
Abstract Brain-computer interfaces (BCIs) based on motor 
imagery (MI) have been widely used to support the rehabilitation of 
motor functions of upper limbs rather than lower limbs. This is 
probably because it is more difficult to detect brain activities of 
lower limb MI. In order to reliably detect the brain activities of 
lower limbs to restore or improve the walking ability of the disabled, 
we propose a new paradigm of walking imagery (WI) in a virtual 
environment (VE) in order to elicit reliable brain activities and 
achieve a significant training effect. First, we extract and fuse both 
spatial and time-frequency features as a multi-view feature (MVF) 
to represent the patterns in the brain activity. Second, we design a 
multi-view multi-level deep polynomial network (MMDPN) to 
explore the complementarity among the features so as to improve 
the detection of walking from an idle state. Our extensive 
experimental results show that the VE-based paradigm significantly 
performs better than the traditional text-based paradigm. In 
addition, the VE-based paradigm can effectively help users to 
modulate brain activities and improve the quality of 
electroencephalography signals. We also observe that the MMDPN 
outperforms other deep learning methods in terms of classification 
performance.  

Index Terms Walking imagery; Brain-computer interface; 
Virtual environment; Multi-view feature; Multi-view multi-level 
deep polynomial network 

I. INTRODUCTION

rain-computer interfaces (BCIs) are capable of establishing a 
communication pathway between a user and the external 

world through brain activities [1-3], and electroencephalography 
(EEG) is often used to record oscillatory brain activities. Motor 
imagery (MI) is one of the most typical types of the BCI paradigm, 
and it is promising to apply MI-based BCIs in various areas (e.g., 
entertainment and convenient life for healthy people [4, 5]). More 
importantly, MI-based BCIs can help to restore motor functions 
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of disabled patients [3], especially those with neuromuscular 
disorders. Numerous studies on the use of MI-based BCIs are 
carried out for the rehabilitation of upper limbs [6, 7]. For those 
patients who are lower-disabled,  they also need to recover their 
walking ability, which is equally important to improve the 
capability of self-care of the rehabilitation population [8]. 
However, lower limb rehabilitations have only received limited 
attention due to a deeper location of the representation area in 
sensorimotor cortex, which makes it difficult to detect EEG signal 
reliably. Therefore, it is significant to obtain reliable brain 
activities associated with walking imagery (WI) tasks [9-11].  

In order to improve the performance of MI-based BCIs, it is 
necessary to have a well-designed training approach to BCI 
control. It can help users to effectively modulate brain signals, 
which are the key elements to improve the robustness of BCIs. 
For example, some researchers consider a variety of feedback 
modalities (e.g., visual, haptic, or auditory [12, 13]), while others 
tend to increase the immersiveness of the visual feedback [14-17]. 
They leverage different technologies to create environments with 
higher degrees of fidelity, such as three-dimensional (3D) vision, 
virtual reality (VR), and augmented reality (AR) [14-17]. 
Although these feedback modalities can improve the BCI 
performance, they often lead to an inhibitory effect if the users 
incorrectly modulate their brain signals and fail to guarantee the 
reliability of the training calibration session [13, 17, 18]. 

In order to improve the reliability of the training calibration 
session, previous researchers devoted to designing suitable visual 
cues to improve the MI-based BCI performance [19, 20]. For 
example, when performing the upper limb MI training, the 
subjects are instructed to observe a static picture of a hand or a 
dynamic video of a hand grasping movement [19, 20]. Recently, 
static pictures of Chinese characters of the left/right hand writing 
are used as visual cues to perform MI tasks [21]. These visual 
cues are able to train the users more appropriately than the 
conventional approaches. The enhanced vividness of the visual 
cues can help users modulate their brain activities. However, the 
previous design of BCI training paradigm is seldom considered to 
strengthen the capacity of lower limb MI to record reliable brain 
activities. For this reason, it is important to find a suitable 
paradigm of WI with a reliable calibration session. Our previous 
study shows that virtual environments (VE) as visual cues are able 
to appropriately guide users to perform kinesthetic WI [22]. The 
subjects are requested to feel their feet naturally touch the ground 
and imagine walking in accordance with the movement rhythm of 
the virtual avatar. To reduce the interference of other limb 
movements on the brain activity, the established VE presents only 
the lower limbs of the walking avatar, and the results show that 
the VE-based paradigm can help users modulate their brain 
activities and increase the WI capacity.  
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Despite the fact that the use of the VE-based paradigm obtains 
good training results during the imagination of walking, it is also 
essential to learn a robust feature representation to reveal the 
changes in brain activities in order to enhance BCI performance. 
Many previous feature extraction algorithms have been proposed 
to design BCI systems. For example, Wang et al. [23] introduced 
a wavelet-packet transform (WPT) algorithm to extract 
time-frequency features from EEG data. Saa et al. [24] employed 
power spectral density (PSD) to represent the frequency feature. 
Previous researchers [25-30] also adopted a spatial pattern (CSP) 
algorithm to analyze spatial features of imagined limb movements. 
However, these single feature-based methods fail to capture the 
complementarity of the features from multi-domains. It is argued 
that fused features are more promising for complex EEG data and 
can achieve better classification performance [31]. For this reason, 
a WPT-CSP algorithm was proposed and showed attractive 
performance [32, 33]. In this paper, we fuse CSP, PSD, and WPT 
features to form multi-view features (MVFs) in order to make full 
use of both spatial and time-frequency patterns. 

