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ABSTRACT 
This paper proposes a  method  for  estimating  the  health  status of spacecraft key components 
based on  the  belief  rule  base  (BRB), a semi-quantitative method which uses both human 
judgmental information and numerical data. It not only allows experts to establish rules to provide 
useful conclusions, but also allows historical data to train its parameters to obtain more accurate 
outputs.  To  balance  the  parameter  training  and experts’ knowledge, the Markov Chain Monte 
Carlo (MCMC) technique  instead  of  traditional  optimization  method  is  used   to adjust the BRB 
parameter. A practical case of estimating the health condition of space application batteries is 
studied. 

 
1. Introduction 

Nowadays, spacecraft becomes more and more complex, and it consists of various 
mechanical and electronic sub-systems (Rui et al.  (2014)).  Due  to  the  influence  of 
space environment and  the  degradation  of  components  themselves  (Liu  et  al.  
(2015)),  the  health  condition  of  spacecraft  components  will  gradually  deteriorate 
over time. If the health condition of key components is not monitored, the spacecraft 
may fail unexpectedly, which will cause the spacecraft fail to complete its operational 
tasks even bring disastrous  consequences  (Wang  and  Xie  (2010)).  Therefore,  the 
health condition estimation  of  key  components  has  become  increasingly  important  
to spacecraft. With the results of  health  condition  estimation,  the  maintenance  
strategy of spacecraft system is supported, which is of great significance  to  prevent 
major failures of spacecraft  systems.  (Mohammad  and  Hussein  (2014);  Johnson  
(2005)). The concept  of  Integrated  Vehicle  Health  Management  (IVHM)  is  proposed  
by National Aeronautics  and  Space  Administration  (NASA)  to  meet  the  requirement  
of reusable spacecraft, which contains health condition monitoring, estimation, fault 
diagnosis and fault treatment for key subsystems of spacecraft (Figueroa and Melcher 
(2013)). The  health  condition  estimation  method  proposed  by  this  paper  is  used  on 
a CubeSat project, called ‘Kaituo-1B’, developed by a research team of Hong Kong 
Polytechnic University. Compared to the weight of traditional satellites ranging from 
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a few hundred kilograms to several thousand kilograms, the ‘Kaituo-1B’ weighs only 
about 2 kg, which greatly reduces the cost of developing  and  producing  micro-  
satellites for sending small payloads  and  instruments  into  space  (POLYU  (2018)).  It  is 
of great significance to monitor and estimate the health  condition  of  ‘Kaituo-1B’  
during its 3-month life cycle in real time (Xhafa and Andrew (2019)). 

The parameters that can reflect the health condition of spacecraft system, its 
subsystems or  components are called health index. The health index can be  either    
an actual physical quantity such as capacity for a lithium battery, or an evaluation 
indicator constructed by experts such as a comprehensive  score.  No  matter  what  
kind of health index it is, it can not be obtained directly  from  the  telemetry  data 
when satellites are in-orbit  (Gentz  et  al.  (2005)).  Therefore,  the  relationship  needs 
to be constructed between health index and observed data to estimate the health 
condition of spacecraft key components. The solutions mainly include model-based 
methods, knowledge-based methods and data-driven methods. Model-based meth- 
ods estimate the health condition by establishing the  physical  or  mathematical  
model which describing the relationship between the health status and observa-  
tions. For example, Chen et al.  (2004)  and  Zeng  and  Skibniewski  (2013)  designed  
the fault model to monitor the health of satellite. The  advantage of this method is  
that the result of evaluation is credible, however, for a complex system, it is very 
difficult to build an accurate physical  or  mathematical  model.  The  knowledge-  
based approach estimates the health condition of the system by expert judgement 
which is based on their  experience  knowledge.  The  classical  methods  which  use  
the experts’ judgemental information include Analytic Hierarchy Process  (AHP) 
(Wang, Kai,  and  Wang  (2010);  Sasmal  and  Ramanjaneyulu  (2008)),  Fuzzy  
Evaluation  (Melhem  and  Aturaliya  (2010)) and   ontologies-based   knowledge  (Du  
et al. (2016); Bao et al. (2018)). These methods are simple, intuitive and easy to 
understand (Li et al. (2017)). However, human judgement information may be 
inaccurate because of subjectivity  and  preference.  Data-driven  method regard 
health estimation system  as  a  black  box,  which  takes  observable  data  as  input 
and health indicators as output, and historical data are used to train the black box. 
Artificial neural network (ANN) (Gao et al. (2006); Abu-Elanien, Salama, and Ibrahim 
(2011)) and support vector machine (SVM) (Mohammadi  and  Gharehpetian  (2009)) 
are the most popular data-driven methods. They are characterised by strong 
applicability and do not require any understanding and knowledge of  the  esti-  
mated system. Only if the  training  data  set is  large  enough,  a  relative  high 
accuracy can be achieved. However, for spacecraft systems, they are usually very 
expensive, so performing a large  number  of  tests,  especially  destructive  tests,  to 
get sufficiently complete data under different health conditions is not feasible. In 
addition, we should not ignore the fact that human beings, in most cases, bear the 
ultimate decision-maker in health estimation, but the incomprehensibility of the data-
driven method does not allow this. 

