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Abstract 

The high temperature proton exchange membrane electrolyzer cells (HT-PEMEC) is 

promising for hydrogen generation from fluctuating and intermittent renewable energy. In this 

study, a data-driven method is developed to study the dynamic behavior of HT-PEMEC. This 

method combines multiphysics simulation and nonlinear system identification, avoiding 

expensive experimental costs and time-consuming full multiphysics calculations. Dynamic 

models for predicting the power consumption, hydrogen production and temperature are 

identified, and show high accuracy compared with multiphysics models. Subsequently, the 

identification model was used to predict the dynamic behavior of HT-PEMEC and design 

control strategies. Fuzzy control strategy and neural network predictive control strategy are 

implemented to alleviate overshoot and suppress fluctuations so as to improve the durability of 
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the electrolyzer. Moreover, the neural network predictive control strategy can better suppress 

the overshoot and fluctuation in the dynamic process. This data-drive digital-twin model can 

not only guide dynamic experimental research, but also can be extended to study the dynamics 

of various fuel cells and electrolyzer cells. 

Keywords ：  Proton exchange membrane electrolyzer cell; data-driven method; 

Numerical modelling; Dynamic research; Control strategy. 

Nomenclature 

Abbreviation 

HT-PEMEC High temperature proton exchange membrane electrolyzer cell 

TPB Trip phase boundary 

FLC Fuzzy logic control 

MPC Model predictive control 

NNPC Neural network predictive control 

GDL Gas diffusion layer 

MSE Mean square error 

Roman 

𝐵0 Permeability coefficient, m2 

𝐸𝑎𝑐𝑡 Activation energy, J•mol-1 

𝐶𝑝 Heat capacity at constant pressure 

𝐷𝑖
𝑒𝑓𝑓

 Effective diffusivity of species i, m2•s-1 
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𝐷𝑖𝑘
𝑒𝑓𝑓

 Knudsen diffusion coefficient of i, m2•s-1 

𝐷𝑖𝑚
𝑒𝑓𝑓

 Molecular diffusion coefficient of i, m2•s-1 

i Operating current density, A•m-2 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 Equilibrium Nernst potential, V 

𝐸𝐻2
0  Standard equilibrium potential for hydrogen oxidization, V 

F Faraday constant, 96485 C•mol-1 

𝑁𝑖 Flux of mass transport, kg•m-3•s-1 

𝑖0 Exchange current density, A•m-2 

n Number of electrons transferred per electrochemical reaction 

𝑃𝑂2
𝐿  Local O2 partial pressures, Pa 

𝑃𝐻2
𝐿  Local H2 partial pressures, Pa 

𝑃𝐻2𝑂
𝐿  Local H2O partial pressures, Pa 

u Velocity field, m3•s-1 

R Gas constant, 8.314 J•mol-1•K-1 

𝑦𝑖 Mole fraction of component i 

T Temperature, K 

 

1. Introduction 

Sustainable energy conversion and storage technologies are eagerly needed due to the 

rapidly increasing energy demand and the significant ecological crisis [1-2]. Moreover, the 
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wide application of intermittent and fluctuating renewable energy, such as photovoltaics and 

wind energy, requires efficient energy storage technology for reliable power supply [3]. 

Hydrogen is regarded as an environmentally friendly energy carrier. It can be generated by 

electrolysis reaction utilising excess renewable power, and transformed back to electrical 

energy by a fuel cell when the electricity supply is insufficient [4-5]. 

Compared with alkaline water electrolyzer (AWE), proton exchange membrane 

electrolyzer cell (PEMEC) can generate hydrogen at a higher current density, better dynamic 

performance and higher hydrogen purity [6-8]. With the development in electrolyte membrane, 

PEMECs can be operated at a higher temperature of 120 ℃-180 ℃, enabling the use of non-

noble metal catalyst [9-10]. Moreover, high temperature PEMEC (HT-PEMEC) can make good 

use of industrial waste heat for hydrogen production. Compared with solid oxide electrolyzer 

cell (SOEC) working at 700-800oC, the high temperature PEMEC shows the advantage of fast 

start-up and better durability. Compared with room temperature PEMEC, the electrochemical 

performance of HT-PEMEC is enhanced due to the high temperature conditions that promote 

electrode kinetics [11-15]. The increased operating temperature not only reduces the need for 

electrical energy (reversible voltage), from 1.18 V (80 ℃) to 1.16 V (130 ℃), but also reduces 

the heat required for electrochemical reactions, from 284 KJ mol-1 (80 ℃) to 243 KJ mol-1 

(130 ℃). Furthermore, water exists as water vapour under high temperature conditions, thus 

simplifying water management. 

Due to its great potential for hydrogen generation, experiments and modelling were 

conducted to investigate the dynamic and steady-state performance of HT-PEMEC. Li et al. 
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[16] developed three different flow field modes (cascade, serpentine and parallel) for cathode 

and anode, and experimentally evaluated the influence of different flow fields on polarization 

loss. The cathode flow field pattern was found to only impacts the ohmic polarization of the 

electrode, while the anode flow field pattern significantly affected the polarization related to 

the catalyst layer. Wu et al. [17] experimentally evaluated the influence of operating 

temperature and pressure on HT-PEMEC. The current density was increased while the voltage 

was decreased with increasing temperature and pressure. Li et al. [18] experimentally explored 

the influence of operating conditions on the voltage of HT-PEMEC. It was found that increasing 

the temperature under the pressure of 0.1 MPa increased the concentration loss but the ohmic 

loss remained unchanged, and the voltage loss caused by the temperature change could be 

suppressed by adjusting the pressure. Natarajan et al. [19] experimentally explored the effect 

of different calcination temperatures on high-temperature electrolysis performance. The 

PEMEC calcined at 500 ℃ achieved the best performance.  

Apart from experimental studies, several modeling studies were conducted on HT-

PEMEC. The models for PEMEC can be classified into groups: analytical models, semi-

empirical models and computational fluid dynamics (CFD) models. Among them, CFD models 

are widely used due to their strong interpretability and accuracy. Tijani et al. [20] built a 3D 

CFD model to optimize the bipolar plate of PEMEC. The optimized parallel flow field design 

can reduce both the pressure drop and the internal turbulence significantly. Jia et al. [21] 

developed a multiphysics model to study the dynamic behavior of oxygen in the electrolyzer 

manifold. It turns out that the pressure and gas velocity take about 2 seconds to stabilize and 
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the oxygen production rate and pressure drop can be adjusted by the number of channels. 

S.Toghyani et al. [22] proposed a finite element numerical simulation model to investigate the 

influence of operating conditions and structural parameters of HT-PEMEC on electrochemical 

performance. Bonanno et al. [23] evaluated the energy efficiency and exergy efficiency of 

PEMEC from a system perspective. The high system efficiency was due to the high heat 

utilization rate under thermally neutral conditions. Ruiz et al. [24] built a CFD model to 

investigate the effects of three different flow channel configurations (serpentine, multiple 

serpentine and parallel) on the performance of the electrolytic cell. The results show that the 

multiple-serpentine flow channel has better performance in terms of temperature uniformity 

and hydrogen generation. Toghyani et al. [25] proposed a non-isothermal model based on the 

finite volume method for efficiency and exergoeconomic analysis. The higher temperature was 

found to reduce the cost of the HT-PEMEC and increase the exergy efficiency, and the high-

pressure operating condition also promote cost reduction.  

Based on the above literature survey, it is clear that the current research focuses on the 

influence of operating conditions and structural parameters on the performance of HT-PEMEC, 

while the dynamic behaviour is rarely studied. The rapid electrochemical reaction easily causes 

overshoot and fluctuations in the dynamic behavior, which leads to a decrease in system 

durability. Therefore, the research of dynamic processes is necessary. As shown in Fig. 1a, 

experimental testing is very time consuming, expensive, and cannot provide detailed 

information in the electrolyzer cell. Multiphysics modeling can provide detailed information 

but it is computationally demanding. The method of combining the multiphysics model with 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

  7  
 

system identification is thus proposed to study the dynamic process of the nonlinear dynamic 

system to achieve both high accuracy and low computational cost. The dynamic research 

framework is presented in Fig. 1b. The multiphysics model was developed and validated to 

investigate the performance of HT-PEMEC. Datasets of dynamic behaviour are generated by 

adjusting the input of the multiphysics model. Then the datasets are used for system 

identification. The identification model is verified by comparison with the multiphysics model. 

Subsequently, the identification model is used to design control strategies. This method can 

also be extended to other dynamic studies of fuel cells and electrolyzer cells. 

 

Fig. 1. (a) The application limitations of experimental observation and multiphysics 

model; (b) Data-driven dynamic research framework.  
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2. Multi-physics model description 

The two-dimensional multiphysics model has been developed to explore the dynamic 

processes, including electrochemical reaction, temperature distribution, mass/momentum 

transportation and electron/ion conduction [30]. The schematic diagram of HT-PEMEC is 

shown in Fig. 2. In operation, water steam is introduced into the cathode and anode. The steam 

at the cathode side serves as a carrier gas. Gaseous H2O molecules transport through the 

porous anode to TPB, generating oxygen, hydrogen protons and electrons. Hydrogen protons 

diffuse through the membrane to the catalytic layer of the cathode, and combine with electrons 

to produce hydrogen molecules. The detailed model parameters are listed in Table 1. 

