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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Human-robot collaboration (HRC) is critical to today’s tendency towards high-flexible assembly in manufacturing. Human action recognition, 
as one of the core prerequisites for HRC, enables industrial robots to understand human intentions and to execute planning adaptively. However, 
existing deep learning-based action recognition methods rely heavily on a huge amount of annotation data, which may not be effective or realistic 
in practice. Therefore, a transfer learning-enabled action recognition approach is proposed in this research to facilitate robot reactive control in 
HRC assembly. Meanwhile, a decision-making mechanism for robotic planning is introduced as well. Lastly, the proposed approach is evaluated 
in an aircraft bracket assembly scenario to reveal its significance. 
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1. Introduction 

With modern manufacturing shifting from mass production 
to mass personalization, industrial robots have been of rising 
demands for adaptive control and seamless cooperation with 
human operators in a shared workspace [1]. In the context of 
flexible automation, human-robot collaboration (HRC) aims to 
integrate the accuracy and strength of robots with cognitive 
ability and flexibility of humans in the execution loop [2]. One 
major pillar to achieve this is that robots dynamically plan safe 
reactions responded to human activities and intentions [3]. 
Hence, human action recognition, as the prerequisite, plays a 
critical role in efficient HRC, which can result in higher overall 
productivity in customization-oriented manufacturing. 

In recent years, cutting-edge deep learning techniques have 
led to numerous resounding success in the prevailing human 
action recognition field, where thousands of video samples and 
millions of frames have been collected from different human 
subjects in daily activities [4]. For example, in industrial 

scenarios of surveillance systems, temporal representations of 
human actions were distilled from sequences of frames via 
convolutional neural networks (CNN) and long short-term 
memory (LSTM) [5]. 

Nevertheless, above prominent capabilities of perception 
intelligence are restricted by the following two constraints: 1) 
vast amounts of data should be available and annotated with 
labels; and 2) training data and testing data are subjected to the 
same probability distribution, instead of suffering feature 
variances caused by different working conditions among 
manufacturing. In real workplace settings, it is difficult or even 
unrealistic to develop such a typical dataset, which covers 
potential action representations of all possible subjects. Hence, 
there is an urgency to transfer knowledge learned from daily 
human action to intention prediction in those complex 
assembly scenarios, so that efficient HRC can be achieved for 
smart manufacturing. 

Aiming to fill this research gap, this paper proposes a 
transfer learning-enabled action recognition approach for HRC 
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assembly scenarios, so that efficient HRC can be achieved for 
smart manufacturing. 
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assembly, aiming to allow unattained cooperation efficiency 
between human and robots in a shared workspace. The deep 
transfer learning approach contains an action recognition 
module (i.e., spatial temporal GCN (ST-GCN)) and a domain 
adaptation component, where maximum mean discrepancy 
(MMD) is utilized to reduce the discrepancy of action features 
between source and domain datasets. Hence, both stationary 
and non-stationary human activities of assembly tasks can be 
predicted, and preprogramming-free robots can adaptively 
execute assembly instructions in response to the semantic 
knowledge of operator intentions. 

The rest of paper is organized as follows. Section 2 
introduces related works of HRC assembly, human action 
recognition and transfer learning strategies in industrial tasks. 
Our proposed methods including transfer learning-enabled 
human activity recognition and the decision-making 
mechanism for robots, are described in section 3. Comparison 
experiments of human action recognition and a typical 
application of HRC bracket assembly in aircraft cabins are 
depicted in section 4. Conclusions and future works are 
summarized in section 5. 

2. Related work 

This section summarizes HRC assembly applications and 
their adaptive decision-making capabilities. Dominant action 
recognition and transfer learning methods which can facilitate 
robot intelligence are introduced as well. 

2.1. Human-robot collaboration assembly 

Different from traditional industrial robots segregated in a 
closed space, collaborative robots are free from 
preprogramming control instructions and work side by side 
with human operators in close proximity [6]. Therefore, HRC 
is characterized by the integration of robotic automation and 
human flexibility, which puts it at the leading edge in terms of 
increasing flexibility requirements in modern manufacturing, 
especially for human-centered assembly. 

To interact with human operators and act high-level 
teamwork skills in real manufacturing settings, adaptive 
decision-making is a persistent objective for collaborative 
robots, such as active collision avoidance [7] and reactive 
robotic planning [8]. One of the most notable areas focuses on 
immersing context-aware intelligence in the entire human-
robot organization. With context-aware monitoring of a shared 
workspace, operators can freely move, and the robot 
dynamically updates its planning as a response [9]. Another 
focus is on permeating semantic knowledge in HRC systems. 
Especially for task oriented HRC, robotic collaborative skills, 
including trajectory planning and adaptive subtask planning, 
can be achieved by inferring semantic knowledge of humans' 
continuous movement and action prediction [10]. 