In order to solve the problems of the above methods, a health condition estimation 
method for  spacecraft key components based on belief rule base Belief Rule Base (BRB)   
is proposed. BRB is proposed by Yang et al. (2006), which extends from the traditional 
rule-based system and uses the evidential reasoning approach as its inference metho- 
dology. BRB is a semi-quantitative methods which uses both human judgemental 



 
 

information and numerical data, that is, it not only allows experts to establish rules to 
provide useful conclusions, but also allows the use of observational data. It has been 
applied in many fields, such as risk analysis (Kongabcbdd (2012); Qiu et al. (2018)), safety 
assessment (Li et al. (2017)), fault diagnosis (Feng et al. (2017)), health estimation of 
engineering system (Yin et al. (2018)), failure prognosis (Zhou et al. (2010); Yin et  al. 
(2017); Chang et al. (2015)), system behaviour prediction (Zhou et al. (2013); Hu et al. 
(2010)), network security prediction (Hu et al. (2016); Hu and Qiao (2016); Zhang et al. 
(2017)), medicine and medical assessment (Hossain et al. (2017b,a)). 

Because of the preference of experts, there must be strong subjectivity in experts’ 
judgement(Liu et al. (2012)), which may lead to  the  inaccurate  parameters  of  BRB  
(Yang et al. (2007)). If there are history data, the parameters of the belief rules can be 
trained and adjusted to decrease the  subjectivity  of  the  experts’  judgement.  
Therefore, BRB combines  the  advantage  of  knowledge-based  method  and  data- 
driven method, thus it can not only  overcome  the  inaccuracy  of  expert  knowledge,  
but also overcome the overfitting problem of data-driven method. However, the 
traditional training methods for BRB are based on optimisation method (Zhou et al. 
(2011); Bishop and  Nasrabadi  (2006);  Bialek,  Nemenman,  and  Tishby  (2001)),  they 
seek overly the best fit to  the  historical  data,  which  may  result  in  the  dominant  role 
of training rather than the role of experts. Under such situation, the  output  is  even  
worse than the BRB determined completely by the experts, then such training fails. 
Therefore, it is very important to balance the BRB parameter training and the experts’ 
knowledge. To solve the problem, instead of using a traditional optimisation method,  
the Markov Chain Monte Carlo (MCMC) technique is adopted to train the parameters       
of BRB in this paper. MCMC techniques are often applied to solve integration and 
optimisation problems in large dimensional spaces,  including  machine  learning,  
physics, statistics, econometrics and decision  analysis  (Andrieu  et  al.  (2003)). 
Application of MCMC in training field is different from that of traditional optimisation 
method, it estimates the  posterior  distribution  of  parameters  in  stead  of  finding 
single optimised values. This allows  the  output  to  be  estimated  by  taking  into 
account all possible parameters (Zhu  et  al.  (2017);  Spragins  (1965);  Ho  and  Lee  
(1964)). 

The remainder of this paper is organised  as  follows.  In  section  2,  the  main  
problems of the health condition estimation of spacecraft needed to be solved are 
summarised. Section 3 gives a brief introduction of BRB. In Section 4, we describe the  
BRB parameter adjustment by using  MCMC  technique.  Section  5  presents  a  case 
study to explain how the proposed method is used  for  health  estimation  of  space-  
craft and verify its effectiveness. A conclusion is provided in Section 6. 

 

2. Problem description for the health condition estimation of spacecraft system 

2.1. Representation format for input information and output consequent 

The purpose of health estimation is to estimate the health status of the system by 
observing some signal parameters. Therefore,  observations  and  health  status  can  
be considered as input information and outputs consequent of health estimation 
systems,  respectively.  Here,  we  use  xðtÞ  denotes  the  vector  of  observations,   and 



 
 

use yðtÞ denotes the health status.  For  a  complex  spacecraft  system,  observations 
as the input information for health estimation can be expressed in two ways: 

 
(a) Quantitative format. They are often continuous, numerical values obtained 

through measurements, for example, ‘Voltage is 28 V’. 
(b) Qualitative format. They are often linguistic variables from human judgement or 

domain knowledge, for example, ‘the temperature is high’. 
 

There is a similar situation for the expression of  health status.  The health  status can  
be a continuous score, and also can be expressed as ‘good’ or ‘poor’. 

The task of health estimation is essentially to build a mapping between input 
information (observations) and outputs consequents (health status). From data-driven 
perspective, a black-box model is built and trained by history data, and achieves the 
mapping. However, the data-driven method excludes humans judgement, so it can not 
deal with the qualitative information. Furthermore, for a complex spacecraft system, it’s 
almost impossible to collect complete data to train the black-box model. Therefore, 
experts’ experienced knowledge and their judgement will always play an important role 
in the task of health estimation. For experts, they will use the IF-THEN logic to express  
the mapping relationship between inputs and outputs. And because the qualitative 
format is more natural and expressive than quantitative format, they are always used to 
describe input information and output consequent by experts. For example, experts may 
present their experienced knowledge like: ‘IF temperature is high, Then the health status 
is poor’. 

