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Although leveraged ETFs are popular products for retail investors, how to hedge them poses a great chal-

lenge to financial institutions. We develop an optimal rebalancing (hedging) model for leveraged ETFs in

a comprehensive setting, including overnight market closure and market frictions. The model allows for an

analytical optimal rebalancing strategy. The result extends the principle of “aiming in front of target” intro-

duced by Gârleanu and Pedersen (2013) from a constant weight between current and future positions to

a time-varying weight because the rebalancing performance is monitored only at discrete time points, but

the rebalancing takes place continuously. Empirical findings and implications for the weekend effect and the

intraday trading volume are also presented.

Key words : daily rebalancing, leveraged ETFs, market closure, frictions.

1. Introduction

Leveraged ETFs (LETFs for short hereafter) are exchange-traded funds that aim to achieve a

daily target return equal to a stated multiple of the daily return of an underlying asset, where the

multiple β can be +2, +3 (for Bull LETFs), or −1, −2, −3 (for Bear LETFs), fixed for each fund.

In 2006 ProShares introduced the first 12 LETFs on 4 U.S. equity indices (S&P 500, NASDAQ 100,

Dow Jones Industrial Average, and S&P MidCap 400), each with three multiples +2,−1,−2. Since

then, they have become popular, especially for retail investors. Indeed, LETFs provide investors

with leveraged (both long and short) opportunities without directly accessing margin accounts or

financial derivatives. As of March 2021, there are a total number of 108 LETFs on U.S. equity

indices, with a total of 52.7 billion USD assets under management.

However, one important property of LETFs often misunderstood by retail investors is that the

stated daily multiple cannot be translated directly to the exact multiple over a multi-day period
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due to the discrete compounding effect; see, e.g., Avellaneda and Zhang (2010) and Jarrow (2010).

For example, assume the underlying asset has a constant daily return of 0.1%, and the LETF

hits the target multiple β = 2 every day. Then over 252 days, the LETF achieves a return of

(1 + 0.001× 2)252 − 1 = 65.45%, which is 2.285 (not 2) times of (1 + 0.001)252 − 1 = 28.64%, the

annual return of the underlying asset.

Even daily, the actual daily returns of the fund’s net asset value tend to deviate from the target

returns, a phenomenon called (daily) slippage. The LETF slippage has been documented in the

empirical literature. Taking LETFs on the S&P 500 index as an example, Tang and Xu (2013) find

that from 2006 to 2010, the LETFs with stated β = 2,−1,−2 achieved an average daily actual net

asset value return of 0.0326%, −0.0097%, and −0.0247%, as compared to the average target return

of 0.0471%, −0.0236%, −0.0471%, respectively.

The existing literature suggests several factors to explain the LETF slippage. Tang and Xu (2013)

and Henderson and Buetow (2014) attribute the slippage to the interest cost; more precisely, to

achieve a target leveraged exposure to the underlying asset, a Bull (resp. Bear) fund has to borrow

(resp. lend) at the LIBOR rate, which brings down (resp. pushes up) the daily fund asset return and

causes the slippage. Avellaneda and Dobi (2012), Wagalath (2014), and Guasoni and Mayerhofer

(2017) instead ascribe to transaction costs incurred during the daily LETF rebalancing.

In this paper, we develop a model for the optimal daily rebalancing of LETFs under market

frictions and overnight jump risk, which yields an explanation for the LETF daily slippage. More

precisely, (i) an LETF fund usually rebalances near the market closing time, when it can better

estimate the position needed for the target exposure for the next day; (ii) adjusting the fund

position rapidly during a short period may incur a high cost due to the market price impact. Both

can cause suboptimal exposure at the market closing, which leads to daily slippage. Additionally, in

our model most intraday rebalancing activities occur right after market opening and before market

closure, and the slippage tends to be the largest on Mondays, thus providing an explanation of the

U-shape intraday trading volume and the “weekend effect” of the slippage of LETFs.

1.1. Intuition

Financial institutions face the challenge of hedging when issuing LETFs in the presence of mar-

ket frictions and overnight market closure. To illustrate this, assume that the interest rate and

transaction costs are zero and consider the following simple example. To reach the targeted daily

return today, which is β times the daily return of the asset, an LETF fund has to achieve today’s

targeted position that corresponds to a leverage ratio of β at the previous market closure. Assume

β = 2, and at the previous market closure, the underlying asset price and total asset are $100 and

$100 million, respectively, and the fund has an ideal position of 2 million shares in the underlying
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asset. Then by keeping this targeted position unchanged throughout today until market closure,

the fund will reach the targeted return today. Assume the underlying asset value drops by 1% to

$99 at today’s market closure, then the fund’s total asset would drop by 2% to $98 million and

achieve the targeted return, which is ideal. However, the preparation for tomorrow’s targeted posi-

tion becomes a problem. To achieve the target, the fund would need to have tomorrow’s position

of 2× $98 million / $99 = 1.9798 million shares at today’s market closure by selling 0.0202 million

shares right before today’s market closure.

This selling is unrealistic and leads to daily slippage for at least two reasons: (1) In the presence

of market frictions, selling a large number of shares right before the market closure is costly, as

a sudden portfolio adjustment within an infinitesimal period would yield a high cost due to price

impact and other transaction costs, leading to a suboptimal leverage ratio and potentially large

slippage; (2) The slippage caused by a sub-optimal position at market closure can be amplified by

the risk of overnight jumps in prices, as such jumps may move the fund’s opening position further

away and require larger rebalancing of positions.

In view of the two challenges, we show that the fund should start moving its aim continuously

towards tomorrow’s target much earlier than the market closure, in anticipation of tomorrow’s

target. In other words, the fund’s aim is “in front of today’s target”. The proposed strategy can

reduce the slippage significantly, as confirmed by our numerical results later.

1.2. Our Contribution and Literature Review

The contribution of this paper is fourfold. First, to the best of our knowledge, we are the first to

study the daily rebalancing problem in a comprehensive setting, including market frictions and

the overnight market closure. Empirical studies (e.g., Stoll and Whaley (1990), Lockwood and

Linn (1990)) show that the volatility is much lower during market closure as compared to trading

hours, although the expected return is on a similar level. Also, the trading strategy during trading

hours needs to adjust for market closure when no trading is allowed (cf. Dai et al. (2015)). This

is especially important for LETFs since if the target leverage ratio is not exactly met at market

closing time, the fund bears the risk that an overnight price jump may lead to a large return

deviation right at the next market opening.1 We find that to reduce the overnight jump risk, it is

optimal to perform a larger portion of rebalancing before market closure. Additionally, adjusting

the aim for the overnight risk can lead to a slippage reduction of as much as 24%.

1 A fund may continue rebalancing via trading derivatives such as futures after the normal trading hours of the stock
market. However, during this period, the trading volume of futures is typically extremely low, making any large
rebalancing impractical due to the potentially high price impact. Therefore, it is still optimal for the fund to finish
the major, if not all, rebalancing before stock market closing time. Indeed, many researchers such as Cheng and
Madhavan (2009), Bai et al. (2012), Tuzun (2014) pointed out that the LETFs carry out their rebalancing during
the final hour before market closing.
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Without the risk of market closure, several researchers focused on modeling the slippage of

LETFs under price impact either in a pure discrete setting or a pure continuous setting. Wagalath

(2014) proposed a model with an endogenous price impact and derived an analytic formula for the

rebalancing slippage, assuming that rebalancing happens once per day and the return deviation is

measured daily at the market closing time. Based on an approximate continuous model, Guasoni

and Mayerhofer (2017) studied the fund’s trade-off between the short-term and long-term deviation.

With proportional transaction costs, they derived the optimal trading boundary, which has an

explicit form in terms of an asymptotic expansion. In contrast, our model incorporates several

other additional factors, including the risk of market closure due to overnight price jump.

To help unveil the optimal intraday rebalancing strategy, we use a delicate mixture of continuous

and discrete-time modeling: The intraday trading strategies and market frictions are modeled

in a continuous-time setting that allows gradual adjustment across the trading hours, while the

performance, i.e., the return deviation, is monitored daily in a discrete-time manner. This mixture

modeling is consistent with the LETFs in reality and complements the existing literature either

in pure discrete-time or continuous-time settings. Furthermore, while the two papers mentioned

above assume a linear price impact in the trading amount (i.e., proportional transaction costs), we

consider a quadratic price impact in the trading amount.

Second, our rebalancing strategy contributes to the empirical study of LETF slippage. The

slippage of LETFs was studied empirically in Tang and Xu (2013) and Henderson and Buetow

(2014), both of which found that LETFs’ realized return deviated significantly from the target

return and explained the slippage via the interest cost incurred due to borrowing and lending.

Several papers also linked the LETF slippage to the market friction costs. Using the 2008 financial

crisis period, Shum and Kang (2013) observed a significant slippage for LETFs on international

indices that tend to have lower liquidity. Avellaneda and Dobi (2012) found that the slippage tends

to be prominent during volatile periods.

However, the majority of empirical literature studies the slippage by assuming the fund follows

a simple suboptimal rebalancing strategy. For example, Tang and Xu (2013) and Henderson and

Buetow (2014) assume that the fund achieves the target leverage ratio exactly at market closing

and keeps the position until the subsequent market closing; however, this strategy is suboptimal

if the interest rate is positive, even in the absence of market frictions (cf. Theorem 1). Our study

complements these papers by studying the slippage based on the optimal rebalancing strategy in

a comprehensive setting, including non-zero interest rate, market frictions, and market closure.

Furthermore, to the best of our knowledge, we are the first to find the “weekend effect” of LETFs

slippage empirically; that is, the slippage tends to be the largest on Monday. By incorporating
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market closure, our model can produce implications consistent with the empirical finding. Our

model can also suggest a testable implication of a U-shaped intraday rebalancing volume of LETFs.

Third, we demonstrate the principle of “aiming in front of the target and moving gradually

towards the aim”, proposed in Gârleanu and Pedersen (2013, 2016), under the setting of hedging

periodic cash flows. In the mean-variance optimization setting of Gârleanu and Pedersen (2013,

2016), one immediately moves to the optimal Markowitz portfolio and stays on it by continuous

rebalancing in the absence of market frictions. However, in the presence of frictions, they showed

that it is optimal to gradually adjust the portfolio towards an aim, which is not the current

Markowitz portfolio but rather a weighted average of the current and future Markowitz portfolios.

In our hedging setting, the optimal position also moves towards the aim gradually in a mean-

reverting manner, where the aim stays close to the current target that minimizes today’s return

deviation in the morning hours and moves in front of the current target, converging to tomorrow’s

target in the afternoon hours, so as to prepare for the future.

While the weight between current and future targets remains constant in Gârleanu and Pedersen

(2013, 2016), the weight in our paper is time-varying. This distinct feature arises from the special

structure of our model involving the end-of-day discrete monitoring and intraday continuous rebal-

ancing. It provides an extra economic insight on how much the aim should be “in front of target”

in the presence of competing goals. Moreover, we report two benefits of applying this principle in

LETFs’ daily rebalancing: (1) By aiming in front of the current target and looking into the future,

our optimal rebalancing strategy reduces the average daily slippage significantly compared to the

one-day strategy that only focuses on minimizing today’s deviation; (2) Moving gradually towards

the target smooths out the daily rebalancing and results in a large decrease in the end-of-day

trading volume, as compared to the one-shot strategy that only adjusts immediately before market

closure.

Fourth, from a technical viewpoint, we obtain an analytic solution for the rebalancing strategy

whose coefficients are determined by a system of periodic ordinary differential equations (ODEs)2.

This is made possible because the quadratic structure of the model reduces the high-dimensional

problem into a system of nonlinear ODEs, which leads to analytic tractability. 3 Specifically, one

2 In a system of standard ordinary differential equations, the terminal or initial conditions are specified exogenously.
However, in a system of periodic ordinary differential equations, the terminal or initial conditions are determined
endogenously using periodicity requirements.

3 The LETF rebalancing problem in this paper can be linked to the optimal execution problem, which aims to achieve
a pre-specified position level within a fixed amount of time (e.g., from market opening to market closing) under
frictions (see Bertsimas and Lo (1998), ?, Frei and Westray (2015)). However, while the LETF rebalancing problem
also aims at achieving a position level at the market closure subject to market friction costs, there are some key
differences: (i) For our LETF rebalancing problem, the position target at market closure is unknown right after the
market opening and only fully revealed at market closure, as it depends on the realized fund value X and underlying
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only needs to solve the system once to determine the coefficients, which can then be used any time

in the future. Since the periodic ODEs are nonlinear, we verify carefully that the solution exists

and does not blow up and show that an iterative algorithm solving the periodic ODEs (along with

the endogenous terminal conditions) has a unique fixed point solution.

The goal of LETFs is to achieve a fund return that is β times the underlying index return on a

daily basis. Thus, even if they accomplish this goal perfectly every day, the cumulative returns are

unlikely β times the underlying index returns over multi-day periods due to the compounding effect.

However, this goal of LETFs was misunderstood by many investors, and the compounding effect

was ignored. Indeed, both the U.S. Securities and Exchange Commission and Financial Regulatory

Industry Authority warned investors of the significance of the multi-period compounding effect for a

buy-and-hold strategy over an extended period. There are analytical and approximated solutions for

the multi-period compounding effect, first proposed in Cheng and Madhavan (2009) and extended

to a more general setting in Avellaneda and Zhang (2010) and Haugh (2011). Unlike this strand of

literature, our primary focus is on the daily slippage rather than deviation for multi-day returns,

and our objective is to minimize such daily slippages over intraday rebalancing rather than the

compounding effect. We provide a discussion in Online Supplement H for a direct link to the

compounding effect in the above literature.

The remainder of this paper is organized as follows. Section 2 introduces the background and

notations of the problem. Section 3 presents the main result of this paper, an optimal LETF

rebalancing model with market frictions, via numerical examples. Section 4 shows LETF’s position

under the optimal rebalancing strategy. Section 5 explains the usage of the principle of aiming in

front of target in LETFs rebalancing, as well as its benefits. Sections 6 and 7 show the empirical

results on slippage, intraday rebalancing pattern, and compounding effect. Section 8 concludes. All

technical results and related proofs are given in the appendices.

2. Basic Setting and Notations

We consider an infinite horizon with 0 = t0 < t1 < · · · < t2i < t2i+1 < · · · , where t2i and t2i+1 are

respectively the market opening and closing of day i, i = 0,1, · · · . Hence, market is open during

price S at market closure. As a result, one has to learn the future target as time goes on and watch for the impact of
the past strategy from the market opening on the fund value X. In contrast, in optimal execution literature, the target
position at the end of the period is deterministic and known right at the beginning of trade. (ii) The measurement
of the deviation from the benchmark in our problem is different from that in the optimal execution literature with
performance benchmarks (e.g., the VWAP in Frei and Westray (2015)), which leads to significant technical differences.
In optimal execution, the deviation is measured as the aggregated instantaneous distance between stock position
(number of shares) and an exogenous target position over a finite horizon. However, in our problem, the deviation
is measured as the aggregated distance between simple returns at an infinite set of discrete-time points (i.e., daily
market closure). This, together with the continuous-time rebalancing, creates a periodic structure in our problem,
which is not covered by the optimal execution literature.
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time intervals [t2i, t2i+1] when trading is allowed; market is closed during time intervals (t2i+1, t2i+2)

when no trading is allowed. Denote the length of daytime (i.e., trading hours) for each day as

T , and the length of nighttime (i.e., market closure) as δT . Therefore the length of each day is

(1 + δ)T , and t2i = i(1 + δ)T , t2i+1 = T + i(1 + δ)T for i = 0,1, · · · . Denote the total daytime as

∪∞
i=0[t2i, t2i+1], and the total nighttime as ∪∞

i=0(t2i+1, t2i+2). The underlying asset price S evolves as

a geometric Brownian motion with different constants during daytime and nighttime:

dSu = µ(u)Sudu+σ(u)SudWu, (1)

where µ(u) = µd and σ(u) = σd for daytime, µ(u) = µn and σ(u) = σn for nighttime, and the

parameters µd, µn, σd, and σn are all positive constants.4 The fund NAV is invested in θ shares of

S, and the remaining in a risk-free account with a constant interest rate r > 0.5

Thus, the dynamics of the LETF’s total net asset value (NAV), X, is given by

dXu = θudSu +(Xu − θuSu)rdu, u∈ [t2i−1, t2i+1),∀i≥ 0 (2)

Xt2i+1
= (1− γ)Xt2i+1−. (3)

Here, (3) corresponds to the industry practice of deduction of management fee from the NAV at

market closing t2i+1, i≥ 0, where γ is the daily management fee rate (γ typically has an annualized

value of about 1%, although it varies across funds). Furthermore, we require that the position θ is

adapted, and constant during nighttime when no trading is allowed.