 

Fig.2. Schematic figure of the HT-PEMEC. 

Table 1. Physical and geometric parameters of the model. 

Parameter value unit 

Channel height 1 mm 

Channel length 50 mm 
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Membrane thickness 0.1 mm 

Catalyst layer thickness 0.05 mm 

Gas diffusion layer thickness 0.38 mm 

Operating temperature 403.15 K 

Operating pressure 1 bar 

Porosity of catalyst layer 0.3  

GDL porosity 0.4  

Catalyst layer permeability 2.36×10-12 m2 

GDL permeability 1.18×10-11 m2 

Anode exchange current density 10-4 A cm-2 

Cathode exchange current density 0.1 A cm-2 

Anode gas flow rate 0.2 m s-1 

Cathode gas flow rate 0.2 m s-1 

Proton conductivity of electrolyte 20 S m-1 

2.1 Model assumption 

The following assumptions are utilized in the finite element method. 

(1) All porous materials are isotropic and homogeneous; 

(2) All gases (H2O, H2, O2) in the multi-physics model are regarded as ideal gases; 

(3) TPB is evenly distributed in the porous catalyst layer. 

2.2 Electrochemical reaction 

In this model, the electrolysis reaction of the anode and cathode is written as Eq. (1) and 

(2). 

Anode: 2H2O →O2 +4H++4e-                             (1) 

Cathode: 2H++2e-→H2                                 (2) 

Equilibrium potential of the electrochemical reaction can be calculated as follows. 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 = 𝐸𝐻2
0 +

𝑅𝑇

2𝐹
𝑙𝑛 [

𝑃𝐻2
𝐿 (𝑃𝑂2

𝐿 )
1
2⁄

𝑃𝐻2𝑂
𝐿 ]                  (3) 
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Here EH2
0 represents the standard potential of the electrochemical reaction. 𝑃𝐻2

𝐿 , 𝑃𝐻2𝑂
𝐿  

and 𝑃𝑂2
𝐿  represent the local pressure of various gases. Moreover, the local gas partial pressure 

at TPB is used, thereby the concentration loss is incorporated in the equilibrium potential Eq. 

(3).  

The operating voltage applied to the electrodes of the electrolyzer is expressed as Eq. (4). 

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 + 𝜂𝑎𝑐𝑡 + 𝜂𝑜ℎ𝑚                (4) 

The activation overpotential (𝜂𝑎𝑐𝑡 ) represents the energy barrier of the electrolysis 

reaction on the porous electrode, which is mainly related to the electrode material and 

microstructure. The activation overpotential can be expressed by the Buttler-Volmer equation. 

i = 𝑖0 {𝑒𝑥𝑝 (
𝛼𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
) − 𝑒𝑥𝑝 (

(1−𝛼)𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
)}               (3) 

𝑖0 =γexp(−
𝐸𝑎𝑐𝑡

𝑅𝑇
)                       (4) 

Here 𝛼  represents the transfer coefficient, n represents the number of transferred 

electrons, 𝐸𝑎𝑐𝑡denotes the activation energy of the electrochemical reaction, γ denotes the 

pre-exponential factor of Eq. (4). 

The ohmic overpotential (𝜂𝑜ℎ𝑚 ) is caused by the resistance of proton and electron 

transport in the electrolyzer, which usually is expressed by the Ohm law. 

2.3 Fluid flow and mass transport 

The mass transport of various gases in porous media and channels is described by Eq. (5) 

and Eq. (6) [26]. 

𝑁𝑖 = −
1

𝑅𝑇
(
𝐵0𝑦𝑖𝑃

𝜇
∇𝑃 − 𝐷𝑖

𝑒𝑓𝑓
∇(𝑦𝑖𝑃)) (i=1,2,…..n)        (5) 
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𝐷𝑖
𝑒𝑓𝑓

=
𝜀

𝜏
(

1

𝐷
𝑖𝑚
𝑒𝑓𝑓 +

1

𝐷
𝑖𝑘
𝑒𝑓𝑓)                        (6) 

Here 𝑁𝑖  represents the mass transfer flux of component i, 𝑦𝑖  represents the molar 

fraction of i, 𝐵0 represents permeability coefficient, 𝜇 is gas viscosity, 𝜏 is tortuosity, 𝜀 is 

porosity. Furthermore, the mass conservation is expressed as Eq. (7). 

∇(−𝐷𝑖
𝑒𝑓𝑓
∇𝐶𝑖) = 𝑅𝑖                        (7) 

Here 𝐶𝑖 and 𝑅𝑖 are the mole concentration and the mass source term of component i, 

respectively.  

Navier-Stokes equation is utilised to calculate the momentum transfer in porous media 

and channels [27]. 

ρ
∂u

∂t
+ ρu∇u = −∇p + ∇ [𝜇(∇u + (∇u)𝑇) −

2

3
𝜇∇u] −

𝜀𝜇u

𝐵0
          (8) 

Here u and ρ is the velocity vector and gas density. Table 2 lists the physical parameters 

of various gases. 

 

Table 2. Physical properties of gaseous components [28]. 

Parameter  Value 

Viscosity of H2O (-36.826+4.29e-1•T-1.62 e-5•T2)•1e-7 [Pa•s] 

Viscosity of H2 (27.758+2.12e-1•T-3.28e-5•T2)•1e-7 [Pa•s] 

Viscosity of O2 (44.224+5.62e-1•T-1.13e-5*T2)•1e-7 [Pa•s] 

Heat capacities of H2O 33.93-8.42e-2•T+2.99e-5•T2-1.78e-8•T3+ 3.69e-12•T4 [J/mol•

K] 
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Heat capacities of H2 25.4+2.02e-2•T-3.85e-5•T2+3.19e-8•T3-8.76e-12•T4 [J/mol•

K] 

Heat capacities of O2 29.53-8.90e-2•T+3.81e-5•T2-3.26e-8•T3+ 8.86•e-12*T4 [J/mol

•K] 

Thermal conductivities of H2O 0.53e-3+4.71e-4•T+4.96e-8•T2 [W/m/K] 

Thermal conductivities of H2 0.36e-1+4.59e-4•T-6.49e-8•T2 [W/m/K] 

Thermal conductivities of O2 0.12e-2+8.62e-4•T-1.33e-8•T2 [W/m/K] 

 

2.4 Temperature field model  

The electrochemical reaction is endothermic but the overpotential loss is exothermic, and 

the temperature distribution can be calculated by the heat balance equation as Eq. (8) and Eq. 

(9) [29]. 

ρ𝐶𝑝𝑢 • ∇𝑇 + ∇(−𝜆𝑒𝑓𝑓∇𝑇) = 𝑄                     (8) 

𝜆𝑒𝑓𝑓 = (1 − 𝜀)𝜆𝑠 + 𝜀𝜆𝑔                        (9) 

Here 𝐶𝑝  is the fluid heat capacity, u is the flow rate, 𝜆𝑒𝑓𝑓  is the effective thermal 

conductivity, 𝜆𝑠  represents the solid thermal conductivity, 𝜆𝑔  represents gaseous thermal 

conductivity. 𝑄 represents heat source, including heat generation (𝑄𝐺𝑒𝑛) due to overpotential 

loss and heat consumption (𝑄𝐶𝑜𝑛) due to electrolysis reaction. 

{
𝑄𝐺𝑒𝑛 = 𝐸𝐼𝑟𝑟 × i

𝑄𝐶𝑜𝑛 = 𝑇∆𝑆 = ∆𝐻 − ∆𝐺
                     (10) 

Here 𝐸𝐼𝑟𝑟 is overpotential, ∆𝑆 and ∆𝐻 are the entropy change and reaction enthalpy, 
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∆𝐺 represents the Gibbs free energy. 

2.5 Boundary conditions and validation 

Both the cathode and anode of HT-PEMEC are open-end. The operating voltage is applied 

to the outer surfaces of the anode and cathode. Back gas pressure is specified as 1 atm. The 

operating temperature and flow rate of the anode and cathode inlets are specified. The walls 

are adiabatic. The time step of the dynamic solver is set to 0.01s. The multiphysics model was 

solved utilising the finite element method. More details about the model and the model 

validation can be found in ref. [30, 35]. 

3. Dynamic system identification 

Multiphysics model can provide more accurate results than analytical models and semi-

experimental models, thus it is widely used to analyze the dynamic and static behaviour of 

electrolyzer cells and fuel cells. However, the calculation process of the multiphysics model is 

time-consuming, thereby it is not suitable for real-time control purpose. Transfer functions or 

state equations are obtained which are necessary for complex control strategies, such as robust 

control and predictive control. The transfer functions identified from the multiphysics model 

is a very efficient method. It not only ensures the accuracy of the model but also improves 

computational efficiency. 

The measured data is required to adequately reflect the dynamic behaviour of the system 

to identify an accurate model. Therefore, the dynamic behaviour between random non-periodic 

steady-state operating points is measured, and the time interval of the step response allows the 
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dynamic process to reach a steady-state to obtain a time constant. Fig. 3 shows the identification 

and validation data obtained from the multiphysics model. Identification data and validation 

data are collected by adjusting the operating voltage, and the anode flow rate was sufficiently 

large to suppress reactant starvation during the dynamic process. The data is acquired with a 

sampling interval of 0.01 s and a duration of 1200 s. Furthermore, two sets of dynamic data are 

obtained from the multiphysics model, one set of data is used to identify the transfer functions 

model and the other set of data is used for validation.  

