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Abstract—Brain-computer interfaces (BCls) based on motor
imagery (MI) have been widely used to support the rehabilitation of
motor functions of upper limbs rather than lower limbs. This is
probably because it is more difficult to detect brain activities of
lower limb MI. In order to reliably detect the brain activities of
lower limbs to restore or improve the walking ability of the disabled,
we propose a new paradigm of walking imagery (WI) in a virtual
environment (VE) in order to elicit reliable brain activities and
achieve a significant training effect. First, we extract and fuse both
spatial and time-frequency features as a multi-view feature (MVF)
to represent the patterns in the brain activity. Second, we design a
multi-view multi-level deep polynomial network (MMDPN) to
explore the complementarity among the features so as to improve
the detection of walking from an idle state. Our extensive
experimental results show that the VE-based paradigm significantly
performs better than the traditional text-based paradigm. In
addition, the VE-based paradigm can effectively help users to
modulate brain activities and improve the quality of
electroencephalography signals. We also observe that the MMDPN
outperforms other deep learning methods in terms of classification
performance.

Index Terms—Walking imagery; Brain-computer interface;
Virtual environment; Multi-view feature; Multi-view multi-level
deep polynomial network

I. INTRODUCTION

Brain-computer interfaces (BCIs) are capable of establishing a
communication pathway between a user and the external
world through brain activities [1-3], and electroencephalography
(EEQG) is often used to record oscillatory brain activities. Motor
imagery (MI) is one of the most typical types of the BCI paradigm,
and it is promising to apply MI-based BCls in various areas (e.g.,
entertainment and convenient life for healthy people [4, 5]). More
importantly, MI-based BCIs can help to restore motor functions
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of disabled patients [3], especially those with neuromuscular
disorders. Numerous studies on the use of MI-based BClIs are
carried out for the rehabilitation of upper limbs [6, 7]. For those
patients who are lower-disabled, they also need to recover their
walking ability, which is equally important to improve the
capability of self-care of the rehabilitation population [8].
However, lower limb rehabilitations have only received limited
attention due to a deeper location of the representation area in
sensorimotor cortex, which makes it difficult to detect EEG signal
reliably. Therefore, it is significant to obtain reliable brain
activities associated with walking imagery (WI) tasks [9-11].

In order to improve the performance of MI-based BClIs, it is
necessary to have a well-designed training approach to BCI
control. It can help users to effectively modulate brain signals,
which are the key elements to improve the robustness of BCls.
For example, some researchers consider a variety of feedback
modalities (e.g., visual, haptic, or auditory [12, 13]), while others
tend to increase the immersiveness of the visual feedback [14-17].
They leverage different technologies to create environments with
higher degrees of fidelity, such as three-dimensional (3D) vision,
virtual reality (VR), and augmented reality (AR) [14-17].
Although these feedback modalities can improve the BCI
performance, they often lead to an inhibitory effect if the users
incorrectly modulate their brain signals and fail to guarantee the
reliability of the training calibration session [13, 17, 18].

In order to improve the reliability of the training calibration
session, previous researchers devoted to designing suitable visual
cues to improve the MI-based BCI performance [19, 20]. For
example, when performing the upper limb MI training, the
subjects are instructed to observe a static picture of a hand or a
dynamic video of a hand grasping movement [19, 20]. Recently,
static pictures of Chinese characters of the left/right hand writing
are used as visual cues to perform MI tasks [21]. These visual
cues are able to train the users more appropriately than the
conventional approaches. The enhanced vividness of the visual
cues can help users modulate their brain activities. However, the
previous design of BCI training paradigm is seldom considered to
strengthen the capacity of lower limb MI to record reliable brain
activities. For this reason, it is important to find a suitable
paradigm of WI with a reliable calibration session. Our previous
study shows that virtual environments (VE) as visual cues are able
to appropriately guide users to perform kinesthetic WI [22]. The
subjects are requested to feel their feet naturally touch the ground
and imagine walking in accordance with the movement rhythm of
the virtual avatar. To reduce the interference of other limb
movements on the brain activity, the established VE presents only
the lower limbs of the walking avatar, and the results show that
the VE-based paradigm can help users modulate their brain
activities and increase the WI capacity.
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Despite the fact that the use of the VE-based paradigm obtains
good training results during the imagination of walking, it is also
essential to learn a robust feature representation to reveal the
changes in brain activities in order to enhance BCI performance.
Many previous feature extraction algorithms have been proposed
to design BCI systems. For example, Wang et al. [23] introduced
a wavelet-packet transform (WPT) algorithm to extract
time-frequency features from EEG data. Saa et al. [24] employed
power spectral density (PSD) to represent the frequency feature.
Previous researchers [25-30] also adopted a spatial pattern (CSP)
algorithm to analyze spatial features of imagined limb movements.
However, these single feature-based methods fail to capture the
complementarity of the features from multi-domains. It is argued
that fused features are more promising for complex EEG data and
can achieve better classification performance [31]. For this reason,
a WPT-CSP algorithm was proposed and showed attractive
performance [32, 33]. In this paper, we fuse CSP, PSD, and WPT
features to form multi-view features (MVFs) in order to make full
use of both spatial and time-frequency patterns.