To date, deep learning methods have witnessed a great success. 
For example, Lu et al. [34] used deep belief networks (DBNs) for 
MI classification. Tabar et al. [35] utilized stacked auto-encoder 
(SAE) to process EEG signals. Veres et al. [36] explored 
convolutional neural networks (CNNs) [37] to encode features. 
These algorithms usually require a substantial amount of training 
data to learn the features successfully. However, it is inconvenient 
and time-consuming to acquire a large amount of labeled EEG 
data, which leads to difficulty in training robust models. A deep 
polynomial network (DPN) is a new type of deep learning 
algorithm with fine feature representation for small datasets. It 
has the ability to compactly represent any functions on a finite 
sample dataset based on its structure. The derivation of DPN [38] 
is inspired by [39]. Specifically, a powerful layer-by-layer 
learning algorithm is employed in DPN, where the output of each 
node is a quadratic function of its inputs. The DPN algorithm 
attempts to build a network to represent the data in order to 
enhance the feature expression. Moreover, DPN runs in 
polynomial time, which is easy to control the depth and width of 
the network by only determining the number of layers and the 
number of nodes per layer in DPN encoding. Inspired by the 
promising performance by stacking DPNs [40], we build a 
multi-view multi-level DPN (MMDPN) framework to obtain both 
higher-level and integrated features to further boost the 
performance. To the best of our knowledge, there is no such deep 
learning study in BCIs for WI evaluation.  

In summary, this paper explores the effectiveness of WI 
detection using a VE-based training paradigm and deep feature 
representation. We conduct experiments on self-collected EEG 
data and systematically evaluate the effect of visual cues on 
discriminating the WI state from the idle state. The experimental 
results verify that the VE-based training paradigm induces EEG 
patterns that are easier for single-trial WI detection. Furthermore, 
the proposed MMDPN framework is superior in the 
discrimination performance to other widely used deep learning 
frameworks. The rest of the paper is organized as follows. Section 
II elaborates the experimental design and methodology. Section 
III presents and discusses the experimental results. Finally, our 
conclusions are presented in Section IV.  

II. METHODOLOGY

A. Participants

EEG signals are acquired from nine healthy subjects (aged
23-29 years old) and a patient with lower limb paralysis (aged 30 
years old). All subjects are native speakers of Mandarin from 
China. None of them has prior knowledge about WI or any 
experience on BCIs training. Before the start of the experiment, 
they are informed the entire experimental procedure. During the 
experiment, each subject sits in a comfortable armchair about 
50cm from a 24-inch computer screen placed in a quiet room. 
They are instructed to keep their bodies relaxed and avoid making 
any unnecessary movements and excessive blinking. 

B. EEG signal collection

The EEG signals are recorded using a Biosemi ActiveTwo
system, at a sampling rate of 512Hz. In the ActiveTwo system, the 
ground  electrodes are replaced by two separate electrodes 

(CMS and DRL, as illustrated in Fig. 1). The CMS/DRL 
placement does not affect the signals measured between the other 
electrodes. For each subject, the entire preparation procedure of 
EEG acquisition takes about 20 minutes for applying the 
conductive gels to ensure the low impedance between the 
electrode and scalp. More details of this EEG 
acquisition system are available at the Biosemi website 
(http://www.biosemi.com). 

The EEG electrode placements are labeled on the basis of the 
international 10-20 system. The 32 Ag/AgCl electrodes, including 
Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, 
O1, Oz, O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, 
AF4, Fp2, Fz, and Cz, are utilized for EEG signal collection. All 
the 32-channel EEG signals are adopted for data processing in our 
current study. The voltage offset at each active electrode is kept 
below 25 mV. The trigger signals, which can indicate the 
beginning of each trial in continuous EEG, are also synchronously 
recorded using the Biosemi ActiveTwo system via a parallel port. 

C. Paradigms

The experimental paradigm is designed for walking detection
with reference to the traditional BCI paradigm, which usually 
includes three stages of preparation, task performing (e.g., action 
or idle), and restoration. Visual cue is commonly used to instruct 
the subjects to perform the different classes of MI tasks, such as 
left/right hand movement or foot movement. The type of 
movement imagination can greatly affect the BCI performance. 
Some studies found that the subjects could better control the BCIs 
while performing the kinesthetic motor imagery. Therefore, we 
develop a VE-based BCI to guide subjects to consciously perform 
the imagination of lower limb movements. This paradigm is also 
used to provide relatively unified walking imagery action for 
different subjects. 

During the experiments, subjects are instructed to perform 
kinesthetic WI via the visual guidance followed by the text-based 
and the VE-based paradigms, as shown in Fig. 2a. The stages of 
these two paradigms in a single-trial are illustrated in Fig. 2b and 
Fig. 2c, respectively. For the text-based paradigm: instructions 
appear on a computer screen in sequence as the guidance for five 
specific stages of WI 

are asked to perform WI training with the help of this visual cue 



platform.
For the VE-based paradigm, we adopt the same procedure as 

the text-based paradigm. However, we replace the texts with a 3D 
VE, where subjects perform WI following the movements of an 
avatar (see Fig. 2c). In order to reduce the interference introduced 
by the movements from other parts of the body, the computer 
screen only displays the lower limbs of the avatar. The avatar
movements provide subjects with the guidance on which 
experimental stage they shall perform. In the preparation stage, 
the avatar appears and stands in a virtual hallway. Then, the 
subjects imagine themselves walking along the hallway following
the avatar movement rhythm. The global location of the avatar 
in the VE can refer to the mini-map in the upper left corner of the 
screen, while there is a green progress bar indicating the time 
remained to complete the current stage of a single-trial.

