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ABSTRACT 

A new architecture implements one Monocular Simultaneous Localization and Mapping (SLAM) system 
to track the unconstraint motion of a mobile robot. The modified ORB (Oriented FAST and Rotated 
BRIEF) features represent the landmarks for designing a grid feature detection algorithm. An upgraded 
feature matching method has improved the robustness of feature matching. The Modified coVariance 
Extended Kalman Filter (MVEKF) estimates the multiple dimension states of the free moving visual 
sensor instead of the familiar Extended Kalman Filter (EKF). The simulation navigation of Lunar and 
Mars surfaces proves that the proposed method is robust and efficient. 

 
1. Introduction 

Simultaneous localisation and mapping (SLAM) is the process of creating a map of the 
environment while simultaneously deciding the position of the rover in the map. Besides, 
SLAM has been used and validated by a lot of researchers. SLAM has played an important 
role in the intelligent rover and other research fields. Rovers have many sensors, such as 
laser, sonar, or visual camera, has a large impact on the algorithm of SLAM. Sometimes, 
additional sensorial sources are used to better sense rover state and the surrounding 
environment (Aulinas et al. 2008). Compared with those sensors, the camera is not only 
cheaper in price and lighter in weight, but also more convenient to be used in some 
conditions. Recently, there is an increasing interest in using as a single visual sensor to 
perform the SLAM. Monocular SLAM (Scaramuzza and Fraundorfer 2011) is the SLAM 
using images captured by mono cameras. 

Even though it is unable to recover depth information of the observed landmarks 
directly, Monocular SLAM is favoured in the literature of visual SLAM and has received 
much consideration in the last years, which requires less computing resource than 
Binocular or Panoramic SLAM. Monocular SLAM is closely related to the Structure-from- 
Motion (SFM) problem for recovering relative camera poses and three-dimensional (3D) 
structure from a set of camera images. SFM methods as off-line algorithms require batch, 
simultaneous processing for all the images acquired in the sequence. After obtaining 
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globally consistent reconstruction of the camera trajectory and scene structure, local 
motion estimation are refined using an offline global optimisation (i.e., bundle adjust- 
ment) through the whole sequence and computation time grows with the number of 

images. Different from SFM techniques, Monocular SLAM focuses  on  estimating  the 3-
D motion of the camera sequentially and in real-time. As a new image arrives, SLAM 

solutions can update the latest state of the camera quickly. As a result, for consistent 
localisation over long sequences in real-time, Monocular SLAM is more suitable than SFM. 

An autonomous rover using SLAM perceiving maps of the outside world for the 
requirement in different higher level works. As a result, the first encounter problem is 
how to extract the important features from the visual cameras and build the map with the 

surrounding environment. Since  the  SLAM  is  usually  feature-based  descriptor of map, 
a lot of algorithms are applied to extract the features and create their descriptors as the 
landmarks in the map, ex: Shi-Tomasi (Davison 2003), Harris (Lemaire et al. 2007), SIFT (Se, 
Lowe, and Little 2002; Karlsson et al. 2005), SURF (Zhang et al. 2008; Wang, Hung, and Sun 

2011), FAST (Civera et al. 2010; Klein and Murray 2007) and so on. Furthermore, after 
adding the features into the map of the system, the state of camera and all the features 
can be updated by the innovative information of feature matching between consecutive 
images. The extracted feature points used as landmarks should be robust under all kinds 
of changes such as scale, viewpoint and illumination changes, or else, it will make feature 
matching incorrectly. That is, if the observations cannot be correctly associated with the 
landmarks in the map, the map will be inconsistent. In this case, it is a data association 

problem. Wrong matching will cause wrong data association (Fraundorfer and 
Scaramuzza 2011). Therefore, it is crucial to choose suitable features on the captured 
images by the camera as reliable landmarks. Meanwhile, it is also significant to design 
a good feature matching algorithm to improve the data association. Such as, some new 
feature extraction algorithms provide good performance for SLAM. 