To date, deep learning methods have witnessed a great success.
For example, Lu ef al. [34] used deep belief networks (DBNs) for
MI classification. Tabar et al. [35] utilized stacked auto-encoder
(SAE) to process EEG signals. Veres et al. [36] explored
convolutional neural networks (CNNs) [37] to encode features.
These algorithms usually require a substantial amount of training
data to learn the features successfully. However, it is inconvenient
and time-consuming to acquire a large amount of labeled EEG
data, which leads to difficulty in training robust models. A deep
polynomial network (DPN) is a new type of deep learning
algorithm with fine feature representation for small datasets. It
has the ability to compactly represent any functions on a finite
sample dataset based on its structure. The derivation of DPN [38]
is inspired by [39]. Specifically, a powerful layer-by-layer
learning algorithm is employed in DPN, where the output of each
node is a quadratic function of its inputs. The DPN algorithm
attempts to build a network to represent the data in order to
enhance the feature expression. Moreover, DPN runs in
polynomial time, which is easy to control the depth and width of
the network by only determining the number of layers and the
number of nodes per layer in DPN encoding. Inspired by the
promising performance by stacking DPNs [40], we build a
multi-view multi-level DPN (MMDPN) framework to obtain both
higher-level and integrated features to further boost the
performance. To the best of our knowledge, there is no such deep
learning study in BCIs for WI evaluation.

In summary, this paper explores the effectiveness of WI
detection using a VE-based training paradigm and deep feature
representation. We conduct experiments on self-collected EEG
data and systematically evaluate the effect of visual cues on
discriminating the WI state from the idle state. The experimental
results verify that the VE-based training paradigm induces EEG
patterns that are easier for single-trial WI detection. Furthermore,
the proposed MMDPN framework is superior in the
discrimination performance to other widely used deep learning
frameworks. The rest of the paper is organized as follows. Section
IT elaborates the experimental design and methodology. Section
IIT presents and discusses the experimental results. Finally, our
conclusions are presented in Section I'V.

II.METHODOLOGY

A. Participants

EEG signals are acquired from nine healthy subjects (aged
23-29 years old) and a patient with lower limb paralysis (aged 30
years old). All subjects are native speakers of Mandarin from
China. None of them has prior knowledge about WI or any
experience on BClIs training. Before the start of the experiment,
they are informed the entire experimental procedure. During the
experiment, each subject sits in a comfortable armchair about
50cm from a 24-inch computer screen placed in a quiet room.
They are instructed to keep their bodies relaxed and avoid making
any unnecessary movements and excessive blinking.

B. EEG signal collection

The EEG signals are recorded using a Biosemi ActiveTwo
system, at a sampling rate of 512Hz. In the ActiveTwo system, the
“ground” electrodes are replaced by two separate electrodes
(CMS and DRL, as illustrated in Fig. 1). The CMS/DRL
placement does not affect the signals measured between the other
electrodes. For each subject, the entire preparation procedure of
EEG acquisition takes about 20 minutes for applying the
conductive gels to ensure the low impedance between the
electrode and the participant’s scalp. More details of this EEG
acquisition system are available at the Biosemi website
(http://www.biosemi.com).

The EEG electrode placements are labeled on the basis of the
international 10-20 system. The 32 Ag/AgCl electrodes, including
Fpl, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3,
01, Oz, 02, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8,
AF4, Fp2, Fz, and Cz, are utilized for EEG signal collection. All
the 32-channel EEG signals are adopted for data processing in our
current study. The voltage offset at each active electrode is kept
below 25 mV. The trigger signals, which can indicate the
beginning of each trial in continuous EEG, are also synchronously
recorded using the Biosemi ActiveTwo system via a parallel port.

C. Paradigms

The experimental paradigm is designed for walking detection
with reference to the traditional BCI paradigm, which usually
includes three stages of preparation, task performing (e.g., action
or idle), and restoration. Visual cue is commonly used to instruct
the subjects to perform the different classes of MI tasks, such as
left/right hand movement or foot movement. The type of
movement imagination can greatly affect the BCI performance.
Some studies found that the subjects could better control the BCIs
while performing the kinesthetic motor imagery. Therefore, we
develop a VE-based BCI to guide subjects to consciously perform
the imagination of lower limb movements. This paradigm is also
used to provide relatively unified walking imagery action for
different subjects.

During the experiments, subjects are instructed to perform
kinesthetic WI via the visual guidance followed by the text-based
and the VE-based paradigms, as shown in Fig. 2a. The stages of
these two paradigms in a single-trial are illustrated in Fig. 2b and
Fig. 2c, respectively. For the text-based paradigm: instructions
appear on a computer screen in sequence as the guidance for five
specific stages of WI training. The stages consist of ‘idle’,
‘preparation’, ‘walking imagery’, and ‘restoration’. The subjects
are asked to perform WI training with the help of this visual cue



platform.

