energy maps for the S-waves transmitted across the intact rock 

reference (see Figure 4a) and rock specimens with different bentonite-filled joints (see Figure 4b-4f). 
The transmitted S-wave energy was significantly attenuated by the bentonite-filled rock joint. 
Specifically, the magnitudes of the S-wave transmitted through the intact rock reference are 

approximately two orders greater than those transmitted across rock specimens with bentonite-filled 

joints. In comparison, the bentonite-filled joint has a modest effect on the frequency partition of the 

transmitted S-waves. In particular, the transmitted S-wave energy was mostly stored in the frequency 

range of 150 - 300 kHz for both intact and jointed rock specimens.  

 
Figure 4. Typical time-frequency-energy maps for the S-waves transmitted across bentonite-filled 

rock joints at different degrees of water saturation. 
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In addition, Figure 4 shows that the degree of water saturation of the bentonite clay plays an 

important role in the time-frequency-energy distribution of the S-waves transmitted across individual 

rock joints. To be specific, the magnitudes of the S-wave energy transmitted across the bentonite-filled 

rock joint initially increase and then decrease with progressively increasing water saturation. 

Furthermore, the transmitted S-wave energy reaches a maximum at a saturation degree of approximate 

71.4% for the bentonite-filled rock joints. These observations are consistent with the findings of the S-

wave transmission ratio across single bentonite-filled rock joints, which are mainly attributed to the 

trade-off between the decreasing viscosity and weakening clay stiffness caused by the addition of water. 

Figure 4 also shows that the frequency partition of the transmitted S-waves seldom changes with varying 

water saturation, suggesting that water saturation has little influence on the frequency partition of the S-

waves transmitted across single bentonite-filled rock joints. 

4.  Conclusions 

The main conclusions drawn from the present work can be summarized as follows. 

(1) The increasing water saturation of the filling bentonite clay leads to a nonlinear decrease in the 

S-wave velocity across the rock joint. 

(2) S-wave energy transmission across single rock joints increases and then decreases with the 

water saturation of the filling bentonite clay. 

(3) The spectral amplitudes of the S-wave transmitted across single rock joints initially improved 

and then reduced with increasing water saturation of the filling bentonite clay. 

(4) The frequency partition of the S-wave transmitted across single bentonite-filled rock joints 

seldom changes with varying degree of water saturation of the filling bentonite clay. 

The findings of this study can contribute to a better understanding of wave propagation and attenuation 

across individual clay-rich rock joints from scientific and practical perspectives. The test results can be 

used to validate the existing theoretical models for characterizing wave behaviours across rock joints. 

Meanwhile, the experimental observations may offer guidance to interpret wave-based field 

measurements for probing and charactering rock joints. 

 

Acknowledgement 

This work was supported the Hong Kong Research Grants Council (No. 15200719) and the Program for 

Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2019ZT08G315). We would like 

to thank Prof Y.H. Wang in the Department of Civil and Environmental Engineering at the Hong Kong 

Polytechnic University for his assistance in determining the viscosity of clay specimens in the laboratory. 

 

References 

[1] COOK, N. G. 1992. Natural joints in rock: mechanical, hydraulic and seismic behaviour and 

properties under normal stress. Int J Rock Mech Min Sci Geomech Abstr, 29, 3 198-223.  

[2] LI, J. & MA, G. 2009. Experimental study of stress wave propagation across a filled rock joint. 

International Journal of Rock Mechanics and Mining Sciences, 46, 471-478. 

[3] LI, J., MA, G. & HUANG, X. 2010. Analysis of wave propagation through a filled rock joint. 

Rock Mechanics and Rock Engineering, 43, 789-798. 

[4] WU, W., LI, J. & ZHAO, J. 2014. Role of filling materials in a P-wave interaction with a rock 

fracture. Engineering Geology, 172, 77-84. 

[5] Yang, H., Duan, H. F., & Zhu, J. B. 2019. Ultrasonic P-wave propagation through water-filled 

rock joint: an experimental investigation. Journal of Applied Geophysics, 169, 1-14. 

[6] Yang, H., Duan, H. F., & Zhu, J. B. 2020. Effects of filling fluid type and composition and joint 

orientation on acoustic wave propagation across individual fluid-filled rock joints. 

International Journal of Rock Mechanics and Mining Sciences, 128, 104248. 

[7] Yang, H., Duan, H. F., & Zhu, J. B. 2021. Thermal effect on compressional wave propagation 



11th Conference of Asian Rock Mechanics Society
IOP Conf. Series: Earth and Environmental Science 861 (2021) 022041

IOP Publishing
doi:10.1088/1755-1315/861/2/022041

7

 

 

 

 

 

 

across fluid-filled rock joints. Rock Mechanics and Rock Engineering, 54(1), 455-462. 

[8] Liu, T., Li, J., Li, H., Li, X., Zheng, Y. and Liu, H., 2017. Experimental study of s-wave 

propagation through a filled rock joint. Rock Mechanics and Rock Engineering, 50(10), 

pp.2645-2657. 

[9] FANG, Y., ELSWORTH, D., WANG, C., ISHIBASHI, T. & FITTS, J. P. 2017. Frictional 

stability‐permeability relationships for fractures in shales. Journal of Geophysical Research: 

Solid Earth, 122, 1760-1776. 

[10] ASTM D2845-08 on Soil and Rock. 2008. Standard Test Method for Laboratory Determination 

of Pulse Velocities and Ultrasonic Elastic Constants of Rock. ASTM International, West 

Conshohocken, PA. 

[11] FRATTA, D. & SANTAMARINA, J. 2002. Shear wave propagation in jointed rock: State of 

stress. Géotechnique, 52, 495-505. 

[12] ATKINSON, B. K. 1984. Subcritical crack growth in geological materials. Journal of 

Geophysical Research: Solid Earth, 89, 4077-4114. 

[13] CLARIÁ, J. J. & RINALDI, V. A. 2007. Shear wave velocity of a compacted clayey silt. 

Geotechnical Testing Journal, 30, 399-408. 

[14] NAGATA, K., NAKATANI, M. & YOSHIDA, S. 2008. Monitoring frictional strength with 

acoustic wave transmission. Geophysical Research Letters, 35. 

[15] LUCET, N. & ZINSZNER, B. 1992. Effects of heterogeneities and anisotropy on sonic and 

ultrasonic attenuation in rocks. Geophysics, 57, 1018-1026.  

[16] ZHU, J., PERINO, A., ZHAO, G., BARLA, G., LI, J., MA, G. & ZHAO, J. 2011. Seismic 

response of a single and a set of filled joints of viscoelastic deformational behaviour. 

Geophysical Journal International, 186, 1315-1330. 

[17] CHOPRA, S. & MARFURT, K. J. 2016. Spectral decomposition and spectral balancing of 

seismic data. The Leading Edge, 35, 176-179. 

 