The other problem is how to match the feature map to estimate the rover state. Until 
now, there are two famous algorithms in SLAM, one is filtering-based SLAM, and the other 
one is key-frame-based SLAM. These methods (Strasdat, Montiel, and Davison 2010b) may 
have an advantage with low resources but high accuracy. The Extended Kalman Filter 
(EKF) can solve the issue of estimation of SLAM. Besides, several modified filters that have 
better performance have been found to improve the estimation system. 

Our research presents a new Monocular SLAM to estimate the visual sensor’s states 
which it is an extended work by creating the map from sparse feature (Civera et al. 2010; 
Davison et al. 2007). Moreover, ORB (Rublee et al. 2011) is used to detect the feature which 
can greatly reduce the initialisation time in the system, and a new feature detection 
algorithm is proposed to get a suitable number of landmarks. Due to the linear error caused 
by EKF, we can apply the MVEKF (Guo 2003) to estimate the system state recursively. 

As for the space exploration, Lunar rover plays an important role in exploring the moon 
or Mars, but because the moon or Mars can’t have the earth like GPS, and GPS can’t 
provide shelter and high-accuracy location. Therefore, the SLAM algorithm can be used to 
assist the positioning. It allows the lunar rover to remember its trajectory and provide        
a functional service for the lunar rover to return to the original point. Thus, we also applied 
our proposed algorithm to a space rover application. 

Organisation of this paper is as follows. Section 2 introduces the related works of 
Monocular SLAM. Section 3 describes the detail of the proposed new architecture of 



 
 

SLAM. Section 4 shows the applications of SLAM for an office and desert. Finally, we have 
a conclusion in section 5. 

 
 
2. Related works 

In the early 1980s, (Moravec 1980) presented the research of predicting a rover’s move- 
ment from visual data. The work of Moravec includes the movement prediction approach 
without motion estimation solutions. Besides, he also proposed one of the earliest corner 
detectors called the Moravec corner detector, which is a predecessor of the popular 
corner detector known as (Harris and Stephens 1988). Building upon Moravec’s work, 
both SFM and Visual SLAM have long-term development. 

Nowadays, many research works focus on Monocular SLAM (Scaramuzza and 
Fraundorfer 2011; Fraundorfer and Scaramuzza 2011). Two systems among those 
Monocular SLAM systems are milestones in the development history, and other systems 
are almost improved versions based on them to some degree. 

The first successful application of the SLAM methodology with one single camera is 
developed by Davison (Davison et al. 2007), which can operate at 30FPS and be capable of 
coping with an agile motion for an uncontrolled camera with the standard EKF framework. In 

Davison’s system, point features are detected automatically using the detection operator of 
Shi and Tomasi. (Klein and Murray 2007) proposed the second famous system. Due to 

linearisation errors implicit  in  the filtering  approaches,  they  advocated  the optimisation of 
a sparse selection of images that are called key-frames instead of using a sliding window. Their 
system applied FAST corner detection to extract the features and performed a global bundle 
adjustment over the tracked features and a selected set of key-frames in the image sequence. 
Based on their works, many other researchers reported their improved methods to solve 

the issues in the Visual SLAM. In paper (Lemaire et al. 2007), Lemaire presented a 
robust interest point matching algorithm that can work in very diverse environments 

with the improved Harris corner detector. Considering the various changes of images, 
(Karlsson et al. 2005) proposed a method to extract the features by using the scale- 

invariant feature transform (SIFT) to provide a feature extractor. (Wang, Hung, and Sun 
2011) proposed to apply the SURF in the algorithm to provide a better representation of 
a visual SLAM system. Besides, a tracking window and a nearest-neighbour algorithm are 
integrated to improve data association in SLAM. (Strasdat, Montiel, and Davison 2010b) 
presented a new architecture for visual SLAM with the keyframe optimisation method. 
Recently, (Civera et al. 2010) proposed a novel method to combine one-point RANSAC 
into the EKF, which can get more reliable data association. In Civera’s system, a FAST 
algorithm is used to detect the positions of the landmarks. 