For the VE-based paradigm, we adopt the same procedure as
the text-based paradigm. However, we replace the texts with a 3D
VE, where subjects perform WI following the movements of an
avatar (see Fig. 2¢). In order to reduce the interference introduced
by the movements from other parts of the body, the computer
screen only displays the lower limbs of the avatar. The avatar’s
movements provide subjects with the guidance on which
experimental stage they shall perform. In the preparation stage,
the avatar appears and stands in a virtual hallway. Then, the
subjects imagine themselves walking along the hallway following
the avatar’s movement rhythm. The global location of the avatar
in the VE can refer to the mini-map in the upper left corner of the
screen, while there is a green progress bar indicating the time
remained to complete the current stage of a single-trial.

D.The process of collecting EEG data

The procedures of the single-trial and the whole experiments
are illustrated in Fig. 2c. The aforementioned two paradigms
follow the same procedures. These procedures are introduced to
all subjects, and then they sign the informed consent document
prior to their participation.

The single-trial EEG signals are composed of brain activities
recorded from four stages as shown in Fig. 2. At the beginning of
each trial, a word (‘idle’) representing idle state is shown on the
screen for 5 seconds, during which subjects keep themselves in a
relaxed state. This stage is followed by a preparation period of 2
seconds to remind them to be ready to start movement
imaginations. Then subjects feel their feet naturally touch the
ground and imagine walking. This is referred to the stage of WL
They are asked to avoid moving their own bodies or blinking eye
in the above three stages. At the end of lower limb MI stage,
subjects take a rest to adjust themselves in a restoration period of
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Fig. 1. EEG electrode positions used in Biosemi ActiveTwo system, and
CMS/DRL electrodes marked in shades of dark green.

5 seconds. We use trigger signals to label the beginning of each
single-trial. In the whole processes, the screen first displays a
word (‘initialization’) to indicate the start of an experimental run.
It starts with an initialization period of 5 seconds, which gives the
subjects time to adjust their experimental state. The subjects are
allowed to take a rest to relieve fatigue between any two runs.
Two sessions of EEG signals corresponding to two different days
for each subject are collected. One session consists of 10
experimental runs, and each contains 10 trials. The experiments
are performed five times for each paradigm (i.e., 2D text-based
paradigm or 3D VE-based paradigm), respectively, and the order
is random. Each trial includes two control groups (idle state or W1
state), that is, there are totally100 trials of idle and 100 trials of W1
for each paradigm.
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Fig.2. Experimental setup for EEG data collection based on two different training paradigms (Text-based and VE-based). The training paradigms are used to guide
subjects to perform W1 tasks. In each scenario, EEG signals are acquired using Biosemi ActiveTwo system, which are installed in the left computer. Meanwhile, the right
computer is used to provide the visual cues for each trial and send corresponding trigger signals. Each single-trial contains four stages corresponding to idle (5s),
preparation (2s), walking imagery (5s), and restoration (5s). An experimental run begins with 5-seconds initialization stage, being followed by performing 10 single-trials.
Subjects can have a rest to relieve fatigue between any two runs. Experiments are carried out a total of 5 times for each paradigm, respectively, with random order.



E. MMDPN framework

Fig. 3 shows the flowchart of the proposed method. The
framework contains four procedures: feature preprocessing,
feature extraction, feature encoding, and prediction. After the
recorded raw data are preprocessed and the EEG data in
reference-free form are obtained. Three types of features,
including CSP, PSD, and WPT, are extracted. Each type of the
feature is normalized and contains two rhythms based on the EEG
characteristics of WI: mu frequency bands (8~13Hz) and beta
frequency bands (13~30 Hz). Firstly, these features are fused
linearly as MVFs and are trained by a technique named linear
discriminant analysis (LDA). Secondly, each feature is encoded
by a first-level DPN (DPN-1). These features are encoded again
by a second-level DPN (DPN-2). Finally, MMDPN features are
obtained to train the LDA classifier.

1) Preprocessing

In the preprocessing stage, we use the trigger signals to
segment continuous raw EEG recordings into idle epochs and WI
epochs for each paradigm. The recorded EEG signals are
converted into reference-free forms with common average
references.

2) Feature extraction

The mu frequency bands and beta frequency bands are
relevant to walking imagination [10]. The feature extraction is
performed on these two bands, respectively. For CSP features, all
EEG segments are filtered with a fifth order Butterworth
band-pass filter in the range of mu frequency band and beta
frequency band [7, 41, 42]. CSP is used to extract EEG features
for each frequency band. For PSD features, the spectral entropy of
PSD within mu and beta frequency bands are estimated,
respectively. For WPT features, we choose two nodes of the
wavelet packet: U(5,1) (8~16Hz) and U(4,1) (16~32Hz). The
former corresponds to the mu frequency bands, while the latter
corresponds to the beta frequency bands. The entropy of each
node is calculated as the WPT feature.

3) Feature Encoding

In the stage of feature encoding, DPNs [38] are used. The DPN
is a newly proposed deep architecture, which is capable to
compactly learn complex functions on a finite training set. The
DPN is built in a layer-by-layer fashion, in which the output of
each node is a quadratic function of its input. A DPN integrates
features between different samples and different dimensions
through the network. By presenting the output with hierarchical
features, the DPN greatly improves the feature representation
ability. Moreover, the DPN runs in polynomial time, and is easy
to train without relying on complex heuristics. In the following,
we briefly describe the construction process of the DPN.