2.2. Industrial action recognition and intention analysis 

Human action recognition plays a critical role in HRC, 
enabling robots to understand human behavior and to assist the 
worker in a proactive manner. Nowadays, the advanced 

computer vision-based action recognition methods can directly 
distill human activity representations from videos, such as 
optical flow trajectories [11] and skeleton motions. 

Slightly different from that in daily video surveillance, 
human action recognition methods in manufacturing pay more 
attention to the ongoing activity prediction, unlabeled video 
classification and 3D action trajectory, which ensure robots to 
react with a safe and suitable response. A progressive filtering 
approach was introduced to recognize human action 
expressions captured by Kinect as early as possible [12]. 
Robots can improve their performance of reaction based on the 
identified ongoing human action. In particular, 3D human 
action recognition opens the way to allow collaborative robots 
to action with accurateness and resilience. Deep learning 
network was constructed to extract features of 3D human 
activities in [13]. 

2.3. Transfer learning in smart manufacturing 

Prevailing deep learning methods make it available to learn 
from industrial data for manufacturing intelligence [14]. 
Nevertheless, their notable capability of knowledge learning is 
realized on the essential assumptions: 1) large amounts of data 
are available 2) training data and testing data are subjected to 
the same distribution spaces [15]. For human action recognition 
in HRC, there is few data of operators’ assembly motion and 
these data suffer huge distribution discrepancy caused by 
different working conditions and human body characteristic. 
Therefore, traditional deep learning approaches fail to provide 
efficient implementations. 

Transfer learning (e.g., finetune, adaptation layer and 
generative adversarial nets) builds a bridge for action 
recognition in relevant but not the same scenarios, as it can 
learn sharing knowledge and extract invariant features between 
source and target data. For example, in dynamic production 
process optimization, finetune-based prediction model was 
utilized to extract latent sharing features between the historical 
production records and real on-time delivery of orders [16]. For 
fault diagnostics across diverse working conditions and devices, 
MMD was introduced to a domain adaption module to 
minimize the probability distribution distance between high-
level extracted features between source and target datasets [17]. 

3. Methodology 

In this work, a transfer learning-based action prediction 
approach is proposed for efficient HRC assembly. As shown in 
Fig. 1, HRC assembly mainly contains two parts, i.e., human 
action recognition and robotic adaptive control, both of which 
are introduced accordingly as follows. HRC assembly mainly 
goes through these steps, 1) data sensing and pre-processing 2) 
knowledge distilling and action recognition from sampling 
videos, and 3) robotic decision making and reaction in response 
to learned semantic knowledge. Among them, human action 
recognition and robotic adaptive control are two vital parts, 
both of which are introduced accordingly. 
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3.1. Transfer learning-enabled human action recognition 

Human pose acquisition is the prerequisite for action 
recognition. As present in the preprocessing part in Fig. 1, 
Azure Kinect is utilized to capture operators' motion for an 
ongoing task in assembly workplaces. Then, human pose can 
be obtained via Openpose toolbox [18], which predicted body 
joints of the operator in consecutive frames of a video. 

With skeleton joints of human bodies, a transfer learning-
based ST-GCN [4] architecture is proposed to learn knowledge 
of human actions from these data. Our proposed deep transfer 
learning network includes three blocks, i.e., a ST-GCN feature 
extractor, an action classifier and one domain adaptation 
module, as shown in the middle part in Fig. 1. The feature 
extractor distills latent representations of human actions 
between source and target domains. The following one is the 
action classifier, which partitions extracted high-level action 
features into different categories. The feature extractor and 
action classifier make up the action recognition module. The 
domain adaptation module is connected to the feature extractor. 
By reducing the distribution discrepancy of source and target 
data, the domain adaptation layer enables the extractor to learn 
sharing and domain-invariant features. 

• Action recognition module 
The feature extractor of action recognition module consists 

of nine layers of ST-GCN, which achieved by spatial-temporal 
graph convolution and pooling operations. Subsequent action 
classifier is completed by concatenating a fully connected layer 
(FC1) and one output layer. 