D.The process of collecting EEG data 

The procedures of the single-trial and the whole experiments 
are illustrated in Fig. 2c. The aforementioned two paradigms 
follow the same procedures. These procedures are introduced to 
all subjects, and then they sign the informed consent document 
prior to their participation.

The single-trial EEG signals are composed of brain activities
recorded from four stages as shown in Fig. 2. At the beginning of 

idle
screen for 5 seconds, during which subjects keep themselves in a 
relaxed state. This stage is followed by a preparation period of 2 
seconds to remind them to be ready to start movement 
imaginations. Then subjects feel their feet naturally touch the 
ground and imagine walking. This is referred to the stage of WI.
They are asked to avoid moving their own bodies or blinking eye
in the above three stages. At the end of lower limb MI stage,
subjects take a rest to adjust themselves in a restoration period of

Fig. 1. EEG electrode positions used in Biosemi ActiveTwo system, and 
CMS/DRL electrodes marked in shades of dark green.

5 seconds. We use trigger signals to label the beginning of each 
single-trial. In the whole processes, the screen first displays a 

) to indicate the start of an experimental run. 
It starts with an initialization period of 5 seconds, which gives the 
subjects time to adjust their experimental state. The subjects are 
allowed to take a rest to relieve fatigue between any two runs. 
Two sessions of EEG signals corresponding to two different days 
for each subject are collected. One session consists of 10 
experimental runs, and each contains 10 trials. The experiments 
are performed five times for each paradigm (i.e., 2D text-based 
paradigm or 3D VE-based paradigm), respectively, and the order 
is random. Each trial includes two control groups (idle state or WI 
state), that is, there are totally100 trials of idle and 100 trials of WI 
for each paradigm.

idle MI restorationpreparation

5s 2s 5s t/s5s

Text-based paradigm

idle MI restorationpreparation

5s 2s 5s t/s5s

VE-based paradigm

(a)

(b)

(c)

Fig.2. Experimental setup for EEG data collection based on two different training paradigms (Text-based and VE-based). The training paradigms are used to guide 
subjects to perform WI tasks. In each scenario, EEG signals are acquired using Biosemi ActiveTwo system, which are installed in the left computer. Meanwhile, the right 

computer is used to provide the visual cues for each trial and send corresponding trigger signals. Each single-trial contains four stages corresponding to idle (5s), 
preparation (2s), walking imagery (5s), and restoration (5s). An experimental run begins with 5-seconds initialization stage, being followed by performing 10 single-trials. 

Subjects can have a rest to relieve fatigue between any two runs. Experiments are carried out a total of 5 times for each paradigm, respectively, with random order.



E. MMDPN framework

Fig. 3 shows the flowchart of the proposed method. The 
framework contains four procedures: feature preprocessing, 
feature extraction, feature encoding, and prediction. After the 
recorded raw data are preprocessed and the EEG data in 
reference-free form are obtained. Three types of features, 
including CSP, PSD, and WPT, are extracted. Each type of the 
feature is normalized and contains two rhythms based on the EEG 
characteristics of WI: mu frequency bands (8 13Hz) and beta
frequency bands (13 30 Hz). Firstly, these features are fused 
linearly as MVFs and are trained by a technique named linear 
discriminant analysis (LDA). Secondly, each feature is encoded 
by a first-level DPN (DPN-1). These features are encoded again 
by a second-level DPN (DPN-2). Finally, MMDPN features are 
obtained to train the LDA classifier.
1) Preprocessing 

In the preprocessing stage, we use the trigger signals to 
segment continuous raw EEG recordings into idle epochs and WI 
epochs for each paradigm. The recorded EEG signals are 
converted into reference-free forms with common average 
references.
2) Feature extraction

The frequency bands and frequency bands are 
relevant to walking imagination [10]. The feature extraction is 
performed on these two bands, respectively. For CSP features, all 
EEG segments are filtered with a fifth order Butterworth 
band-pass filter in the range of frequency band and 
frequency band [7, 41, 42]. CSP is used to extract EEG features 
for each frequency band. For PSD features, the spectral entropy of 
PSD within and frequency bands are estimated,
respectively. For WPT features, we choose two nodes of the 
wavelet packet: (8 16Hz) and (16 32Hz). The 
former corresponds to the frequency bands, while the latter 
corresponds to the frequency bands. The entropy of each 
node is calculated as the WPT feature. 
3) Feature Encoding 

In the stage of feature encoding, DPNs [38] are used. The DPN 
is a newly proposed deep architecture, which is capable to 
compactly learn complex functions on a finite training set. The 
DPN is built in a layer-by-layer fashion, in which the output of 
each node is a quadratic function of its input. A DPN integrates 
features between different samples and different dimensions 
through the network. By presenting the output with hierarchical 
features, the DPN greatly improves the feature representation 
ability. Moreover, the DPN runs in polynomial time, and is easy
to train without relying on complex heuristics. In the following, 
we briefly describe the construction process of the DPN.