Given a set of training samples {(Xl,y1 ),(Xz,y2 ),...,(Xm,ym )} ,
w,) and
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first layer, spans all possible values attained by degree-1
polynomials functions on training samples.
For the second layer of the DPN, let

2
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|:F F 2} that spans all values attained by the degree-2 polynomial
functions on training samples. Then, we can find linearly

independent columns of [F F 21 to be the basis for [F F 2].

Thus, each column of F? corresponds to a node of the second
layer of DPN.

We then redefine F as the matrix I:F F 21 , and the above

processes can be extended to construct layer 3,4,...,z . Let
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and we can finally construct the z-th layer of the DPN. Fig. 3a
shows the basic architecture of the DPN with four layers.

4) Multi-view multi-level deep polynomial network

For a single DPN based algorithm, it lacks diversity, relevance,
and discrimination. It fails to fuse and capture the linear
combination of multiple feature representations. To address this
shortcoming, we can propose a multi-view and multi-level DPN.
The MMDPN algorithm explores the complementary information
of all the features and enhances the feature representation via the
multi-level DPN. The MMDPN for multiple feature
representation is shown in Fig. 2b.

In our work, we focus on efficient integration of the features of
CSP, PSD, and WPT. In the first level, the features of CSP, PSD,
and WPT are encoded by the DPN (DPN-1) to obtain a high-level
feature representation. In the second level, all three types of
higher-level features are cascaded in the DPN encoding (DPN-2).
The ultimate learned features include both intrinsic attribute of
each modality and the relativities among all modalities. Therefore,
the MMDPN efficiently exploits the complementarity among
multiple features, which exhibits a highly non-linear correlation
between multi-view features.

Our method combines both common and complementary
information of the EEG data to boost the WI performance. In
addition, the hierarchical representation of each level can reduce
the noise and extract useful information. If only one layer of the
network in the basic DPN encoding is used, it is equivalent to the
dimensionality reduction of principle component analysis method.
To obtain an effective encoded feature matrix for WI
classification, we construct a multi-level DPN network with
different numbers of layers with different width. The encoded
features are obtained by the direct connection of the learned
hierarchical features from different layers. As a result, the
proposed MMDPN further enhances the W1 representation.
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Fig.3. Illustration of flowchart of proposed method using three features (e.g., CSP, PSD, WPT). (a) Schematic diagram of DPN architecture with four layers. (b)
Raw EEG signals with mu and beta frequency bands after preprocessing to obtain three features. Each feature is encoded by DPN (a.k.a., DPN-1), and fused and
decoded again by DPN (a.k.a., DPN-2). The final output is used to train linear discriminant analysis classifier.

III. EXPERIMENTAL RESULTS

A. Experimental settings

In this section, we show the experimental results with our
proposed method. Our experimental results are based on binary
classification: idle state vs. WI state. The EEG data of two
control groups (idle state and W1 state) are used for training the
model and evaluating the classification performance. In our
experiments, there are 100 samples of idle class and 100
samples of WI class for each subject in each paradigm. 50
samples of idle class and 50 samples of WI class are randomly
selected for training and the remaining ones are used for testing.
The experimental processing ignores problem of
non-stationary EEG signals. To further verify the effectiveness
of our DPN method, it is compared with the recent popular
deep learning techniques (e.g., DBN, SAE and CNN) with the
same multi-view multi-level framework (a.k.a., MMDBN,
MMSAE, and MMCNN). The above processing is carried out
for 10 times and the average results are reported for each
subject in each paradigm.

To validate the performance of different paradigms on WI
tasks, assuming that the WI state corresponds to the positive
class and the idle state to the negative class. When the WI is
classified as the W1, it is regarded as a true positive (TP). When
the WI is classified as the idle state, it is regarded as a false
positive (FP). The metrics are as below: The true positive rate
(TPR), the false positive rate (FPR), Accuracy (ACC) =
(TP+TN)/(TP+TN+FP+FN), Sensitivity (SEN) = TP/(TP+FN);
Specificity (SPEC) = TN/(TN+FP), Youden's index (Youden)
= SEN+SPEC-1, F1 score (F1) = 2xPPVXSEN/ (PPV+SEN)
(PPV = TP/(TP+FP), NPV = TN/(TN+FN)), AUC is the area
under receiver operating characteristics curve (ROC). All the
signal analysis programs are performed using MATLAB 2017a
(MathWorks Inc.).

B. Results

Table I shows the evaluation results for the text-based
paradigm and the VE-based paradigm using CSP, PSD, WPT,
and MVF. The results are reported in terms of the averaged

values across all subjects with ten evaluations minus or plus
their standard deviations. Table II shows the t-test statistical
analysis between two paradigms with the same method.

For all the features, we find that the VE-based paradigm
outperforms the text-based paradigm. Table II shows that there
are significant differences between the two paradigms. The
results prove that the VE-based paradigm can help subjects
better modulate their brain activities, which significantly
improve the performance of WI detection. For the two
paradigms, MVF obtains the best performance among all the
four types of features. It proves that MVF integrates spatial
features and time-frequency features to fully leverage
information of WI features and achieves the best performance.