Our research follows the works of (Davison et al. 2007) and (Civera et al. 2010) to make 
improvements. In this paper, we design a new Monocular SLAM system and propose some 
improved measures for the issues mentioned for current vision-based SLAM solutions. 
Experiments are carried out with our system to test its performance. Furthermore, we 
proposed a new Lunar rover location module with the improved algorithm. 



 
 

3. Proposed architecture and algorithm description 

3.1. System architecture 

SLAM algorithms, in general, have four major steps – prediction, data association, measure- 
ment update, and augmentation. In the prediction step, the algorithm predicts the new 
state vector and covariance matrix from the previous state and covariance. The proposed 
architecture for monocular SLAM shown in Figure 1 has some parameters of the system to 
make an initialisation, which may be essential for the system. After that, the system begins 
to capture a new image into the loop. In the map management module, there are two 
important processes to be accomplished. One is removing unstable, and the other is 
initialising new features. The system map merges the new image into the map. Then, the 
system’s predicted state for the next time is the motion model of the camera. At this 
moment, we load the new image into the estimation system and project all 6D features into 
2D points to search the measurements in the new image plane through the measurement 
model of the camera. The search region of the measurements for feature landmarks can be 
calculated using the active search method proposed by Davison. After checking each 
observation data, the modified filter update the system state. Finally, the camera’s new 
pose and the positions of sparse features in the map can be able to be estimated. 

 
3.1.1. System initialisation 
In the phase of initialisation processing, it mainly proceeds with the system parameterisa- 
tion. In our SLAM system, the system state consists of two parts: the camera state and the 
positions of all the feature points in the map. Here we use W to specify the world 
coordinate frame which is defined by ourselves as a static reference frame, and 

 
 

 

Figure 1. The proposed architecture of the SLAM system. 
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C stands for the visual motion coordinate frame. Figure 2 illustrates the process of system 
parameterisation. The denotations are as follows: 

xc ¼  rWC; qWC; vW ; wC  T (1) 

Where rWC means the position of a motion camera; qWC stand for the camera orientation  
of the world frame W; vW , wC is linear and angular velocities. Therefore, we can have: 

rWC  ¼ ½xr; yr ; zr]T (2) 

qWC  ¼ ½q1; q2; q3]T (3) 

vW ¼ 
 
vx; vy; vz

 T (4) 

wC ¼  wx; wy; wz T (5) 

For every feature in the map, the following state vector in the form of inverse depth 
parameterisation (Civera, Davison, and Montiel 2008): 

f W  ¼ 
 
xW ; yW ; zW ; αi; β ; ρ 

 T 
(6) 

Where αi  βi  represent the azimuth and the elevation respectively for the defining the 
unit directional vector mðαi ; βiÞ; the point’s depth along the ray di denotes by its inverse 
ρi ¼ 1=di . The following is the unit directional vector: 

 
 

Figure 2. System parameterisation. 
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mðαi; βiÞ ¼ ½cos βi sin αi; - sin βi  ;  cos βi cos αi]T (7) 

Furthermore, substitute the above 6D features into the 3D Euclidean point in the map: 
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mðαi; βiÞ (8) 

 

The next step, the system state vector included the following parameters: 
 

x ¼ 
 
xc; f W ; f W ; f W ;    ; f W  T 

(9) 
 

Meanwhile, the covariance matrix is as follow. 
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3.2. Map management 

Map management handles adding new features or removing unwanted features that 
have been found to affect the results of the SLAM system. To provide a better perfor- 
mance, we propose a grid-based feature detecting strategy and modify the feature 
deleting criterion in the map. 