Given a set of training samples , 

a coefficient vector and polynomials 

, according to Lemma in [38], we can obtain the 

equation , in which can be any 

set of values.
For the first layer of DPN, given a set of values 

attained by 

degree-1 polynomials functions on training samples, we can find 
a set of vectors to make 

linearly

independent with a basis-construction method. Specifically, we 
use a matrix to map into the 

constructed basis. The matrix , in which

is the output of j-th node of the 

first layer, spans all possible values attained by degree-1 
polynomials functions on training samples.

For the second layer of the DPN, let

, where 

refer to their Hadamard product. We form a new matrix 

that spans all values attained by the degree-2 polynomial 

functions on training samples. Then, we can find linearly 

independent columns of to be the basis for . 

Thus, each column of corresponds to a node of the second 
layer of DPN.

We then redefine as the matrix , and the above 

processes can be extended to construct layer . Let

, 

and we can finally construct the z-th layer of the DPN. Fig. 3a 
shows the basic architecture of the DPN with four layers.
4) Multi-view multi-level deep polynomial network 

For a single DPN based algorithm, it lacks diversity, relevance, 
and discrimination. It fails to fuse and capture the linear 
combination of multiple feature representations. To address this 
shortcoming, we can propose a multi-view and multi-level DPN. 
The MMDPN algorithm explores the complementary information
of all the features and enhances the feature representation via the 
multi-level DPN. The MMDPN for multiple feature 
representation is shown in Fig. 2b. 

In our work, we focus on efficient integration of the features of 
CSP, PSD, and WPT. In the first level, the features of CSP, PSD, 
and WPT are encoded by the DPN (DPN-1) to obtain a high-level 
feature representation. In the second level, all three types of 
higher-level features are cascaded in the DPN encoding (DPN-2).
The ultimate learned features include both intrinsic attribute of 
each modality and the relativities among all modalities. Therefore, 
the MMDPN efficiently exploits the complementarity among 
multiple features, which exhibits a highly non-linear correlation 
between multi-view features.

Our method combines both common and complementary 
information of the EEG data to boost the WI performance. In 
addition, the hierarchical representation of each level can reduce 
the noise and extract useful information. If only one layer of the 
network in the basic DPN encoding is used, it is equivalent to the 
dimensionality reduction of principle component analysis method. 
To obtain an effective encoded feature matrix for WI
classification, we construct a multi-level DPN network with 
different numbers of layers with different width. The encoded 
features are obtained by the direct connection of the learned 
hierarchical features from different layers. As a result, the 
proposed MMDPN further enhances the WI representation.



Fig.3. Illustration of flowchart of proposed method using three features (e.g., CSP, PSD, WPT). (a) Schematic diagram of DPN architecture with four layers. (b) 
Raw EEG signals with mu and beta frequency bands after preprocessing to obtain three features. Each feature is encoded by DPN (a.k.a., DPN-1), and fused and 

decoded again by DPN (a.k.a., DPN-2). The final output is used to train linear discriminant analysis classifier.

III. EXPERIMENTAL RESULTS 

A. Experimental settings

In this section, we show the experimental results with our 
proposed method. Our experimental results are based on binary 
classification: idle state vs. WI state. The EEG data of two 
control groups (idle state and WI state) are used for training the 
model and evaluating the classification performance. In our 
experiments, there are 100 samples of idle class and 100 
samples of WI class for each subject in each paradigm. 50 
samples of idle class and 50 samples of WI class are randomly 
selected for training and the remaining ones are used for testing. 
The experimental processing ignores problem of 
non-stationary EEG signals. To further verify the effectiveness 
of our DPN method, it is compared with the recent popular 
deep learning techniques (e.g., DBN, SAE and CNN) with the 
same multi-view multi-level framework (a.k.a., MMDBN, 
MMSAE, and MMCNN). The above processing is carried out
for 10 times and the average results are reported for each 
subject in each paradigm.

To validate the performance of different paradigms on WI
tasks, assuming that the WI state corresponds to the positive 
class and the idle state to the negative class. When the WI is 
classified as the WI, it is regarded as a true positive (TP). When 
the WI is classified as the idle state, it is regarded as a false 
positive (FP). The metrics are as below: The true positive rate
(TPR), the false positive rate (FPR), Accuracy (ACC) =
(TP+TN)/(TP+TN+FP+FN), Sensitivity (SEN) = TP/(TP+FN); 
Specificity (SPEC) = TN/(TN+FP), Youden's index (Youden)
= SEN+SPEC-1, F1 score (F1) = 2 PPV SEN/ (PPV+SEN) 
(PPV = TP/(TP+FP), NPV = TN/(TN+FN)), AUC is the area 
under receiver operating characteristics curve (ROC). All the 
signal analysis programs are performed using MATLAB 2017a 
(MathWorks Inc.).

B. Results

Table I shows the evaluation results for the text-based 
paradigm and the VE-based paradigm using CSP, PSD, WPT, 
and MVF. The results are reported in terms of the averaged

values across all subjects with ten evaluations minus or plus 
their standard deviations. Table II shows the t-test statistical 
analysis between two paradigms with the same method.

For all the features, we find that the VE-based paradigm 
outperforms the text-based paradigm. Table II shows that there 
are significant differences between the two paradigms. The 
results prove that the VE-based paradigm can help subjects 
better modulate their brain activities, which significantly
improve the performance of WI detection. For the two 
paradigms, MVF obtains the best performance among all the 
four types of features. It proves that MVF integrates spatial 
features and time-frequency features to fully leverage
information of WI features and achieves the best performance.