Fig. 4 shows the ROC curves of two paradigms with three
independent features and MVF. The curves of the VE-based
paradigm are close to the upper left corner of the figure than the
text-based paradigm, which proves the superiority of the
VE-based paradigm over the text-based paradigm. It is also
obvious that ACC of the VE-based paradigm is higher than that
of the text-based paradigm in the same subject. The MVF’s
curves are also close to the upper left corner of the figure
among all features. In addition, the multi-view features are
better than the single view feature from which we can explore
the feature complementarities.

Table III shows the performance comparison of the
VE-based paradigm using MVF, MDPN, and MMDPN. Fig. 5
illustrates the results summarized in Table III. There are a
significant difference between MVF and MDPN (p < 0.001)
and a significant difference between MVF and MMDPN (p <
0.0008) in Table IV. From the mean results, MVF is lower
than MDPN or MMDPN, which fully demonstrates the
attractive feature encoding method via DPN. From the
significance analysis in Table IV, we can see that SPEC cannot
satisfy the significant difference at alpha = 0.05 level.
However, all other metrics satisfy the significance requirement.
Also, ACC, Youden, F1, and AUC meet the significant
difference at alpha = 0.01 level. Hence, it proves that the
MDPN can leverage the complementarity and correlation
between the single features and MMDPN can better decode W1
feature than MDPN.



Table I. Performance comparison between Text-based paradigm and VE-based paradigm using various features and metrics (%).

Paradigm Feature ACC SEN SPEC Youden F1 AUC
CSp 67.27+08.37 67.72+08.28 66.82+08.71 34.54+16.74 67.35+08.24 73.06+10.36
Text PSD 61.09+04.92 62.36+07.47 59.82+05.06 22.18+09.84 61.34+05.59 64.71+05.50
WPT 65.46+05.72 65.82+06.86 65.10+05.24 30.92+11.45 65.40+06.01 70.56+07.01
MVF 69.45+08.83 70.40+09.67 68.50+08.26 38.90+17.66 69.58+09.01 74.90+09.93
CSpP 81.19+07.86 82.54+08.34 79.84+07.94 62.38+15.72 81.37+07.83 88.21+06.47
PSD 71.96+05.09 79.60+09.41 64.32+04.12 43.92+10.18 73.72+05.67 74.49+04.55
VE WPT 74.96+06.52 79.40+08.99 70.52+05.20 49.92+13.05 75.88+06.66 80.92+06.77
MVF 81.81+07.50 83.42+08.73 80.20+06.90 63.62+14.99 81.94+07.61 88.30+05.75

Table V presents the mean and standard deviation of
performance comparison for MMDBN, MMSAE, MMCNN
and MMDPN of the VE-based paradigm using 6 metrics. Fig. 6
(VE) corresponds to Table V. Table VI shows the t-test results
among MMDPN and MMDBN, MMSAE, as well as MMCNN
in the VE-based paradigm. Table V shows that the healthy
subject S7 has the best performance of WI detection. The
evaluation values are higher than most of the healthy subjects

Table II T-test between text-based paradigm and VE-based paradigm.

Feature ACC SEN SPEC Youden Fl1 AUC
CSP <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001
DSpP 0.0002 <0.0001 0.1107 0.0002 <0.0001 0.0006
WPT 0.0003 <0.0001 0.022 0.0003 <0.0001 0.0002
MVF 0.0002 0.0002 0.0005 0.0002 0.0002 0.0002

for the disable subject S10 with lower limbs paraplegia. It also
proves that the disabled subject still can perform WI tasks and
outperform the normal subjects. This observation suggests the
potential for the disabled in other aspects of rehabilitation.

For subject S8 using MMSAE as the feature decoding
method, all the W1 instances are judged as idle. Both TP and FP
are 0, PPV and F1 is NaN. This shows that MMSAE is unstable
for this data. In Table V, it can be found that the MMDPN has
the highest values for all five evaluation metrics except SPEC.
Fig. 6 shows the bar diagram for performance comparison for
MMDBN, MMSAE, MMCNN, and MMDPN in the text-based
paradigm. In terms of average value of ten subjects, MMDPN
obtains the best performance of all the multi-view multi-level
frameworks.

Table I1I Performance comparison of VE-based paradigm based on MVF, MDPN and MMDPN method (%).

Subject Method ACC SEN SPEC Youden F1 AUC

MVF 76.90+04.53 77.40+05.34 76.40+06.85 53.80+09.07 77.02+04.49 85.62+04.50

S1 MDPN 83.10+03.54 85.00+06.62 81.20+04.92 66.20+07.08 83.34+03.83 89.69+04.20
MMDPN 83.60+04.30 86.80+05.75 80.40+06.92 67.20+08.60 84.11+04.11 91.00+02.95

MVF 75.40+06.54 72.40+12.10 78.40+07.99 50.80+13.07 74.28+07.84 81.96+06.50

S2 MDPN 80.90+05.88 79.00+£10.47 82.80+05.01 61.80+£11.75 80.26+06.91 86.93+06.35
MMDPN 83.90+03.11 84.80+07.38 83.00+03.68 67.80+06.21 83.91+03.82 89.67+03.37