 

Fig. 3. (a) The voltage adjustment in identification data; (b) The voltage regulation in 

validation data. 

The transfer function model was identified from the identification data using System 

Identification ToolboxTM of Matlab. The research focuses on identifying the dynamic behaviour 

of the electrolytic cell without considering a specific mathematical structure, hence the black-

box identification technique is chosen. However, black-box modelling is generally an error-

and-trial process, thus the structure and parameters of the model are estimated and compared 

to determine model accuracy. System identification usually starts with a linear structural model 
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and attempts to use higher order models or non-linear structures when the fit is poor. The 

method of system identification is regarded as a single-input single-output (SISO) model to 

reduce the coupling between different sub-models to improve identification accuracy. The 

power consumption sub-model, the hydrogen generation sub-model and the temperature sub-

model were developed to study the control strategy in the dynamic process and calculate the 

electrolysis efficiency. 

The efficiency of an HT-PEMEC can be determined as a ratio of input energy to output 

energy. The input energy includes the input electrical energy and the input thermal energy for 

heating gas, and the output energy is the chemical energy produced [31].  

η =
(�̇�𝑜,𝐻2−�̇�𝑖,𝐻2)𝐿𝐻𝑉𝐻2

𝑉 ∫ 𝑖𝑑𝑧
𝐿𝑅𝑈
0 +�̇�𝑖,𝑐𝑎 ∫ 𝐶𝑝,𝑔,𝑐𝑎𝑑𝑇

𝑇𝑖,𝑐𝑎
𝑇0

+�̇�𝑖,𝑎𝑛 ∫ 𝐶𝑝,𝑔,𝑎𝑛𝑑𝑇
𝑇𝑖,𝑎𝑛
𝑇0

             (11) 

Where �̇�𝑖,𝐻2  and �̇�𝑜,𝐻2  are hydrogen mass flow rate at inlet and outlet. �̇�𝑖,𝑐𝑎  and 

�̇�𝑖,𝑎𝑛 denote the cathode and anode gas mass flow rates, respectively. 𝐶𝑝,𝑔,𝑐𝑎 and 𝐶𝑝,𝑔,𝑎𝑛 

represent the cathode and anode gas heat capacities. 

3.1 Identification results 

The structure and order of the linear model are obtained by trial and error, and the general 

output-error (OE) model is represented as Eq. (12) [32]. 

y(t) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑡 − 𝑛) + 𝑒(𝑡)                 (12) 

Here u(t) denotes system input, y(t) denotes the system output, e(t) denotes system 

disturbance, n indicates system delay. F(z) and B(z) are polynomials with regard to the z-1 

operator, respectively. 
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{
𝐵(𝑧) = 𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 +⋯+ 𝑏𝑘𝑏−1𝑧

−(𝑘𝑏−1)

𝐹(𝑧) = 1 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2 +⋯+ 𝑓𝑘𝑓𝑧
−𝑘𝑓            (13) 

HT-PEMEC is a non-linear system and therefore non-linear factors need to be added to 

the linear model. Hammerstein-Wiener models are generally used to describe the dynamic 

behaviour of non-linear systems. As shown in Fig. 4, the Hammerstein-Wiener model consists 

of a linear block, an input nonlinearity and an output nonlinearity. The linear block is used to 

describe the dynamics of the modeled system, while the input nonlinearity and output 

nonlinearity are used to reflect the nonlinear characteristics of the system. 

 

Fig. 4. Hammerstein-Wiener model framework 

The accuracy of the fit can be described as Eq. (14). 

Fit = (1 −
‖𝑦−�̂�‖

‖𝑦−�̂�‖
) × 100%                  (14) 

Here y represents the output of multiphysics data, �̂�  denotes the output of the 

identification model. �̅� denotes the average of y. 

The mean squared error (MSE) is also used to validate the model and is expressed as Eq. 

(15). 

MSE =
1

𝑁
∑ (𝑦 − �̂�)2𝑁
𝑗=1                  (15) 

Here N denotes the total number of data, and j represents the jth output result. 
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3.1.1 Applied voltage versus power consumption sub-model 

System dynamics are first obtained by identifying linear systems to determine the 

coefficients of B and F. Subsequently, the best performance was observed by describing the 

input nonlinearity and the output nonlinearity using segmented functions and one-dimensional 

polynomials respectively. The voltage versus power consumption sub-model can be expressed 

as Eq. (16). 

 

{
  
 

  
 𝑓(𝑡) = {

2.54𝑢(𝑡) − 3.8490 ≪ 𝑢(𝑡) < 1.65
4.065𝑢(𝑡) − 6.367𝑢(𝑡) ≥ 1.65

{

𝑤(𝑡) = [
B(z)

F(z)
] 𝑣(𝑡) + 𝑒(𝑡)

B(z) = 𝑧−1 − 0.9918𝑧−2

F(z) = 1 − 0.9372𝑧−1 − 0.0077𝑧−2 − 0.0452𝑧−3

𝑔(𝑡) = 5.1478𝐸3𝑤(𝑡)2 + 2.2109𝐸3𝑤(𝑡) + 315.6857

      (16) 

Here u(t) is applied voltage, y(t) is power density (W m-2). Fig. 5 shows the results of the 

identification and validation data compared to the output of the identification model. The power 

consumption sub-model is able to describe the system dynamics and the corresponding 

evaluation indicators are listed in Table 3. 

 

Fig. 5. (a) Comparison of identification model output and identification data; (b) 
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Comparison of identification model output and validation data 

3.1.2 Applied voltage versus hydrogen generation sub-model 

The hydrogen generation sub-model has a similar structure to the power consumption sub-

model because the hydrogen generated is proportional to the current density. Therefore, the 

best performance is obtained by selecting the piecewise function to describe the input 

nonlinearity and the one-dimensional polynomial to describe the output nonlinearity, 

respectively. The voltage versus hydrogen generation sub-model can be expressed as Eq. (17). 

{
 
 
 

 
 
 𝑓(𝑡) = {

1.448𝑢(𝑡) − 2.1970 ≪ 𝑢(𝑡) < 1.62
1.966𝑢(𝑡) − 3.035𝑢(𝑡) ≥ 1.62

{

𝑤(𝑡) = [
B(z)

F(z)
] 𝑣(𝑡) + 𝑒(𝑡)

B(z) = 𝑧−1 − 0.9926𝑧−2

F(z) = 1 − 1.17183𝑧−1 + 0.8562𝑧−2 − 0.1345𝑧−3

𝑔(𝑡) = 1.7556𝐸−4𝑤(𝑡)2 + 1.1739𝐸−4𝑤(𝑡) + 3.1594𝐸−5

      (17) 

Here u(t) is applied voltage, y(t) is hydrogen generated (kg m-2 s-1). As shown in Fig. 6, 

the identification model output is compared with the identification and validation data to verify 

the hydrogen generation sub-model. Furthermore, the performance indicators are summarized 

in Table 3. 
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Fig. 6. (a) Comparison of identification model output and identification data; (b) 

Comparison of identification model output and validation data 

3.1.3 Applied voltage versus temperature sub-model 

Heat transfer is slow compared to the dynamics of other physical parameters and the 

model has high delays and strong non-linearity. The best performance of the identification 

model was observed through the use of segmentation functions and one-dimensional 

polynomials to describe input nonlinearity and output nonlinearity. The voltage versus 

temperature sub-model can be expressed as Eq. (18). 

{
 
 
 

 
 
 𝑓(𝑡) = {

0.1296𝑢(𝑡) − 0.22250 ≪ 𝑢(𝑡) < 1.61
0.5676𝑢(𝑡) − 0.9277𝑢(𝑡) ≥ 1.61

{

𝑤(𝑡) = [
B(z)

F(z)
] 𝑣(𝑡) + 𝑒(𝑡)

B(z) = −0.422𝑧−1 + 𝑧−2 − 0.4538𝑧−3 − 0.7063𝑧−4 + 0.8802𝑧−5 − 0.2982𝑧−6

F(z) = 1 − 3.1524𝑧−1 + 3.0392𝑧−2 + 0.6171𝑧−3 − 3.3842𝑧−4 + 2.5233𝑧−5 − 0.643𝑧−6

𝑔(𝑡) = 29.7651𝑤(𝑡)2 − 17.5995𝑤(𝑡) + 414.9453

(18) 

Here u(t) is applied voltage, y(t) denotes operating temperature (K). Fig. 7 shows the 

comparison of the identification and validation data with the model output. The temperature 

identification model has a lower fit compared to the power consumption sub-model and the 

hydrogen generated sub-model, due to the high latency and strong non-linearity of the 

temperature model. However, the errors are acceptable and the corresponding evaluation 

indicators are listed in Table 3. 
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Fig. 7. (a) Comparison of identification model output and identification data; (b) 

Comparison of identification model output and validation data 

 

Table 3. Identification model evaluation index. 