Fig. 4 shows the ROC curves of two paradigms with three 
independent features and MVF. The curves of the VE-based 
paradigm are close to the upper left corner of the figure than the 
text-based paradigm, which proves the superiority of the
VE-based paradigm over the text-based paradigm. It is also 
obvious that ACC of the VE-based paradigm is higher than that 
of the text-based paradigm in the same subject. The MV
curves are also close to the upper left corner of the figure 
among all features. In addition, the multi-view features are
better than the single view feature from which we can explore 
the feature complementarities. 

Table III shows the performance comparison of the
VE-based paradigm using MVF, MDPN, and MMDPN. Fig. 5 
illustrates the results summarized in Table III. There are a 
significant difference between MVF and MDPN ( ) 
and a significant difference between MVF and MMDPN (

) in Table IV. From the mean results, MVF is lower 
than MDPN or MMDPN, which fully demonstrates the 
attractive feature encoding method via DPN. From the 
significance analysis in Table IV, we can see that SPEC cannot 
satisfy the significant difference at level. 
However, all other metrics satisfy the significance requirement. 
Also, ACC, Youden, F1, and AUC meet the significant 
difference at level. Hence, it proves that the 
MDPN can leverage the complementarity and correlation 
between the single features and MMDPN can better decode WI 
feature than MDPN.



Table I. Performance comparison between Text-based paradigm and VE-based paradigm using various features and metrics (%). 

Paradigm Feature ACC  SEN  SPEC  Youden F1  AUC 

Text 

CSP 67.27±08.37 67.72±08.28 66.82±08.71 34.54±16.74 67.35±08.24 73.06±10.36 

PSD 61.09±04.92 62.36±07.47 59.82±05.06 22.18±09.84 61.34±05.59 64.71±05.50 

WPT 65.46±05.72 65.82±06.86 65.10±05.24 30.92±11.45 65.40±06.01 70.56±07.01 

MVF 69.45±08.83 70.40±09.67 68.50±08.26 38.90±17.66 69.58±09.01 74.90±09.93 

VE 

CSP 81.19±07.86 82.54±08.34 79.84±07.94 62.38±15.72 81.37±07.83 88.21±06.47 

PSD 71.96±05.09 79.60±09.41 64.32±04.12 43.92±10.18 73.72±05.67 74.49±04.55 

WPT 74.96±06.52 79.40±08.99 70.52±05.20 49.92±13.05 75.88±06.66 80.92±06.77 

MVF 81.81±07.50 83.42±08.73 80.20±06.90 63.62±14.99 81.94±07.61 88.30±05.75 

 
Table V presents the mean and standard deviation of 

performance comparison for MMDBN, MMSAE, MMCNN 
and MMDPN of the VE-based paradigm using 6 metrics. Fig. 6 
(VE) corresponds to Table V. Table VI shows the t-test results 
among MMDPN and MMDBN, MMSAE, as well as MMCNN 
in the VE-based paradigm. Table V shows that the healthy 
subject S7 has the best performance of WI detection. The 
evaluation values are higher than most of the healthy subjects 

 
Table II T-test between text-based paradigm and VE-based paradigm. 

Feature ACC SEN SPEC Youden F1 AUC 

CSP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

DSP 0.0002 <0.0001 0.1107 0.0002 <0.0001 0.0006 

WPT 0.0003 <0.0001 0.022 0.0003 <0.0001 0.0002 

MVF 0.0002 0.0002 0.0005 0.0002 0.0002 0.0002 

for the disable subject S10 with lower limbs paraplegia. It also 
proves that the disabled subject still can perform WI tasks and 
outperform the normal subjects. This observation suggests the 
potential for the disabled in other aspects of rehabilitation. 

For subject S8 using MMSAE as the feature decoding 
method, all the WI instances are judged as idle. Both TP and FP 
are 0, PPV and F1 is NaN. This shows that MMSAE is unstable 
for this data. In Table V, it can be found that the MMDPN has 
the highest values for all five evaluation metrics except SPEC. 
Fig. 6 shows the bar diagram for performance comparison for 
MMDBN, MMSAE, MMCNN, and MMDPN in the text-based 
paradigm. In terms of average value of ten subjects, MMDPN 
obtains the best performance of all the multi-view multi-level 
frameworks. 

 
Table III Performance comparison of VE-based paradigm based on MVF, MDPN and MMDPN method (%). 