MVF 83.80+02.53 85.80+06.00 81.80+03.19 67.60+05.06 84.04+02.90 90.59+02.74

S3 MDPN 87.60+03.44 90.60+06.60 84.60+03.78 75.20+06.88 87.88+03.72 94.45+02.78
MMDPN 88.40+02.95 92.20+05.53 84.60+04.01 76.80+05.90 88.78+03.12 94.87+01.99

MVF 80.50+03.03 83.60+05.87 77.40+£04.81 61.00+06.06 81.03+03.20 87.62+04.22

S4 MDPN 88.00+02.40 88.40+05.48 87.60+03.75 76.00+04.81 87.99+02.63 94.10+02.02
MMDPN 90.40+01.35 92.00+03.40 88.80+03.91 80.80+02.70 90.55+01.29 96.41+01.18

MVF 88.90+04.01 94.40+05.06 83.40+04.12 77.80+08.02 89.46+03.90 94.12+03.46

S5 MDPN 92.70+02.71 95.20+02.53 90.20+04.37 85.40+05.42 92.90+02.56 97.16+01.74
MMDPN 93.40+02.72 96.20+03.19 90.60+05.89 86.80+05.43 93.62+02.53 96.92+01.99

MVF 74.00+03.27 75.00+08.55 73.00+04.03 48.00+06.53 74.06+£04.36 82.97+03.56

S6 MDPN 82.50+02.72 84.00+04.22 81.00+05.83 65.00+05.44 82.77+02.49 91.35+02.56
MMDPN 84.10+03.11 84.00+04.81 84.20+06.76 68.20+06.21 84.10+02.84 92.56+02.81

MVF 97.20+01.40 98.80+01.69 95.60+02.27 94.40+02.80 97.25+01.37 99.44+00.94

S7 MDPN 99.30+00.82 99.40+00.97 99.20+01.03 98.60+01.65 99.30+00.82 99.97+00.05
MMDPN 99.50+00.71 99.40+00.97 99.60+00.84 99.00+01.41 99.50+00.71 99.97+00.06

MVF 85.50+02.99 89.20+05.90 81.80+04.85 71.00+05.98 85.97+03.05 90.13+02.47

S8 MDPN 87.40+02.63 91.20+04.44 83.60+02.80 74.80+05.27 87.83+02.69 90.20+02.92
MMDPN 89.20+02.04 91.20+04.34 87.20+04.73 78.40+04.09 89.40+02.02 93.32+01.95

MVF 73.30+06.09 75.80+07.39 70.80+08.18 46.60+12.19 73.92+05.91 81.02+07.27

S9 MDPN 82.40+02.76 81.20+04.83 83.60+02.95 64.80+05.51 82.14+03.17 90.32+02.63
MMDPN 83.20+03.71 83.60+06.45 82.80+03.43 66.40+07.41 83.18+04.11 90.61+02.18

MVF 82.60+03.89 81.80+05.85 83.40+04.90 65.20+07.79 82.42+04.12 89.56+03.96

S10 MDPN 88.40+02.67 84.00+05.66 92.80+03.79 76.80+05.35 87.80+03.06 96.09+01.42
MMDPN 90.10+02.38 85.40+04.72 94.80+02.35 80.20+04.76 89.56+02.72 97.04+01.02




Table V. Performance comparison for VE-based paradigm based on MMDBN, MMSAE, MMCNN, and MMDPN methods (%).