A set of subjective linguistic terms which are meaningful evaluation standards is 
used to describe the input information and output consequent. The input informa-  
tion is represented as X ¼ fxi; i ¼ 1; :::; Tg, where T  is  the  number  of  observations. 
The value of each observation is obtained from the  finite  sets  A ¼ A1; A2; ::::; AT ,  
where Ai ¼ fAij; j ¼ 1; :::; Ji ¼ jAijg  is  the  reference  set  for  observation  xi,  and  Ji  is 
the number of reference values for the  ith  observation.  For  example,  if  there  are  
two observations: temperature  and  voltage,  X  ¼ fTemperature; Voltageg,  and  for  
the observation  of  temperature,  A1  ¼ fLow; Medium; Highg  is  its  referential   set. 
The output consequent is represented as D ¼ fDn; n ¼ 1; :::; Ng, where N is  the  
number of consequents. For example, a  set  D  ¼ fgood; poor; failg  is  used  to 
describe the health condition. The experts’ experienced knowledge can  be  express  
as a rule like: ‘IF temperature is high, Then the health status is poor’. 

 
 

2.2. Uncertainties 

Uncertainty is a form of imprecision in expert knowledge, and it is caused because 
experts do not have 100% confidence in their opinions or judgements (Cai et al.  
(2017)). Therefore, it is very important to deal with the uncertainties of experts’ 
knowledge. Generally, the uncertainties of experts’  knowledge  can  be  represented 
by probability distribution function (PDF) (Li  et  al.  (2017)).  However,  the  PDF  can  
not model ignorance may occur when an expert is unable to know all possible 
consequents. In other word, the integration of PDF or the accumulation of all 
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possibilities must be 1, but the sum of possibilities may be less  than  1  when 
ignorance occur. The Dempster-Shafer (D–S) theory of evidence describes  and 
handles uncertainties  using  the  concept of  the  degrees  of  belief,  which  can  
model ignorance explicitly (Yang et al. (2006)). Therefore, in  this  paper, the match-  
ing degree and the belief degree are used to  deal  with  the  uncertainties  of  input 
and output, respectively. The matching degree that the ith observation belongs to 

Ji 

the  jth  reference  is  represented  by  αij, where j 1; :::; Ji; αij 1. The input infor- 
j¼1 

mation in the form of matching degree can be represented 
as  IðxiÞ ¼ fðAi1; αi1Þ; :::; ðAiJi ; αiJi Þg. 

For example, when temperature is the input information, instead of the statement of 
‘the temperature is high’, it can be stated as ‘the temperature is (high,0.7),(medium,0.3), 
(low,0)’. N 

For  output,  the  belief  degree  is  represented  by  βn,  and βn < 1. Note that 
N n¼1 N 
P 

βn < 1 implies there exist ignorance in expert’s knowledge,  
P 

βn ¼ 1 represents 

that  the  knowledge  is   complete  and βn 0  denotes  total  ignorance  about  the 
n¼1 

consequent. Similar to the input, the belief degree with consequent set can be repre- 
sented as OðyÞ ¼ fðD1; β1Þ; :::; ðDN; βNÞg. For example, for output of the health condition 
estimation, instead of using de nitive statements, it will be stated as ‘The health 
condition is (good,0.1),(poor,0.8),(fail,0.1)’. 

Therefore, the relationship  between  premises  and  conclusions  is  not  precise  (Liu  
et al. (2009)), but only with belief degree. The rule base with such premise  and 
conclusion is called Belief Rule Base  (BRB).Traditional  logical  reasoning  engine  is  
not applicable to the belief rule  base  containing  uncertainty,  so  the  rule-base  
inference   methodology  using  the  evidential  reasoning  (RIMER)  proposed  by  Yang   
et al. (2006) is used in this paper.  From  the  perspective  of  function,  the  RIMER 
achieves the mapping between input and output, represented as,OðyÞ ¼ FðIðxÞ; ψÞ, 
where ψ is the parameter vector, for example,βn is one of parameters. 

In addition, the observations are usually continuous numerical values obtained by 
measurements, and a continuous score may be needed to present  the  health  condi- 
tion. Therefore, a technique is needed to transform continuous numerical values to 
matching degree for referential values, or to transform belief degree for consequents     
to continuous numerical values. For example, the temperature is 50oC, which may be 
transformed into  {(high,0.7),(medium,0.3),(low,0)}.  The  transformation  technique  will  
be discussed in more detail below. 