Indicator Power consumption sub-model Hydrogen generated sub-

model 

Temperature sub-model 

Identification 

data 

Validation 

data 

Identification 

data 

Validation 

data 

Identification 

data 

Validation 

data 

Fit (%) 97.57 96.31 98.1 97.87 92.66 87.73 

MSE 0.913 1.352 6.253E-12 9.918 E-12 0.1011 0.2295 

 

4. Dynamic control strategy 

The utilization of excess renewable energy to produce hydrogen for subsequent fuel cells 

and industrial applications is the most promising pathway for HT-PEMEC. However, the fast 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

  21  
 

electrochemical response easily triggers excessive overshoot and fluctuation, resulting in poor 

durability and dynamic performance. Therefore, dynamic research is necessary for long-term 

stable operation. Dynamic multi-physics models can be used to analyze the dynamic behaviour 

of electrolyzer cells to develop control strategies. Subsequently, the performance of the control 

strategy can be verified in the identified dynamic system to provide a reference for the 

experiment. 

4.1 Dynamic behaviour 

The dynamic process of HT-PEMEC can be divided into two stages, namely, rapid 

electrochemical response and relatively slow mass transfer process. As shown in Fig. 8, the 

transient process of the operating voltage from 1.6 V to 1.7 V.  

 

Fig. 8. (a) Dynamic response of power consumption; (b) Dynamic response of steam 

mole fraction in the catalytic layer. 

An obvious overshoot exists in the dynamic process of power response. The power 

consumption rises rapidly due to the fast electrochemical response, however, the relatively slow 
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mass transfer process leads to a rapid decrease in the reactant concentration, which eventually 

causes the power consumption to drop to a steady state. To alleviate overshoot and fluctuation, 

it is essential that the electrochemical response be adjusted during the dynamic process. 

4.2 Fuzzy logic control strategy 

Fuzzy logic control (FLC) strategy is a rule-based nonlinear control method. Moreover, 

the main advantage of the method can be applied to dynamic systems where models are difficult 

to obtain, and inference rules can be designed based on the experience of human experts [33]. 

The 2D FLC can adjust the control strategy according to the error and the change of the error 

in real time, and its work flow is shown in Fig. 9. The fuzzification process uses membership 

functions to convert precise input into fuzzy language, and then calculates the output through 

pre-set inference rules, lastly, the output is converted into precise control parameters by 

defuzzification. 

 

Fig. 9. The 2D fuzzy logic controller framework 
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Fig. 10. (a) Membership function of the error; (b) Membership function of the change of 

error; (c) Membership function of the change of kp; (d) Membership function of the change of 

ki; (e) Membership function of the change of kd; (f) Output characteristic of the change of kp; 

(g) Output characteristic of the change of ki; (h) Output characteristic of the change of kd; 
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Here Pre is the reference power, Pac is the actual power density. △ kp, △ kd and △ ki 

are the changes in the control coefficients respectively. This fuzzy logic block has three outputs 

and two inputs; the inputs represent the error and the change of error, and the outputs are the 

changes in kp, kd and ki respectively. The fuzzy subsets of output and input are divided into 

{NB, NM, NS, ZO, PS, PM, PB}. Moreover, the output characteristics and membership 

function are shown in Fig. 10. The fuzzy logic control strategy is applied as the control signal 

is initially enhanced to accelerate the dynamic response and subsequently reduced to suppress 

overshoot.  

4.3 Neural Network Predictive Control Strategy 

Model predictive control is a nonlinear control strategy based on model prediction and 

online optimization. Moreover, model predictive control has a wider control horizon due to the 

ability to predict dynamic behavior compared to other control strategies [34]. The neural 

network predictive control (NNPC) strategy uses a non-linear neural network to predict the 

dynamic behavior of the HT-PEMEC, thereby optimizing the dynamic behavior to reduce 

overshoot. The detailed workflow of NNPC is shown in Fig. 11 and specific implementation 

steps can refer to the Deep Learning Toolbox of Matlab. 
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Fig. 11. The Neural network predictive control framework 

Here Pm is the predictive model output, um is the predictive model input and uac is 

the actual electrolyzer input. The optimization is implemented through the calculation of Eq. 

20, and then the optimized input voltage uac is supplied to the electrolyzer to optimize the 

dynamic process. 

J = ∑ [𝑃𝑟𝑒(𝑘 + 𝑗) − 𝑃𝑚(𝑘 + 𝑗)]
2 + 𝜌∑ [𝑢𝑚(𝑘 + 𝑗 − 1) − 𝑢𝑚(𝑘 + 𝑗 − 2)]

2𝑁𝑐
𝑗=1

𝑁𝑝
𝑗=1

   (20) 

Here 𝑁𝑐 represents the control time domain length, 𝑁𝑝 represents the predicted time 

domain length and 𝜌 is the weighting factor. Optimization is performed by calculating the 

minimum value of J. NNPC adjusts the operating voltage by predicting the dynamic behavior 

of HT-PEMEC to alleviate overshoot and fluctuation. 

4.4 Results and analysis 

Fuzzy logic control strategy and neural network predictive control strategy are applied in 

the dynamic process of HT-PEMEC to suppress overshoot and fluctuation. The random 

variation of power consumption is used to represent renewable energy, with an interval of 30 

seconds and a sampling interval of 0.01s. Furthermore, the dynamic response and control 
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strategy of the electrolyzer were compared, as shown in Fig. 12. 

 

Fig.12. (a) Dynamic response of power consumption; (b) Dynamic response of 

hydrogen generated; (c) Dynamic response of temperature; (d) Efficiency changes in dynamic 

processes. 

The dynamic behavior of energy consumption is shown in Fig. 12a. Neural network 

predictive control strategy shows better dynamic performance and smaller overshoot compared 

to the fuzzy control strategy. Neural network predictive control can predict the dynamic 

behaviour of HT-PEMEC for online optimization, compared with the fuzzy logic control 

strategy optimized based on real-time error and error change rate, it has a wider control horizon. 

The fuzzy logic control strategy calculates the controller output according to the pre-made 

fuzzy inference rules, which requires fewer calculation resources than online calculation. The 

hydrogen generation rate in the dynamic process is shown in Fig. 12b. The hydrogen 
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production rate in the fuzzy control strategy is greater than the neural network predictive 

control strategy due to the dramatic power consumption increase and excessive overshoot in 

the initial phase of the dynamic process, the subsequent two control strategies maintain the 

same hydrogen production rate. The temperature response of neural network predictive control 

is similar to the fuzzy logic control strategy, and the results are shown in Fig. 12c. The dynamic 

efficiency calculation can be divided into the input electric energy, the heating gas energy, and 

the chemical energy produced. As shown in Fig. 12b and Fig. 12c, There is little difference 

between the energy of heating gas and the chemical energy produced in the dynamic process, 

thus the fluctuation of efficiency is mainly affected by the input electric energy. It can be 

observed from Fig. 12d that the fluctuation of the efficiency during the dynamic process 

corresponds to the overshoot of the power consumption. Overall, neural network predictive 

control strategies can provide better dynamic performance. 

 

Conclusions 

Traditional experimental observations require complex instruments and high experimental 

costs to study the dynamic process of HT-PEMEC. Moreover, the widely used multiphysics 

model is time-consuming and requires a lot of computing resources. The data-driven dynamic 

research method is proposed by combining multiphysics models and system identification 

methods. A 2D multiphysics simulation model was established to study the electrolyzer cell, in 

which electrochemistry, mass transfer, momentum transfer and heat transfer were considered. 
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Subsequently, the dynamic data generated by the multiphysics model is used for system 

identification. Furthermore, The identification model is verified by comparison with the 

multiphysics model. 

To predict the dynamic behaviour of HT-PEMEC and calculate the efficiency in the 

dynamic process, the power consumption sub-model, the hydrogen generation sub-model and 

the operating temperature sub-model are identified. Fuzzy logic control strategy and neural 

network predictive control strategy are designed to control power consumption to improve 

dynamic behavior. Neural network predictive control shows better dynamic performance and 

smaller overshoot compared to fuzzy logic control strategies, but it requires more computing 

resources. 

This data-driven approach provides a promising solution by combining multiphysics 

models and system identification, which can quickly and accurately analyze the performance 

of nonlinear dynamic systems. Currently, this method is only used in the single-input single-

output system, and then can be applied to a multiple-input multiple-output system and consider 

the coordinated control of multiple physical parameters. 
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Abstract 

The high temperature proton exchange membrane electrolyzer cells (HT-PEMEC) are 

promising for hydrogen generation from fluctuating and intermittent renewable energy. In this 

study, a data-driven method is developed to study the dynamic behavior of HT-PEMEC. This 

method combines multiphysics simulation and nonlinear system identification, avoiding 

expensive experimental costs and time-consuming full multiphysics calculations. Dynamic 

models for predicting the power consumption, hydrogen production and temperature are 

identified, and the verified fit is 96.31%, 97.87%, 87.73%, respectively, which demonstrated 

the accuracy of the identification model. Subsequently, the identification model was used to 

predict the dynamic behavior of HT-PEMEC and design control strategies. Fuzzy control 

strategy and neural network predictive control strategy are implemented to alleviate overshoot 
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and suppress fluctuations so as to improve the durability of the electrolyzer. Moreover, 

compared with the fuzzy control strategy, the neural network predictive control strategy 

reduces the power overshoot by approximately 92%. This data-drive digital-twin model can 

not only guide dynamic experimental research, but also can be extended to study the dynamic 

behavior of various fuel cells and electrolyzer cells. 