Subject Method ACC SEN SPEC Youden F1 AUC
MMDBN 77.30£10.08 75.204+28.41 79.40+17.46 54.60+20.16 73.66+20.07 90.59+05.88
MMSAE 82.00+04.32 78.20+£10.13 85.80+06.14 64.00+08.64 81.03+05.64 89.51+03.60
St MMCNN 81.60+05.15 83.20+05.59 80.00+06.46 63.20+£10.29 81.90+05.05 87.90+03.15
MMDPN 83.60+04.30 86.80+05.75 80.40+06.92 67.20+08.60 84.11+04.11 91.00+02.95
MMDBN 75.40+09.12 74.00+£17.07 76.80+13.64 50.80+18.24 74.37+10.74 82.98+11.88
© MMSAE 74.40+08.54 88.60+09.29 60.20+20.43 48.80+17.08 77.83+05.54 80.87+17.66
MMCNN 78.60+05.15 75.40+£07.95 81.80+06.36 57.20+£10.29 77.78+05.87 86.11+05.60
MMDPN 83.90+03.11 84.80+07.38 83.00+£03.68 67.80+06.21 83.91+03.82 89.67+03.37
MMDBN 79.80+04.85 77.40+12.62 82.20+09.73 59.60+09.70 78.92+06.35 87.85+04.44
MMSAE 83.80+04.76 94.40+06.02 73.20+11.93 67.60+£09.51 85.47+03.54 91.31+06.80
§3 MMCNN 88.30+03.06 90.20+04.05 86.40+03.98 76.60+06.11 88.51+02.99 93.20+02.52
MMDPN 88.40+02.95 92.20+05.53 84.60+04.01 76.80+05.90 88.78+03.12 94.87+01.99
MMDBN 83.40+06.67 85.80+12.59 81.00+13.00 66.80+13.34 83.53+07.27 89.04+06.10
s4 MMSAE 82.70+07.85 96.40+03.37 69.00+17.34 65.40+15.69 85.19+05.78 84.67+15.63
MMCNN 87.00+03.13 88.40+05.87 85.60+05.80 74.00+£06.25 87.15+03.13 93.52+02.29
MMDPN 90.40+01.35 92.00+03.40 88.80+03.91 80.80+02.70 90.55+01.29 96.41+01.18
MMDBN 92.00+03.16 94.00+03.40 90.00+06.32 84.00+06.32 92.21+02.92 97.84+01.51
S5 MMSAE 90.90+04.20 91.00+03.43 90.80+06.48 81.80+08.40 90.97+03.96 95.78+03.56
MMCNN 91.70+02.50 93.00+£03.16 90.40+02.07 83.40+04.99 91.79+02.52 97.14+01.34
MMDPN 93.40+02.72 96.20+03.19 90.60+05.89 86.80+05.43 93.62+02.53 96.92+01.99
MMDBN 79.60+08.24 84.40+07.59 74.80+12.04 59.20+16.47 80.66+07.39 87.93+09.02
MMSAE 83.50+06.06 79.60+10.41 87.40+09.62 67.00+£12.12 82.66+06.70 90.34+06.10
$6 MMCNN 83.70+01.95 81.60+03.75 85.80+03.46 67.40+03.89 83.33+02.08 92.59+02.11
MMDPN 84.10+03.11 84.00+04.81 84.20+06.76 68.20+06.21 84.10+02.84 92.56+02.81
MMDBN 96.10+02.28 93.60+05.56 98.60+03.13 92.20+04.57 95.94+02.47 98.36+01.92
7 MMSAE 96.30+03.23 95.40+04.62 97.20+07.00 92.60+06.47 96.31+03.01 98.13+02.99
MMCNN 98.80+01.32 99.00+01.41 98.60+01.65 97.60+02.63 98.80+01.31 99.47+00.84
MMDPN 99.5000.71 99.40+00.97 99.60+00.84 99.00+01.41 99.50+00.71 99.97+00.06
MMDBN 86.20+05.75 89.60+06.24 82.80+10.38 72.40+11.50 86.75+05.27 88.80+06.27
S8 MMSAE 84.70+12.84 79.00+£29.23 90.40+06.98 69.40+25.68 NaN 85.31+25.71
MMCNN 88.20+03.29 87.60+05.72 88.80+04.83 76.40+06.59 88.09+03.50 93.90+03.09
MMDPN 89.20+02.04 91.20+04.34 87.20+04.73 78.40+04.09 89.40+02.02 93.32+01.95
MMDBN 78.40+09.19 76.00+£07.72 80.80+13.60 56.80+18.38 78.07+08.31 81.17+12.23
S9 MMSAE 78.00+06.45 89.20+07.73 66.80+19.33 56.00+£12.89 80.51+03.49 83.82+05.03
MMCNN 82.50+02.80 76.60+02.84 88.40+05.32 65.00+£05.60 81.43+02.64 89.60+02.61
MMDPN 83.20+03.71 83.60+06.45 82.80+03.43 66.40+07.41 83.18+04.11 90.61+02.18
MMDBN 82.50+04.67 82.40+09.28 82.60+11.16 65.00+09.35 82.43+04.75 90.91+05.07
s10 MMSAE 84.30+09.90 88.40+08.68 80.20+16.90 68.60+19.80 85.23+08.64 89.87+09.05
MMCNN 88.90+01.60 86.40+02.95 91.40+03.27 77.80+03.19 88.61+01.62 95.06+01.38
MMDPN 90.10+02.38 85.40+04.72 94.80+02.35 80.20+04.76 89.56+02.72 97.04+01.02
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(positive class: WI state; negative class: idle state).
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Fig. 6. Performance comparison for MMDBN, MMSAE, MMCNN, and MMDPN for text-based paradigm and VE-based paradigm.

TABLE VIII T-test between two paradigms using various methods.

Method ACC SEN SPEC Youden F1 AUC
MMDBN <0.0001 0.0011 0.0031 <0.0001 <0.0001 <0.0001
MMSAE <0.0001 0.0014 0.0157 <0.0001 <0.0001 <0.0001
MMCNN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MMDPN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Fig. 7 ROC cures of two different paradigms with different feature encoding
algorithms.

Table IV. T-test of VE-based paradigm using MVF, MDPN, and MMDPN.

P ACC SEN SPEC Youden F1 AUC
MVEF vs.
MDPN <0.0001 0.0010 0.0003 <0.0001 <0.0001 0.0009
MVEF vs.
MMDPN <0.0001 0.0008 0.0001 <0.0001 <0.0001 0.0002
MDPN vs.
MMDPN 0.0011 0.0140 0.0863 0.0011 0.0014 0.0096
TABLE VI T-test of various comparisons in VE-based paradigm.
Method ACC SEN SPEC Youden F1 AUC
MMDBN vs.
MMDPN <0.0001 0.0028 0.0051 <0.0001 0.0002 0.0016
MMSAE vs.
MMDPN 0.0005 0.4489 0.0514 0.0005 <0.0001 0.0015
MMCNN vs.
MMDPN 0.0097 0.0056 0.8900 0.0097 0.0064 0.0159
TABLE VII T-test of various comparisons in text-based paradigm.
Method ACC SEN SPEC Youden F1 AUC
MMDBN vs.
MMDPN 0.0214 0.1917 0.4185 0.0214 0.0318 0.0055
MMSAE vs.
MMDPN 0.0017 0.1345 0.0745 0.0017 0.0007 0.0005
MMCNN vs. 0.0140 0.0188 0.1330 0.0140 0.0090 0.0100