Human body joints are firstly connected to construct one 
spatial-temporal graph G=(V, E) as input. The node set V={vti|t 
= 1, ..., T, i = 1, ..., N} denotes there are T frames of a video 
and N human joints for each frame. Besides, the edge set E 
contains two subsets. The first one is intra-skeleton connection 

ES={vtivtj|(i, j)∈H} at each frame, where H denotes the natural 
connection set of human body joints. Another subset is utilized 
to describe the connection of the same joint across consecutive 
frames, i.e., inter-frame edges EF={vtiv(t+1)i}. Then, convolution 
layers of ST-GCN are connected to the input graph to extract 
latent features of human actions. With an adjacency matrix A 
and an identity matrix I denoting nodes’ connections, the 
spatial-temporal graph convolution is calculated as follows, 

              (1) 

, where . The operation is composed of 
sampling function P, feature map fin, partition strategies lst and 
weight function w. The sampling function P is denoted as, 

                   (2) 

For spatial graph at each frame, d(vtj,vti) depicts the 
minimum length from the node vtj to vti. While for temporal 
graph among consecutive frames,  controls the temporal 
range to be included in the neighbor graph. The D and  are 

set to 1 in our paper. At one frame t, input feature vectors are 
mapped to dimension c via feature map fin:Vt Rc. 

Partition strategy l is developed to divide the neighbor set 
B(vti) of a node vti into K subsets, i.e., lti:B(Vti) {0,…,K-1}. K 
is set to 3. For spatial graph, a neighbor node vtj of vti is 
partitioned into different subsets as follows, 
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Fig. 1. Pipeline of HRC assembly based on human action recognition 
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assembly, aiming to allow unattained cooperation efficiency 
between human and robots in a shared workspace. The deep 
transfer learning approach contains an action recognition 
module (i.e., spatial temporal GCN (ST-GCN)) and a domain 
adaptation component, where maximum mean discrepancy 
(MMD) is utilized to reduce the discrepancy of action features 
between source and domain datasets. Hence, both stationary 
and non-stationary human activities of assembly tasks can be 
predicted, and preprogramming-free robots can adaptively 
execute assembly instructions in response to the semantic 
knowledge of operator intentions. 

The rest of paper is organized as follows. Section 2 
introduces related works of HRC assembly, human action 
recognition and transfer learning strategies in industrial tasks. 
Our proposed methods including transfer learning-enabled 
human activity recognition and the decision-making 
mechanism for robots, are described in section 3. Comparison 
experiments of human action recognition and a typical 
application of HRC bracket assembly in aircraft cabins are 
depicted in section 4. Conclusions and future works are 
summarized in section 5. 
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recognition and transfer learning methods which can facilitate 
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2.2. Industrial action recognition and intention analysis 
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, where rj and ri is the average distance from the gravity center 
of body joints to vtj and vti, respectively. Similarly, the partition 
strategy l can be extended to spatial temporal graph, 

                                (4) 

Weight function w is introduced to generate a weight vector 
in c dimensions. After nine layers of ST-GCN and a layer of 
FC1, the SoftMax regression is utilized to estimate human 
action categories in the output layer. 

• Domain adaptation module 
A fully connected layer FC2 is connected to the last ST-

GCN layer to output high-level features of the source domain 
FC2S and the target domain FC2T, respectively. With ns data 
samples from the source domain and nt examples from the 
source domain, the distance between the probability 
distributions of FC2S and FC2T is calculated by MMD, 

 (5) 

, where H denotes the reproducing kernel Hilbert space 
(RKHS). If the Gaussian kernel is introduced to calculate the 
function in RKHS, the unbiased estimation of 
DH is defined as, 
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• Optimization objective and updated rule 
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and target domains. The loss function L is defined as, 
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andθc of can be updated in the following rules, 
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3.2. Task-oriented adaptive HRC assembly  

As shown in the bottom part in Fig. 1, predicted human 
activities provide decision-making for robotic planning in HRC 
assembly via semantic maps linking. Based on eye-to-hand 
calibration between human trajectory and depth information, 
robots can obtain real physical world coordinates, which enable 
robot to move to a precise location. Therefore, robots can 
dynamically assist operators and adaptively changing their 
actions according to human’s subtasks, i.e., task-oriented HRC 
assembly. Some samples of human activities and robotic 
actions in the human-centered assembly environment are listed 
in Table 1 and Table 2. 
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To illustrate the semantic knowledge linking process, a 
robotic decision-making representation is denoted in Table 3. 
It is noted that placing means that robots need to deliver the 
toolbox to human in close distance, while picking means robots 
leaving the operator and pick a toolbox from storage areas. The 
robot will hold a toolbox and follow human in close proximity 
under the ‘holding’ instruction. Iterative Dichotomiser 3 (ID3) 
can create a multiway tree based on the largest information gain 
from decision categories, i.e., classes of robotic reaction in our 
samples. The information obtained from decision-making 
process is denoted as entropy, 

                                                       (9) 

Where, is the number of decision categories and equal to 
six in our case. Pk is the proportion of the k-the decision. The 
generated decision tree can link human actions to robotic 
planning in a generalization manner, as shown in Fig. 2. In this 
way, flexible and efficient HRC assembly can be achieved due 
to adaptive robotic reaction.   