Keywords: Proton exchange membrane electrolyzer cell; data-driven method; Numerical 

modeling; Dynamic research; Control strategy. 

Nomenclature 

Abbreviation 

HT-PEMEC High temperature proton exchange membrane electrolyzer cell 

TPB Trip phase boundary 

FLC Fuzzy logic control 

MPC Model predictive control 

NNPC Neural network predictive control 

GDL Gas diffusion layer 

MSE Mean square error 

Roman 

𝐵0 Permeability coefficient, m2 

𝐸𝑎𝑐𝑡 Activation energy, J•mol-1 

𝐶𝑝 Heat capacity at constant pressure, J•mol-1•K-1 
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𝐷𝑖
𝑒𝑓𝑓

 Effective diffusivity of species i, m2•s-1 

𝐷𝑖𝑘
𝑒𝑓𝑓

 Knudsen diffusion coefficient of i, m2•s-1 

𝐷𝑖𝑚
𝑒𝑓𝑓

 Molecular diffusion coefficient of i, m2•s-1 

i Operating current density, A•m-2 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 Equilibrium Nernst potential, V 

𝐸𝐻2
0  Standard equilibrium potential for hydrogen oxidization, V 

F Faraday constant, 96485 C•mol-1 

𝑁𝑖 Flux of mass transport, kg•m-3•s-1 

𝑖0 Exchange current density, A•m-2 

n Number of electrons transferred per electrochemical reaction 

𝑃𝑂2
𝐿  Local O2 partial pressures, Pa 

𝑃𝐻2
𝐿  Local H2 partial pressures, Pa 

𝑃𝐻2𝑂
𝐿  Local H2O partial pressures, Pa 

u Velocity field, m3•s-1 

R Gas constant, 8.314 J•mol-1•K-1 

𝑦𝑖 Mole fraction of component i 

T Temperature, K 

 

1. Introduction 

Sustainable energy conversion and storage technologies are eagerly needed due to the 
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rapidly increasing energy demand and the significant ecological crisis [1-2]. Moreover, the 

wide application of intermittent and fluctuating renewable energy, such as photovoltaics and 

wind energy, requires efficient energy storage technology for reliable power supply [3]. 

Hydrogen is regarded as an environmentally friendly energy carrier. It can be generated by the 

electrolysis reaction utilizing excess renewable power, and transformed back to electrical 

energy by a fuel cell when the electricity supply is insufficient [4-5]. 

Compared with alkaline water electrolyzer (AWE), proton exchange membrane 

electrolyzer cell (PEMEC) can generate hydrogen at a higher current density, better dynamic 

performance and higher hydrogen purity [6-8]. With the development of electrolyte membrane, 

PEMECs can be operated at a higher temperature of 120 ℃-180 ℃, enabling the use of non-

noble metal catalyst [9-10]. Moreover, high temperature PEMEC (HT-PEMEC) can make good 

use of industrial waste heat for hydrogen production. Compared with solid oxide electrolyzer 

cells (SOEC) working at 700-800oC, the HT-PEMEC shows the advantage of fast start-up and 

better durability. Compared with low temperature PEMEC, the electrochemical performance 

of HT-PEMEC is enhanced due to the high temperature conditions that promote electrode 

kinetics [11-15]. The increased operating temperature not only reduces the need for electrical 

energy (reversible voltage), from 1.18 V (80 ℃) to 1.16 V (130 ℃), but also reduces the heat 

required for electrochemical reactions, from 284 KJ mol-1 (80 ℃) to 243 KJ mol-1 (130 ℃). 

Furthermore, water exists as water vapor under high temperature conditions, thus simplifying 

water management. 

Due to its great potential for hydrogen generation, experiments and modeling were 
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conducted to investigate the dynamic and steady-state performance of HT-PEMEC. Aili et al. 

[16] developed a polybenzimidazole blend membrane for high temperature steam electrolysis 

test. The membrane shows lower polarization loss, while the stability is poor at a high current 

density. Hansen et al. [17] experimentally investigated a phosphoric acid doped 

perfluorosulfonic acid membrane to improve stability at high temperatures. Compared with 

conventional perfluorosulfonic acid membranes, the membrane can maintain high stability and 

conductivity at a high temperature, high current density and acid conditions. Li et al. [18] 

developed three different flow field modes (cascade, serpentine and parallel) for cathode and 

anode, and experimentally evaluated the influence of different flow fields on polarization loss. 

The cathode flow field pattern was found to only impact the ohmic polarization of the electrode, 

while the anode flow field pattern significantly affected the polarization related to the catalyst 

layer. Wu et al. [19] experimentally evaluated the influence of operating temperature and 

pressure on HT-PEMEC. As the temperature and pressure increase, the current density of 

oxygen evolution increases, while the terminal voltage decreases. Garbe et al. [20] studied the 

effect of operating temperature on the overpotential loss. The experimental results show that 

activation loss is the main overpotential loss at high temperatures. Li et al. [21] experimentally 

explored the influence of operating conditions on the voltage of HT-PEMEC. It was found that 

increasing temperature under the pressure of 0.1 MPa increased the concentration loss but the 

ohmic loss remained unchanged, and the overpotential loss caused by the temperature change 

could be suppressed by adjusting the pressure. Natarajan et al. [22] experimentally explored 

the effect of different calcination temperatures on high-temperature electrolysis performance. 
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The PEMEC calcined at 500 ℃ achieved the best performance.  

Apart from experimental studies, several modeling studies were conducted on HT-

PEMEC. The models for PEMEC can be classified into groups: analytical models, semi-

empirical models and computational fluid dynamics (CFD) models. Among them, CFD models 

are widely used due to their strong interpretability and accuracy. Tijani et al. [23] built a 3D 

CFD model to optimize the bipolar plate of PEMEC. The optimized parallel flow field design 

can reduce both the pressure drop and the internal turbulence significantly. Ruiz et al. [24] built 

a CFD model to investigate the effects of three different flow channel configurations 

(serpentine, multiple serpentine and parallel) on the performance of the electrolytic cell. The 

results show that the multiple-serpentine flow channel has better performance in terms of 

temperature uniformity and hydrogen generation. Zhang et al. [25] developed a numerical 

model to evaluate the influence of the flow channel configuration on the electrolyzer cell. 

Compared with the co-flow mode, the counter-flow mode has a lower temperature and a greater 

temperature gradient. Jia et al. [26] developed a multiphysics model to study the dynamic 

behavior of oxygen in the electrolyzer manifold. It turns out that the pressure and gas velocity 

take about 2 seconds to stabilize, and the oxygen production rate and pressure drop can be 

adjusted by the number of channels. S.Toghyani et al. [27] proposed a finite element numerical 

simulation model to investigate the influence of operating conditions and structural parameters 

of HT-PEMEC on electrochemical performance. Scheepers et al. [28] investigated the effect of 

temperature optimization on the overall electrolysis process. The optimal temperature depends 

on the electrode pressure and operating voltage, and hydrogen permeation is significantly 
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alleviated by optimizing the temperature at low current densities. Bonanno et al. [29] evaluated 

the energy efficiency and exergy efficiency of PEMEC from a system perspective. The high 

system efficiency was attributed to the high heat utilization rate under thermally neutral 

conditions. Toghyani et al. [30] proposed a non-isothermal model based on the finite volume 

method for efficiency and exergoeconomic analysis. The higher temperature was found to 

reduce the cost of the HT-PEMEC and increase the exergy efficiency, and the high-pressure 

operating condition also promotes cost reduction. 

Based on the above literature survey, it is clear that the current research focuses on the 

influence of operating conditions and structural parameters on the performance of HT-PEMEC, 

while the dynamic behavior is rarely studied. The rapid electrochemical reaction and relatively 

slow mass transfer easily cause overshoot and fluctuations in the dynamic behavior, which 

leads to a decrease in system durability. Therefore, the research of dynamic processes is 

necessary. As shown in Fig. 1a, experimental testing is very time-consuming, expensive, and 

cannot provide detailed information in the electrolyzer cell. Multiphysics modeling can provide 

detailed information but it is computationally demanding. The method of combining the 

multiphysics model with system identification is thus proposed to study the dynamic process 

of the nonlinear dynamic system to achieve both high accuracy and low computational cost. 

The dynamic research framework is presented in Fig. 1b. The multiphysics model was 

developed and validated to investigate the performance of HT-PEMEC. Datasets of dynamic 

behavior are generated by adjusting the input of the multiphysics model. Then, the datasets are 

used for system identification. After the identification model is verified by comparison with 
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the multiphysics model, which is used to design control strategies. This method can also be 

extended to other dynamic studies of fuel cells and electrolyzer cells. 

 

Fig. 1. (a) The application limitations of experimental observation and multiphysics 

model; (b) Data-driven dynamic research framework.  

2. Multi-physics model development 

The two-dimensional multiphysics model has been developed to explore the dynamic 

processes, including electrochemical reaction, temperature distribution, mass/momentum 



 

  9  
 

transportation and electron/ion conduction [35]. The schematic diagram of HT-PEMEC is 

shown in Fig. 2.  It is noted that no microporous layer (MPL) is used in HT-PEMEC.  MPL 

is usually used in low temperature PEMFC for removing liquid water, while water is in the 

form of vapor in HT-PEMEC, thus it is not needed.  In operation, steam is introduced into the 

cathode and anode, while steam at the cathode side only serves as a carrier gas. Gaseous H2O 

molecules transport through the porous anode to TPB, generating oxygen, hydrogen protons 

and electrons. Hydrogen protons diffuse through the membrane to the catalytic layer of the 

cathode, and combine with electrons to produce hydrogen molecules. The detailed model 

parameters are listed in Table 1. 