 
 

2.3. Parameter  adjustment 

Since the subjectivity caused by experts’ preference may bring inaccurate outputs for 
health condition estimation, the BRB parameters need to be  adjusted.  For  example, 
there is a belief rule like ‘If the temperature is high, then the health condition is 
(good,0.1),(poor,0.8),(fail,0.1)’.  The  parameters  β1  ¼ 0:1; β2  ¼ 0:8 and  β3  ¼ 0:1 are sub- 
jectively  determined  by  the  expert.  It’s  hard  to  say  whether  the  values  of  these  β 
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given by the experts are accurate. If there is  historical  data,  the  parameters  of  the  
belief rule can be trained and adjusted  to  decrease  the  subjectivity.  As  discussed  in 
the introduction section, the generality of current methods is that  the  parameter  
training of BRB is regarded as an optimisation problem. The optimisation goal is to 
minimise the difference between the estimated output of the BRB system and the 
expected output. The solution is to find the  best  model  parameters  to  achieve  the  
best fitting with training data (Zhou et al. (2011); Bishop and Nasrabadi (2006); Bialek, 
Nemenman, and Tishby (2001)). It is worth noting that these parameters are  trained 
based on a training data set, but they are used to predict the outputs on new input 
information (Dietterich (1995)). As discussed before, for a complex spacecraft system,        
it is difficult collect complete data under different health condition. Under such 
circumstance, seeking overly the  best  fit  to  the  incomplete  training  data  may  result  
in overfitting problem. That is, while a very  small  training  error  is  obtained,  a  very  
poor prediction is produced (Tang et al. (2019)). And sometimes  the prediction  error        
is even larger than  the  BRB  determined  by  the  expert.  If  this  happens,  then  training 
is a failure. To avoid this problem, we need to balance the training and the experts 
knowledge. In other words, expert’s prior knowledge should play the most important 
role for building the BRB model, and the training just makes the BRB model more 
accurate. With this idea, the Markov Chain Monte Carlo (MCMC) technique  is used to  
train the parameters of BRB. MCMC is essentially a Bayesian estimation method. 
Therefore, different from optimisation method, the principle of  the  training  para- 
meters based on MCMC is to  estimate  the  posterior  distribution  of  parameters  in  
stead of finding single values. This allows the output to be estimated by taking into 
account the parameters of various possibilities (Zhu et al.  (2017);  Spragins (1965); Ho 
and Lee (1964)). Therefore, the method proposed in this paper is a combination of 
subjectivity (experts knowledge) and objectivity (data training), and its framework is 
presented in Figure 1 

 
 

3. An introduction of BRB 

3.1. The basic BRB model 

A belief rule can be represented as follows (Yang et al. (2006)), 
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where xi is the ith input information, called  antecedent  attribute,  whose  reference  in 
the kth rule is Ak.  Dj  refers  to  the  jth  consequent  reference,  whose  belief  degree  is 
βj;k ðj ¼ 1; 2; :::; NÞ in kth rule; θk is the relative weight of kth rule. δi  is the relative 
weight of ith attribute. T  is the number of antecedent attributes, and L is the number       
of all belief rules. ‘ ^ ’ represents the logic operator ‘AND’. Here, θk, δi, βj;k are 
parameters, and ψ is used to describe the parameter vector of BRB, which can be 
represented as 
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Figure 1. The general methodology to combine subjectivity and objectivity. 
 

ψ ¼ < θ; δ; β > (2) 

 
3.2. BRB inference using ER approach 

BRB reasoning is based on evidence reasoning (ER) algorithm, which calculates the final 
conclusion by aggregating activated rules (Yang et al. (2006)). The calculation process 
consists of two steps: calculating activation weight and calculating belief degree. 

The activation weight is represented by ωk, which can be calculated as follow: 
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where αk ði  ¼ 1; 2; :::; TkÞ refers to the individual matching degree between the ith attribute 
input information and the jth reference value for the ith attribute in the kth rule. 

The calculation of belief degree βj  is as follow, 
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3.3. Transformation techniques 

As discussed in Section 2.2, the input  information  for  BRB  shall  be  represented  in 
the form of matching degree, so the  numerical  input  should  be  transformed  into  
the matching degree. A transformation technique is proposed by Yang  (2001).  
Several numerical point is selected to quantify the elements of reference set Aij; j  ¼ 1; 
:::; Ji,  and  Aij  is  assumed  to  be  smaller  than  Aiðjþ1Þ  without  loss  of  general- ity. Then 
an input in the form of matching degree can be represented by 

IðxiÞ ¼ 
  (

Aij; αij
) 

; j ¼ 1; :::; Ji
 

(6) 
 

where  
α  ¼ 

 Aiðjþ1Þ   xi  
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ij iðjþ1Þ 
— Aij 

αiðjþ1Þ ¼ 1   αij  if  Aij < xi < Aiðjþ1Þ,  and  αik  ¼ 0  for  k  ¼ 1; :::; Ji; k j; j þ 1. 
Conversely, outputs in the form of belief degree can be converted to numerical value y as 

shown in Equation (6). From Yang et al. (2006) 
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y  ¼ uðDjÞβj (8) 
j¼1 

here  uðDjÞ refers  to  the  reference  value  for  individual  consequent  Dj . 