4. Case study and experiment results 

In this section, two comparison experiments are conducted 
to evaluate the performance of our proposed model for human 
action recognition. Based on prediction results, efficient HRC 
is implemented on a bracket assembly task in aircraft cabins. 
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conduct transfer learning-based action classification. 

1) Kinetics. Deepmind Kinetics dataset contains 300,000 
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In our experiment, 56 action categories are selected as the 
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seconds with 300 frames. Openpose toolbox is used to 
estimated 18 body joints for each frame (340×256 resolutions). 
Each joint is recorded with a tuple of (X, Y, C), which means 
the 2D coordinates and a confidence score. 

2) Assembly action. Assembly action dataset (AAD) 
consists of 222 video clips captured by Azure Kinect. This 
dataset is developed to simulate human activities of bracket 

assembly in aircraft cabins and contains five different human 
actions, including part picking (A1), bracket fixing (A2), 
robotic guiding (A3), robotic leaving (A4) and operator 
walking (A5). These videos are captured from three different 
views and with five volunteers as subjects. Except that each 
frame of a video has 640×576 resolutions, AAD undergoes the 
same preprocessing as Kinetics dataset. 

Experiment setting. The target domain of AAD is divided 
into a training dataset and one testing dataset, of which there 
are 170 video samples and 50 video clips, respectively. All 2D 
coordinates of human body joints are normalized via dividing 
by images’ resolutions before feeding into our proposed deep 
transfer learning network. The transfer learning model is 
optimized using stochastic gradient descent with an initial 
learning rate of 0.1, which is then multiplied by 0.1 after every 
10 epochs. Besides, only 8% of target data are given labels 
during the training process, while unlabeled data are aligned to 
extracted domain-invariant features via MMD. 
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performance of our proposed model can be evaluated by a 
comparison experiment of original ST-GCN. As shown in 
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4.2. Efficient HRC for aircraft bracket assembly  

Aircraft bracket assembly always suffer from low efficiency 
due to the narrow and small workspaces in aircraft cabins, 
where it is not realistic for a worker to hold all tools and parts 
during the bracket installing operation, and he has to constantly 
pass between the assembly area and tool storage areas for 
toolbox change. There is an urgent requirement for mobile 
robots to collaboratively conduct pick-and-place work and to 
collaborate with operators as a smart assistant. 
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, where rj and ri is the average distance from the gravity center 
of body joints to vtj and vti, respectively. Similarly, the partition 
strategy l can be extended to spatial temporal graph, 

                                (4) 

Weight function w is introduced to generate a weight vector 
in c dimensions. After nine layers of ST-GCN and a layer of 
FC1, the SoftMax regression is utilized to estimate human 
action categories in the output layer. 

• Domain adaptation module 
A fully connected layer FC2 is connected to the last ST-

GCN layer to output high-level features of the source domain 
FC2S and the target domain FC2T, respectively. With ns data 
samples from the source domain and nt examples from the 
source domain, the distance between the probability 
distributions of FC2S and FC2T is calculated by MMD, 

 (5) 

, where H denotes the reproducing kernel Hilbert space 
(RKHS). If the Gaussian kernel is introduced to calculate the 
function in RKHS, the unbiased estimation of 
DH is defined as, 

             (6) 

• Optimization objective and updated rule 
There are two optimization objectives in the proposed 

transfer learning-based ST-GCN. The former one is to 
minimize the classification error Lc of action classifier and 
another one is to minimize the MMD distance between source 
and target domains. The loss function L is defined as, 

                                                 (7) 

Whereθf andθc are parameters of the feature extractor and 
the classifier, respectively.  balances the influence of two 
objectives and is set to 1. With learning rate , parametersθf 
andθc of can be updated in the following rules, 

                                                     (8) 

 

Fig. 2. Decision tree for semantic knowledge linking 

Table 1. Samples of human actions in HRC assembly. 

Body motion Gesture 
action 

Traffic 
direction 

Toolbox 
pointing 

Part 
picking/fixing 

Screwing Robotic 
guiding 

Part selection 

Walking Taping Robotic 
leaving 

Tool selection 

Table 2. Samples of robotic actions in HRC assembly. 