 
3.2.1. The grid-based feature detection algorithm 
Figure 3 shows the flowchart of our feature detection algorithm. We separate the image 
into M grids, and the ORB detector is applied to detect minimum features into the 
selected grid. The features are extracted randomly until many features are satisfied. The 
expression of a selection of the grid sub-region in the image is as follows: 

 

gridk 
randpermð1; 2; ; MÞ1 

ð E ðfk1 fk2 fkMÞÞ1 

k ::: N 
 

 
(11) 

 

where gridk stands for the index of gird selected in the time k; randperm() is a function 
that can generate a random integer permutation, we need to select the first value from 
the permutation as the grid index; fkj represents the number of features in each grid. 

In Davison and Civera’s research, they take the random region detection method to 
generate landmarks. Our method has a better distribution for the features over the whole 
image. The deletion criterion includes the ratio of the number of correct matching and 
matching attempts. If the ratio is below a threshold, the feature map deletes the land- 
mark. However, this criterion has two shortcomings. Some occluded landmarks are 
removed using the ratio deletion criterion, and it will take the extra cost to re-initialise 
them when observed they again. It is impossible to recognise previous mapped areas for 
loop closing tasks is another shortcoming which will lead mapping to divergence if 
removed old features. We make some improvements to avoid the drawback of the ratio 
criterion. The experiment section shows improvements in the results. 
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Figure 3. Flowchart of grid-based feature detection. 
 

3.2.2. System state prediction with the camera motion model 
The linear velocity and angular velocity (Davison  et al. 2007) to  describe the motion of      
a free movement visual sensor as the following: 

2 rWC 3T 2 
rWC þðvW þm * VW ÞΔt 

3T
 

qWC 6 qWC þqððwC þn * WCÞΔtÞ 7 
x g  x ; u kþ1 

vW 

wC 

kþ1 

vW 
þ 

wC 

k 

þ VW 
þ WC 

(11) 
5 

kþ1 kþ1 

Here VW and WC denoted as impulsive linear and angle velocity; qððwC þ WCÞΔtÞ means 
the quaternion computed from the rotation vectorðwC þ WCÞΔt; u denotes the changes in 
linear and angular velocity; m and n represent the dynamic parameters for acceleration 
velocities. Then we have 

u ¼
  

VW 
l 

¼
  

aW Δt 
l 

(12) 
 

here Δt represents the sampling time interval; aW , bC are all Gaussian variable with zero 
means. 

Hence, the estimated system state for MVEKF is as follows. 
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where  Gx , Gu are the derivatives of motion model g, the camera state  x̂c , and the control 
parameter u;Qmeans the noise of the covariance matrix. 

 
3.2.3. Feature search and matching 
In our Monocular SLAM system, the pinhole camera model with two parameters of radial 
distortion is also used to take the measurements of the landmarks. According to this 
model, we can project 6D features from inverse depth world coordinate frame W onto the 
camera coordinate frame C as the following equations: 

 

i 

h   ¼ y 
 

¼ RCW 
(

qWC )(ρ 
(

f W  - rWC
) 
þ mðα ; β Þ

) 
(15) 

Where RCW ðqWC Þ is a rotation matrix, and C is the frame from a camera, and the following 
is a pinhole model: 
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5 (16) 
zi   dy 

where f is a focal length of the camera and ðu0; v0Þ is a centre coordinate of the image. dx, 
dy denote the unit size of each pixel. The transformation of the undistorted point with the 
radial distortion model and its distorted pixel coordinates are: 
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Section 3.2 describes the principle of active search and the predicted probability distribu- 
tion for the system state, which can be used to find the correspondence search region 
automatically. From the function hðxÞ, an expected position  ĥiðuE ; vE Þ of projection for the i i 
6D feature fi is the covariance matrix as: 

. 

ĥi  ¼ hiðx̂kjk-1Þ 
T 

 
(19) 

Si  ¼ Hi Pkjk-1 Hi   þ Ri 

Then, we obtain the bound of the search region as follow. 

sx 
sy 

¼ 
2n S 

2n
pffi

S
ffiffi
i

ffi
ð

ffi
2

ffiffi
;2

ffiffi
Þ
ffiffi 
 

(20) 

Where n is the number of the desired search region. To find a candidate zi with a 95% 
probability is in the search region, as in Figure 4. 