 

Fig.2. Schematic figure of the HT-PEMEC. 

Table 1. Physical and geometric parameters of the model. 

Parameter value unit 

Channel height 1 mm 

Channel length 50 mm 

Channel width 1 mm 

Membrane thickness 0.1 mm 

Catalyst layer thickness 0.05 mm 
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Gas diffusion layer thickness 0.38 mm 

Operating temperature 403.15 K 

Operating pressure 1 bar 

Porosity of catalyst layer 0.3 [25]  

GDL porosity 0.4 [25]  

Catalyst layer permeability 2.36×10-12 [41] m2 

GDL permeability 1.18×10-11 [41]  m2 

Anode exchange current density 10-4 [42] A cm-2 

Cathode exchange current density 0.1 [42] A cm-2 

Anode gas flow rate 0.2 m s-1 

Cathode gas flow rate 0.2 m s-1 

Proton conductivity of electrolyte 20 [43] S m-1 

2.1 Model assumption 

The following assumptions are utilized in the finite element method. 

(1) All porous materials are isotropic and homogeneous; 

(2) All gases (H2O, H2, O2) in the multi-physics model are regarded as ideal gases; 

(3) TPB is evenly distributed in the porous catalyst layer. 

2.2 Electrochemical reaction 

In this model, the electrolysis reaction of the anode and cathode is written as Eq. (1) and 

(2). 

Anode: 2H2O →O2 +4H++4e-                       (1) 

Cathode: 2H++2e-→H2                          (2) 

The equilibrium potential of the electrochemical reaction can be calculated as follows. 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 = 𝐸𝐻2
0 +

𝑅𝑇

2𝐹
𝑙𝑛 [

𝑃𝐻2
𝐿 (𝑃𝑂2

𝐿 )
1
2⁄

𝑃𝐻2𝑂
𝐿 ]                  (3) 

Here EH2
0 represents the standard potential of the electrochemical reaction. 𝑃𝐻2

𝐿 , 𝑃𝐻2𝑂
𝐿  and 
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𝑃𝑂2
𝐿  represent the local pressure of various gases. Moreover, the local gas partial pressure at 

TPB is used, thereby the concentration loss is incorporated in the equilibrium potential Eq. (3).  

The operating voltage applied to the electrodes of the electrolyzer is expressed as Eq. (4). 

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 + 𝜂𝑎𝑐𝑡 + 𝜂𝑜ℎ𝑚                (4) 

Activation overpotential (𝜂𝑎𝑐𝑡) represents the energy barrier of the electrolysis reaction 

on the porous electrode, which is mainly related to the electrode material and microstructure. 

The activation overpotential can be expressed by the Buttler-Volmer equation. 

i = 𝑖0 {𝑒𝑥𝑝 (
𝛼𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
) − 𝑒𝑥𝑝 (

(1−𝛼)𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
)}               (3) 

𝑖0 =γexp(−
𝐸𝑎𝑐𝑡

𝑅𝑇
)                       (4) 

Here 𝛼  represents the transfer coefficient, n represents the number of transferred 

electrons, 𝐸𝑎𝑐𝑡denotes the activation energy of the electrochemical reaction, γ denotes the 

pre-exponential factor of Eq. (4). 

The ohmic overpotential (𝜂𝑜ℎ𝑚 ) is caused by the resistance of proton and electron 

transport in the electrolyzer, which usually is expressed by the Ohm law. 

2.3 Fluid flow and mass transport 

The mass transport of various gases in porous media and channels is described by Eq. (5) 

and Eq. (6) [31]. 

𝑁𝑖 = −
1

𝑅𝑇
(
𝐵0𝑦𝑖𝑃

𝜇
∇𝑃 − 𝐷𝑖

𝑒𝑓𝑓
∇(𝑦𝑖𝑃)) (i=1,2,…..n)        (5) 

𝐷𝑖
𝑒𝑓𝑓

=
𝜀

𝜏
(

1

𝐷
𝑖𝑚
𝑒𝑓𝑓 +

1

𝐷
𝑖𝑘
𝑒𝑓𝑓)                        (6) 

Here 𝑁𝑖  represents the mass transfer flux of component i, 𝑦𝑖  represents the molar 
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fraction of i, 𝐵0 represents permeability coefficient, 𝜇 is gas viscosity, 𝜏 is tortuosity, 𝜀 is 

porosity. Furthermore, the mass conservation is expressed as Eq. (7). 

∇(−𝐷𝑖
𝑒𝑓𝑓
∇𝐶𝑖) = 𝑅𝑖                        (7) 

Here 𝐶𝑖 and 𝑅𝑖 are the mole concentration and the mass source term of component i, 

respectively.  

Navier-Stokes equation is utilized to calculate the momentum transfer in porous media 

and channels [32]. 

ρ
∂u

∂t
+ ρu∇u = −∇p + ∇ [𝜇(∇u + (∇u)𝑇) −

2

3
𝜇∇u] −

𝜀𝜇u

𝐵0
          (8) 

Here u and ρ are the velocity vector and gas density. Table 2 lists the physical parameters 

of various gases. 

Table 2. Physical properties of gaseous components [33,44]. 

Parameter  Value 

Viscosity of H2O (-36.826+4.29e-1•T-1.62 e-5•T2)•1e-7 [Pa•s] 

Viscosity of H2 (27.758+2.12e-1•T-3.28e-5•T2)•1e-7 [Pa•s] 

Viscosity of O2 (44.224+5.62e-1•T-1.13e-5*T2)•1e-7 [Pa•s] 

Heat capacities of H2O 33.93-8.42e-2•T+2.99e-5•T2-1.78e-8•T3+ 3.69e-12•T4 [J•mol-

1•K-1] 

Heat capacities of H2 25.4+2.02e-2•T-3.85e-5•T2+3.19e-8•T3-8.76e-12•T4 [J•mol-1•

K-1] 

Heat capacities of O2 29.53-8.90e-2•T+3.81e-5•T2-3.26e-8•T3+ 8.86•e-12*T4 [J•

mol-1•K-1] 
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Thermal conductivities of H2O 0.53e-3+4.71e-4•T+4.96e-8•T2 [W•m-1•K-1] 

Thermal conductivities of H2 0.36e-1+4.59e-4•T-6.49e-8•T2 [W•m-1•K-1] 

Thermal conductivities of O2 0.12e-2+8.62e-4•T-1.33e-8•T2 [W•m-1•K-1] 

 

2.4 Temperature field model  

The electrochemical reaction is endothermic but the overpotential loss is exothermic, and 

the temperature distribution can be calculated by the heat balance equation as Eq. (8) and Eq. 

(9) [34]. 

ρ𝐶𝑝𝑢 • ∇𝑇 + ∇(−𝜆𝑒𝑓𝑓∇𝑇) = 𝑄                     (8) 

𝜆𝑒𝑓𝑓 = (1 − 𝜀)𝜆𝑠 + 𝜀𝜆𝑔                        (9) 

Here 𝐶𝑝  is the fluid heat capacity, u is the flow rate, 𝜆𝑒𝑓𝑓  is the effective thermal 

conductivity, 𝜆𝑠  represents the solid thermal conductivity, 𝜆𝑔  represents gaseous thermal 

conductivity. 𝑄 represents heat source, including heat generation (𝑄𝐺𝑒𝑛) due to overpotential 

loss and heat consumption (𝑄𝐶𝑜𝑛) due to electrolysis reaction. 

{
𝑄𝐺𝑒𝑛 = 𝐸𝐼𝑟𝑟 × i

𝑄𝐶𝑜𝑛 = 𝑇∆𝑆 = ∆𝐻 − ∆𝐺
                     (10) 

Here 𝐸𝐼𝑟𝑟  is overpotential, ∆𝑆 and ∆𝐻 are the entropy change and reaction enthalpy, 

∆𝐺 represents the Gibbs free energy. 

2.5 Boundary conditions and validation 

Both the cathode and anode of HT-PEMEC are open-end. The operating voltage is applied 

to the outer surfaces of the anode and cathode. Back gas pressure is specified as 1 atm. The 
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operating temperature and flow rate of the anode and cathode inlets are specified. The walls 

are adiabatic. The time step of the dynamic solver is set to 0.01s. The multiphysics model was 

solved utilizing the finite element method. More details about the model and the model 

validation can be found in ref. [35, 40]. 

3. Dynamic system identification 

Multiphysics model can provide more accurate results than analytical models and semi-

experimental models, thus it is widely used to analyze the dynamic and steady-state behavior 

of electrolyzer cells and fuel cells. However, the calculation process of the multiphysics model 

is time-consuming, thereby it is not suitable for real-time control purposes. Transfer functions 

or state equations are obtained which are necessary for complex control strategies, such as 

robust control and predictive control. The transfer functions identified from the multiphysics 

model are a very efficient method. It not only ensures the accuracy of the model but also 

improves computational efficiency. 