The LETF’s daily return on i-th day is calculated using the NAV immediately before the

market closing t2i+1 and the NAV at the market closing time t2i−1 on the previous day:6 RX
i =

Xt2i+1−−Xt2i−1

Xt2i−1
. To emphasize the role of a daily management fee, Xt2i+1− and Xt2i+1

denote the

before-fee NAV and the after-fee NAV (that is, the NAV publicly announced after market closing).

4 As the fund rebalancing is assumed to cause a temporary price impact, the fundamental price S here is not changed
by the rebalancing.

5 In practice, the LETFs also use (total return) swaps and futures to achieve their daily target exposure. For example,
as of April 1, 2021, Ultra S&P500 from ProShares (a Bull LETF on S&P500 with a multiple of +2) has a total
exposure (notional plus profit and loss) to swaps and futures of $4.01 billion, in addition to the $2.93 billion exposure
to stocks. By using the total return swaps, the tracking problem is effectively transferred to the swap counterparty.
However, the impact on the index is still present, albeit caused by the tracking effort of the swap counterparty. Also,
the slippage cost to the fund manager is still present, since the counterparty can pass on the hedging cost to the fund
(e.g., in forms of the LIBOR spread). By using futures, the impact is passed on similarly to the underlying asset via
arbitrageurs; see Avellaneda and Dobi (2012), Wagalath (2014), and Cheng and Madhavan (2009) for more details.
Such slippage cost can be passed on to the fund or to both the fund and the counterparty, depending on variables
such as the fund’s bargaining power compared to the counterparty. For example, when the fund has a very high
bargain power overall, only a tiny fraction of the costs will be passed on to the fund.

6 This agrees with the definition of LETFs daily return in practice. For instance, ProShare states in its prospectus
that “A single day is measured from the time the Fund calculates its NAV to the time of the Fund’s next NAV
calculation,” and “the NAV of each Fund . . . is generally determined each business day as of the close of regular
trading on the Exchange on which it is listed.”
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Therefore, RX
i denotes the daily before-fee NAV return. Denote the daily underlying asset return

as RS
i =

St2i+1
−St2i−1

St2i−1
, so that the target return is βRS

i . For the current day (i.e., i= 0), the notation

Xt2i−1
in RX

0 (resp. St2i−1
in RS

0 ) is the NAV (resp. underlying value) observed at the last market

closing before the current day, and it will be denoted as x̄ (resp. s̄) throughout the paper.

Definition 1 (Slippage). The slippage on i-th day is the distance between LETF’s daily

before-fee NAV return and target return:

Di = |RX
i −βRS

i |. (4)

Note that to achieve the investment objective7 exactly, Di should be zero on every trading day.

Trading in the market is costly; trading at an instantaneous speed φu incurs a temporary price

impact of C(φu, Su)du= 1
2
Λ̃S2

uφ
2
udu, where Λ̃ is a nonnegative constant, and the speed φu is such

that dθu = φudu. This type of quadratic price impact cost is also used in Obizhaeva and Wang

(2013), Rogers and Singh (2010), Gârleanu and Pedersen (2016) and Moreau et al. (2017), and

supported empirically by Breen et al. (2002) (see also Grossman and Miller (1988) and Greenwood

(2005) for the justification in the multi-asset case). In the classic Kyle (1985) model, the equilibrium

price set by the market maker increases linearly in the trader’s amount of order; therefore, to

the trader, the cost of price impact is quadratic in the trading amount. In our model, this price

impact can be interpreted as the liquidity cost incurred during trading, e.g., from the presence

of front-runners, especially immediately before the market closing when other market participants

have a good estimation of LETFs’ direction of rebalancing.8 We also assume that C is quadratic

in the underlying price S, which can be understood as that the price impact is higher when the

underlying price is higher. This is especially important in the current problem, since the influence

of asset price on its price impact is nonnegligible over an infinite horizon. Also, the multiplicative

factor S2 gives a natural scaling of the price impact and brings a technical convenience allowing

for an analytical solution to the problem.

7 As stated in the prospectus of ProShares fund, “The fund seeks daily investment results, before fees and expenses,
that correspond to two times (2x) the daily performance of the index. The fund does not seek to achieve its stated
investment objective over a period of time greater than a single day.” Here, “two times” refers to the multiple β and
is changed accordingly for other funds with different multiples.

8 There is a strand of empirical literature on the impact of LETF rebalancing on the underlying index. Tuzun (2014)
finds that daily LETF rebalancing leaves an imprint on various U.S. equity categories, triggering price reactions
and increased volatility, especially on volatile days. Bai et al. (2012) show similar impacts for LETFs on real estate
indices. More recently, Charupat and Miu (2016) give partial support that LETFs rebalancing contributes to the
index movement before market closing, especially for indices with less liquidity, such as Russell 2000. One may refer
to Acharya and Pedersen (2005) and Brunnermeier and Pedersen (2005) for the impact of liquidity risk on asset
pricing or trading, and also Cont et al. (2014) and Cartea et al. (2015) about the micro-foundations behind it at the
limit order book level.
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The fund’s objective is to minimize the difference between the daily simple return of X and the

target return at market closing of each trading day over an infinite horizon, with an additional

penalty on the trading speed φ. Specifically, the fund minimizes the total cost

∞∑
i=0

e−ρt2i

(
1

2
X2

t2i−1
D2

i + ν

∫ t2i+1

t2i

1

2
Λ̃S2

uφ
2
udu

)
. (5)

Here, 1
2
X2

t2i−1
D2

i represents the daily slippage cost, which is larger for a larger slippage.9 The factor

X2
t2i−1

provides a natural scaling for the deviation cost; indeed, a larger fund will hold a larger

position and thus have a larger price impact, and therefore such scaling is required to keep the

relative importance between the two types of costs. ρ> 0 is a subjective discount rate, representing

the weight in the trade-off between optimizing short-term performance or long-term performance:

the larger ρ is, the greater is the emphasis on short-term costs as compared to the long-term costs.

As a special case, ρ = +∞ means that the manager only cares about today. The summation of

the first and second terms in the parenthesis corresponds to the daily total cost. In particular,

the first term represents the daily return deviation cost from the fund’s slippage, and the second

term represents the daily accumulated cost from the market frictions incurred by the intraday fund

rebalancing. Note that the treatment of incorporating friction cost as a separate penalty term has

been used extensively in the finance literature, e.g., Gârleanu and Pedersen (2013, 2016), or in

macro-economy literature, e.g., Hansen and Sargent (2013).10 The parameter ν ≥ 0 serves the role

of prioritizing the goals of minimizing the deviation cost or minimizing the market friction costs

on each day. For example, a small ν can reflect the case where, when using the futures and swaps,

only a small fraction of price impact cost is transferred from the counterparty to the fund. Taking

ν = 0 means that the manager ignores the market friction costs and focuses solely on minimizing

the slippage. To simplify notations, in the following we denote Λ= νΛ̃.

3. Theoretical Results

In this section, we solve the cost and deviation minimization problem introduced in Section 2, in

the case without market frictions (Λ = 0) and with market frictions (Λ > 0). In either case, we

derive the explicit value function whose coefficients are the unique solution to a system of ordinary

differential equations, and the resulting explicit optimal rebalancing strategy.

9 Note that this cost is not actually paid by the fund in practice; instead, one can regard this as a cost from reputational
damage. Large return deviations are costly to LETFs in the sense that they make the fund less attractive and drive
away investors.

10 An alternative formation is to pay the cost out of X. However, this alternative formulation has one major drawback:
In case that X achieved a return higher than the target return right before market closing, the fund manager can
reduce the deviation by deliberately incurring cost from market frictions and pulling down X. This strategy seems
unethical, since it throws away fund’s value via triggering market friction cost intentionally. Also, this alternative
formulation brings difficulty to the modeling, since the optimal strategy may not be well-defined.



Author: Leveraged ETFs with Market Closure and Frictions
10 Article accepted by ; manuscript no. (Please, provide the manuscript number!)

3.1. The Case without Market Frictions

Without market frictions, i.e., Λ = 0, the total cost (5) reduces to the aggregated daily slippage.

At the current time 0≤ t < t1, the cost minimization problem becomes

V (t, s, x, s̄, x̄) = inf
θ
E

[
1

2
x̄2

(
β

(
St1

s̄
− 1

)
−
(
Xt1−

x̄
− 1

))2

+
∞∑
i=1

e−ρt2i
1

2
X2

t2i−1

(
β

(
St2i+1

St2i−1

− 1

)
−
(
Xt2i+1−

Xt2i−1

− 1

))2
]
,

(6)

where St = s and Xt = x, and recall that s̄ and x̄ are the reference values of the underlying asset

and NAV observed at the last market closing before today, respectively.11 The first and second

terms inside the expectation are the deviation on the first day and the aggregated deviation from

the second day, respectively. Note that at t= 0, this minimizes the total cost as defined in (5).

Besides keeping track of X and S at any time, we also need to keep track of their reference

values x̄ and s̄, in order to calculate the daily return at today’s market closing. On each day, the

current value of S and X, together with their reference values, provide an expectation of the daily

return and are hence important in the rebalancing decision. Note that s̄ and x̄ are not necessarily

equal to the time-t underlying value s and NAV x, respectively, even at t= 0 due to the overnight

jump.

Theorem 1. (The minimal cost and optimal rebalancing strategy without market frictions).

The minimal cost (6) is given as V (t, s, x, s̄, x̄) = x̄2V
(
t, s

s̄
, x
x̄
,1,1

)
, where V (t, s, x,1,1) = a(t)x2 +

b(t)xs+ c(t)s2 + d(t)x+ e(t)s+ f(t), t ∈ [0, t1), and the vector of coefficients (a, b, c, d, e, f) is the

unique solution to a system of periodic ODEs (F.3) – (F.8) with endogenous terminal conditions

(F.10). Furthermore, the optimal position level is

θflt =

− 1
2σ2a(t)

[
b(t)σ2 x̄

s̄
+(µ− r)

(
b(t) x̄

s̄
+ d(t) x̄

St
+2a(t)Xt

St

)]
t∈ [0, t1)

−
[
M
(

d(0)

2a(0)
+ erδT

)
+ b(0)

2a(0)
(1+ erδTM)

]
Xt1
St1

t∈ [t1, t2).
(7)

where M = eµnδT−erδT

(eµnδT−erδT )2+e2µnδT (eσ
2
nδT−1)

. In particular, if r= 0, then

θflt =
βx̄

s̄
, if t∈ [0, t1) and

βXt1

St1

if t∈ [t1, t2). (8)

Theorem 1 shows that the minimum cost is a quadratic function of the normalized stock price

s/s̄ and portfolio value x/x̄. The optimal position level is determined by the expression of θfl, and

(2) – (3) with θ replaced by θfl. During the daytime (i.e., t∈ [0, t1)), the current optimal position

level θflt is continuous with respect to t, depending on the coefficients of the minimal cost function,

11 We keep the terms x̄2 and X2
t2i−1

due to tractability and comparison with the general cases with market friction.



Author: Leveraged ETFs with Market Closure and Frictions
Article accepted by ; manuscript no. (Please, provide the manuscript number!) 11

the current underlying and fund values St = s and Xt = x, as well as the reference values s̄ and

x̄ for [0, t1). Right at the market closing time t1, it is optimal to perform a lump-sum trade so as

to adjust the position to θflt1 . The position is then kept at this level during nighttime. At the next

market opening, the current time t reset to 0, and the trading continues following (7), based on

updated reference values x̄=Xt1 and s̄= St1 .

The special case with r = 0 gives a much simpler solution, given by (8). That is, it is optimal

to perform a one-shot rebalancing at every market closing time based on the underlying and fund

value at market closing, and then keep the position unchanged until the next market closing, so

on and so forth. If the interest rate is zero in the market, then this one-shot strategy leads to zero

slippage. Indeed, this agrees with the common practice by fund managers to adjust the portfolio

near market closing on each day to keep the target leverage ratio (cf. Avellaneda and Dobi (2012),

Wagalath (2014)).

It is worth noting that even without market frictions, when r > 0, ignoring the interest rate

and sticking to this one-shot rebalancing strategy (8) may lead to a non-zero daily slippage Di =

|1−β|(erT − 1).12 Indeed, the positive interest rate means that the fund pays the funding cost for

doing leverage and receives interest for short-selling. Actually, this is the motivation for Tang and

Xu (2013) and Henderson and Buetow (2014) to explain slippage in terms of interest rate: the fund

ignores the interest cost when rebalancing, and therefore the interest cost will affect the fund’s

return and result in the slippage. In contrast, Theorem 1 considers not just the interest rate but

also the market closure. Nevertheless, since the daily interest rate is typically small, the amount of

rebalancing required before market closing is small without market frictions, as will be illustrated

numerically in Section 4.

3.2. The Case with Market Frictions

Now we study the optimal daily rebalancing strategy that takes market frictions into account. For

example, with a quadratic trading cost, it is no longer feasible to do lump-sum trading, since it

incurs an infinite cost. To incorporate market frictions, we impose a mild technical requirement

that θu is absolutely continuous with trading speed φu, i.e.,

dθu =φudu, θt = z. (9)

Here, the adapted admissible control variable φ ∈ A, where the set of admissible strategies A
consists of control variable φ that results in a finite expected market frictions cost and equals 0

during nighttime.13

12 Specifically, RX
i = θ∗t2i−1

·
St2i+1

−St2i−1

Xt2i−1
+

Xt2i−1
−θ∗t2i−1

St2i−1

Xt2i−1
(erT −1) =

βXt2i−1

St2i−1

St2i+1
−St2i−1

Xt2i−1
+(1−β)(erT −1) =

β ·RS
i +(1−β)(erT − 1).

13 More precisely, we define A=
{
φ :φu = 0 for u∈∪∞

i=0(t2i+1, t2i+2) and E
[∑∞

i=0 e
−ρt2i

∫ t2i+1

t2i
φ2

uS
2
udu

]
<∞

}
.
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For 0≤ t < t1, s̄, s∈R+, x̄, x, z ∈R, Λ> 0, the value function is defined in a similar way as (6)

V (t, s, x, z, s̄, x̄)

= inf
φ∈A

E

[
1

2
x̄2

(
β ·
(
St1

s̄
− 1

)
−
(
Xt1−

x̄
− 1

))2

+

∫ t1

t

1

2
ΛS2

uφ
2
udu

+
∞∑
i=1

e−ρt2i

(
1

2
X2

t2i−1

(
β ·
(
St2i+1

St2i−1

− 1

)
−
(
Xt2i+1−

Xt2i−1

− 1

))2

+

∫ t2i+1

t2i

1

2
ΛS2

uφ
2
udu

)]
,

(10)

where the expectation is computed under the initial value St = s, Xt = x and θt = z.

Compared to (6), the value function (10) has the additional terms for the market friction costs.

Since it is now only feasible to adjust the position θ at a finite speed φ, the initial position z

becomes relevant for the calculation of the market friction costs and is hence required as a state

variable. To see why the initial position matters, starting from a position that is farther away

from the optimal position, the manager needs to perform a larger rebalancing to push the position

towards the optimal one, which in turn triggers a higher cost from the market frictions.

The following theorem gives an explicit form of the value function V (t, s, x, z, s̄, x̄) in the case

with market friction, as well as the optimal rebalancing strategy.

Theorem 2. (The optimal value function and the optimal rebalancing strategy with market fric-

tions). The value function is given as V (t, s, x, z, s̄, x̄) = x̄2V
(
t, s

s̄
, x
x̄
, s̄
x̄
z,1,1

)
, where

V (t, s, x, z,1,1) = a(t)x2 +(b0(t)+ b1(t)z)xs+(c0(t)+ c1(t)z+ c2(t)z
2)s2 + d(t)x

+(e0(t)+ e1(t)z)s+ f(t),
(11)

where the coefficients are determined as the unique solution to a system of periodic ODEs (A.9)

– (A.18) subject to endogenous terminal condition (D.1). Furthermore, the optimal rebalancing

strategy φ∗ equals

φ∗
t =− 1

Λ

(
b1(t)

Xt

St

+ c1(t)
x̄

s̄
+2c2(t)θ

∗
t + e1(t)

x̄

St

)
, t∈ [0, t1), (12)

where the optimal position θ∗ satisfies dθ∗t =φ∗
tdt.