 
4. BRB parameter adjustment with MCMC technique 

4.1. Metropolis–Hastings (MH) algorithm 

In this paper, the MCMC technique is used to estimate the posterior distribution of BRB 
parameters. And the MH algorithm (Andrieu et al. (2003)), which is the most popular 
MCMC method, will be used. Suppose that ν ¼ ðν1; ν2; :::; νmÞ is a m-dimensional vector, 
and its probability density is pðνÞ. A proposal distribution qðν?jνðiÞÞ samples a candidate 
value ν? given the current value νðiÞ. An MH step then moves towards ν? with acceptance 

probability AðνðiÞ; ν?Þ ¼ minf1; ½pðνðiÞÞqðν?jνðiÞÞ  1pðν?ÞqðνðiÞjν?Þg, otherwise it remains at 
νðiÞ. In this paper, Gaussian distribution is selected as a symmetric random walk proposal, 

thus  q
(

x?jxðiÞ
) 

¼ q
(

xðiÞjx?
)

.  Hence,  the  acceptance  probability  is 
ðiÞ ? pðν?Þ 

 
 Aðν ; ν Þ ¼ minf1; ½pðνðiÞÞg (9) 

 

The algorithm of MH is shown in algorithm 1. 
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4.2. BRB parameter adjustment with MH algorithm 

With  the  historical  data  x; y  ¼ fðxð1Þ; yð1ÞÞ; :::; ðxðtÞ; yðtÞÞg,  the  posterior  distribution  of 
BRB parameters, which is symbolised as pðyjx; yÞ, needs to be estimated. Here, we 
assume    that    the    inputs    fxð1Þ; xð2Þ; :::; xðtÞg   are    independent,    so    its    outputs 
fyð1Þ; yð2Þ; :::; yðtÞg are  also  independent.  Then,  there  is 

t 

pðyð1Þ; . . .  ; yðtÞjψ; xð1Þ; . . .  ; xðtÞÞ ¼ pðyðτÞjψ; xðτÞÞ (10) 
τ¼1 

 
 

Algorithm 1 MH algorithm 

Init(νð0Þ) 
for i ¼ 0 to N  1 do 

Sample  u,U½0;1  
 

Sample  ν?,q  ν? νðiÞ    
if u < νðiÞ; ν? min 1; pðν

? Þ then pðνðiÞÞ 
νðiþ1Þ  ¼ ν? 

else 
νðiþ1Þ  ¼ νðiÞ 

end if 
end for 

 
According to Bayes’ principle, when the training data fx; yg is given, the posterior 
distribution of the parameters vector ψ is 
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where pðψÞ is the prior distribution of BRB parameters given by experts. 

Therefore, pðμÞ ¼ pðψjx; yÞ is substituted into the Equation (9), then the acceptance 
probability is 
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For a BRB model, several constraints for the parameters vector ψ should be satisfied as 
follows, 
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When sampling with MCMC technique, a simple method to handle the constraints is to reject 
the sample which deviates the constraints, and to resample until the constraint is satisfied. 

When sampling with MCMC technique, a simple approach to deal with constraints is  
to eliminate the samples deviating from the constraints, and then re-sample until the 
constraints are met. 

The algorithm of BRB parameters training based on MH is shown in algorithm 2. 
 

Algorithm 2 BRB parameters training based on MH 
 

Init(ψð0Þ) and its prior distribution pðψÞ, and the observation distribution pðyðτÞjψÞ 
for i ¼ 0 to N 1 do 

Sample  u,U½0;1  
while 1 do 

Sample  ψ?,qðψ?jψðiÞÞ 
if ψ? satisfy constraints listed in Equation (12) then 

break 
end if end while 

( ) pðψ? Þ 
Qt         

pðyðτÞjψ?;xðτÞÞ 
 

 
 if u < A 

ψðiÞ 
jðx; yÞ; ψ?jðx; yÞ ¼ min 1; 

τ¼1 pðψðiÞ Þ 

pðyðτÞjψðiÞ;xðτÞÞ then 

ψðiþ1Þ  ¼ ψ? 

else 
ψðiþ1Þ  ¼ ψðiÞ 

end if 
end for 

τ¼1 

 
 

 
 

5. Case study 

There are thousands of belief rules for a complex spacecraft system or subsystems, and it 
is impossible to list a large number of belief rules in the article due to the limited space   
of the paper. Therefore, a relative simple example, which is to estimate the health 
condition of space application lithium-ion battery, is taken to demonstrate the applica- 
tion of proposed method. Although this example is relatively simple, but for a larger 
space craft system or subsystems, the application of confidence rule in health condition 
estimation and its training method are consistent with this example. Besides, lithium-ion 
batteries have been used in the new satellites widely (Hyder et al. (2000)). Since  the 
power systems have caused a lot of fatal failures of spacecraft, especially the battery 
subsystems (Zhang and Lee (2011)), the health condition monitoring of lithium-ion 

N 

Q 



 

V V 

 

batteries has attracted more attention. Residual capacity can directly indicate the health 
status of lithium battery (Olivares et al. (2013)). However, it is impossible to measure the 
capacity when spacecraft is on-line or in-orbit, and only voltage, current and tempera- 
ture can be obtained from telemetry (Rufus, Lee, and Thakker (2008)). Therefore, the 
health condition of the spacecraft’s batteries can only be estimated indirectly from these 
observations. 