Subject Method ACC  SEN SPEC Youden F1 AUC 

S1 
MVF 76.90±04.53 77.40±05.34 76.40±06.85 53.80±09.07 77.02±04.49 85.62±04.50 

MDPN 83.10±03.54 85.00±06.62 81.20±04.92 66.20±07.08 83.34±03.83 89.69±04.20 

MMDPN 83.60±04.30 86.80±05.75 80.40±06.92 67.20±08.60 84.11±04.11 91.00±02.95 

S2 
MVF 75.40±06.54 72.40±12.10 78.40±07.99 50.80±13.07 74.28±07.84 81.96±06.50 

MDPN 80.90±05.88 79.00±10.47 82.80±05.01 61.80±11.75 80.26±06.91 86.93±06.35 

MMDPN 83.90±03.11 84.80±07.38 83.00±03.68 67.80±06.21 83.91±03.82 89.67±03.37 

S3 
MVF 83.80±02.53 85.80±06.00 81.80±03.19 67.60±05.06 84.04±02.90 90.59±02.74 

MDPN 87.60±03.44 90.60±06.60 84.60±03.78 75.20±06.88 87.88±03.72 94.45±02.78 

MMDPN 88.40±02.95 92.20±05.53 84.60±04.01 76.80±05.90 88.78±03.12 94.87±01.99 

S4 
MVF 80.50±03.03 83.60±05.87 77.40±04.81 61.00±06.06 81.03±03.20 87.62±04.22 

MDPN 88.00±02.40 88.40±05.48 87.60±03.75 76.00±04.81 87.99±02.63 94.10±02.02 

MMDPN 90.40±01.35 92.00±03.40 88.80±03.91 80.80±02.70 90.55±01.29 96.41±01.18 

S5 
MVF 88.90±04.01 94.40±05.06 83.40±04.12 77.80±08.02 89.46±03.90 94.12±03.46 

MDPN 92.70±02.71 95.20±02.53 90.20±04.37 85.40±05.42 92.90±02.56 97.16±01.74 

MMDPN 93.40±02.72 96.20±03.19 90.60±05.89 86.80±05.43 93.62±02.53 96.92±01.99 

S6 
MVF 74.00±03.27 75.00±08.55 73.00±04.03 48.00±06.53 74.06±04.36 82.97±03.56 

MDPN 82.50±02.72 84.00±04.22 81.00±05.83 65.00±05.44 82.77±02.49 91.35±02.56 

MMDPN 84.10±03.11 84.00±04.81 84.20±06.76 68.20±06.21 84.10±02.84 92.56±02.81 

S7 
MVF 97.20±01.40 98.80±01.69 95.60±02.27 94.40±02.80 97.25±01.37 99.44±00.94 

MDPN 99.30±00.82 99.40±00.97 99.20±01.03 98.60±01.65 99.30±00.82 99.97±00.05 

MMDPN 99.50±00.71 99.40±00.97 99.60±00.84 99.00±01.41 99.50±00.71 99.97±00.06 

S8 
MVF 85.50±02.99 89.20±05.90 81.80±04.85 71.00±05.98 85.97±03.05 90.13±02.47 

MDPN 87.40±02.63 91.20±04.44 83.60±02.80 74.80±05.27 87.83±02.69 90.20±02.92 

MMDPN 89.20±02.04 91.20±04.34 87.20±04.73 78.40±04.09 89.40±02.02 93.32±01.95 

S9 
MVF 73.30±06.09 75.80±07.39 70.80±08.18 46.60±12.19 73.92±05.91 81.02±07.27 

MDPN 82.40±02.76 81.20±04.83 83.60±02.95 64.80±05.51 82.14±03.17 90.32±02.63 

MMDPN 83.20±03.71 83.60±06.45 82.80±03.43 66.40±07.41 83.18±04.11 90.61±02.18 

S10 

MVF 82.60±03.89 81.80±05.85 83.40±04.90 65.20±07.79 82.42±04.12 89.56±03.96 

MDPN 88.40±02.67 84.00±05.66 92.80±03.79 76.80±05.35 87.80±03.06 96.09±01.42 

MMDPN 90.10±02.38 85.40±04.72 94.80±02.35 80.20±04.76 89.56±02.72 97.04±01.02 



Table V. Performance comparison for VE-based paradigm based on MMDBN, MMSAE, MMCNN, and MMDPN methods (%).