The normalized value function (11) for s̄ = x̄ = 1 is a polynomial of degree 4 with respect to

(s,x, z), which is different from the quadratic value function derived in Gârleanu and Pedersen

(2013). Specifically, the underlying value s appears in (11), and z appears as a multiplicative factor

in front of terms involving s (i.e., s2, s, xs) with the highest order matching the order of s. In

contrast, z also does not appear in the value function in Gârleanu and Pedersen (2013) since it

does not involve the underlying value s.

The optimal rebalancing strategy φ∗ depends on the current underlying and fund values St = s

and Xt = x as well as the reference values s̄ and x̄. In addition, φ∗ depends on the current position
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level, so that the optimal position and optimal trading speed form a feedback system. During

nighttime, φ∗ = 0 since no trading is allowed, and at the next market opening, the reference values

are updated to s̄ = St1 and x̄ =Xt1 by definition, t reset to 0, and the optimal trading speed is

again determined by (12). Since one only needs to solve the ODE system once to determine the

coefficients, this optimal strategy can be implemented very efficiently.

From a technical point of view, the ODE system (A.9) – (A.18) for the coefficients of (11) (and

also the system (F.3) – (F.8) for the frictionless case) are nonlinear and has a periodic terminal

condition. Even in the one-period subproblem, the global existence of solution is not guaranteed by

the classic theory, since it may blow up in finite time. In Lemma 1 of Online Supplement, we verify

carefully that the solution indeed exists in one period, given a suitable terminal value. Also, since

the periodic ODEs are solved in iteration, one needs to show that this iteration indeed has a unique

fixed point to guarantee convergence. Proposition 3 in Online Supplement shows that, as long as

the discount rate is positive, we indeed have a fixed point. Finally, the uniqueness of the solution

is guaranteed by the verification theorem, Proposition 4. In the remaining of the paper, we shall

discuss the financial implications of our rebalancing strategy mainly via numerical illustration.

4. Optimal Daily Position

This section shows the position under the optimal rebalancing strategy, where the rebalancing

starts every day before market closing and finishes after the next day’s market opening.

Definition 2 (Strategies for Comparison). We define the following three rebalancing

strategies, all of which are given via (12) but with different coefficients b1, c1, c2, and e1.

Periodic-DN The Periodic Day-and-Night strategy is the optimal strategy that considers an

infinite horizon and market closure, given as (12) whose coefficients are calculated under δ =

17.5/6.5 (noting the total trading hours is 6.5) and ρ= 0.6;

One-Day The One-Day strategy is the myopic suboptimal strategy that only aims at minimiz-

ing today’s cost and ignores the presence of market closure, given as (12) whose coefficients are

calculated under ρ=+∞;

Periodic-D The Periodic Day-Only strategy is the suboptimal strategy that considers an infi-

nite horizon but ignores market closure, given as (12) whose coefficients are calculated under δ= 0

and ρ= 0.6.14

14 For ρ=+∞, the value function (10) simplifies to

V (t, s, x, z, s̄, x̄) = inf
θ∈A

E

[
1

2
x̄2

(
β

(
St1

s̄
− 1

)
−
(
Xt1−

x̄
− 1

))2

+

∫ t1

t

1

2
ΛS2

uφ
2
udu

]
.

The corresponding coefficients can be calculated using (A.9) – (A.18) and plugging ρ=+∞ in (A.19).
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In the following, we use Monte Carlo simulation to estimate the average slippage. For this

purpose, we simulate the underlying asset price S via (1) during daytime and its jumps overnight,

using the default parameter values to be specified. Along the simulated path of S, one can calculate

the net asset value X of the LETF for each day via (2), (3), (9), and (12), and then calculate the

daily slippage using (4). Note that the reference values Xt2i−1
and St2i−1

in (12) are given as model

input on day i= 0 (i.e., t∈ [0, t1)).

Since the daytime volatility σd is k times the nighttime volatility σn, we have σd = kσ ·
√

T+δT
k2T+δT

and σn = σ ·
√

T+δT
k2T+δT

, where σ is the average volatility. Here we choose k= 3 and σ= 0.2. On the

other hand, we use the same expected return for daytime and nighttime as suggested by empirical

studies such as Stoll and Whaley (1990) and Lockwood and Linn (1990) and take µd = µn = 0.1.

The default values for other parameters are15 δ= 17.5/6.5, ν = 1, β = 2, ρ= 0.6, and r= γ = 0.01.

All these parameter values are annualized.16 Furthermore, we take Λ = νΛ̃ = 10−6 to match the

level of magnitude of price impact documented in Robert et al. (2012).17 Finally, we consider

s= x= s̄= x̄= 1, z = 2 (so the position is optimal at t0, and no overnight jump occurs before t0).

We first look at the position level under the optimal strategy, which directly determines the

performance. To this end, we simulate a sample path of the underlying asset value over a 5-day

period using the default parameter values. Due to the overnight jumps, the underlying value at the

market closing time is not necessarily equal to the value at the next market opening. Then, via (9)

and (12), we calculate the optimal position θPDN based on the Periodic-DN strategy, θO based on

the One-Day strategy, and θPD based on the Periodic-D strategy, as shown in Figure 1. We also

plot the frictionless target θfl, that is, the optimal position without market frictions as given by

(7) in Theorem 1. Finally, we overlay the 5-day trajectory of the underlying asset as the dotted

line corresponding to the right-hand side axis.

Figure 1 shows that, for all three strategies, the fund needs to increase (resp. decrease) the

position θ by market closing if the underlying asset return is positive (resp. negative) during that

day. The magnitude of such an increase or decrease in θ is also proportional to the magnitude of

15 ρ is a subjective discount rate that represents the relative importance between short-term slippage (e.g., today and
next few days) and long-term slippage. Note that ρ is not the rate for discounting cash flow. ρ= 0.6 roughly means
that the daily slippage one year later only accounts for half the importance of the same slippage today. ρ should not
be very small (i.e., not on the level of interest rate), because if the current slippage is large, then it can already cause
damage to the fund’s reputation. In terms of “aiming in front of target”, a larger ρ means the aim is “less in front of
target”, so as to achieve a better performance today while sacrificing future performance. In the extreme case where
ρ=+∞, the fund only cares about today’s slippage and does not care about the future slippage at all.

16 Specifically, by normalizing T = 1 in the following calculations, the corresponding effective values are µd = µn =
0.1

252(1+δ)
, σ= 0.2√

252×(1+δ)
, and ρ= 0.6

252×(1+δ)
, r= 0.01

252×(1+δ)
per trading session (6.5 hours), and γ = 0.01

252
per day.

17 Specifically, Robert et al. (2012) reported a cost level TC that is 0.1009% of the dollar transaction amount for all
the stock transactions in their sample. In our case, denote ∆θ as the daily transaction amount in number of shares,
Λ̃
2
S2(∆θ)2 =TC2, meaning Λ̃ = 2×

(
TC
S∆θ

)2
= 2× (0.1009%)2 = 2× 10−6.
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daily asset price return. This is consistent with the changes in the frictionless target. To understand

this, when the interest rate is low and there is no friction, the fund would ideally hold θflt2i+1
share

of the risky asset at market closing t2i+1, which provides a leverage ratio of β approximately. If the

underlying asset has a positive (resp. negative) daily return, the magnitude of return of the fund

value X is greater than that of the underlying asset. If θ remains unchanged, the fund would be

under-leveraged (resp. over-leveraged) at market closing. Thus, to keep the leverage ratio close to

β at market closing, the fund has to increase (resp. decrease) θ.

Figure 1 Comparison of intraday Positions from Three Strategies
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This figure compares the positions for the Periodic-DN strategy, Periodic-D strategy, and One-Day strategy based on a
simulated asset price trajectory for 5 days (dotted line with right-hand side axis). The dashed line denotes the frictionless
target (technically speaking, the 5-day trajectories of frictionless targets under the three strategies differ, as they depend on
the realized trajectories of X. However, since such differences are negligible over the 5-day period in this figure, only the
frictionless target corresponding to the Periodic-DN strategy is presented for a better illustration). The strategies are defined
in Definition 2. Time periods with white and gray backgrounds denote daytime and nighttime, respectively. By comparing the
difference between the dotted line and the solid line, it appears that the Periodic-DN strategy produces a level of position that
is on average closest to the frictionless target, especially during nighttime.

Figure 1 shows two advantages of the Periodic-DN strategy. First, it results in a smaller overall

distance of the position level to the frictionless target. Indeed, for the Periodic-DN and Periodic-D

strategies, during daytime, the position first moves towards and then stays close to the target after

the market opening. Then, right before market closing, it moves away from today’s target and tries

to shoot for the predicted target for the next day. Due to the presence of market frictions, the

position level does not hit tomorrow’s target. As a result, further rebalancing is required after the

next day’s market opening. In contrast, the position level of the One-Day strategy does not change

significantly in the late trading hours and has a much larger distance from tomorrow’s target before

the market closing time and during nighttime. As a result of this myopic strategy, the position is

significantly off the target level right after tomorrow’s market opening, and one requires a greater

effort to finish the rebalancing in the next day.
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Second, by comparing the position levels of the Periodic-DN and Periodic-D strategies in Figure

1, we can observe that accounting for overnight risk leads to a better end-of-day position. Indeed,

by accounting for the overnight risk, the fund adjusts its position at a faster pace late in daytime,

so that the fund has a better position at the market closing and during nighttime. Consequently,

the fund is exposed to a smaller overnight jump risk, and a smaller rebalancing is required for

the position to reach the target after tomorrow’s market opening. The discussion in Section 6.1

confirms that this indeed leads to a smaller slippage as compared to the Periodic-D strategy that

ignores the overnight jump risk.

Figure 1 also illustrates that the frictionless target position remains largely constant over day-

time and jumps to the target level for the next day at the market closing. Therefore, although

continuous rebalancing is optimal during daytime for r > 0 as suggested by Theorem 1, the amount

of rebalancing is negligible if there is no friction.

5. Aiming in Front of Target

What is the underlying reason for the difference in the position levels as depicted in Figure 1,

especially before the market closing time? To answer this question, we show in this section that the

optimal strategy follows the principle of aiming in front of target and moving gradually towards

aim. To this end, we rewrite the optimal rebalancing strategy (12) as

dθ∗t = κ∗
t

(
θ̄∗t − θ∗t

)
dt, (13)

for t∈ [0, t1), where

θ̄∗t =− b1(t)

2c2(t)

Xt

St

− c1(t)

2c2(t)

x̄

s̄
− e1(t)

2c2(t)

x̄

St

, κ∗
t =

2c2(t)

Λ
. (14)

Equation (13) shows that the optimal position exhibits a mean-reverting pattern, with speed 0≤

κ∗ < ∞, and aim θ̄∗. The finite speed κ∗ is consistent with the principle of “moving gradually

toward aim” studied in Gârleanu and Pedersen (2013), due to the existence of market friction. The

speed is lower for larger friction; if there is no friction (Λ = 0), the speed κ∗ is infinite, meaning

that the position follows the aim exactly. The distance between the current position level and the

aim θ̄∗, together with κ∗, decides the optimal trading speed.

Also, from the analytic form (11) of V , the aim can be represented as

θ̄∗t = argmin
z

V (t,St,Xt, z, s̄, x̄).

Thus, the aim is the position that minimizes the expected optimal total future costs given the

current information. This interpretation is consistent with Gârleanu and Pedersen (2016). More

precisely, the aim portfolio (given by Equation (11) in Gârleanu and Pedersen (2016)) is exactly
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the minimizer of the value function (given by Equation (6) in their paper). Their aim can be

represented as a weighted average of the future expected frictionless targets. However, a similar

representation for θ̄∗t here is difficult because our frictionless target depends on the past strategy

via the current fund value, creating a “feedback” loop because the position tries to follow an aim

that is itself affected by the position. This is in stark contrast to their model, where the frictionless

Markowitz target does not depend on the past strategy. The coefficients b1, c1, c2, and e1 appearing

in θ̄∗t are determined by the system of Riccati ODEs (A.9) – (A.18), which is in general difficult to

solve explicitly, although numerical solutions are readily available. Also, for Λ∈ (0,∞), b1, c1, c2,

and e1 can be decoupled from other coefficients only in the special case µ− r = σ = 0; however,

this special case provides little extra economic insight as both S and X will have a deterministic

growth at the risk-free rate.

Next we illustrate the relationship between the aim θ̄∗t for the Periodic-DN strategy with the

frictionless target via a special example without market closure (that is, δ= 0). From the terminal

condition (A.19) of the ODE system in Online Supplement A.2, we know that

b1(t1−) = e−ρt1(1− γ)(b1(0)+ c1(0)+ e1(0)), c1(t1−) = e1(t1−) = 0, and c2(t1−) = eρt1c2(0).

As a result,

θ̄∗0 = π
βx̄

s̄
and θ̄∗t1− = π

βXt1

St1

, where π=−b1(0)+ c1(0)+ e1(0)

2βc2(0)
.

Numerically, we find that π is close to 1. This means that, for each day, the aim θ̄∗t is near the

current day’s frictionless target at market opening, and near the next day’s frictionless target
βXt1
St1

at market closing. Furthermore, the transition of aim through daytime is continuous thanks to the

continuity of the coefficients in (14). In the following, we show via numerical illustrations that the

above observation also holds in the general case with market closure.

To illustrate how the position level moves towards the aim, Figure 2 plots the aim for the

Periodic-DN strategy over the position and stock price trajectory in Figure 1. Figure 2 shows that,

consistent with (13), the position θPDN is guided by the moving aim θ̄PDN and moves towards the

aim. However, due to the market frictions, the position can only do so with a finite speed. As a

result, it does not reach the aim at market closing (e.g., at t5), but only reaches it halfway on the

next day (between t6 and t7).

Since the position level is guided by the aim due to (13) and illustrated in Figure 2, to explain the

differences of the position levels in Figure 1 from the three strategies, it is worth comparing their

respective aims. Again, we calculate the coefficients b1, c1, c2 and e1 based on the Periodic-DN,

Periodic-D and One-Day strategies. For illustration, we use the 5-day stock price sample path S̃
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Figure 2 Position and Aim
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This figure compares the optimal position for the Periodic-DN strategy as in Figure 1 against its aim θ̄PDN (the dash-dotted
curve).

as shown in Figure 1 (right-hand side axis), and calculate the path of X̃ under the Periodic-DN

strategy using θPDN and (2) – (3). We then calculate the path for the aims θ̄PDN , θ̄O and θ̄PD via

(14), using the coefficients from the corresponding strategy, X̃ and S̃, as shown in Figure 3.18 We

also include the frictionless target for comparison.

We now look at θ̄O for the One-Day strategy. Figure 3 shows its one key characteristic: it stays

on the frictionless target θfl, which is the optimal position level without market frictions, every day

before market closing. As a result, θ̄O is updated discontinuously at the transition between today

at t2i−1 and tomorrow t2i, when the target position changes. Such behavior of the aim is because

the One-Day strategy only focuses on today and does not prepare for tomorrow. Were there no

market frictions, such a myopic aim would not be a problem, since the position could always catch

up with the aim even if the aim jumps (by rebalancing at an infinite speed). However, due to the

presence of market frictions, the actual position level has to move towards this aim gradually after

the market opening to catch up with the aim, as demonstrated in Figure 1. In other words, the

myopic position level of the One-Day strategy illustrated in Figure 1 is rooted in its myopic aim.

This results in a large slippage as we will see in Section 6.