 

5.1. Experiment data 

From an intuitive point of view, with the increase of service time, the working time 
(discharging time) of a full charged battery is shorter and shorter, so the discharging  
time has a certain relationship with the capacity of lithium-ion batteries. Accordingly, an 
indicator called equal discharge voltage difference time interval (TIEDVD) (Liu et al.  
(2013)) is constructed as Figure 2 shows. 

Besides, temperature is another important observation for health estimation  of 
battery. When temperature is higher, the ionic conductivity increases and the reaction 
kinetics tends to be faster. Therefore, although the apparent performance and capacity 
seem to be higher, the actual available capacity is much lesser (Rufus, Lee, and Thakker 
(2008)). Accordingly, the mean temperature during the TIEDVD, simplified as MT, is as 
another input attribute. The lithium-ion batteries experiment data set from NASA is used 
in this paper. In the data set, each battery is run through three different operational 
profiles (charge, discharge and impedance) at room temperature, and only the discharge 
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Figure 2. Illustration of TIEDVD. 
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data is used in this paper. For discharge, there are fields including battery terminal 
voltage, battery temperature current measured at load, time vector for the cycle and 
capacity. 

To achieve the objective mentioned above, the TIEDVD and MT are extracted from    
the experiment data set as the inputs of the BRB system, and the capacity in the 
experiment which can indicates the health condition  of  batteries  directly  is  taken  as 
the output. When extracting the TIEDVD, the high voltage is set as 3.6 V, and the low 
voltage is set as 3.2 V, that is VH ¼ 3:6V; VL ¼ 3:2V. Figure 3 shows the TIEDVD, MT and 
capacity extracted from the experiment data set of battery #0006. 

 
 

5.2. Referential points of the antecedents and consequent 

The TIEDVD and MT are numerical values, which needs to be transformed to the  
matching degree of linguistic terms. In this paper, we use three linguistic terms for 
TIEDVD and they are short time (s), medium time (M), long time (L). And the referential 
values for these three linguistic terms are 1200, 1700, 2200 s. That is 

A1 ¼ fS ¼ 1200s; M ¼ 1700s; L ¼ 2200sg (14) 

Similarly we use two linguistic terms for MT and they are low temperature (L), and high 
temperature (H). And the referential values for these two linguistic terms are 30°C, 36°C. 

A2 ¼ fL¼ 30oC; H¼ 36oCg (15) 

With the referential values for linguistic terms, the numerical values can be transformed 
into the belief degrees with the transformation technique mentioned in Section 3.3. For 
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Figure 3. TIEDVD, MT and capacity for #6 battery. 
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example, if the value of TIEDVD is 1951 s, the matching degree of the referential terms     
is fðS; 0:1ÞðM; 0:9Þ; ðL; 0Þg. 

In reverse, the belief degrees of di  erent health condition generated by the BRB can   
be transformed into the numerical values of capacity. For the consequent, the health 
condition (capacity), 5 linguistic terms are used: very poor (VP), poor (P), medium (M), 
good (G) and very good (VG). And the referential capacity values for these five linguistic 
terms are 1.84, 1.89, 1.94, 1.99, 2.04 Ahr. That is 

D ¼ fVP ¼ 1:1Ahr; P ¼ 1:35Ahr; M ¼ 1:6Ahr; G ¼ 1:85Ahr; VG  ¼ 2:1Ahrg  (16) 

If the belief degree of different health condition calculated by BRB  is 
fðVP; 0:1Þ; ðP; 0:1Þ; ðM; 0:2Þ; ðG; 0:2Þ; ðM; 0:4Þg; then capacity ¼ VP x 0:1 þ P x 0:1 þ M 
x0:2 þ G x 0:2 þ VG x 0:4 ¼ 1:84 x 0:1 þ 1:89 x 0:1 þ 1:94 x 0:2 þ 1:99 x 0:2 þ 2:04 
x0:4 ¼ 1:975 

 
5.3. Rules 

As mentioned above, different from traditional rule base, the BRB is based on the belief 
concept. When building the belief rule base, the experts not only need to give the 
premise and conclusion for rules, but also need to give a series of parameters, including 
rule weight θk, attributes weight δik, and belief degrees βnk . And the number of rules is 
decided  by  antecedent  attributes,  for  example,  there  are  two  antecedent  attributes, 
TIEDVD and MT in this case, where the TIEDVD is divided into three linguistic terms, and 
the MT is divided into two linguistic terms. Therefore, there are 3 x 2 ¼ 6 combinations  
of the two attributes resulting in six rules in the rule base. The experts can give the rules 
and corresponding parameters with their experienced knowledge or by observing the 
historical data. 