The measured data is required to adequately reflect the dynamic behavior of the system 

to identify an accurate model. Therefore, the dynamic behavior between random non-periodic 

steady-state operating points is measured, and the time interval of the step response allows the 

dynamic process to reach a steady-state to obtain a time constant. Fig. 3 shows the identification 

and validation data obtained from the multiphysics model. Identification data and validation 

data are collected by adjusting the operating voltage, and the anode flow rate was sufficiently 

large to suppress reactant starvation during the dynamic process. The data is acquired with a 

sampling interval of 0.01 s and a duration of 1200 s. Furthermore, two sets of dynamic data are 
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obtained from the multiphysics model, one set of data is used to identify the transfer functions 

model, and the other set of data is used for validation.  

 

Fig. 3. (a) The voltage adjustment in identification data; (b) The voltage regulation in 

validation data. 

The transfer function model was identified from the identification data using System 

Identification ToolboxTM of Matlab. The research focuses on identifying the dynamic behavior 

of the electrolyzer cell without considering a specific mathematical structure, hence the black-

box identification technique is chosen. However, black-box modeling is generally an error-and-

trial process, thus the structure and parameters of the model are estimated and compared to 

optimize model accuracy. System identification usually starts with a linear structural model 

and attempts to use higher order models or non-linear structures when the fit is poor. The 

method of system identification is regarded as a single-input single-output (SISO) model to 

reduce the coupling between different sub-models to improve identification accuracy. The 

power consumption sub-model, the hydrogen generation sub-model and the temperature sub-

model were developed to study the control strategy in the dynamic process and calculate the 



 

  16  
 

electrolysis efficiency. 

The efficiency of an HT-PEMEC can be determined as a ratio of input energy to output 

energy. The input energy includes the input electrical energy and the input thermal energy for 

heating gas, and the output energy is the chemical energy produced [36].  

η =
(�̇�𝑜,𝐻2−�̇�𝑖,𝐻2

)𝐿𝐻𝑉𝐻2

𝑉 ∫ 𝑖𝑑𝑧
𝐿𝑅𝑈
0 +�̇�𝑖,𝑐𝑎 ∫ 𝐶𝑝,𝑔,𝑐𝑎𝑑𝑇

𝑇𝑖,𝑐𝑎
𝑇0

+�̇�𝑖,𝑎𝑛 ∫ 𝐶𝑝,𝑔,𝑎𝑛𝑑𝑇
𝑇𝑖,𝑎𝑛
𝑇0

             (11) 

Where �̇�𝑖,𝐻2 and �̇�𝑜,𝐻2 are hydrogen mass flow rate at inlet and outlet. �̇�𝑖,𝑐𝑎 and �̇�𝑖,𝑎𝑛 

denote the cathode and anode gas mass flow rates, respectively. 𝐶𝑝,𝑔,𝑐𝑎 and 𝐶𝑝,𝑔,𝑎𝑛 represent 

the cathode and anode gas heat capacities. 

3.1 Identification results 

The structure and order of the linear model are obtained by trial and error, and the general 

output-error (OE) model is represented as Eq. (12) [37]. 

y(t) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑡 − 𝑛) + 𝑒(𝑡)                 (12) 

Here u(t) denotes system input, y(t) denotes the system output, e(t) denotes system 

disturbance, n indicates system delay. F(z) and B(z) are polynomials with regard to the z-1 

operator, respectively. 

{
𝐵(𝑧) = 𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 +⋯+ 𝑏𝑘𝑏−1𝑧

−(𝑘𝑏−1)

𝐹(𝑧) = 1 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2 +⋯+ 𝑓𝑘𝑓𝑧
−𝑘𝑓            (13) 

HT-PEMEC is a non-linear system and therefore non-linear factors need to be added to 

the linear model. Hammerstein-Wiener models are generally used to describe the dynamic 

behavior of non-linear systems. As shown in Fig. 4, the Hammerstein-Wiener model consists 
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of a linear block, an input nonlinearity and an output nonlinearity. The linear block is used to 

describe the dynamics of the modeled system, while the input nonlinearity and output 

nonlinearity are used to reflect the nonlinear characteristics of the system. 

 

Fig. 4. Hammerstein-Wiener model framework 

The accuracy of the fit can be described as Eq. (14). 

Fit = (1 −
‖𝑦−�̂�‖

‖𝑦−�̂�‖
) × 100%                  (14) 

Here y represents the output of multiphysics data, �̂�  denotes the output of the 

identification model. �̅� denotes the average of y. 

The mean squared error (MSE) is also used to validate the model and is expressed as Eq. 

(15). 

MSE =
1

𝑁
∑ (𝑦 − �̂�)2𝑁
𝑗=1                  (15) 

Here N denotes the total number of data, and j represents the jth output result. 

3.1.1 Applied voltage versus power consumption sub-model 

System dynamics are first obtained by identifying linear systems to determine the 

coefficients of B and F. Subsequently, the best performance was observed by describing the 

input nonlinearity and the output nonlinearity using segmented functions and one-dimensional 

polynomials respectively. The voltage versus power consumption sub-model can be expressed 

as Eq. (16). 



 

  18  
 

 

{
  
 

  
 𝑓(𝑡) = {

2.54𝑢(𝑡) − 3.8490 ≪ 𝑢(𝑡) < 1.65
4.065𝑢(𝑡) − 6.367𝑢(𝑡) ≥ 1.65

{

𝑤(𝑡) = [
B(z)

F(z)
] 𝑣(𝑡) + 𝑒(𝑡)

B(z) = 𝑧−1 − 0.9918𝑧−2

F(z) = 1 − 0.9372𝑧−1 − 0.0077𝑧−2 − 0.0452𝑧−3

𝑔(𝑡) = 5.1478𝐸3𝑤(𝑡)2 + 2.2109𝐸3𝑤(𝑡) + 315.6857

      (16) 

Here u(t) is applied voltage, y(t) is power density (W m-2). Fig. 5 shows the results of the 

identification and validation data compared to the output of the identification model. The power 

consumption sub-model is able to describe the system dynamics and the corresponding 

evaluation indicators are listed in Table 3. 

 

Fig. 5. (a) Comparison of identification model output and identification data; (b) 

Comparison of identification model output and validation data. 

3.1.2 Applied voltage versus hydrogen generation sub-model 

The hydrogen generation sub-model has a similar structure to the power consumption sub-

model because the hydrogen generated is proportional to the current density. Therefore, the 

best performance is obtained by selecting the piecewise function to describe the input 
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nonlinearity and the one-dimensional polynomial to describe the output nonlinearity, 

respectively. The voltage versus hydrogen generation sub-model can be expressed as Eq. (17). 

{
 
 
 

 
 
 𝑓(𝑡) = {

1.448𝑢(𝑡) − 2.1970 ≪ 𝑢(𝑡) < 1.62
1.966𝑢(𝑡) − 3.035𝑢(𝑡) ≥ 1.62

{

𝑤(𝑡) = [
B(z)

F(z)
] 𝑣(𝑡) + 𝑒(𝑡)

B(z) = 𝑧−1 − 0.9926𝑧−2

F(z) = 1 − 1.17183𝑧−1 + 0.8562𝑧−2 − 0.1345𝑧−3

𝑔(𝑡) = 1.7556𝐸−4𝑤(𝑡)2 + 1.1739𝐸−4𝑤(𝑡) + 3.1594𝐸−5

      (17) 

Here u(t) is applied voltage, y(t) is hydrogen generated (kg m-2 s-1). As shown in Fig. 6, 

the identification model output is compared with the identification and validation data to verify 

the hydrogen generation sub-model. Furthermore, the performance indicators are summarized 

in Table 3. 

 

Fig. 6. (a) Comparison of identification model output and identification data; (b) 

Comparison of identification model output and validation data. 

3.1.3 Applied voltage versus temperature sub-model 

Heat transfer is relatively slow compared to the dynamics of other physical parameters 

and the thermal model has high delays and strong non-linearity. The best performance of the 
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identification model was observed through the use of segmentation functions and one-

dimensional polynomials to describe input nonlinearity and output nonlinearity. The voltage 

versus temperature sub-model can be expressed as Eq. (18). 

 

{
 
 
 

 
 
 𝑓(𝑡) = {

0.1296𝑢(𝑡) − 0.22250 ≪ 𝑢(𝑡) < 1.61
0.5676𝑢(𝑡) − 0.9277𝑢(𝑡) ≥ 1.61

{

𝑤(𝑡) = [
B(z)

F(z)
] 𝑣(𝑡) + 𝑒(𝑡)

B(z) = −0.422𝑧−1 + 𝑧−2 − 0.4538𝑧−3 − 0.7063𝑧−4 + 0.8802𝑧−5 − 0.2982𝑧−6

F(z) = 1 − 3.1524𝑧−1 + 3.0392𝑧−2 + 0.6171𝑧−3 − 3.3842𝑧−4 + 2.5233𝑧−5 − 0.643𝑧−6

𝑔(𝑡) = 29.7651𝑤(𝑡)2 − 17.5995𝑤(𝑡) + 414.9453

(18) 

Here u(t) is applied voltage, y(t) denotes operating temperature (K). Fig. 7 shows the 

comparison of the identification and validation data with the model output. The temperature 

identification model has a lower fit compared to the power consumption sub-model and the 

hydrogen generated sub-model, due to the high delays and strong non-linearity of the 

temperature model. However, the errors are acceptable and the corresponding evaluation 

indicators are listed in Table 3. 