Next, we look at the aim θ̄PDN for Periodic-DN strategy. In the early trading hours of each day,

it overlaps with the frictionless target, similar to that of the One-Day strategy. This suggests that,

18 Note that the paths of θ̄O and θ̄PD illustrated in Figure 3 are based on the same sample path of S̃, as well as the
path of X̃ under Periodic-DN strategy, which are different from θ̄O and θ̄PD calculated based on the path of X by
following the One-Day and Periodic-D strategies, respectively. The purpose of doing so is to get a fair comparison:
under the Periodic-DN strategy, we want to examine what the aim would be at any time, if we were standing in One-
Day and Periodic-D strategies’ shoes. Note that θ̄O and θ̄PD are completely determined given the current underlying
and fund value, as well as the reference values.
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Figure 3 Comparison of Aim θ̄∗
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This figure illustrates the aims for the Periodic-DN strategy θ̄PDN , the One-Day strategy θ̄O, and the Periodic-D strategy
θ̄PD over the simulated path given in Figure 1. The strategies are defined in Definition 2. This figure also includes the
frictionless target calculated θfl defined in Theorem 1 for comparison. Note that the aims are only defined for the daytime.
All of them are calculated under a simulated 5-day path for S and the corresponding X under the Periodic-DN strategy. By
comparing with the curve of the frictionless target, it appears that the Periodic-DN strategy exhibits the strongest feature of
aiming in front of target, while the One-Day strategy exhibits the least feature.

in the early hours, the Periodic-DN strategy mainly focuses on reaching the optimal position that

minimizes today’s slippage. However, θ̄PDN behaves dramatically differently from θ̄O in the late

hours, when θ̄PDN moves away from today’s frictionless target and towards tomorrow’s target; in

other words, the aim θ̄PDN is in front of the today’s frictionless target. Furthermore, in stark con-

trast to the One-Day strategy whose aim is updated discontinuously, θ̄PDN is updated continuously

and hits tomorrow’s target exactly at market closing time. Therefore, as the market closing draws

near, the Periodic-DN strategy starts to prepare for tomorrow by looking forward into the future

and moving its aim continuously towards the position level that optimizes tomorrow’s performance.

It should be noted, however, that although the aim θ̄PDN hits tomorrow’s target, the position level

θPDN does not, as illustrated in Figure 1, since the position can only move at a finite speed due to

the presence of market frictions. Nevertheless, θPDN is much closer to tomorrow’s target than θO.

Finally, the target for Periodic-D strategy θ̄PD behaves similar to θ̄PDN : it also starts the contin-

uous update in the late hours and hit tomorrow’s target exactly at market closing time. However,

ignoring the overnight jump risk, θ̄PD moves towards tomorrow’s target at a slower pace as com-

pared to θ̄PDN , which is shown as the difference between the blue and yellow curves in the second

half of daytime of each day. Although the difference between θ̄PD and θ̄PDN does not appear to be

large and eventually vanishes at market closing, it still results in a less optimal position at market

closing and a larger exposure of the fund to the overnight jump risk as shown in Section 4 above,

and a larger slippage (see Section 6.1 below).
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The intraday transition of aim not only holds during the 5-day sample path in Figure 3, but

also in general. To see this, we calculate ωt such that θ̄PDN
t = (1−ωt)θ̄

O
t2i−1

+ωtθ̄
O
t2i+1

, for any t ∈

[t2i, t2i+1), i ≥ 0. In other words, ω is the weight of the aim between the current target and the

future target; a value of ω close to 0 (resp. 1) means the aim is close to the current (resp. future)

target. Figure 4 shows that the weight ω for both Periodic-DN and Periodic-D strategies transits

from 0 to 1 continuously during daytime, consistent with the observation in Figure 3. In particular,

the aim stays essentially on the current target during the first half of daytime, and moves towards

the future target in the second half. This is a result of the tradeoff between the performance today

and in the future. Indeed, since the current day’s performance is only measured at market closing,

moving the aim away from the current target too early would be detrimental to the performance,

while moving too late would potentially cause a large deviation from tomorrow’s target position

and trigger a high friction cost. As a result, the transition in aim of the Periodic-DN strategy starts

earlier than that of the Periodic-D strategy, by considering the overnight jump risk.

Figure 4 The weight between the current target and future target, ω, during daytime.
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This figure shows the intraday change of the weight between the current target and future target, ω, averaged across days. We
simulate 20000 sample paths based on the default parameters, each containing a 10-year period (2520 days including daytime
and nighttime). On each sample path, the average ω at each time point during daytime is then calculated as the 1% trimmed
mean over the 10-year period.

The intraday variation of weight ω is a distinct feature of our framework that was not observed

in Gârleanu and Pedersen (2013, 2016), in which the weight of the aim remains constant. The

fundamental reason is that in the Markowitz-type problem they considered, the performance mon-

itoring and rebalancing occur at the same frequency: both are either at discrete time points or

at any instant in the continuous-time version. Therefore, the current target in their model is also
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continuously updated, resulting in the constant relative importance of the current target and future

target, and hence, a constant weight. In contrast, our framework features discrete monitoring at

daily market closing with a continuous-time rebalancing. As a result, the current target jumps at

each market closing, a set of periodic and discrete time points. This results in the time-varying

relative importance of current and future targets, and subsequently, a time-varying weight.

6. Statistics of Daily Slippage

In this section, we first extend the empirical findings on daily slippage in Tang and Xu (2013) by

using the updated data till 2020. Then we show the overall slippage of different trading strategies

and discuss the impact of market closure on slippage.

6.1. Daily Slippage

Due to the existence of market frictions, it is costly for LETFs to achieve the target leverage ratio

exactly. Therefore, one can expect nonnegligible slippage. To check this, we calculate the empirical

statistics of slippage (defined as in (4)) for the same set of twelve LETFs as in Tang and Xu

(2013),19 and update the time range to 2006 – 2020. For comparison, we also included 2011 – 2020,

which is entirely uncovered in Tang and Xu (2013). Launched in 2006, these twelve LETFs were

among the first-ever batch of LETFs introduced to the market. They have four underlying indices

S&P500 (SPX), Dow Jones Industrial Average (INDU), NASDAQ 100 (NDX), and S&P MidCap

400 (MID), and for each index, there are one Bull LETF with multiple β =+2 and two Bear LETFs

with multiples β = −1,−2. The results are reported in Panel A of Table 1, which confirms that

the slippage is significant. For instance, during 2006 – 2020, the (-1x) fund on SPX has a mean

slippage of 1.6917 bps. In comparison, the absolute values of daily target return (i.e., two times

daily S&P 500) return have an average of 69.72 bps. This suggests that the slippage accounts for

1.94% of the daily target return, which cannot be ignored.

To quantify the slippage under Periodic-DN, Periodic-D, and One-Day strategies, we estimate

the average daily slippage Di via simulation. Consistent with Panel A, the (-2x) funds tend to have

a much higher simulated slippage than the (2x) and (-1x) funds. Furthermore, the magnitude of

slippage generated from the simulation result is in a similar range as that from historical data.

The Periodic-DN strategy results in the lowest slippage among three models for all four values of

Λ and β, followed by the Periodic-D strategy, and the One-Day strategy has the highest slippage.

For instance, for Λ= 10−6 and (-2x) fund, the Periodic-DN strategy has an average slippage about

19 Tang and Xu (2013) reported daily slippage using daily return calculated from LETFs market price, while here
we do so using daily return from NAV. Indeed, the fund only has direct control over its NAV rather than its market
price, and minimizing the slippage in terms of NAV is the goal of LETFs. However, as pointed out by Tang and Xu
(2013), LETFs’ total return deviation can be mainly attributed to NAV return deviation.
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Table 1 Statistics for Slippage

Panel A: Historical Data

2006-2020 2011-2020

Index Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x)

SPX Mean 1.5624 1.6917 2.6820 1.4414 1.3503 2.3599
Std dev 1.6581 1.6953 2.9280 1.6073 1.1008 2.5737

INDU Mean 1.6429 1.7418 2.8077 1.5141 1.4084 2.4833
Std dev 1.9110 1.8095 3.0932 1.7301 1.1693 2.4129

NDX Mean 1.5846 1.7046 2.6196 1.4336 1.3381 2.1260
Std dev 1.8105 1.6862 2.8148 1.7238 1.1794 2.3432

MID Mean 1.7790 2.0298 2.7072 1.6594 1.8346 2.3208
Std dev 2.3143 1.8698 3.3925 2.3639 1.5600 3.2562

Panel B: Simulation Results

Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.5590 0.8332 1.5702 0.6943 0.9512 2.0698 1.1037 1.3094 3.3194
Std dev 0.2505 0.5818 1.6114 0.4634 0.6524 2.2348 0.9917 1.0394 3.1840

10−5 Mean 0.7628 0.9568 2.1332 0.8194 1.0321 2.3934 1.2960 1.4195 3.7130
Std dev 0.7171 0.6776 1.6809 0.9415 1.1309 2.4016 1.2503 1.7798 5.9288

10−4 Mean 1.1308 1.2068 3.0859 1.1541 1.2460 3.2017 4.4654 2.1652 6.1326
Std dev 1.1404 1.3398 3.7767 1.3626 1.3839 5.1612 2.8479 2.7922 7.2067

10−3 Mean 1.9925 2.0507 5.8098 2.0027 2.0655 5.8542 5.6674 6.0283 18.8835
Std dev 3.5890 3.6416 11.4236 1.7818 2.5431 8.7676 31.5373 28.1014 62.4603

Historical LETFs NAV returns are adjusted for dividends and the daily management fees. The slippage measure is defined as
Di = |RX

i −βRS
i | and reported in bps. The statistics for simulation results are calculated over the daily slippage for

2520× 20000 day (20000 sample paths, 2520 days per sample path), and the estimator is constructed as the 1% trimmed mean
of the daily absolute deviations. The strategies are defined in Definition 2.

24% smaller than that of the Periodic-D strategy, and less than half of that of the Day-Only

strategy. This indicates that aiming in front of target and accounting for the overnight risk indeed

leads to a smaller slippage. In particular, the One-Day strategy’s slippage is even higher compared

to the Periodic-DN and Periodic-D strategy when Λ is larger. As discussed in Section 5, this can

be attributed to the fact that the One-Day strategy has a myopic aim, so that it does not perform

rebalancing in the latter half of daytime and leads to an inferior position at the next market

opening. However, the amount of rebalancing after the next market opening is restricted by the

presence of market frictions, especially for large Λ, causing a large slippage. Note that the difference

between the slippage of the Periodic-D and Periodic-DN strategy diminishes as Λ becomes larger.

Indeed, as will be shown in Section 7.2, when Λ is large (e.g., Λ = 10−3), the U shape for the

intraday trading volume of Periodic-DN strategy becomes flatter and less asymmetric as observed

in Table 5. As a result, the fund puts less emphasis on the preparation for the overnight risk, and

therefore the Periodic-DN and Periodic-D strategy have more similar rebalancing and slippage.

Table 1 demonstrates the advantage of Periodic-DN strategy over the Periodic-D and One-Day

strategies using simulated underlying sample paths generated from the geometric Brownian motion

model (1). However, does this advantage still exist in a real-world test? To this end, we repeat the

slippage test in Panel B of Table 1 on the real intraday values of the four indices SPX, INDU,

NDX, and MID. Specifically, for each index, we obtain the minutely values from September 17,

2020 to March 30, 2021. As a result, there are 132 trading days (excluding two days on which the
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market closed earlier than usual), and 391 data points per day. On every trading day, we apply

the three strategies on the intraday data and rebalance on a minutely basis. Note that since the

closing index value on one day can differ from the opening value on the next day, the overnight

price jump still exists, therefore we still expect that the Periodic-DN strategy outperforms the

Periodic-D strategy. As shown in Table 2, the testing results show that the pattern in Panel B of

Table 1 still holds. That is, for all four indices, Periodic-DN strategy generally leads to the lowest

slippage, while the One-Day strategy leads to the highest slippage. This suggests that the benefit

of aiming in front of target is still relevant in a real-world setting.20

6.2. Impact of Market Closure

Although the Periodic-DN strategy provides the optimal rebalancing strategy to better prepare for

the market closure and overnight jump risk, the market closure can still be a contributing factor to

the slippage under this strategy. To find out such cost, we compare the slippage presented in Panel

B of Table 1 with a 17.5 hours market closure by following the Periodic-DN strategy, against the

slippage in an otherwise identical market that opens for 24 hours a day (with the volatility σ= 0.2)

by following the Day-Only strategy (which is the same as the optimal Periodic-DN strategy in this

market as there is no market closure).

The result of this comparison is shown in Table 3. As expected, without market closure, the

average slippage becomes lower across all Λ and β, suggesting that the presence of market closure

is indeed costly to the fund and increases the slippage. Such reduction is most significant when Λ

is small. For instance, with Λ = 10−6, for the (2x) fund, the mean slippage reduces by 22% from

0.5590 bps to 0.4361 bps. However, for larger Λ, the reduction becomes less significant. This is

because the larger frictions limit the fund’s ability to rebalance during daytime, which makes the

inability to rebalance during nighttime less constraining in comparison.

7. Empirical Findings and Implications

In this section, we discuss empirical findings and implications using our rebalancing model, includ-

ing the weekend effect, intraday trading volume pattern, and compounding effect.

7.1. Weekend Effect

The long market closure before Monday, as it includes the weekend, can have a particular impact

on the rebalancing21. Intuitively, our model suggests that the slippage will be largest on Monday,

20 It should be noted that although Table 2 uses real index data instead of model-based simulated data (in Panel B
of Table 1), it is still based on the market friction model in Section 2. As a result, the results may still be biased
towards our model.

21 In a different context Adrian et al. (2020) found that the market makers tend to speed up their inventory liquidation
before the end of Friday.
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Table 2 Statistics for Slippage: Real Index Data

SPX Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.3654 0.4124 1.0875 0.5034 0.5651 1.5506 0.9019 0.9580 2.7706
Std dev 0.5260 0.4937 1.5211 0.6947 0.6629 2.0798 1.3043 1.3097 4.0467

10−5 Mean 0.5498 0.5877 1.6329 0.6170 0.6745 1.8680 1.0383 1.0890 3.1715
Std dev 0.8124 0.7868 2.4232 0.9078 0.8809 2.7414 1.5392 1.5601 4.7982

10−4 Mean 0.8123 0.8322 2.3872 0.8432 0.8676 2.4920 1.4321 1.5058 4.4594
Std dev 1.1891 1.1958 3.6399 1.2260 1.2344 3.7661 2.1041 2.1318 6.5470

10−3 Mean 1.3015 1.3226 3.8783 1.3113 1.3334 3.9100 3.0570 3.5243 11.0877
Std dev 1.7822 1.8208 5.5189 1.7982 1.8375 5.5707 2.8732 3.3166 10.4958

INDU Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.3687 0.4180 1.0888 0.5078 0.5387 1.4881 0.8972 0.9294 2.7095
Std dev 0.6739 0.6247 1.9273 0.7097 0.6674 2.0845 1.2380 1.2169 3.7311

10−5 Mean 0.5309 0.5673 1.5764 0.6091 0.6526 1.8419 0.9932 1.0533 3.0659
Std dev 0.9372 0.8832 2.7302 0.9479 0.8970 2.7841 1.4831 1.4535 4.4740

10−4 Mean 0.7494 0.7683 2.2060 0.7859 0.8084 2.3211 1.4303 1.4995 4.4730
Std dev 1.2143 1.1889 3.6508 1.2367 1.2133 3.7345 2.2295 2.2588 6.9943

10−3 Mean 1.2636 1.2642 3.7371 1.2744 1.2789 3.7804 3.1115 3.5568 11.1608
Std dev 1.9035 1.9468 5.9640 1.9249 1.9669 6.0256 3.2244 3.4703 10.8910

NDX Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.6222 0.6833 1.9211 1.0449 1.0982 3.1821 1.9342 1.9776 5.8650
Std dev 0.7968 0.8129 2.4495 1.5753 1.5951 4.8827 3.1340 3.1926 9.7768

10−5 Mean 1.0538 1.0808 3.1362 1.2625 1.3023 3.7948 2.1339 2.1646 6.4374
Std dev 1.4725 1.4858 4.4605 1.8680 1.8768 5.6847 3.3612 3.4246 10.4463

10−4 Mean 1.5887 1.5865 4.6747 1.6471 1.6537 4.8735 2.7380 2.7687 8.2967
Std dev 2.3181 2.3420 7.0119 2.4270 2.4506 7.3597 3.9347 3.9343 11.9107

10−3 Mean 2.4024 2.3680 7.0371 2.4223 2.3927 7.1111 5.8675 6.5957 20.8493
Std dev 3.5684 3.5462 10.5408 3.5969 3.5706 10.6150 7.4308 7.3282 22.7155

MID Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.4520 0.5105 1.4177 0.7708 0.7996 2.3238 1.5054 1.5233 4.5534
Std dev 0.5555 0.5517 1.6456 0.8161 0.8064 2.4738 1.6891 1.6791 5.1004

10−5 Mean 0.7412 0.7819 2.2658 0.9174 0.9464 2.7838 1.6482 1.6942 5.0633
Std dev 0.9359 0.9290 2.8262 1.0295 1.0322 3.1520 1.8669 1.8723 5.7261

10−4 Mean 1.2253 1.2223 3.6347 1.2965 1.2970 3.8609 2.5156 2.6480 8.0552
Std dev 1.3860 1.4192 4.2927 1.4119 1.4448 4.3810 2.6038 2.7070 8.3896

10−3 Mean 2.2765 2.2557 6.7799 2.2934 2.2761 6.8430 7.1193 9.6291 33.0852
Std dev 2.4441 2.4877 7.5572 2.4615 2.5059 7.6145 5.9431 8.2481 28.6164

This table shows the slippage produced by Periodic-DN, Periodic-D and One-Day strategies based on real intraday index data
rather than simulated index data. The slippage measure is defined as Di = |RX

i −βRS
i | and reported in bps. The mean and

standard deviation are calculated from the 132 daily values from September 17, 2020 to March 30, 2021. The three strategies
are applied on the minutely data of the underlying index over these 132 days.

as the long market closure during weekend increases the overnight jump risk. We call this weekend

effect.