Subject Method ACC SEN SPEC Youden F1 AUC 

S1

MMDBN 77.30±10.08 75.20±28.41 79.40±17.46 54.60±20.16 73.66±20.07 90.59±05.88

MMSAE 82.00±04.32 78.20±10.13 85.80±06.14 64.00±08.64 81.03±05.64 89.51±03.60

MMCNN 81.60±05.15 83.20±05.59 80.00±06.46 63.20±10.29 81.90±05.05 87.90±03.15

MMDPN 83.60±04.30 86.80±05.75 80.40±06.92 67.20±08.60 84.11±04.11 91.00±02.95

S2

MMDBN 75.40±09.12 74.00±17.07 76.80±13.64 50.80±18.24 74.37±10.74 82.98±11.88

MMSAE 74.40±08.54 88.60±09.29 60.20±20.43 48.80±17.08 77.83±05.54 80.87±17.66

MMCNN 78.60±05.15 75.40±07.95 81.80±06.36 57.20±10.29 77.78±05.87 86.11±05.60

MMDPN 83.90±03.11 84.80±07.38 83.00±03.68 67.80±06.21 83.91±03.82 89.67±03.37

S3

MMDBN 79.80±04.85 77.40±12.62 82.20±09.73 59.60±09.70 78.92±06.35 87.85±04.44

MMSAE 83.80±04.76 94.40±06.02 73.20±11.93 67.60±09.51 85.47±03.54 91.31±06.80

MMCNN 88.30±03.06 90.20±04.05 86.40±03.98 76.60±06.11 88.51±02.99 93.20±02.52

MMDPN 88.40±02.95 92.20±05.53 84.60±04.01 76.80±05.90 88.78±03.12 94.87±01.99

S4

MMDBN 83.40±06.67 85.80±12.59 81.00±13.00 66.80±13.34 83.53±07.27 89.04±06.10

MMSAE 82.70±07.85 96.40±03.37 69.00±17.34 65.40±15.69 85.19±05.78 84.67±15.63

MMCNN 87.00±03.13 88.40±05.87 85.60±05.80 74.00±06.25 87.15±03.13 93.52±02.29

MMDPN 90.40±01.35 92.00±03.40 88.80±03.91 80.80±02.70 90.55±01.29 96.41±01.18

S5

MMDBN 92.00±03.16 94.00±03.40 90.00±06.32 84.00±06.32 92.21±02.92 97.84±01.51

MMSAE 90.90±04.20 91.00±03.43 90.80±06.48 81.80±08.40 90.97±03.96 95.78±03.56

MMCNN 91.70±02.50 93.00±03.16 90.40±02.07 83.40±04.99 91.79±02.52 97.14±01.34

MMDPN 93.40±02.72 96.20±03.19 90.60±05.89 86.80±05.43 93.62±02.53 96.92±01.99

S6

MMDBN 79.60±08.24 84.40±07.59 74.80±12.04 59.20±16.47 80.66±07.39 87.93±09.02

MMSAE 83.50±06.06 79.60±10.41 87.40±09.62 67.00±12.12 82.66±06.70 90.34±06.10

MMCNN 83.70±01.95 81.60±03.75 85.80±03.46 67.40±03.89 83.33±02.08 92.59±02.11

MMDPN 84.10±03.11 84.00±04.81 84.20±06.76 68.20±06.21 84.10±02.84 92.56±02.81

S7

MMDBN 96.10±02.28 93.60±05.56 98.60±03.13 92.20±04.57 95.94±02.47 98.36±01.92

MMSAE 96.30±03.23 95.40±04.62 97.20±07.00 92.60±06.47 96.31±03.01 98.13±02.99

MMCNN 98.80±01.32 99.00±01.41 98.60±01.65 97.60±02.63 98.80±01.31 99.47±00.84

MMDPN 99.50±00.71 99.40±00.97 99.60±00.84 99.00±01.41 99.50±00.71 99.97±00.06

S8

MMDBN 86.20±05.75 89.60±06.24 82.80±10.38 72.40±11.50 86.75±05.27 88.80±06.27

MMSAE 84.70±12.84 79.00±29.23 90.40±06.98 69.40±25.68   NaN 85.31±25.71

MMCNN 88.20±03.29 87.60±05.72 88.80±04.83 76.40±06.59 88.09±03.50 93.90±03.09

MMDPN 89.20±02.04 91.20±04.34 87.20±04.73 78.40±04.09 89.40±02.02 93.32±01.95

S9

MMDBN 78.40±09.19 76.00±07.72 80.80±13.60 56.80±18.38 78.07±08.31 81.17±12.23

MMSAE 78.00±06.45 89.20±07.73 66.80±19.33 56.00±12.89 80.51±03.49 83.82±05.03

MMCNN 82.50±02.80 76.60±02.84 88.40±05.32 65.00±05.60 81.43±02.64 89.60±02.61

MMDPN 83.20±03.71 83.60±06.45 82.80±03.43 66.40±07.41 83.18±04.11 90.61±02.18

S10

MMDBN 82.50±04.67 82.40±09.28 82.60±11.16 65.00±09.35 82.43±04.75 90.91±05.07

MMSAE 84.30±09.90 88.40±08.68 80.20±16.90 68.60±19.80 85.23±08.64 89.87±09.05

MMCNN 88.90±01.60 86.40±02.95 91.40±03.27 77.80±03.19 88.61±01.62 95.06±01.38

MMDPN 90.10±02.38 85.40±04.72 94.80±02.35 80.20±04.76 89.56±02.72 97.04±01.02

Fig.4. ROC curves of two paradigms with three single features and MVF 
(positive class: WI state; negative class: idle state). 

Fig. 5 Performance comparison among MVF, MDPN and MMDPN in 
VE-based paradigm using various metrics.



Fig. 6. Performance comparison for MMDBN, MMSAE, MMCNN, and MMDPN for text-based paradigm and VE-based paradigm.

Fig. 7 ROC cures of two different paradigms with different feature encoding 
algorithms.

Table IV. T-test of VE-based paradigm using MVF, MDPN, and MMDPN.  

ACC SEN SPEC Youden F1 AUC

MVF vs. 
MDPN

<0.0001 0.0010 0.0003 <0.0001 <0.0001 0.0009

MVF vs. 
MMDPN

<0.0001 0.0008 0.0001 <0.0001 <0.0001 0.0002

MDPN vs. 
MMDPN

0.0011 0.0140 0.0863 0.0011 0.0014 0.0096

TABLE VI T-test of various comparisons in VE-based paradigm.

Method ACC SEN SPEC Youden F1 AUC

MMDBN vs. 
MMDPN

<0.0001 0.0028 0.0051 <0.0001 0.0002 0.0016

MMSAE vs. 
MMDPN

0.0005 0.4489 0.0514 0.0005 <0.0001 0.0015

MMCNN vs.
MMDPN

0.0097 0.0056 0.8900 0.0097 0.0064 0.0159

TABLE VII T-test of various comparisons in text-based paradigm.