Although the feature matching process may be robust and reasonable with the active 
search principle, there still exist some improvements to enhance the robust and efficiency 
of feature matching by our experiments. Figure 5 is our feature matching method. 
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Figure 4. Feature search with active vision. 
 
 

Figure 5. The flowchart of feature matching. 
 

Depending on the situation of matching between system map features and new 
observations, the system will decide whether to use Hamming match with the descriptors 
extracted by ORB. This is the main improvement compared with the other matching 
method. When a camera has a drastic movement, the ratio of correct feature matches 
decrease largely, and sometimes even up to zero. In this case, it may cause the filter 
failure, and the results of the evaluation are necessary for Monocular SLAM. 

 
 

3.3. System state update 

The modified covariance EKF (MVEKF) (Guo 2003) compares with other usual filtering 
methods, ex: EKF, MGEKF, and IEKF. The idea of  MVEKF  to  re-compute  the  Jacobi  
matrix Hkþ. 
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For state covariance matrix, it is updated by 

Hkþ   Pk
þ

k    0 (22) 

When the expected observations are ready, then the parameters are updated as follows: 

Kk  ¼ Pkjk-1 HT  S-1
 (23) 

 

x̂kjk  ¼ x̂kjk-1 þ Kkðzi - ĥiÞ (24) 
 

Kk ¼ P HþT 
Hþ P HþT þ Rk

 -1 
(25) 

 

Pkjk  ¼ Pkjk-1 - Kk Si Kk (26) 

Pkjk ¼ ðPkjk þ Pkjk Þ=2 (27) 

Table 1 describes the whole motion estimation algorithm as follow. 
 

Table 1. Motion estimation algorithm. 
 

algorithm: MVEKF State Update for Monocular SLAM 
input: System state variable  ̂xk-1jk-1 

system state covariance matrix  Pk-1jk-1 
output: System state variable  ̂xkjk 

system state covariance matrix Pk k 
Step 1: state prediction with MVEKF filter 

x̂kjk-1  ¼ gðx̂k-1jk-1 Þ 
Pkjk-1  ¼ Gx  Pk-1jk-1 GT  þQ 

Step 2: Calculate the Jacobi matrix of the measurement 
function 
to system state 

 

Calculate Kalman coefficient 
Kk  ¼ Pk k    1 HT   Hk  Pk k    1 HT  þ Rk 

 -1
 

Step 3: System state update with MVEKF filter 
ĥi  ¼ hi ðx̂kjk-1 Þ 
Si  ¼ Hi  Pkjk-1 Hi   þ Ri 

x̂kjk  ¼ x̂kjk-1 þ Kk ðzi  - ̂hi Þ 
Pkjk  ¼ Pkjk-1 - Kk  Si  KT

 

Step 4: Modify the measurement Jacobi matrix 
 

Step 5: Repeat step 3, adjust system state matrix 
as a symmetric matrix 
Kk  ¼ Pkjk-1 HT  S-i  1 

x̂kjk  ¼ x̂kjk-1 þ Kk ðzi  - ̂hi Þ 
Kk ¼ Pk k 1 Hþ Hþ Pk k 1 Hþ þ Rk 

-
 

Pkjk  ¼ Pkjk-1 -Kk Si Kk 

Pkjk ¼ ðPkjk þ PT
j Þ=2 

Step 6: return new  ̂xkjk  and  Pkjk 

kj
k 

kjk-
1 

kjk-
1 



 
 