For this case, Table 1 lists the six belief rules decided by the experts.   
In the Table 1, the first rule means that: 

R1 : IF TIEDVD is S AND MT is L; 
THEN capacity isfðVP; 0:7Þ; ðP; 0:2Þ; ðM; 0:1Þ; ðG; 0:0Þ; ðVG; 0:0Þg; 
with rule weight θ1 ¼ 1; and attributes weight δ1 ¼ 1; δ2 ¼ 1 

(17) 

 

Figure 4 shows the results of capacity generated by experts given BRB and also the real 
capacity for battery #0006. From the comparison, it can be seen that the estimated 
outcomes of BRB decided by experts basically reflect the variation trend of real capacity. 
However, the estimated outcomes cannot match the real ones very closely because of  
the inaccuracy of human knowledge. 

 
Table 1. Belief rule base given by experts. 

 

Rk  θk xðA1Þ xðA2Þ Consequents D ¼ fVP; P; M; G; VPg; δ1 ¼ 1; δ2 ¼ 1 
1 1.0 S L  fðVP; 0:7Þ; ðP; 0:2Þ; ðM; 0:1Þ; ðG; 0:0Þ; ðVG; 0:0Þg 
2 1.0 S H fðVP; 0:9Þ; ðP; 0:1Þ; ðM; 0:0Þ; ðG; 0:0Þ; ðVG; 0:0Þg 
3 1.0 M L fðVP; 0:0Þ; ðP; 0:1Þ; ðM; 0:6Þ; ðG; 0:2Þ; ðVG; 0:1Þg 
4 1.0 M H fðVP; 0:1Þ; ðP; 0:2Þ; ðM; 0:5Þ; ðG; 0:2Þ; ðVG; 0:0Þg 
5 1.0 L L fðVP; 0:0Þ; ðP; 0:0Þ; ðM; 0:0Þ; ðG; 0:1Þ; ðVG; 0:9Þg 
6 1.0 L H fðVP; 0:0Þ; ðP; 0:0Þ; ðM; 0:1Þ; ðG; 0:1Þ; ðVG; 0:8Þg 
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Figure 4. Comparison of capacity generated by experts given BRB with real capacity. 
 
 

5.4. Training with historical data 

If there are historical data, the BRB parameters shown in Table 1 can be adjusted to 
obtain more accurate outcomes. For this case, in order to  train  the  BRB,  the  
extracted TIEDVD, MT  and  capacity  of  battery  #0005  and  battery  #0006  are  used  
as the training data set. And the  extracted  TIEDVD,  MT  and  capacity  of  battery  
#0007 is used as the  testing data set to  verify the effectiveness of  training.  In  order  
to illustrate the advantages of the proposed method in spacecraft health condition 
estimation, it will be compared with BRB trained by optimisation method and BP  
neural network. 

(1) BRB parameters adjustment with MCMC technique 
The prior distribution of parameters follows uniform distribution under constraints 

described in Eq.12, the transition distribution is set as follows, θiþ1 
, Nðθi; 0:03Þ,βiþ1   , Nðβi; 0:01Þ,δiþ1  , Nðδi; 0:03Þ. The observation distribution pðyijψ; xiÞ 
, Nðyi

 ; 6e 5Þ, where yi
  

samples N ¼ 10000 
is the real output of training data set. And the number of 

(2) BRB parameters adjustment with optimisation method 
Figure 5 shows the framework of training BRB parameter based on optimisation 

method, where x  is the input vector, y  is the real output, ŷ  denotes the predicted output 

generated by BRB system, and the parameters of BRB is represented as ψ ¼ < θ; δ; β > 
And the target of the optimisation is minimising the error between real output y  and 
predicted  output ŷ,  which  is  denoted  by  �ðψÞ .  There  are  several  methods  to  represent 
�ðψÞ; such as mean square error ðMSEÞ; mean average error (MAP), etc. In this paper, 
MSE is chosen as the optimisation. Therefore, �ðψÞ can be calculated as follow, 
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i¼
1 

 

 
 

Figure 5. Illustration of BRB parameter training based on optimisation method. 
 