We first perform a simulation test to estimate the model slippage with a long market closure, for

which we assume that a daily trading hour of 2.17 hours and market closure hours of 21.83 hours.

This ratio matches the scenario from Friday market opening to Monday market opening, where

there is a 6.5-hour trading period followed by a (17.5+48)-hour market closure.22 By comparing

22 In our model framework, the fund performance is monitored on a daily basis, and the slippage is measured via the
daily fund NAV and the underlying returns from one market closing time to the next. Since the slippage during a
weekend is measured via the fund NAV and the underlying return from the Friday market closing time to the Monday
market closing time, it is natural to rescale the weekend into a “day” to be consistent with our model. Ideally the
weekend should be treated differently from the remaining days without scaling; however, this ideal treatment would
bring extra complexity to the model framework.
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Table 3 Cost of Market Closure

Long Market Closure Normal Market Closure No Market Closure

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.6178 0.8623 1.7074 0.5590 0.8332 1.5702 0.4361 0.7963 1.2853
Std dev 0.5414 0.6648 1.7117 0.2505 0.5818 1.6114 0.1929 0.3271 0.4671

10−5 Mean 0.8863 1.0366 2.4351 0.7628 0.9568 2.1332 0.5492 0.8352 1.5714
Std dev 1.0452 1.0209 2.6054 0.7171 0.6776 1.6809 0.4302 0.4636 1.4761

10−4 Mean 1.4290 1.5069 4.0712 1.1308 1.2068 3.0859 0.7972 0.9674 2.1760
Std dev 1.6663 1.9474 4.5514 1.1404 1.3398 3.7767 0.5489 0.8965 2.9398

10−3 Mean 2.6988 2.7629 8.0162 1.9925 2.0507 5.8098 1.3686 1.4333 3.8467
Std dev 2.5767 4.0329 28.8919 3.5890 3.6416 11.4236 1.9423 1.6857 4.0751

The slippage measure is defined as Di = |RX
i −βRS

i | and reported in bps. The statistics for simulation results are calculated
over the daily slippage for 2520× 20000 day (20000 sample paths, 2520 days per sample path), and the estimator is
constructed as the 1% trimmed mean of the daily absolute deviations. No Market Closure means 24-hour trading, Normal
Market Closure means 6.5-hour trading and 17.5-hour market closure, and Long Market Closure means 2.17-hour trading and
21.83-hour market closure. The daily average σ= 0.2 in all three cases.

the slippages in the Long Market Closure columns and the Normal Market Closure columns in

Table 3, our model predicts that the slippage should also be more prominent on Monday, as the

fund will not be able to rebalance during the large proportion of market closure.

Next, we test the weekend effect empirically. To this end, we redo the slippage calculation in

Panel A of Table 1 for 2006 – 2020 by grouping them on the day of the week. The results are

shown in Table 4. For all 12 LETFs, the mean slippage on Monday is always the highest among

all days of the week. Furthermore, the slippage on Monday is 23% to 33% higher than the average

of remaining days for all LETFs. Therefore, the empirical results support the implication of the

weekend effect from our model.

Table 4 Statistics for Historical Slippage Grouped on the Days of the Week

Index Multiple Statistics Monday Tuesday Wednesday Thursday Friday

SPX (2x) Mean 1.8883 1.4806 1.3794 1.5509 1.5385
Std dev 2.0741 1.6002 1.2943 1.5441 1.6803

(-1x) Mean 2.0368 1.5724 1.6107 1.6464 1.6175
Std dev 2.3450 1.8130 1.4712 1.3370 1.2954

(-2x) Mean 3.2053 2.4861 2.5589 2.5508 2.6483
Std dev 4.0658 2.9198 2.3393 2.2615 2.7407

INDU (2x) Mean 2.0597 1.5171 1.5227 1.6463 1.4989
Std dev 2.2424 2.0524 1.6306 1.8397 1.6954

(-1x) Mean 2.1050 1.6379 1.6238 1.7639 1.6051
Std dev 2.5846 1.7282 1.5834 1.6663 1.2247

(-2x) Mean 3.3248 2.6025 2.6729 2.8084 2.6684
Std dev 4.0078 3.3140 2.5565 2.8942 2.4565

NDX (2x) Mean 1.8772 1.4737 1.4868 1.5926 1.5151
Std dev 1.9163 1.9057 1.6145 1.7266 1.8549

(-1x) Mean 2.0534 1.5774 1.5997 1.6557 1.6631
Std dev 2.3910 1.6385 1.4576 1.4291 1.3093

(-2x) Mean 3.2119 2.4287 2.4812 2.6331 2.3857
Std dev 3.8823 2.7625 2.4076 2.4484 2.2843

MID (2x) Mean 2.1454 1.6006 1.7329 1.6869 1.7567
Std dev 2.5895 1.7788 2.6767 2.0334 2.3592

(-1x) Mean 2.4490 1.9455 1.9124 1.9372 1.9351
Std dev 2.4577 1.8259 1.6758 1.5145 1.7314

(-2x) Mean 3.3692 2.5688 2.3804 2.6562 2.6123
Std dev 4.3976 3.4666 2.7779 2.6760 3.3758

The slippage measure is defined as Di = |RX
i −βRS

i | and reported in bps. The data period is 2006-2020 as in Panel A of Table
1, but the slippage is divided into five groups based on the day of the week. This table indicates the “weekend” effect that the
slippage tends to be the largest on Monday.
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7.2. Intraday Trading Volume

To investigate the intraday trading pattern, we compare strategies with three overnight risk profiles:

high overnight risk (the benchmark case with δ = 17.5/6.5, k = 3), low overnight risk (with δ =

17.5/6.5, k= 5) and no overnight risk (δ= 0). By taking a larger value of k, the underlying nighttime

volatility is smaller compared to daytime, which leads to smaller overnight jumps on average.

Figure 5 Intraday Absolute Trading Speed Distribution
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This figure shows the intraday distribution of the absolute trading speed |φu| for three overnight risk profiles. The distribution
is estimated via Monte Carlo simulation. We simulate 20000 sample paths based on the default parameters, each containing a
10-year period (2520 days including daytime and nighttime). We calculate the absolute trading speed over daytime of each
day, and then calculate the average across all days on all sample paths.

Figure 5 shows under all three profiles, the intraday absolute trading speed exhibits the well-

known U-shaped curve (see, for instance, Admati and Pfleiderer (1988), Dai et al. (2015)). When

there is no overnight risk, the curve is symmetric, that is, the absolute trading speed after the

market opening is about the same as that before market closing. In the benchmark case with

high overnight risk, the trading speed is much higher before market closing, and this bias is less

significant for the low overnight risk case. In other words, a larger portion of rebalancing occurs right

before market closing when the overnight risk is greater. This is consistent with the observation

based on one sample path in Section 4, reflecting the effort of accounting for overnight jump risk.

This implies that the fund’s intraday trading activity is at a high level before market closing, a

medium level after market opening, and at a low level in the middle of daytime. This conjecture

may be tested in future empirical studies using high-frequency intraday data on LETF rebalancing

activity, although the data set does not seem to be available now.
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Table 5 Intraday Trading Volume

From 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 15:55 Whole Market
To 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:00 Day Frictions

Periodic-DN Strategy

Λ= 10−6 0.0032 0.0014 0.0006 0.0002 0.0001 0.0001 0.0001 0.0001 0.0003 0.0008 0.0020 0.0049 0.0122 0.0031 0.0260 0.0005

Λ = 10−5 0.0024 0.0018 0.0014 0.0011 0.0009 0.0008 0.0009 0.0011 0.0014 0.0018 0.0025 0.0034 0.0046 0.0009 0.0242 0.0014

Λ = 10−4 0.0014 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0003 0.0175 0.0060

Λ = 10−3 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0001 0.0108 0.0205

Periodic-D Strategy

Λ= 10−6 0.0080 0.0030 0.0011 0.0004 0.0002 0.0001 0.0000 0.0001 0.0001 0.0004 0.0011 0.0029 0.0078 0.0019 0.0252 0.0004

Λ = 10−5 0.0036 0.0027 0.0020 0.0015 0.0011 0.0009 0.0008 0.0008 0.0010 0.0013 0.0019 0.0026 0.0035 0.0007 0.0236 0.0014

Λ = 10−4 0.0016 0.0015 0.0014 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0014 0.0016 0.0003 0.0172 0.0059

Λ = 10−3 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0001 0.0107 0.0190

One-Day Strategy

Λ= 10−6 0.0142 0.0060 0.0026 0.0011 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0248 0.0007

Λ = 10−5 0.0058 0.0045 0.0034 0.0026 0.0020 0.0015 0.0011 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0000 0.0233 0.0019

Λ = 10−4 0.0020 0.0018 0.0016 0.0014 0.0012 0.0011 0.0009 0.0008 0.0006 0.0005 0.0003 0.0002 0.0001 0.0000 0.0124 0.0036

Λ = 10−3 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0042 0.0044

One-Shot Strategy

0 0 0 0 0 0 0 0 0 0 0 0 0.0246 0.0246 0.0246 +∞

This table compares the intraday trading volume for the Periodic-DN strategy, Periodic-D strategy and One-Day strategy
(with Λ= 10−6,10−5,10−4,10−3) and the one-shot rebalancing strategy (the strategy ignoring the market frictions and
assuming r= 0, as given in Theorem 1). The unit of the trading volume is the number of shares. The market friction is daily
average, with unit 10−4 squared dollars. The statistics are calculated using the trading volume during each of the 13 half-hour
periods for 2520× 20000 days (20000 sample paths, 2520 days per sample path). Initial values: s= x= 1, z = 2.

Next, we compare the intraday trading volume of the Periodic-DN, Periodic-D, and One-Day

strategies. We split the daytime on each trading day from market opening time 9:30 to market

closing time 16:00 into 13 subintervals, each with 30 minutes. Then we calculate the total expected

trading volume for each subinterval, the trading volume during the last 5 minutes, as well as total

trading volume via simulation, as reported in Table 5. As a comparison, we also include the one-shot

strategy that only performs a single lump-sum trade at the market closing each day.

For each Λ, the intraday trading volume exhibits the same U-shaped characteristics as in Figure

5. For each strategy, a larger Λ results in a smaller daily total trading volume, because larger

market friction discourages rebalancing. On the other hand, a larger Λ also results in a flatter

U-shape; in particular, for Λ = 10−3 the intraday volume is almost constant, ranging from 0.0009

to 0.0010. Indeed, given a daily total trading volume, spreading the rebalancing more evenly across

daytime leads to a smaller (quadratic) friction cost.

Compared to the One-Shot trading strategy (the strategy ignoring market frictions and assuming

r = 0 given in Theorem 1), the Periodic-DN strategy has a significantly smaller trading volume

near market closing. For instance, the Periodic-DN strategy for Λ = 10−6 has a trading volume

0.0031 during the last five minutes (as opposed to 0.0246 for the one-shot strategy), implying a

much smaller market friction cost right before market closing. On the other hand, Periodic-DN

strategy has a higher volume right before market closing compared to the Periodic-D and One-Day

strategy, due to accounting for overnight risk and aiming in front of target as discussed earlier.
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On a daily level, the total trading volume and the market friction costs from the Periodic-DN

and Periodic-D strategies are on the same level; however, both are greater than those from the

One-Day strategy, especially when Λ is large. This suggests that the One-Day strategy does not

rebalance sufficiently. Indeed, following the myopic aim, the One-Day strategy barely does any

rebalancing in the second half of daytime. Therefore, at the beginning of the next day, the position

is way off target, and the fund cannot do enough rebalancing in a limited amount of time due

to the market frictions. As a result, under the myopic One-Day strategy, the fund ends up with

insufficient rebalancing and large slippage, as discussed in Section 6.1. This is especially the case

for large Λ, since the amount of rebalancing after the market opening needs to be cut down even

further to keep a reasonable level of cost.

8. Conclusion

We study how to rebalance leveraged ETFs in a comprehensive setting, including overnight market

closure and market frictions, and obtain analytical solutions in terms of a system of periodic

ordinary differential equations. Interestingly, the optimal rebalancing (hedging) strategy confirms

the principle of “aiming in front of target” in Gârleanu and Pedersen (2013), introduced in the

setting of asset allocation, although the focus here is on hedging. Our optimal strategy yields a lower

slippage and smoother trading pattern, compared to existing strategies. The framework in this

paper may be extended, in principle, to study more general hedging problems with market frictions

and market closure. The challenge is to get analytical solutions for specific hedging problems,

although we expect that numerical procedures suggested in the current framework may still work.

We present empirical findings and implications for the weekend effect and return deviations

during multi-day periods. The discussion about the intraday trading volume leads to the following

conjecture from the optimal strategy of our model: LETFs’ daily rebalancing activity will be at

a high level before market closing, at a medium level after the market opening, and at a low

level in the middle of daytime. This conjecture may be tested in future empirical studies using

high-frequency intraday data on LETF rebalancing activity, although the data set does not seem

available now.
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Online Supplement

Leveraged ETFs with Market Closure and Frictions

A. Derivation of the Explicit Value Function without Overnight
Market Closure

For simplicity, we shall begin with the case without overnight market closure. We shall study the

case with overnight market closure in Section D.

We take tk = kT, k= 0,1, · · · as the end of k-th day (and also the beginning of (k+1)-th day).

The value function is

V (t, s, x, z; s̄, x̄) = inf
φ∈A

J(t, s, x, z;φ, s̄, x̄), (A.1)

where the cost functional is

J(t, s, x, z;φ, s̄, x̄)

=E

[
1

2
x̄2

(
β ·
(
St1

s̄
− 1

)
−
(
Xt1−

x̄
− 1

))2

+

∫ t1

t

1

2
ΛS2

uφ
2
udu

+
∞∑
i=1

e−ρi

(
1

2
X2

ti

(
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(
Sti+1

Sti

− 1

)
−
(
Xti+1−

Xti

− 1

))2

+

∫ ti+1

ti

1

2
ΛS2

uφ
2
udu

)]
,

(A.2)

and the set of admissible strategies is

A=

{
φ :E

[
∞∑
i=1

e−ρti

∫ ti+1

ti

φ2
uS

2
udu

]
<∞

}
.

A similar discrete-continuous formulation is given in Keppo et al. (2021) in a different context.

From the dynamic programming principle and the time-homogeneous Markov property, for 0≤

t < T , we have the following recursive formula

V (t, s, x, z; s̄, x̄) = inf
φ∈A1

E

[
1

2
x̄2

(
β ·
(
ST

s̄
− 1

)
−
(
XT−

x̄
− 1

))2

+

∫ T

t

1

2
ΛS2

uφ
2
udu+ e−ρTV (0, ST ,XT , θT ;ST ,XT )

]
,

where

A1 =

{
φ :E

[∫ T

0

φ2
uS

2
udu

]
<∞

}
.

And in particular, the following connection condition holds thanks to the homotheticity

V (T−, s, x, z; s̄, x̄)

=
1

2
x̄2
(
β ·
(s
s̄
− 1
)
−
(x
x̄
− 1
))2

+ e−ρTV (0, s, (1− γ)x, z;s, (1− γ)x)

=
1

2
x̄2
(
β ·
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s̄
− 1
)
−
(x
x̄
− 1
))2

+ e−ρT (1− γ)2x2V
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0,1,1,

s

(1− γ)x
z; 1,1

)
,

(A.3)
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This iterative formula is useful for giving the terminal condition for the HJB equation, as we will

see below.