Vision detection Robotic reaction 

Scenario 
perception 

Bracket assembly Obstacle avoidance 

Wire-harness 
assembly Vision inspection 

Human 
holding 

Part subject Toolbox picking/holding/placing 

Tool subject Motion following/pausing/leaving 

Table 3. An example of industrial HAR. 

Num. Traffic 
direction 

Body 
motion 

Gesture 
action 

Toolbox 
pointing 

Robotic 
reaction 

1 Guiding Picking Taping Part Part placing 

2 Guiding Picking Taping Tool Tool placing 

3 Guiding Fixing Screwing Part Part picking 

4 Guiding Fixing Screwing Tool Tool 
picking 

5 Leaving Fixing Screwing Part Part picking 

6 Leaving Picking Taping Part Part picking 

7 Leaving Picking Taping Tool Tool 
picking 

8 Leaving Fixing Screwing Tool Tool 
picking 

9 Guiding Walking Taping Part Part holding 

10 Guiding Walking Taping Tool Tool 
holding 
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As shown in the bottom part in Fig. 1, predicted human 
activities provide decision-making for robotic planning in HRC 
assembly via semantic maps linking. Based on eye-to-hand 
calibration between human trajectory and depth information, 
robots can obtain real physical world coordinates, which enable 
robot to move to a precise location. Therefore, robots can 
dynamically assist operators and adaptively changing their 
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To illustrate the semantic knowledge linking process, a 
robotic decision-making representation is denoted in Table 3. 
It is noted that placing means that robots need to deliver the 
toolbox to human in close distance, while picking means robots 
leaving the operator and pick a toolbox from storage areas. The 
robot will hold a toolbox and follow human in close proximity 
under the ‘holding’ instruction. Iterative Dichotomiser 3 (ID3) 
can create a multiway tree based on the largest information gain 
from decision categories, i.e., classes of robotic reaction in our 
samples. The information obtained from decision-making 
process is denoted as entropy, 
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Aircraft bracket assembly always suffer from low efficiency 
due to the narrow and small workspaces in aircraft cabins, 
where it is not realistic for a worker to hold all tools and parts 
during the bracket installing operation, and he has to constantly 
pass between the assembly area and tool storage areas for 
toolbox change. There is an urgent requirement for mobile 
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With our proposed action recognition model, operators’ 
activity perception and location information can be obtained 
from the Azure Kinect. As shown in Fig. 5 (a), a mobile robot 
which consists of Universal Robots UR5 and a mobile base is 
utilized to implement following robotic plans, 1) picking 
toolboxes from storage areas (RP1), 2) moving towards an 
operator with toolboxes (RP2), 3) following operators’ motion 
to enable him to pick tools or parts in a shared workspace (RP3). 
In this HRC assembly scenario, Azure Kinect is utilized to 
capture living video streams of a human operator, who installs 
brackets to the aircraft cabin. The human assembly action can 
be predicted by the transfer learning-based model. Similarly, 
based on the semantic knowledge linking process, suitable 
decision-making can be generated for robotic reaction, as 
shown in Fig. 5 (b). After eye-to-hand calibration for the world 
coordinate, the mobile robot can execute the generated path 
planning and motion to assist the human operator. Therefore, 
human and robots can efficiently complete bracket assembly 
tasks with high-level collaboration, rather than simple co-
existence. 

 

Fig. 5. A simulation environment of HRC for aircraft bracket assembly 

5. Conclusion 

This paper introduced a novel computer vision based HRC 
assembly approach based on human action recognition. A deep 
transfer learning ST-GCN model was proposed to learn 
domain-invariant action representations between source and 
target human body joints. Extracted features between source 
and target domains can be aligned in the domain adaptation 
module by the application of MMD. Our proposed approach 
shows great advantages for human activity recognition in 
manufacturing scenarios without collecting a huge amount of 
labeled data. Robotic reactions can be generated via semantic 
knowledge mapping from identified human activities, of which 
the decision-making mechanism can greatly improve HRC 
assembly efficiency. Lastly, a case study of the bracket 
assembly in aircraft cabins was carried out to evaluate its 
feasibility with better overall performance. 

Apart from the abovementioned advantages, potential future 
research directions are also highlighted here, including: 1) 
conducting online human action recognition based on 3D 
images, and 2) developing dynamic robotic control in the 
adaptive decision-making mechanism. It is hoped this work can 
provide insightful knowledge to today’s industrial HRC 
research and implementations. 
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