Table 2. Belief rule base trained by MCMC.    
Rk  θk xðA1Þ xðA2Þ Consequents D ¼ fVP; P; M; G; VPg; δ1 ¼ 0:3108; δ2 ¼ 0:4876  
1 0.6477 S L  fðVP; 0:7011Þ; ðP; 0:2232Þ; ðM; 0:0757Þ; ðG; 0:0Þ; ðVG; 0:0Þg 
2 0.2568 S H fðVP; 0:8802Þ; ðP; 0:1198Þ; ðM; 0:0Þ; ðG; 0:0Þ; ðVG; 0:0Þg 
3 0.3079 M L fðVP; 0:0Þ; ðP; 0:3951Þ; ðM; 0:3073Þ; ðG; 0:2028Þ; ðVG; 0:0948Þg 
4 0.3085 M H fðVP; 0:0277Þ; ðP; 0:0402Þ; ðM; 0:3373Þ; ðG; 0:5948Þ; ðVG; 0:0Þg 
5 0.2498 L L fðVP; 0:0Þ; ðP; 0:0Þ; ðM; 0:0Þ; ðG; 0:3093Þ; ðVG; 0:6907Þg 
6 0.7545 L H fðVP; 0:0Þ; ðP; 0:0Þ; ðM; 0:0873Þ; ðG; 0:2218Þ; ðVG; 0:6909Þg 

 

 
m 

2 
i 

The BRB trained by this method is called MMSE (minimum MSE) trained BRB below. The 
above optimisation problem can be solved by using ‘fmincon’ in the optimisation toolbox of 
MATLAB. 

(3) BP Neural Network 
The parameters of BP neural network are: Two hidden layers, six nodes which uses 

‘logsig’ activation function for the first hidden layer, one node which uses ‘purelin’ 
activation function for the second hidden layer. net.trainParam.lr = 0.05; net. 
trainParam.goal = 1e-5; net.trainParam.epochs = 500; 

(4) Results 
After being trained by MCMC method,  the  adjusted  BRB  is  shown  in  Table  2. 

Figure 6 shows the capacity estimated by initial BRB given by experts, MCMC trained  
BRB, MMSE trained BRB, and the BP network. As can be  seen  from  the  figure,  the  
output of the initial BRB deviates largely from the test data. But after the training of 
MCMC technique  and MMSE method, the output results are closer to the real output.  
The accumulative errors of different method are presented  in  Figure  7,  and  the 
detailed  MSE  is  shown  in  Table  3,  which  indicates  that  the  MCMC  trained  BRB  has  
a higher accuracy than MMSE trained  BRB,  but  MMS-trained  BRB  has  a  higher  
accuracy than BP network. 

Figure 8 shows the belief degree of different health conditions  generated  by 
MCMC trained BRB. It can be seen that  the  results  of  belief  degree  is  accordance 
with the tendency of  real  health  condition  of  battery,  and  also  accordance  with  
the understanding our human being. For example, the probability  that  the  bat-  
tery’s health status is VG is  decreasing  as  time  goes,  and  drop  to  almost  zero  in  
half way. 
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Figure 6. Comparing the results. 
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Figure 7. Comparing the accumulative errors. 
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Table 3. The comparative errors by using different methods.  
Method BRB decided by experts BRB trained by MCMC BRB trained by MMSE BP network 
Error (MSE) 1.4e-2 4.6e-4 9.6e-4 1.9e-3 

 
0.5 

 
0 

0 
0.4 

0.2 
0 

0 
0.4 

0.2 
0 

0 
1 

0.5 
0 

0 
0.5 

 
0 

0 20 40 60 80 100 120 140 160 180 
number of data 

 
Figure 8. The belief degree of different health conditions generated by MCMC-trained BRB. 

 
 
6. Conclusions 

This paper focuses on a study of health condition estimation of spacecraft key 
components by using BRB. The study demonstrates that  the  precision  of  the  pro-  
posed method for estimating the health condition is superior to  the  traditional 
optimised BRB and also the BP network due to  the  superior  capability  of overcoming 
the problem of overfitting. Comparing with the  traditional  optimisation  method  for  
BRB parameters training, the MCMC method estimates the posterior probability of 
parameters instead of  finding  optimal  single  values.  Therefore,  MCMC  method 
adjusts  BRB  parameters  in  a  more  conservative  way,  which  makes  experts   play 
major roles in determining BRB parameters. Comparing with the pure data-driven method 
(BP network), the proposed method can take full advantage of the prior knowledge of 
experts to compensate for the insufficient training data or the inter- ference of noise in 
training data, thus  overcoming  the  over-fitting  problem.  In  addition, BRB is a ‘white 
box’ system,  and  the  results  can  be  explained  clearly because the reasons can be 
traced back. Furthermore, the proposed method can generate output of belief degree  for  
different  linguistic  terms,  which  can  deal  with  the uncertainties, and such kind of 
conclusions is more natural and  acceptable  to  human users. 
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It is worth noting that the battery case is much more simple than real application in 
order to demonstrate the proposed method clearly. In practice, the spacecraft systems 
have a large number of subsystems and observations, so the BRB may be a large-scale 
rule base with hundreds or thousands of rules. Besides, a bottom-up approach is often 
used to  estimate  the  health  condition  of  a  complex  system,  and  the  BRB  can  be  of  
a hierarchical structure exactly Yang et al. (2006). For multi-levels BRB, the lower level 
attributes can be aggregated as evidence for a higher level attributes. Therefore, using 
multi-levels BRB to model the hierarchical structure of a complex spacecraft system  
needs to be further researched. 
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