Denote

LφU =
1

2
z2σ2s2

∂2U

∂x2
+

1

2
σ2s2

∂2U

∂s2
+ zσ2s2

∂2U

∂x∂s

+((µ− r)zs+ rx)
∂U

∂x
+µs

∂U

∂s
+φ

∂U

∂z
.

The HJB equation corresponding to V (t, s, x, z; s̄, x̄) is given as

∂U

∂t
+ inf

φ∈R

[
LφU +

1

2
Λs2φ2

]
= 0, (A.4)

in D= {(t, s, x, z) : t∈ [0, T ), s∈R+, x, z ∈R} with

U(T, s,x, z; s̄, x̄) =
1

2
x̄2
(
β ·
(s
s̄
− 1
)
−
(x
x̄
− 1
))2

+ e−ρT (1− γ)2x2U(0,1,1,
s

(1− γ)x
z; 1,1).

(A.5)

The optimal strategy φ∗ can be solved uniquely via the first order condition as

φ∗ =− 1

Λs2
∂U

∂z
, (A.6)

and (A.4) can be equivalently written as

∂U

∂t
+

1

2
z2σ2s2

∂2U

∂x2
+

1

2
σ2s2

∂2U

∂s2
+ zσ2s2

∂2U

∂x∂s

+((µ− r)zs+ rx)
∂U

∂x
+µs

∂U

∂s
− 1

2Λs2

(
∂U

∂z

)2

= 0.

(A.7)

A.1. Homotheticity of the Value Function

Since the value function involves time and five state variables, it is extremely difficult to calcu-

late due to the curse of dimensionality. Fortunately, our formulation of the cost functional allows

the following homotheticity, which significantly simplifies the problem and makes it analytically

solvable.

Proposition 1. We have the following homotheticity: ∀η > 0, α∈R,

1. V (t, ηs, ηx, z, ηs̄, ηx̄) = η2V (t, s, x, z, s̄, x̄).

2. V (t, s,αx,αz, s̄,αx̄) = α2V (t, s, x, z, s̄, x̄).

Here, the first equation in Proposition 1 says that proportionally increasing stock price and

fund value does not change the optimal number of shares or the optimal strategy. Intuitively,

denominating the stock price and fund value in another currency does not change the problem.

The second equation says that a proportionally increasing number of shares implies a proportional
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increase in fund value, as well as the optimal strategy. Intuitively, a fund with twice the NAV needs

to hold and trade twice the amount of stock. Combining these two properties, we have

V (t, s, x, z; s̄, x̄) = x̄2V
(
t,
s

s̄
,
x

x̄
,
s̄

x̄
z; 1,1

)
, ∀s̄ > 0, x̄∈R.

Therefore, in the following we can assume without loss of generality that x̄= s̄= 1, and denote for

short that V (t, s, x, z) = V (t, s, x, z; 1,1).

[Proof of Proposition 1] For part (1), equations (1) – (3) and (9) show that for any φ ∈ A,

Xt,ηs,ηx,z,φ
u = ηXt,s,x,z,φ

u , St,ηs,ηx,z,φ
u = ηSt,s,x,z,φ

u , and θt,ηs,ηx,z,φu = θt,s,x,z,φu . Therefore, (A.2) shows

that ∀φ∈A,

J(t, ηs, ηx, z, ηs̄, ηx̄;φ) = η2J(t, s, x, z, s̄, x̄;φ),

from which the conclusion follows. For part (2), equations (1) – (3) and (9) show that for any

φ ∈A, Xt,s,ηx,ηz,ηφ
u = ηXt,s,x,z,φ

u , St,s,ηx,ηz,ηφ
u = St,s,x,z,φ

u , and θt,s,ηz,ηφu = ηθt,x,z,φu . Therefore, ηφ ∈A,

and (A.2) shows that ∀φ∈A,

J(t, ηs, ηx, z, ηs̄, ηx̄;φ) = η2J(t, s, x, z, s̄, x̄;φ),

which again leads to the conclusion. Q.E.D.

A.2. Solving the HJB Equation

Next we focus on the equation for V (t, s, x, z) := V (t, s, x, z; 1,1) and U(t, s, x, z) :=U(t, s, x, z; 1,1).

Based on the quadratic form of HJB equation and terminal condition, we guess that

U(t, s, x, z) = a(t)x2 +(b0(t)+ b1(t)z)xs+(c0(t)+ c1(t)z+ c2(t)z
2)s2

+ d(t)x+(e0(t)+ e1(t)z)s+ f(t).
(A.8)

By plugging (A.8) into the HJB equation (A.7), the coefficients satisfy the following nonlinear

ODE system

∂a

∂t
=

1

2Λ
(b1)

2 − 2ra (A.9)

∂b0
∂t

=
1

Λ
b1c1 − (µ+ r)b0 (A.10)

∂b1
∂t

=
1

Λ
2b1c2 − 2(µ− r)a− (µ+ r)b1 (A.11)

∂c0
∂t

=−(σ2 +2µ)c0 +
1

2Λ
(c1)

2 (A.12)

∂c1
∂t

=−(σ2 +2µ)c1 − (σ2 +µ− r)b0 +
1

Λ
2c1c2 (A.13)

∂c2
∂t

=−σ2a− (σ2 +2µ)c2 − (σ2 +µ− r)b1 +
1

Λ
2(c2)

2 (A.14)

∂d

∂t
=

1

Λ
b1e1 − rd (A.15)
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∂e0
∂t

=−µe0 +
1

Λ
c1e1 (A.16)

∂e1
∂t

=−(µ− r)d−µe1 +
1

Λ
2c2e1 (A.17)

∂f

∂t
=

1

2Λ
(e1)

2. (A.18)

Note that

x2U(0,1,1,
s

x
z; 1,1) = (a(0)+ b0(0)+ c0(0)+ d(0)+ e0(0)+ f(0))x2

+(b1(0)+ c1(0)+ e1(0))sxz+ c2(0)s
2z2.

Therefore, the terminal condition for the above ODE system is given as

a(T ) =
1

2
+ e−ρT (1− γ)2(a(0)+ b0(0)+ c0(0)+ d(0)+ e0(0)+ f(0))

b0(T ) =−β, b1(T ) = e−ρT (1− γ)(b1(0)+ c1(0)+ e1(0))

c0(T ) =
1

2
β2, c1(T ) = 0, c2(T ) = e−ρT c2(0), d(T ) = β− 1

e0(T ) = β(1−β), e1(T ) = 0, f(T ) =
1

2
(β− 1)2.

(A.19)

Note that the terminal condition depends on the time-0 value of the solution, which will be deter-

mined via a fixed point iteration.

From (A.6) and (A.8), the optimal strategy φ∗ is given as

φ∗(t, s, x, z; s̄, x̄) =− 1

Λ

(
b1(t)

x

s
+ c1(t)

x̄

s̄
+2c2(t)z+ e1(t)

x̄

s

)
. (A.20)

Our main result concerning the optimality of (A.20) is summarized in Theorem 3. This theorem

is the special case of Theorem 2 without market closure.

Theorem 3. There exists a unique solution to the periodic ODE system (A.9) – (A.18), subject

to the endogenous terminal condition (A.19), such that U defined in (A.8) is nonnegative for all

(t, s, x, z)∈D. Furthermore, φ∗ ∈A is an optimal policy and the optimal value function is given by

U(0, s, x, z). More precisely, we have

U(0, s, x, z) = V (0, s, x, z) = J(0, s, x, z;φ∗), ∀(s,x, z)∈R+ ×R2.

The proof of this theorem is given in the next section.

B. Proof of Theorem 3

In this section, we prove Theorem 3. In particular, we establish the existence and uniqueness of

classical solutions to the ODE system, as well as a verification theorem for the optimal strategy.
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B.1. Main Steps

In the following, we denote a vector of functions as vu as the solution (provided the solution exists

and is unique, for which we will prove later) to the ODE system (A.9) – (A.18) with a given

exogenous terminal condition, where

vu = (a, b0, b1, c0, c1, c2, d, e0, e1, f)
T , vu(T ) = u.

Let

F (v(t))(s,x, z) = a(t)x2 +(b0(t)+ b1(t)z)xs+(c0(t)+ c1(t)z+ c2(t)z
2)s2 (B.1)

+ d(t)x+(e0(t)+ e1(t)z)s+ f(t).

Also, denote an initial point for iteration as

u0 = (1/2,−β,0, β2/2,0,0, β− 1, (1−β)β,0, (β− 1)2/2)T .

Starting with terminal condition vu(T ) = u, we then use

ūρ = u0 + e−ρTG(vu(0)) (B.2)

as the terminal condition for the next iteration, where

G1(vu(0)) = (1− γ)2(a(0)+ b0(0)+ c0(0)+ d(0)+ e0(0)+ f(0))

G3(vu(0)) = (1− γ)(b1(0)+ c1(0)+ e1(0))

G6(vu(0)) = c2(0)

Gj(vu(0)) = 0, j = 2,4,5,7,8,9,10.

(B.3)

Denote B+ = {u∈R10 : F (u)(s,x, z)≥ 0,∀(s,x, z)∈R+ ×R2}.

B.1.1. One-period Problem To study the infinite horizon problem (10) we first consider

the following one-period problem. Denote

J1(t, s, x, z;w,φ) =E

[
1

2
(β · (ST − 1)− (XT − 1))

2

+

∫ 1

t

1

2
ΛS2

uφ
2
udu+ e−ρTw(S1,X1, θ1)

]
,

(B.4)

for w ∈C(R+ ×R2), and

V1(t, s, x, z;w) = inf
φ∈A1

J1(t, s, x, z;w,φ). (B.5)

Since the right-hand side of the ODE system (A.9) – (A.18) is analytic, for a given terminal

condition u there has a solution locally, i.e., the solution exists in [tmin, T ], for some 0≤ tmin < T

(cf. Proposition 7.4 of Amann (1990)). Proposition 2 shows that the solution is unique in [tmin, T ],

and Lemma 1 below shows that actually tmin = 0.
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Proposition 2 (One-period Verification Theorem). Let w ∈ B+. Denote U1(t, s, x, z) =

F (vw(t))(s,x, z), ∀t∈ [tmin, T ], using (B.1).

(1) For any φ∈A1, U1 ≤ J1(·;F (w−u0),φ) on [tmin, T ]×R+ ×R2.

(2) Suppose there exists φ∗ ∈A1 such that

φ∗(u)∈ arg min
φ∈A1

[
LφU1(u,Su,X

∗
u, θ

∗
u)+

1

2
ΛS2φ2

]
, a.e. on [tmin, T ]×Ω

Then U1 = V1(·;F (w−u0)) on [tmin, T ]×R+ ×R2.

(3) φ∗ defined in (A.20) satisfies the condition in (2).

Thus, starting from w at time t ∈ [tmin, T ], U1 is the optimal value function and φ∗ is an optimal

control policy. Since F is a polynomial, we also have the coefficients of the polynomial as the vector

vw(t) is uniquely determined on [tmin, T ].

Lemma 1. If u∈B+, then:

1. Given the terminal condition u, the ODE system (A.9) – (A.18) is solvable up to time 0; in

other words, tmin = 0, and consequently vu(t) exists and is unique, ∀t∈ [0, T ];

2. vu(t)∈B+, ∀t∈ [0, T ];

3. ∀t∈ [0, T ], the value function for the one-period problem equals F (vu(t)), that is,

F (vu(t))(s,x, z) = V1(t, s, x, z;F (u−u0)).

Furthermore, for any ρ≥ 0, ūρ ∈B+, recalling the definition in (B.2).

The proofs of Proposition 2 and Lemma 1 will be given in Section B.2.

B.1.2. Infinite-horizon Problem via Fixed Point Iteration Now we turn to the infinite-

horizon problem. Note that Lemma 1 shows that the ODE system is uniquely determined with

terminal condition u ∈ B+. Therefore, vu(t) ∈ B+ is defined for t ∈ [0, T ], and so is ūρ ∈ B+,

recalling the definition in (B.2). As a result, the following mapping

T ρ := {B+ →B+ : u 7→ ūρ}

is well-defined. To show the existence of solution to the original ODE system, it is equivalent to

show that T has a fixed point, which is given in the following proposition.

Proposition 3. For all ρ > 0, denote u(N) = (T ρ)Nu0. Then (1) T ρ is continuous on B+; (2)

for any (s,x, z) ∈ R+ × R2, F (u(N)(s,x, z))N≥1 is nondecreasing; (3) limN→∞u(N) = u(∞) exists;

and (4) u(∞) is a fixed point of T ρ in B+.
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Note that Proposition 3 also gives a method to solve for the fixed point for the periodic ODE

system, namely starting from an initial guess. Finally, we prove a verification theorem for the

infinite-horizon problem. Recall from the definition of F , (B.1), that for any fixed point u∗ ∈B+

of T ρ, F (vu∗(t)) gives a polynomial of the form of (A.8) with vu∗(t) as coefficients.

Proposition 4 (Infinite-horizon Verification Theorem, No Overnight Jump). Let

ρ> 0 and any fixed point u∗ ∈B+ of T ρ, and let U∗(t, ·) = F (vu∗(t))(·).

(1) For any φ∈A, U∗(0, s, x, z)≤ J(0, s, x, z) on R+ ×R2.

(2) Suppose there exists φ∗ ∈A such that

φ∗(u)∈ argmin
φ∈A

[
LφU∗(u,Su,X

∗
u, θ

∗
u)+

1

2
ΛS2

uφ
2
u

]
, a.e. on [0, T ]×Ω. (B.6)

Then U∗(0, s, x, z) = V (0, s, x, z) on R+ ×R2.

(3) φ∗ defined in (A.20) satisfies the conditions in (2).

Proposition 4 also implies the uniqueness of the fixed point u∗ ∈B+. Indeed, for any fixed point

û∈B+, F (vû(0)) corresponds to the same value function V , so

û= u0 + e−ρTG(vû(0)) = u0 + e−ρTG(vu∗(0)) = u∗.

The proofs of Propositions 3 and 4 are given in Section B.2.

B.2. Additional Proofs

In the following, we denote Y = θS, then

dXu = µYudu+σYudWu + r(Xu −Yu)du (B.7)

dYu = (µYu +φuSu)du+σYudWu. (B.8)

[Proof of Proposition 2] Fix t∈ [tmin, T ]. For part (1), for any φ∈A1, by Ito’s formula,

U1(u∧ τn, Su∧τn ,Xu∧τn , θu∧τn)

=U1(t, s, x, z)+

∫ u∧τn

t

(
∂V

∂t
+Lφr

)
(r,Sr,Xr, θr)dr

+Martingale, ∀u∈ [t, T ),

where τn := inf{r≥ t :
∫ r

t
σ2
(
θr

∂V
∂x

+ ∂V
∂s

)2
S2
rdr≥ n}. Therefore,

E [U1(u∧ τn, Su∧τn ,Xu∧τn , θu∧τn)]

=U1(t, s, x, z)+E

[∫ u∧τn

t

(
∂V

∂t
+Lφr

)
(r,Sr,Xr, θr)dr

]
≥U1(t, s, x, z)−E

[
1

2
Λ

∫ u∧τn

t

S2
rφ

2
rdr

]
.
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Note that U1 satisfies

|U1(t, s, x, z)| ≤C(1+ |x|2 + |s|2 + |zs|2),

for some constant C > 0. From the classic moment estimate (cf. Theorem 1.3.16 in Pham (2010))

we have

E
[
|Xu∧τn |2, |θu∧τnSu∧τn |2

]
≤C ′ (|x|2 + |zs|2

)
+C ′eC

′T

[∫ T

0

|x|2 + |zs|2 +φ2
uS

2
udu

]
.

for some C ′ > 0. Therefore, for some C0,C1 > 0,

E|U1(u∧ τn, Su∧τn ,Xu∧τn , θu∧τn)|

≤CE(1+ |Xu∧τn |2 + |Su∧τn |2 + |θu∧τnSu∧τn |2)

≤C0 +C1E

[∫ T

0

φ2
uS

2
udu

]
.

Also,

E

[∫ u∧τn

t

φ2
rS

2
rdr

]
≤E

[∫ T

t

φ2
rS

2
rdr

]
.