4. Evaluation 

All the experiments in the following were run on the Pentium(R) Dual-Core T4500 
processors at 2.30GHz. We have implemented three Monocular SLAM algorithms for 
testing their performance. The first algorithm is called 1PRMSLAM (short for 1-point 
RANSAC for EKF SLAM), which is proposed by (Civera, Davison, and Montiel 2008). Their 
main contribution is to propose a combination of one-point RANSAC, which allows the 
minimal sample size to be reduced to one, resulting in large computational savings 
without the loss of discriminative power for outlier rejection. The second algorithm is 
called CSEKFMSLAM, which uses SIFT to detect the image features as useful landmarks, 
and the other blocks are the same as the 1PRMSLAM. The purpose of building this 
algorithm is to test the effect and make a comparison with other algorithms when we 
change image feature detectors. The MVMSLAM denotes our proposed Monocular SLAM 
algorithm. This algorithm combines with the above improvements, and we will make         
a comprehensive comparison with the other two SLAM algorithms. 

 

4.1. The experiment in an office 

The experiment uses the videos published by the Civera (xxxx) and per second has 15 
sequence images with the size 320 × 240. In this experiment with the same parameters, we 
selected 200 frames to test 1PRMSLAM, SEKFMSLAM, and our method-MVMLAM. Figure 6. 
displays the running results of our system. In the right side, the trajectory of the camera with 
a black line, and each feature (landmark) in the map is a black point with a corresponding 
red ellipse that represents the uncertainty of its position. From Figure 6, the uncertainties of 
most features are decreasing gradually, and the red ellipses are collapsed to the black points 
finally. The proposed architecture is feasible to solve the SLAM problem, and the whole 
estimation trajectory of the camera approximates the true trajectory of the camera. 

Three algorithms use the public image datasets as the benchmark for evaluation. From 
Figure 7, it is obvious that the time that 1PRMSLAM cost is almost three times more than 
our system. Furthermore, we record their average time for each frame. As Table 2 shows, 
the average time of our system is 0.1799 s, while 1PRMSLAM and SEKFMSLAM take 
1.5931s, 0.1901s respectively. 

Figures 8 and 9 show the errors of camera trajectory estimation in our system. We 
calculate the root mean square error to show the estimation performance between them. 
Table 3 shows the error for 6D pose of our method SEKFMSLAM and MVMSLAM. The 
maximal space location error is 0.2005m while the minimal error is 0.0192m. Meanwhile, 
errors for camera orientation are all small, and these errors accepted by the 95% con- 
fidence regions. This estimation result proves that our algorithm, including SEKFMSLAM, is 
effective to track the unconstraint 6D motion. For a better performance showing, we have 
done a lot of test with our images. We will focus on the following experiment, which can 
test the final performance for the three methods. 

 

4.2. Application for planetary rover 

Visual SLAM (Zhou et al. 2015) and Planetary rover (Fallah, Yue, Vahid-Araghi and 
Khajepour et al. 2013) are both popular topics for vehicular Technology. Lunar rover is 



 
 

 
(a) frame =1 

(b) frame =50 

 
(c) frame =160 
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Figure 6. Monocular SLAM system display and camera motion in top view. 
 

currently the most direct tool for lunar exploration, which mainly includes locating, path 
planning, obstacle avoidance, and motion control module. In the modules motioned 
above, localisation module is one of the most critical modules in all modules motioned 



 
 

 
 

Figure 7. Time comparison of SLAM for frame processing. 
 

Table 2. Average time for each frame.  
Time 1PRMSLAM MVMSLAM SEKFMSLAM 
Frame(s) 1.5931 0.1799 0.1901 

 
 

Figure 8. Error for camera location (XYZ). 
 

above, its role is to calculate the real-time motion status, which indicates the position and 
attitude information of the rover. The rover position information is the premise of path 
planning and the important input data of obstacle avoidance and other motion control 



 
 

 
 

Figure 9. Error rate of monocular camera orientation. 
 

Table 3. Error for 6D pose. 
Pose SEKFMSLAM MVMSLAM 
X(m) 0.0867 0.2005 
Y(m) 0.0193 0.0367 
Z(m) 0.0192 0.0854 
Yaw(m) 0.0038 0.0049 
Pitch(m) 0.1001 0.0968 
Roll(m) 0.0064 0.0043 

 
modules. Therefore, real-time rover locating has important research significance for the 
lunar exploration mission. 