MMDPN

In Table VI, there are significant differences across all the
comparisons, except SEN and SPEC. There are significant
differences in terms of Youden, considering the importance of
both FPR and FNR. There are significant differences in metrics
of ACC, F1, and AUC, which are the same as the text-based
paradigm. In general, MMDPN in each paradigm performs
better than MMDBN, MMSAE, and MMCNN, and it can
improve the performance of BCI based on WI. Table VIII
shows that there are significant differences between the two
paradigms using the same method. It proves that the
performance of WI detection is significantly improved in the
VE-based paradigm.

Fig. 7 shows the ROC of two different paradigms with four
kinds of feature encoding algorithms. The curves of MMDPN
are close to the top left of the diagram, compared with
MMDBN, MMSAE and MMCNN. It shows that MMDPN is
an effective and robust feature encoding method. The curves of
the VE-based paradigm are closer than those of the text-based
paradigm, which verifies the effectiveness of VE as well.

IV. DISCUSSIONS

Movement impairment presents great difficulty for patients
suffering from neurological disorder due to stroke, accidents or
other brain injuries, where the transmission of neuromuscular
signals to extremities is interrupted. Disabled patients can
modulate EEG rhythms over sensorimotor cortex by imaging
or observing motor movements, even though they could not
execute the desired movements [26, 27]. Through these
processes, the functional network of the brain can be



re-organized and brain plasticity is promoted, thereby yielding
positive effect on motor function restoration [21]. Several
evidences have indicated that the neuro-rehabilitation approach
could be further enhanced by providing the feedback of brain
activity [15, 16, 19]. BCIs based neuro-rehabilitation
approaches have been developed to promote rehabilitation
effect by producing external feedback of movement intentions
that are identified using electroencephalogram (EEG) signals
acquired non-invasively from the scalp [43-46]. To further
enhance active engagement in extremities rehabilitation,
virtual environment can be created to display an avatar
representing the user, with virtual limbs driven by EEG signals
via BCIs. Comparing with exploring this approach to
upper-lower rehabilitation, it is not largely used for lower-limb
rehabilitation [47]. Because the processing of EEG signals
induced from lower-limb movements is more challenging as
the signals are generated from deeper brain region and thus
more obscure. For this reason, this study focuses on
neuro-rehabilitation of lower-limbs with BCI. Through
developing advanced EEG feature expression technology,
lower-limbs movement intention can be decoded more
accurately and thus generate feedback to promote
rehabilitation performance. Lately, we have attempted to take
this work to real-time rehabilitation robot system for patients to
regain walking ability.

Although all subjects are instructed to imagine the
kinesthetic experience of lower limb movements, the
experimental processes are still accompanied by the
observations of walking. To further reduce the effect of visual
response on walking imagery, we analyze the EEG signals
from the electrodes (e.g. FC1, FC2, FC5, FC6, Cz, C3, C4, T7,
T8, CP1, CP2, CP5, and CP6) located approximately above the
sensorimotor area. A similar conclusion can be reached. The
average accuracy based on CSP is increased by 13.5% when
using the VE-based paradigm. We also perform t-test at the
0.05 significance level. The statistical result also shows that the
VE-based paradigm significantly outperforms the text-based
paradigm (p-value = 0.0002).

In our current study, we only collect EEG data from 9
healthy people and 1 patient. Obviously, the dataset is quite
limited, we will recurit more subjects to augment the EEG
dataset for a more generalized and robust test. The current VE
is only based on the computer display, which needs to improve
the immersiveness. The head-mounted display (e.g., HoloLens)
will be considered in our future work.

As a future work, we will attemp to enhance the performance
via the latest deep learning method. For instance, we can exloit
DPN properties and structures for peformance enhancement.
Other deep learning methods such as the regularizaed SAE, the
stacked deep learning structures can be integrated to furhter
improve BCI performance.

V.CONCLUSIONS

In this study, we investigate the training paradigms of WI
tasks. We evaluate the experimental results of the text-based
paradigm and the VE-based paradigm. The experimental
results demonstrate that the VE-based paradigm obtains a
significant increase on classification results of the single-trial
WI task. This paradigm has the potential to improve the

reliability and robustness of WI-based BCIs. The preliminary
results show that MMDPN has better -classification
performance, compared with MMSAE, MMDBN, and
MMCNN. In our future work, the head-mounted display can be
used to further enhance subjects’ senses of reality and
immersion. In addition, matching subject’s characteristics to
the training paradigm is likely to improve BCI performance. To
optimize the training paradigm and the DPN algorithm for
increasing the effectiveness of WI recognition, more EEG data
should be collected from additional subjects, as well as more
clinical data from the disabled who need lower limb
rehabilitation.
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