Therefore, thanks to the dominated convergence theorem, by first sending n→∞ and then u→ T ,

we have

E[F (w)(ST ,XT , θT )]≥U1(t, s, x, z)−E

[
1

2
Λ

∫ T

t

φ2
rS

2
rdr

]
,∀φ∈A,

and U1 ≤ J1 follows.

For part (2), repeating the proof of 1) shows that

U1(t, s, x, z) = J1(t, s, x, z;φ
∗)≥ V1(t, s, x, z),

which, together with 1), shows U1 = V1.

For part (3), note that φ∗ defined in (A.20) together with V defined in (A.8) solves the HJB

equation. Furthermore,

φ∗
uSu =− 1

Λ

(
b1(u)Xu + c1(u)

x̄

s̄
Su +2c2(u)θuSu + e1(u)x̄

)
,

and

dYu = µYudu+σYudWu +φ∗
uSudu

=

(
µ− 2

Λ
c2(u)

)
Yudu+σYudWu −

1

Λ

(
b1(u)Xu + c1(u)

x̄

s̄
Su + e1(u)x̄

)
du.
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Due to the continuity of b1, c1, c2, and e1, the drift and diffusion terms of the SDEs for (X,Y ) are

Lipschitz in (X,Y ) and satisfy a linear growth condition. Therefore, again from the classic SDE

moment estimate, we have

E[ max
t≤s≤T

(|Xs|2 + |Ys|2)]≤C(|x|2 + |zs|2)+CeC(T−t)E

[∫ T

t

(|x|2 + |zs|2 +S2
u +1)du

]
As a result,

E

[∫ T

t

(φ∗
u)

2S2
udu

]
=E

[∫ T

t

Y 2
u du

]
<∞,

so that φ∗ ∈A1. Q.E.D.

[Proof of Lemma 1] For notational convenience, in the following we reverse time and show that the

solution to the time-reversed system, still denoted as vu(t), exists for t∈ (0, T ].

We shall prove the result by contradiction. Assume the system blows up at time τ ∈ (0, T ].

By Proposition 2,

F (vu(t))(s,x, z) = V1(T − t, s, x, z;F (u−u0))≥ 0, t∈ [0, τ).

Therefore, for any t ∈ [0, τ), we have a(t) ≥ 0 and c2(t) ≥ 0; otherwise, the function U1 goes to

−∞ as x→∞ and s→∞. In addition, supt∈[0,τ) a(t)<∞ thanks to the (time reverse) ODE of a,

because the drift is at most linear.

Next, the (time-reversed) system for b1 and c2 is given by

∂b1
∂t

=− 2

Λ
b1c2 +2(µ− r)a+(µ+ r)b1

∂c2
∂t

= σ2a+(σ2 +2µ)c2 +(σ2 +µ− r)b1 −
2

Λ
c22.

Using the same idea as on page 11 of Reid (1972), consider an alternative linear system

d

dt
Y (t) =

 0 0 2
Λ

2(µ− r)a(t) µ+ r 0
σ2a(t) σ2 +µ− r σ2 +2µ

Y (t),

with Y (t) = (Y1(t), Y2(t), Y3(t))
T and Y (0) = (1, b1(0), c2(0))

T . Assume that Y1(η−) reaches 0 at

η ≤ τ for the first time. Note that (b1(t), c2(t)) = (Y2(t)/Y1(t), Y3(t)/Y1(t)) gives a solution to the

system of b1 and c2 for t∈ [0, η). Therefore, Y3(t)≥ 0 for t < η, because c2(t)≥ 0 and Y1(t)> 0 (as

Y1 starts from a positive number). As a result, the equation for Y1 implies that Y1, starting from 1,

is nondecreasing and hence positive for t < η, contradicting the assumption that Y1(η−) = 0. This

implies that b1 and c2 are not blowing up at τ .

Given a, b1, c2, the equations for b0, c1, d, e1 in the ODE system are linear. Since a, b1, c2, as time-

dependent coefficients in this linear equation, do not blow up at τ , we have b0, c1, d, e1 do not blow

up at τ as well. Given these seven components, the remaining equation for c0, e0, f are again linear,
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meaning that they are also not blowing up at τ . This contradicts with the assumption that the

system blows up at τ ≤ T . Q.E.D.

[Proof of Proposition 3] Consider the strategy φ̂u = − z
T
χu∈[0,T ] which liquidates all the stock

position on the first day. It is straightforward to see φ̂∈A. Using this strategy, the expected cost

on the first day is finite (although suboptimal); from the second day, there is no market friction

cost, and the aggregated deviation cost from day 2 to N is

E

[
N∑
i=2

e−ρ(i−1)T 1

2
β2

(
SiT

S(i−1)T

− 1

)2
]
≤E

[
∞∑
i=2

e−ρ(i−1)T 1

2
β2

(
SiT

S(i−1)T

− 1

)2
]
<∞.

This cost is finite for any ρ> 0 since the squared simple returns of S are i.i.d. Therefore,

JN(t, s, x, z; 0, φ̂, s̄, x̄)

=E

[
1

2

(
β

(
S1

s
− 1

)
−

(
X̂1

x
− 1

))2

+
N∑
i=2

1

2
e−ρ(i−1)T

(
β

(
SiT

S(i−1)T

− 1

))2

+
1

2
Λ
z2

T 2

∫ T

0

S2
udu

]
≤ J∞(t, s, x, z; 0, φ̂, s̄, x̄)<∞.

Now, for ρ> 0, recall that u(N) = (T ρ)Nu0. By iterating the one-period for N −1 times, we have

F (u(N))(s,x, z) = e−ρTVN(0, s, x, z; 0)+
1

2
(β(s− 1)− (x− 1))2. (B.9)

Note that the right-hand side is nondecreasing as N →∞, since both costs for deviation and price

impact are nonnegative. Also, note that since φ̂ is admissible,

VN(t, s, x, z; 0)≤ JN(t, s, x, z; 0, φ̂).

Therefore, for any (s,x, z) ∈R+ ×R2, (F (u(N))(s,x, z))N≥1 are nondecreasing, have a finite upper

bound, and therefore are convergent as N →∞. Since F (u(N))(s,x, z) is a polynomial in (s,x, z),

this further implies the convergence of (u(N))N≥1. Next, recall that by definition, T ρu = u0 +

e−ρTG(vu(0)). Thanks to the continuous dependence of solution of ODE on the initial data (cf.

Theorem 8.3 in Amann (1990)), and the continuity of G, T ρ is continuous. As a result, sending

N →∞ in u(N+1) = T ρu(N) shows that u(∞) is a fixed point of T ρ. Q.E.D.

[Proof of Proposition 4] We follow the notation in Proposition 3. For 1), for any φ ∈ A, (B.9)

implies

F (u(N))(s,x, z)≤ e−ρTJN(0, s, x, z; 0)+
1

2
(β(s− 1)− (x− 1))2. (B.10)
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Sending N →∞, by monotone convergence theorem and the definition of u∗, we have

F (u∗)(s,x, z)≤ e−ρTJ∞(0, s, x, z; 0,φ)+
1

2
(β(s− 1)− (x− 1))2,

therefore,

U(0, s, x, z)≤ J∞(0, s, x, z; 0,φ) = J(0, s, x, z;φ).

Part 2) follows from repeating the above proof and replacing the inequality (B.10) by the equality

(B.9). For 3), it is straightforward to verify that φ∗ defined in (A.20) satisfies (B.6). Therefore,

since VN(0, s, x, z)≤ JN(0, s, x, z; φ̂), we have

E

[
N∑
i=1

e−ρ(i−1)T

∫ iT

(i−1)T

1

2
Λ(φ∗

u)
2S2

udu

]

≤E

[∫ T

0

1

2
Λφ̂2

uS
2
udu+

1

2

(
β(ST − 1)− (X̂T − 1)

)2

+
N∑
i=2

e−ρ(i−1)T 1

2
β2

(
SiT

S(i−1)T

− 1

)2
]
<∞.

Q.E.D.

C. Evaluating Cost Functionals for Suboptimal Strategies without
Market Overnight Closure

In this section, we discuss how to calculate J(0, s, x, z;φ) for φ∈A that is not necessarily optimal.

It turns out that as long as φ has the same form as (12) with different coefficients b̃1, c̃1, c̃2, ẽ1, J

can still be calculated via an iterative procedure, in terms of a system of ODEs

∂a

∂t
=

1

Λ̃
b̃1b1 −

Λ

2Λ̃2
b̃21 − 2ra

∂b0
∂t

=
1

Λ̃
(b̃1c1 + c̃1b1)−

Λ

Λ̃2
b̃1c̃1 − (µ+ r)b0

∂b1
∂t

=
2

Λ̃
(b̃1c2 + c̃2b1)−

2Λ

Λ̃2
b̃1c̃2 − 2(µ− r)a− (µ+ r)b1

∂c0
∂t

=−(σ2 +2µ)c0 +
1

Λ̃
c̃1c1 −

Λ

2Λ̃2
c̃21

∂c1
∂t

=−(σ2 +2µ)c1 − (σ2 +µ− r)b0 +
2

Λ̃
(c̃1c2 + c̃2c1)−

2Λ

Λ̃2
c̃1c̃2

∂c2
∂t

=−σ2a− (σ2 +2µ)c2 − (σ2 +µ− r)b1 +
4

Λ̃
c̃2c2 −

2Λ

Λ̃2
c̃22

∂d

∂t
=

1

Λ
(b̃1e1 + ẽ1b1)−

Λ

Λ̃2
b̃1ẽ1 − rd

∂e0
∂t

=−µe0 +
1

Λ̃
(c̃1e1 + ẽ1c1)−

Λ

Λ̃2
c̃1ẽ1

∂e1
∂t

=−(µ− r)d−µe1 +
2

Λ
(c̃2e1 + ẽ1c2)−

2Λ

Λ̃2
c̃2ẽ1

∂f

∂t
=

1

Λ̃
ẽ1e1 −

Λ

2Λ̃2
ẽ21.
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Specifically, for u ∈B+, define ṽu as the solution to the above system given terminal condition

ṽu(T ) = u. Furthermore, denote ṽ(1) = ṽu0
, and uk+1 = u0 + e−ρTG(ṽ(k)(0)), ṽ(k+1) = ṽuk

, for all

k≥ 1.

Proposition 5. For any

φ̃(t, s, x, z; s̄, x̄) =− 1

Λ̃

(
b̃1(t)

x

s
+ c̃1(t)

x̄

s̄
+2c̃2(t)z+ ẽ1(t)

x̄

s

)
,

where (b̃1(t), c̃1(t), c̃2(t), ẽ1(t))∈R4 and continuous with respect to t, and Λ> 0, we have

J(t, s, x, z, s̄, x̄; φ̃) = x̄2J(t,
s

s̄
,
x

x̄
,
s̄

x̄
z,1,1; φ̃).

Also, ṽk is well-defined for k≥ 1. Furthermore, (F (ṽk))k≥1 is nondecreasing, and

lim
k→∞

F (ṽk(t)) = J(t, s, x, z,1,1; φ̃). (C.1)

[Proof] The homotheticity of J follows the same argument for V . The PDE corresponding to J is

(A.4) with φ chosen as the feedback form in this proposition instead of taking infimum. Then it

is straightforward to verify that, by the ansatz (11), the HJB equation reduces to the above ODE

system.

Note that this ODE system is linear with continuous coefficients, so the existence of solution

vu(0) in t∈ [0, T ] of the one-period problem is guaranteed. On the other hand, a direct application

of Ito’s formula shows that F (vu(0)(t)) indeed equals the one-period cost functional J1(t, s, x, z; φ̃).

Therefore, u(1) ∈B+ from the positivity of J1. By repeating this argument N − 1 times, (11) with

coefficients given by F (vu(N−1)(t)) equals the N -period cost functional JN(t, s, x, z; φ̃).

Since the daily costs from deviation and price impact are nonnegative, JN is nondecreasing in

N , and so is F (vu(N−1)(t)) as a result. Therefore, equation (C.1) holds. Q.E.D.

D. The Case with Overnight Price Changes

In the general case with overnight price jump, the main results can be derived by adapting the

proofs in the case without an overnight price jump. Here, we only point out the main modification

in the proofs.

First, note that

St2i+2
= St2i+1

· (1+ ζi), i≥ 0,

where {ζi}i≥0 is a collection of i.i.d. random variables with the same distribution as

ζ = e(µn−σ2
n/2)δT+σn

√
δTZ − 1,
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where Z follows a standard normal distribution. Also,

Xt2i+2
= erδT (Xt2i+1

− θt2i+1
St2i+1

)+ θt2i+1
St2i+1

(1+ ζi),

It is straightforward to calculate that

E(1+ ζ) = eµnδT

E(1+ ζ)2 = e(2µn+σ2
n)δT

Eζ(1+ ζ) = e(2µn+σ2
n)δT − eµnδT

Eζ2 = e(2µn+σ2
n)δT − 2eµnδT +1.

At each market opening t2i, i≥ 0, the manager is faced with an infinite-horizon problem where

the state variables have the initial value (St2i ,Xt2i) while the reference values are (St2i−1
,Xt2i−1

).

Therefore, the value function at the market opening is

V (t2i, St2i ,Xt2i , θt2i ;St2i−1
,Xt2i−1

)

= V (t2i, St2i−1
(1+ ζ),Xt2i−1

erδT + θt2i−1
St2i−1

(1− erδT + ζ), θt2i−1
;St2i−1

,Xt2i−1
),

and the value function at the previous market closing t2i−1 is

V (t2i−1, St2i−1
,Xt2i−1

, θt2i−1
;St2i−1

,Xt2i−1
)

=Et2i−1
[V (t2i, St2i ,Xt2i , θt2i−1

;St2i−1
,Xt2i−1

)]

=E[V (t2i, St2i−1
(1+ ζ),Xt2i−1

erδT + θt2i−1
St2i−1

(1− erδT + ζ), θt2i−1
;St2i−1

,Xt2i−1
)],

where the last expectation is with respect to ζ.

Note that if V satisfies the quadratic form as in (11) at t2i+1, then V also has this form at t2i by

the same reasoning as in the case without market closure. Next, we show that if V has this form

at t2i, it also has this form at t2i−1, from which we see that V has this form for all t≥ 0. To this
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end, note that the homotheticity of V as in Proposition 1 still holds. Therefore,

V (t2i, St2i−1
(1+ ζ),Xt2i−1

erδT + θt2i−1
St2i−1

(1− erδT + ζ), θt2i−1
;St2i−1

,Xt2i−1
)

=X2
t2i−1

V (0,1+ ζ, erδT + θt2i−1
St2i−1

(1− erδT + ζ)/Xt2i−1
, θt2i−1

St2i−1
/Xt2i−1

; 1,1)

=X2
t2i−1

[
a(erδT + θt2i−1

St2i−1
(1− erδT + ζ)/Xt2i−1

)2

+(b0 + b1θt2i−1
St2i−1

/Xt2i−1
)(1+ ζ)(erδT + θt2i−1

St2i−1
(1− erδT + ζ)/Xt2i−1

)

+ (c0 + c1θt2i−1
St2i−1

/Xt2i−1
+ c2(θt2i−1

St2i−1
/Xt2i−1

)2)(1+ ζ)2

+ d(erδT + θt2i−1
St2i−1

(1− erδT + ζ)/Xt2i−1
)+ (e0 + e1θt2i−1

St2i−1
/Xt2i−1

)(1+ ζ)+ f

]
= a(Xt2i−1

erδT + θt2i−1
St2i−1

(1− erδT + ζ))2

+(b0Xt2i−1
+ b1θt2i−1

St2i−1
)(1+ ζ)(erδTXt2i−1

+ θt2i−1
St2i−1

(1− erδT + ζ))

+ (c0X
2
t2i−1

+ c1θt2i−1
St2i−1

Xt2i−1
+ c2θ

2
t2i−1

S2
t2i−1

)(1+ ζ)2

+ d(erδTX2
t2i−1

+ θt2i−1
St2i−1

Xt2i−1
(1− erδT + ζ))

+ (e0X
2
t2i−1

+ e1θt2i−1
St2i−1

Xt2i−1
)(1+ ζ)+ fX2

t2i−1
.