Method ACC SEN SPEC Youden F1 AUC

MMDBN vs. 
MMDPN

0.0214 0.1917 0.4185 0.0214 0.0318 0.0055

MMSAE vs. 
MMDPN

0.0017 0.1345 0.0745 0.0017 0.0007 0.0005

MMCNN vs. 
MMDPN

0.0140 0.0188 0.1330 0.0140 0.0090 0.0100

TABLE VIII T-test between two paradigms using various methods.

Method ACC SEN SPEC Youden F1 AUC

MMDBN <0.0001 0.0011 0.0031 <0.0001 <0.0001 <0.0001

MMSAE <0.0001 0.0014 0.0157 <0.0001 <0.0001 <0.0001

MMCNN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

MMDPN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

In Table VI, there are significant differences across all the 
comparisons, except SEN and SPEC. There are significant 
differences in terms of Youden, considering the importance of 
both FPR and FNR. There are significant differences in metrics 
of ACC, F1, and AUC, which are the same as the text-based 
paradigm. In general, MMDPN in each paradigm performs 
better than MMDBN, MMSAE, and MMCNN, and it can 
improve the performance of BCI based on WI. Table VIII 
shows that there are significant differences between the two 
paradigms using the same method. It proves that the 
performance of WI detection is significantly improved in the 
VE-based paradigm.

Fig. 7 shows the ROC of two different paradigms with four 
kinds of feature encoding algorithms. The curves of MMDPN 
are close to the top left of the diagram, compared with 
MMDBN, MMSAE and MMCNN. It shows that MMDPN is 
an effective and robust feature encoding method. The curves of 
the VE-based paradigm are closer than those of the text-based 
paradigm, which verifies the effectiveness of VE as well.

IV. DISCUSSIONS

Movement impairment presents great difficulty for patients 
suffering from neurological disorder due to stroke, accidents or 
other brain injuries, where the transmission of neuromuscular 
signals to extremities is interrupted. Disabled patients can 
modulate EEG rhythms over sensorimotor cortex by imaging 
or observing motor movements, even though they could not 
execute the desired movements [26, 27]. Through these 
processes, the functional network of the brain can be 



re-organized and brain plasticity is promoted, thereby yielding 
positive effect on motor function restoration [21]. Several 
evidences have indicated that the neuro-rehabilitation approach 
could be further enhanced by providing the feedback of brain 
activity [15, 16, 19]. BCIs based neuro-rehabilitation 
approaches have been developed to promote rehabilitation 
effect by producing external feedback of movement intentions 
that are identified using electroencephalogram (EEG) signals 
acquired non-invasively from the scalp [43-46]. To further 
enhance active engagement in extremities rehabilitation, 
virtual environment can be created to display an avatar 
representing the user, with virtual limbs driven by EEG signals 
via BCIs. Comparing with exploring this approach to 
upper-lower rehabilitation, it is not largely used for lower-limb 
rehabilitation [47]. Because the processing of EEG signals 
induced from lower-limb movements is more challenging as 
the signals are generated from deeper brain region and thus 
more obscure. For this reason, this study focuses on 
neuro-rehabilitation of lower-limbs with BCI. Through 
developing advanced EEG feature expression technology, 
lower-limbs movement intention can be decoded more 
accurately and thus generate feedback to promote 
rehabilitation performance. Lately, we have attempted to take 
this work to real-time rehabilitation robot system for patients to 
regain walking ability.  

Although all subjects are instructed to imagine the 
kinesthetic experience of lower limb movements, the 
experimental processes are still accompanied by the 
observations of walking. To further reduce the effect of visual 
response on walking imagery, we analyze the EEG signals 
from the electrodes (e.g. FC1, FC2, FC5, FC6, Cz, C3, C4, T7, 
T8, CP1, CP2, CP5, and CP6) located approximately above the 
sensorimotor area. A similar conclusion can be reached. The 
average accuracy based on CSP is increased by 13.5% when 
using the VE-based paradigm. We also perform t-test at the 
0.05 significance level. The statistical result also shows that the 
VE-based paradigm significantly outperforms the text-based 
paradigm (p-value = 0.0002). 

In our current study, we only collect EEG data from 9 
healthy people and 1 patient. Obviously, the dataset is quite 
limited, we will recurit more subjects to augment the EEG 
dataset for a more generalized and robust test. The current VE 
is only based on the computer display, which needs to improve 
the immersiveness. The head-mounted display (e.g., HoloLens) 
will be considered in our future work.  

As a future work, we will attemp to enhance the performance 
via the latest deep learning method. For instance, we can exloit 
DPN properties and structures for peformance enhancement. 
Other deep learning methods such as the regularizaed SAE, the 
stacked deep learning structures can be integrated to furhter 
improve BCI performance.  

V. CONCLUSIONS 

In this study, we investigate the training paradigms of WI 
tasks. We evaluate the experimental results of the text-based 
paradigm and the VE-based paradigm. The experimental 
results demonstrate that the VE-based paradigm obtains a 
significant increase on classification results of the single-trial 
WI task. This paradigm has the potential to improve the 

reliability and robustness of WI-based BCIs. The preliminary 
results show that MMDPN has better classification 
performance, compared with MMSAE, MMDBN, and 
MMCNN. In our future work, the head-mounted display can be 
used 

the training paradigm is likely to improve BCI performance. To 
optimize the training paradigm and the DPN algorithm for 
increasing the effectiveness of WI recognition, more EEG data 
should be collected from additional subjects, as well as more 
clinical data from the disabled who need lower limb 
rehabilitation. 
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