Currently, well-rounded navigation technologies are Dead reckoning, visual navigation, 
radio navigation. Dead reckoning often relies on the odometer or another unit for navigation, 
but the fatal drawback of dead navigating is the existence of cumulative errors increase as time 
goes on. Therefore, this location method isn’t suitable for long-term Lunar exploration mission. 
One characteristic of the Moon is that it has no atmosphere. The Moon has no atmosphere. 
Ultrasonic sensors are useless. The magnetic field of the Moon is very weak in comparison to 
that of the Earth. A magnetic compass would not work on the Moon because the magnetic 
field of the Moon is very weak in comparison to that of the Earth. The magnetic compass for 
navigation is useless on the moon. The GPS system operates using 50 or so satellites in orbit 
around the Earth. They would not be useful on the Moon even though their signals were 
possibly received. The Earth’s GPS positioning system cannot provide lunar rover navigation 
services. Thus, the most feasible method for Lunar rover locating is visual navigation. Based on 
our proposed MVMSLAM, we propose a lunar rover locating module, as shown in Figure 10. 

A monocular camera as a sensor can percept the moon’s surface environment. The 
real-time image sequence captured during the rover movement is used as the input of the 
module to realise the real-time position and attitude information calculation of the rover 
in an unknown environment. Meanwhile, Map, build a good environment map can be 
used as follow-up path planning and other high-level exploration mission services. The 



 
 

 
 

Figure 10. Lunar rover locating module. 
 

module mainly includes improved grid-based feature extraction, rule matching, and 
optimised feature map management algorithm. 

To validate the feasibility of the module, we perform a simulated experiment for the 
Lunar rover. Since the difficulty of obtaining an image sequence of the lunar surface 
environment, we adopt the desert landscape on earth to simulate the lunar surface 
environment. Desert topography visual field above the open, and less blocking within  
the visual field, the surface features are mostly gravel and undulating surface, these 
characteristics are more similar to the lunar environment. Using a head-mounted mono- 
cular camera, we took a 36-s long monocular sequence of 1140 frames and ran it on 
MVMSLAM. Figure 11 shows the results. 

In Figure 11, a) the distribution of feature points corresponding to a certain frame in 
the image sequence, b) the distribution of the constructed map feature points c) the 3D 
trajectory map estimated by the module. 

Experiments show that the lunar rover module based on our proposed MVMSLAM can 
provide rover with real-time location information and the feature map of an unknown 
environment. The output of the locating module mainly includes the motion trajectory 
and the feature map. The motion trajectory shows the motion route of the rover to return 

 

Figure 11. Experiment results. 



 
 

the base station. The feature map can cooperate with the path planning module to 
accomplish more autonomous exploration tasks. 

 
 
5. Conclusion and future work 

This research presents a new approach MVMSLAM to design a visual SLAM system for the 
rover with a  single  camera,  which  is  named  MVMSLAM.  In  MVMSLAM  system,  firstly, 
a modified ORB is proposed to enhance the feature point extraction with grid-based 
strategy. Furthermore, to maintain the satisfying process speed for the SLAM application, 
the ellipse search algorithm is improved with a better feature detection approach. 
Besides, we do our best to optimise the MVEKF filter for the SLAM architecture. The 
experimental results show that our proposed new architecture is useful with satisfying 
performance and low error rate in the rover SLAM system. 

In the end, we apply a Lunar rover location system with our proposed MVMSLAM. In 
the simulated experiment for the Lunar rover’s locating task, the result shows the 
MVMSLAM should be capable of the Lunar rover exploration task. 

In the future, with the development of autonomous driving rover, the demand for 
multi-task (Matarić et al. 2003) and multi-vision sensors (Civera 0000) is increasing. So how 
to design and optimise the SLAM architecture for more advanced autonomous driving 
rover in the future will be our future research focus. 
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