As a result, V (t2i, s, x, z;s,x) still has the same quadratic form. Since

V (t2i−1−, s, x, z; 1,1) =
1

2
(β(s− 1)− (x− 1))

2

+ e−ρ(1+δ)T (1− γ)2x2V

(
t2i−1,1,1,

sz

(1− γ)x
; 1,1

)
,

the connection condition (A.19) for the quadratic ODE system has the following modification:

a(T ) =
1

2
+ e−ρ(1+δ)T (1− γ)2(a(0)e2rδT + b0(0)e

rδTE(1+ ζ)+ c0(0)E(1+ ζ)2

+ d(0)erδT + e0(0)E(1+ ζ)+ f(0))

b0(T ) =−β

b1(T ) = e−ρ(1+δ)T (1− γ)
(
2a(0)erδT (1− erδT +Eζ)+ b0(0)[E(ζ(1+ ζ))+ (1− erδT )E(1+ ζ)]

+ b1(0)E(1+ ζ)erδT + c1(0)E(1+ ζ)2 + d(0)(1− erδT +Eζ)+ e1(0)E(1+ ζ)
)

c0(T ) =
1

2
β2, c1(T ) = 0,

c2(T ) = e−ρ(1+δ)T (a(0)E(1− erδT + ζ)2 + b1(0)E((1− erδT + ζ)(1+ ζ))+ c2(0)E(1+ ζ)2),

d(T ) = β− 1, e0(T ) = β(1−β), e1(T ) = 0, f(T ) =
1

2
(β− 1)2.

(D.1)

Note that when there is no overnight jump (i.e., ζ = 0), we recover the solution in the case without

overnight price jump.

By adapting the proofs to account for the overnight jump of S, one can then prove the analog

of Proposition 3 and Proposition 4. Specifically, the strategy φ̂ still provides an upper bound for

the value function, and its corresponding expected total cost is still finite, since the daily return of

S is still i.i.d. after incorporating overnight jumps.
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E. Expected Aggregated Costs with Overnight Price Changes

This section compares the three strategies, Periodic-DN, Periodic-D and One-Day, in terms of

the value function. Using Proposition 5 and including the overnight jumps by incorporating

the changes to the terminal condition described in Section D, we calculate the expected aggre-

gated costs from return deviation and market frictions, i.e., the first and second term in (5):

E
[
1
2

∑∞
i=0 e

−ρt2iX2
t2i−1

D2
i

]
and E

[
1
2

∑∞
i=0 e

−ρt2i
∫ t2i+1

t2i
ΛS2

uφ
2
udu
]
.

The results, as reported in Table 6, is consistent with the observations in Section 7.2 and 6.1.

First, the Periodic-DN strategy has the lowest cost from deviation, even though the cost is now

measured using squared slippage. Second, as explained in 6.1, although the Periodic-D and OD

strategies can have a lower cost from market frictions as compared to the Periodic-DN strategy, it

is at the expense of increasing the cost from deviation. Indeed, they rebalance less since they do

not account for the overnight risk and do not prepare for tomorrow, respectively, both of which

lead to a suboptimal position level and larger slippage. Panel C shows that, by balancing the costs

from deviation and market frictions, Periodic-DN strategy indeed has the lowest total cost.

Table 6 Expected Aggregated Cost from Deviation and Market Frictions

Periodic-DN Periodic-D OD

Λ (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

Panel A: Aggregated Cost from Deviation

10−6 0.7737 0.1642 0.6995 1.4779 0.2408 1.3380 4.4323 0.5630 4.0233

10−5 1.7147 0.2664 1.5515 2.1442 0.3133 1.9416 5.6511 0.6966 5.1369

10−4 4.2085 0.5373 3.8097 4.4799 0.5673 4.0592 15.9274 1.8365 14.6284

10−3 15.0365 1.7105 13.5939 15.2108 1.7323 13.7777 121.3283 14.8168 122.0370

Panel B: Aggregated Cost from Market Frictions

10−6 0.4347 0.0473 0.3940 0.3323 0.0362 0.3017 0.5485 0.0598 0.4986

10−5 1.2888 0.1405 1.1698 1.1812 0.1288 1.0729 1.7147 0.1872 1.5603

10−4 5.0419 0.5522 4.5887 4.8773 0.5340 4.4374 3.4557 0.3814 3.1763

10−3 18.4982 2.0622 17.0329 18.3481 2.0431 16.8720 3.6694 0.4461 3.6931

Panel C: Total Costs

10−6 1.2084 0.2115 1.0935 1.8102 0.2770 1.6397 4.9808 0.6228 4.5219

10−5 3.0035 0.4069 2.7213 3.3254 0.4421 3.0145 7.3658 0.8838 6.6972

10−4 9.2504 1.0895 8.3984 9.3572 1.1013 8.4966 19.3831 2.2179 17.8047

10−3 33.5347 3.7727 30.6268 33.5589 3.7754 30.6497 124.9977 15.2629 125.7301

This table reports the aggregated cost from deviation and market frictions, respectively (i.e., the first and second terms in (5),
respectively), as well as the total cost (the whole (5)), for different β and Λ. All numbers are reported as 10−5 squared dollars.
The total costs for the Periodic-DN, PD and OD strategies are calculated via the original cost functional (10) under these
three strategies, respectively (see Section C). The costs from deviation for these three strategies are calculated via the cost
functional (10) with Λ= 0 under these three strategies, respectively. The costs from market friction are then calculated as the
difference between the total costs and the costs from deviation.

F. The Case with Overnight Price Changes but without Market
Frictions

The proof of Theorem 1 is similar to that of Theorem 3. Here we mainly point out the difference.
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The HJB equation is

∂U

∂t
+min

θ

{
1

2
σ2θ2s2

∂2U

∂x2
+

1

2
σ2s2

∂2U

∂s2
+ θσ2s2

∂2U

∂x∂s
+((µ− r)θs+ rx)

∂U

∂x
+µs

∂U

∂S

}
= 0, (F.1)

with the connection condition

U(t1−, s, x) =
1

2
(x−βs+(β− 1))2 + e−ρt1E[U(t1, s, x(1− γ);s,x(1− γ))]

=
1

2
(x−βs+(β− 1))2 + e−ρt1 ·

min
θT

E
[
U
(
0, s(1+ ζ1), x(1− γ)erδT + θT s(1− erδT + ζT );s,x(1− γ)

)]
.

Again, we make a quadratic Ansatz:

U(t, s, x) = a(t)x2 + b(t)xs+ c(t)s2 + d(t)x+ e(t)s+ f(t),

where a(t)> 0. Plugging this Ansatz into the HJB equation and compute the first order condition,

we get the optimizer

θ∗ =− 1

2σ2a(t)

[
b(t)σ2 +(µ− r)

(
b(t)+ d(t)

1

s
+2a(t)

x

s

)]
. (F.2)

Therefore, the HJB equation becomes

0 =
∂a

∂t
+

(
2r− (r−µ)2

σ2

)
a (F.3)

0 =
∂b

∂t
+

(
2r− (r−µ)2

σ2

)
b (F.4)

0 =
∂c

∂t
+(2µ+σ2)c− (µ− r+σ2)2b2

4σ2a
(F.5)

0 =
∂d

∂t
+

(
r− (r−µ)2

σ2

)
d (F.6)

0 =
∂e

∂t
+µe− (µ− r)(µ− r+σ2)bd

2σ2a
(F.7)

0 =
∂f

∂t
− (r−µ)2d2

4σ2a
. (F.8)
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Plugging this Ansatz into the connection condition,

U(T, s,x(1− γ);s,x(1− γ))

= x2(1− γ)2min
θ1

E

[
a(0)(erδT + θ1

s

x(1− γ)
(1− erδT + ζ1))

2

+ b(0)(erδT + θ1
s

x(1− γ)
(1− erδT + ζ1))(1+ ζ1)+ c(0)(1+ ζ1)

2

+ d(0)(erδT + θ1
s

x(1− γ)
(1− erδT + ζ1))+ e(0)(1+ ζ1)+ f(0)

]

=−x2(1− γ)2

4a(0)E4

[
E2

1(E
2
3 −E4)

(
(2a(0)+ b(0))2 − b(0)2

)
+(E3d(0)+ (E1E3 +E4)b(0))

2

+4a(0)
(
d(0)E1(E

2
3 −E4)− e(0)E4(E1 +E3)− c(0)E4(E

2
1 +2E1E3 +E4)− f(0)E4

)]
:= x2(1− γ)2K,

where

E1 = erδT , E3 =E(1+ ζ1 − erδT ) = eµnδT − erδT ,

E4 =E(1+ ζ1 − erδT )2 =
(
eµnδT − erδT

)2
+ e2µnδT (eσ

2
nδT − 1).

The optimizer is

θ∗T =− d(0)

2a(0)

E3

E4

−
(
1+

b(0)

2a(0)

)
E1E3

E4

− b(0)

2a(0)
. (F.9)

So the terminal condition for the ODE system is

a(T ) =
1

2
+ e−ρt1(1− γ)2K, b(T ) =−β, c(T ) =

β2

2

d(T ) = β− 1, e(T ) = β(1−β), f(T ) =
1

2
(1−β)2.

(F.10)

Note that K in the terminal condition depends on the time-0 value of the solution, which will be

determined via a fixed point iteration.

The existence and uniqueness of the solution to the one-period ODE problem can be proved

straightforwardly. The existence and uniqueness of a fixed point for the infinite-horizon problem

can be established using an iterative method similar to Theorem 3, and the verification result

similar to Proposition 4.

In the case where r= 0, it can be directly verified that the unique solution to the ODE system

satisfies M = 0 in the connection condition. Also, by solving the system explicitly and plugging the

solution into (F.2), one gets

θ∗ = β
x̄

s̄
− µ

σ2

x̄

s

[
x− x̄

x̄
−β

s− s̄

s̄

]
.
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Table 7 Statistics for Slippage with Identical Daytime and Nighttime Volatilities

Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (-1x) (-2x) (2x) (-1x) (-2x) (2x) (-1x) (-2x)

10−6 Mean 0.5019 0.8119 1.4090 0.9691 1.1842 2.9134 1.7618 1.9088 5.2990
Std dev 0.2918 0.3188 1.0024 0.7393 1.2960 4.5102 2.9638 2.4634 6.5547

10−5 Mean 0.6749 0.8987 1.8636 1.0137 1.2181 3.0336 1.8714 2.0150 5.6400
Std dev 0.5321 0.6729 1.7077 1.6467 0.8698 3.5561 3.0800 4.2939 7.1519

10−4 Mean 1.0160 1.1585 2.8645 1.2194 1.3665 3.5591 3.3318 3.4765 10.2935
Std dev 1.4879 1.1545 4.9152 1.3753 2.1473 3.4725 9.4185 4.7990 30.4733

10−3 Mean 1.9430 2.0350 5.7328 2.0132 2.1090 5.9587 9.5162 11.0682 40.8286
Std dev 3.3632 3.2548 7.1357 3.7753 2.2599 5.6642 36.3550 54.0954 843.5617

The slippage measure is defined as Di = |RX
i −βRS

i | and reported in bps. The statistics for simulation results are calculated
over the daily slippage for 2520× 20000 day (20000 sample paths, 2520 days per sample path), and the estimator is
constructed as the 1% trimmed mean of the daily absolute deviations. The strategies are defined in Definition 2.

Plugging this into the dynamics of X, we have

d

(
Xt − x̄

x̄
−β

St − s̄

s̄

)
=− µ

σ2

(
Xt − x̄

x̄
−β

St − s̄

s̄

)
(µdt+σdWt).

Therefore,

Xt − x̄

x̄
−β

St − s̄

s̄
≡ 0, θ∗ = β

x̄

s̄
.

G. The Case with Identical Daytime and Nighttime Volatilities

In Section 6, we compared the slippage performance for three strategies, where we assume the same

daytime and nighttime expected returns but different daytime and nighttime volatilities. However,

one may ask whether the performance is caused by the change of market return-risk characteristics

overnight. To this end, we perform an alternative test, where we keep both the expected return

and volatility the same during daytime and nighttime.

The result is shown in Table 7, showing that the Periodic-DN strategy still outperforms the

Periodic-D strategy; more precisely, accounting for the overnight jump risk is still beneficial.

H. Return Deviation during Multi-Day Periods

Throughout the paper, we have focused on the slippage, the daily deviation of the fund return

from the target return. There is a body of literature studying the return deviation in multi-day

periods; see, e.g., Cheng and Madhavan (2009), Avellaneda and Zhang (2010), and Haugh (2011).

For example, Avellaneda and Zhang (2010) derived an exact formula relating the multi-day fund

return with the multi-day underlying return in a continuous-time approximation, which implies

D̃T := log

(
XT

X0

)
−β log

(
ST

S0

)
=

∫ T

0

ηudu+
β−β2

2

∫ T

0

σ2
udu,

where ηu depends on the interest rate, borrowing cost, and fund management fees. In other words,

over the multi-day period [0, T ], the difference D̃T between the fund’s log return and β times the

underlying log return increases in the realized variance, with a proportionality constant of β−β2

2
.
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Table 8 Log Return Deviation D̃60 under Optimal Strategy over 60-day Periods

σ Statistics (2x) (-1x) (-2x)

0.05 Mean −0.5424 0.1729 0.2873
Std dev 0.1028 0.1299 0.3335

0.10 Mean −0.7260 −0.0036 −0.2501
Std dev 0.1820 0.4458 1.1652

0.15 Mean −1.0283 −0.3049 −1.1573
Std dev 0.7030 0.5900 3.1124

0.20 Mean −1.4519 −0.7284 −2.4302
Std dev 1.6999 1.8502 4.7017

The 60-day log return deviation D̃60 is defined as D̃60 = log
(

X60
X0

)
−β log

(
S60
S0

)
. Both the mean and standard deviation are

reported in percentage. The statistics for simulation results are calculated over 2520× 20000 day (20000 sample paths, 2520
days per sample path), and the estimator is constructed as the 1% trimmed mean of the daily D̃60. The rebalancing is via the
Periodic-DN strategy that considers both market closure and infinite horizon.

Since this proportionality constant is negative for β = 2,−1,−2, they predict that the LETF will

under-perform the leveraged return on the index when volatility is high.

Although our model differs from this strand of literature as we focus on the daily slippage and

consider more factors (e.g., interest rate, management fees, and market closure) in the optimal

strategy, we still expect these results to hold approximately. We also have the following two addi-

tional empirical predictions:

(i) Multi-day log return deviation D̃T from our strategy should decrease in the (squared) volatil-

ity.

(ii) The rate of such decrease should be similar for β = 2 and β =−1 (for which β−β2

2
=−1) and

higher for β =−2 (for which β−β2

2
=−3).

To investigate these two predictions, we consider the 60-day log return deviation D̃60. We perform

a simulation test similar to that in Panel B of Table 1 by calculating D̃60 under the Periodic-DN

strategy, for various values of volatility σ and multiple β.

The empirical result depicted in Table 8 meets our expectation. First, for any given β, D̃60

decreases in σ. For instance, for (2x) LETFs, the deviation is −0.5424% for σ= 0.05 and increases

to −1.4519% for σ = 0.20. This is consistent with our first prediction. Second, for (2x) fund,

the difference between the deviation for σ = 0.2 and σ = 0.05 equals −1.4519%− (−0.5424%) =

−0.9095%, which is very close to−0.9013% for the (-1x) fund. In comparison, the difference for (-2x)

fund is much higher at −2.7175%. This is consistent with our second prediction. More interestingly,

−2.7175% is approximately three times −0.9095% or −0.9013%, which is consistent with β−β2

2
for

β =−2 is three times the value for β = 2 or −1.


	Introduction
	Intuition
	Our Contribution and Literature Review
	Basic Setting and Notations
	Theoretical Results
	The Case without Market Frictions
	The Case with Market Frictions

	Optimal Daily Position

	Aiming in Front of Target

	Statistics of Daily Slippage
	Daily Slippage
	Impact of Market Closure

	Empirical Findings and Implications
	Weekend Effect
	Intraday Trading Volume

	Conclusion
	Derivation of the Explicit Value Function without Overnight Market Closure
	Homotheticity of the Value Function
	Solving the HJB Equation
	Proof of Theorem 3
	Main Steps
	One-period Problem
	Infinite-horizon Problem via Fixed Point Iteration

	Additional Proofs

	Evaluating Cost Functionals for Suboptimal Strategies without Market Overnight Closure
	The Case with Overnight Price Changes
	Expected Aggregated Costs with Overnight Price Changes


	The Case with Overnight Price Changes but without Market Frictions
	The Case with Identical Daytime and Nighttime Volatilities
	Return Deviation during Multi-Day Periods