 

Fig. 7. (a) Comparison of identification model output and identification data; (b) 
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Comparison of identification model output and validation data 

 

Table 3. Identification model evaluation index. 

Indicator Power consumption sub-model Hydrogen generated sub-

model 

Temperature sub-model 

Identification 

data 

Validation 

data 

Identification 

data 

Validation 

data 

Identification 

data 

Validation 

data 

Fit (%) 97.57 96.31 98.1 97.87 92.66 87.73 

MSE 0.913 1.352 6.253E-12 9.918 E-12 0.1011 0.2295 

 

4. Dynamic control strategy 

The utilization of excess renewable energy to produce hydrogen for subsequent fuel cells 

and industrial applications is the most promising pathway for HT-PEMEC. However, the fast 

electrochemical response easily triggers excessive overshoot and fluctuation, resulting in poor 

durability and dynamic performance. Therefore, dynamic research is necessary for long-term 

stable operation. Dynamic multi-physics models can be used to analyze the dynamic behavior 

of electrolyzer cells to develop control strategies. Subsequently, the performance of the control 

strategy can be verified in the identified dynamic system to provide a reference for the 

experiment. 
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4.1 Dynamic behavior 

The dynamic process of HT-PEMEC can be divided into two stages, namely, rapid 

electrochemical response and relatively slow mass transfer process. As shown in Fig. 8, the 

transient process of the operating voltage from 1.6 V to 1.7 V.  

 

Fig. 8. (a) Dynamic response of power consumption; (b) Dynamic response of steam 

mole fraction in the catalytic layer. 

An obvious overshoot exists in the dynamic process of power response. The power 

consumption rises rapidly due to the fast electrochemical response, however, the relatively slow 

mass transfer process leads to a rapid decrease in the reactant concentration, which eventually 

causes the power consumption to drop to a steady-state. To alleviate overshoot and fluctuation, 

it is essential that the electrochemical response be adjusted during the dynamic process. 

4.2 Fuzzy logic control strategy 

Fuzzy logic control (FLC) strategy is a rule-based nonlinear control method. Moreover, 
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the main advantage of the method can be applied to dynamic systems where models are difficult 

to obtain, and inference rules can be designed based on the experience of human experts [38]. 

The 2D FLC can adjust the control strategy according to the error and the change of the error 

in real time, and its work flow is shown in Fig. 9. The fuzzification process uses membership 

functions to convert precise input into fuzzy language, and then calculates the output through 

pre-set inference rules, lastly, the output is converted into precise control parameters by 

defuzzification. 

 

Fig. 9. The 2D fuzzy logic controller framework 
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Fig. 10. (a) Membership function of the error; (b) Membership function of the change of 

error; (c) Membership function of the change of kp; (d) Membership function of the change of 

ki; (e) Membership function of the change of kd; (f) Output characteristic of the change of kp; 

(g) Output characteristic of the change of ki; (h) Output characteristic of the change of kd; 
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Here Pre is the reference power, Pac is the actual power density. △ kp, △ kd and △ ki 

are the changes in the control coefficients respectively. This fuzzy logic block has three outputs 

and two inputs; the inputs represent the error and the change of error, and the outputs are the 

changes in kp, kd and ki respectively. The fuzzy subsets of output and input are divided into 

{NB, NM, NS, ZO, PS, PM, PB}. Moreover, the output characteristics and membership 

function are shown in Fig. 10. The fuzzy logic control strategy is applied as the control signal 

is initially enhanced to accelerate the dynamic response and subsequently reduced to suppress 

overshoot.  

4.3 Neural Network Predictive Control Strategy 

Model predictive control is a nonlinear control strategy based on model prediction and 

online optimization. Moreover, model predictive control has a wider control horizon due to the 

ability to predict dynamic behavior compared to other control strategies [39]. The neural 

network predictive control (NNPC) strategy uses a non-linear neural network to predict the 

dynamic behavior of the HT-PEMEC, thereby optimizing the dynamic behavior to reduce 

overshoot. The detailed workflow of NNPC is shown in Fig. 11 and specific implementation 

steps can refer to the Deep Learning Toolbox of Matlab. 



 

  26  
 

 

Fig. 11. The Neural network predictive control framework 

Here Pm is the predictive model output, um is the predictive model input and uac is the 

actual electrolyzer input. The optimization is implemented through the calculation of Eq. 20, 

and then the optimized input voltage uac  is supplied to the electrolyzer to optimize the 

dynamic process. 

J = ∑ [𝑃𝑟𝑒(𝑘 + 𝑗) − 𝑃𝑚(𝑘 + 𝑗)]
2 + 𝜌∑ [𝑢𝑚(𝑘 + 𝑗 − 1) − 𝑢𝑚(𝑘 + 𝑗 − 2)]

2𝑁𝑐
𝑗=1

𝑁𝑝
𝑗=1

   (20) 

Here 𝑁𝑐  represents the control time domain length, 𝑁𝑝  represents the predicted time 

domain length and 𝜌 is the weighting factor. Optimization is performed by calculating the 

minimum value of J. NNPC adjusts the operating voltage by predicting the dynamic behavior 

of HT-PEMEC to alleviate overshoot and fluctuation. 

4.4 Results and analysis 

Fuzzy logic control strategy and neural network predictive control strategy are applied in 

the dynamic process of HT-PEMEC to suppress overshoot and fluctuation. The random 

variation of power consumption is used to represent renewable energy, with an interval of 30 

seconds and a sampling interval of 0.01s. Furthermore, the dynamic response and control 
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strategy of the electrolyzer were compared, as shown in Fig. 12. 

 

Fig.12. (a) Dynamic response of power consumption; (b) Dynamic response of 

hydrogen generated; (c) Dynamic response of temperature; (d) Efficiency changes in dynamic 

processes. 

The dynamic behavior of energy consumption is shown in Fig. 12a. Neural network 

predictive control strategy shows better dynamic performance and smaller overshoot compared 

to the fuzzy logic control strategy. For instance, in a random step from 1857 W m-2 to 2513 W 

m-2, the power overshoot of the neural network predictive control strategy is reduced by 92% 

compared to the fuzzy logic control strategy. Furthermore, neural network predictive control 

can predict the dynamic behavior of HT-PEMEC for online optimization, compared with the 

fuzzy logic control strategy optimized based on real-time error and error change rate, it has a 
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wider control horizon to reduce the overshoot. The fuzzy logic control strategy calculates the 

controller output according to the pre-made fuzzy inference rules, which requires fewer 

calculation resources than the neural network predictive control strategy. The hydrogen 

generation rate in the dynamic process is shown in Fig. 12b. Furthermore, the hydrogen 

production rate under the fuzzy logic control strategy is greater than the neural network 

predictive control strategy due to the dramatic power consumption increase and excessive 

overshoot in the initial phase of the dynamic process, the subsequent two control strategies 

maintain the same hydrogen production rate. The temperature response of neural network 

predictive control is similar to the fuzzy logic control strategy, and the results are shown in Fig. 

12c. The dynamic efficiency calculation can be divided into the input electric energy, the 

heating gas energy, and the chemical energy produced. As shown in Fig. 12b and Fig. 12c, 

There is little difference between the energy of heating gas and the chemical energy produced 

in the dynamic process, thus the fluctuation of efficiency is mainly affected by the input 

electrical energy. It can be observed from Fig. 12d that the fluctuation of the efficiency during 

the dynamic process corresponds to the overshoot of the power consumption. Overall, neural 

network predictive control strategies can provide better dynamic performance. 

 

Conclusions 

Traditional experimental observations require complex instruments and high experimental 

costs to study the dynamic process of HT-PEMEC. Moreover, the widely used multiphysics 
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model is time-consuming and requires a lot of computing resources. The data-driven dynamic 

research method is proposed to simplify the research process by combining multiphysics 

models and system identification methods, which can achieve fast computation with sufficient 

accuracy. A 2D multiphysics simulation model was established to study the electrolyzer cell, 

in which electrochemistry, mass transfer, momentum transfer and heat transfer were considered. 

Subsequently, the dynamic data generated by the multiphysics model is used for system 

identification. Furthermore, The identification model is verified by comparison with the 

multiphysics model. 

To predict the dynamic behavior of HT-PEMEC and calculate the efficiency in the 

dynamic process, the power consumption sub-model, the hydrogen generation sub-model and 

the operating temperature sub-model are identified. Fuzzy logic control strategy and neural 

network predictive control strategy are designed to control power consumption to improve 

dynamic behavior. Neural network predictive control shows better dynamic performance and 

smaller overshoot compared to fuzzy logic control strategies, but it requires more computing 

resources. In a random step from 1857 W m-2 to 2513 W m-2, the power overshoot of the neural 

network predictive control strategy is reduced by 92% compared to the fuzzy logic control 

strategy. 

This data-driven approach provides a promising solution by combining multiphysics 

models and system identification, which can quickly and accurately analyze the performance 

of nonlinear dynamic systems. Currently, this method is only used in the single-input single-

output system, and then can be applied to a multiple-input multiple-output system and consider 



 

  30  
 

the coordinated control of multiple physical parameters. 
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