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Abstract 

With the rapid growth of perishable food e-commerce businesses, there is a definite need 

for logistics services providers to manage parcel shipments with multi-temperature 

requirements. E-commerce characteristics, including time-critical delivery, fragmented 

orders, and high product variety, should be further considered to extend the ontology of 

multi-temperature joint distribution. However, traditional delivery route planning is 

insufficient because it merely minimizes the cost of travelling between customer locations. 

Factors related to food quality and arrival time windows should also be considered. In 

addition, handling dynamic incident management, such as violations of handling 

requirements during delivery, is lacking. This leads to the likelihood of food deteriorating 

before it reaches the consumers, thereby impacting customer satisfaction. This paper 

proposes an Internet of Things–based multi-temperature delivery planning system (IoT-

MTDPS), embedding a two-phase multi-objective genetic algorithm optimizer 

(2PMGAO). The formulation of delivery routing mainly considers product-dependent 

multi-temperature characteristics, service level, transportation cost, and number of trucks. 

Once there are unexpected incidents which are detected by Internet of Things 

technologies, 2PMGAO can optimize the membership functions of fuzzy logic for re-

routing the e-commerce delivery plan. With using IoT-MTDPS, the capability of handling 

e-commerce orders is enhanced, while customer satisfaction can be maintained at a 

designated level. 
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1. Introduction 

Due to the booming e-commerce business in recent years, most Internet users have 

changed their shopping behaviour, payment methods, and ways to appreciate goods and 

services to fully engage in e-commerce transactions (Da Costa, 2016). Perishable food, 

such as frozen meat, chilled seafood, and fresh fruit, is a popular item category for sale 

on e-commerce platforms all over the world (Zhu et al., 2018). To effectively manage 

perishable food in the entire supply chain ecosystem, particularly the need to handle the 

multi-temperature characteristics of perishable food, the concept of multi-temperature 

joint distribution (MTJD) is introduced to provide an overview of the manner in which 

temperature-sensitive and perishable products are handled from the suppliers to the end 

customers (Kuo and Chen, 2010). MTJD was proposed to minimize the cost involved in 

storage and transportation in the logistics system, while at the same time truck usage and 

logistics performance can be maximized. The product quality and safe delivery are the 

top priority in MTJD, ensured by means of various cold chain equipment, such as cold 

boxes, cold cabins, and eutectic gels. Subsequently, various food requirements can be 

satisfied to maintain designated levels of customer satisfaction. Compared with the 

generic food supply chain, handling of perishable food in the e-commerce environment 
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requires not only cold chain equipment, but also efficient and effective e-order fulfilment 

in order to maintain the desired level of food quality and customer satisfaction. Therefore, 

this study considers the ontology of MTJD to extend this distribution process to e-

commerce logistics by considering the multi-temperature characteristics in managing e-

commerce parcel shipments, as shown in Figure 1. Song and Ko (2016) formulated 

research for the vehicle routing problem of using refrigerated trucks for perishable food 

products delivery, which was useful for distribution using refrigerated trucks in the supply 

chain. Also, Hsiao et al. (2018) presented distribution planning for cold chains 

considering multiple temperature settings in the vehicle storage spaces, and thus delivery 

using multi-temperature trucks through partitioning of various temperature zones in 

vehicles. However, there is still a research gap in completing the whole perishable food 

e-commerce logistics to achieve multi-temperature last-mile delivery planning at a parcel 

level. 

 

 
Figure 1. MTJD-based perishable food e-commerce logistics 

 

With regard to last-mile delivery, two research problems are formulated in this study, 

as illustrated in Figure 2. First, compared with the traditional food supply chain, the 

significant change in perishable food e-commerce business is the last-mile home delivery 

because of the need to handle fragmented orders, high variety of stock keeping units 

(SKUs), and small packages of parcel shipments (Esq and Henry, 2018). Current research 

studies proved the importance of last-mile delivery in the e-commerce environment, and 

revealed a number of innovative and efficient delivery solutions for e-commerce 

businesses (Yu et al., 2017; Mangiaracina et al., 2019). A transportation management 

system (TMS) is essential to support e-commerce logistics through formulating an 

effective and efficient fleet management, and data-driven smart TMS is now attracting a 

number of industrial practitioners and researchers (Zhang et al., 2017). However, the 

consideration of MTJD characteristics for last-mile home delivery in TMS is limited in 

the recent research and industrial practice such that product quality and customer 

satisfaction in the perishable food e-commerce logistics cannot be maintained effectively. 

Second, sudden incidents from e-commerce systems, including urgent customer order 

arrival and order cancellation, may change the predetermined delivery schedule. Also, 

unexpected events during the delivery process, such as serious traffic jams and violation 

of handling requirements, may cause food deterioration or ripening before reaching the 

end customers. Particularly for the e-commerce logistics, this could be disastrous if the 

customers receive spoiled food and the delivery fails to meet the planned schedule, 

resulting in customer health problems, dissatisfaction, and damage to the company’s 

reputation (Fikar, 2018; Rothenbächer, 2019). Moreover, perishable food e-commerce 

distribution has a relatively short planning horizon, where food products are handled by 

various cold chain equipment to ensure the quality of the food. Therefore, the dynamicity 

in the delivery process should be considered in a systematic approach. To summarize, two 

research problems in the perishable food e-commerce logistics are formulated in the 

following:   
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a. What is the effective systematic approach to integrate MTJD and perishable food e-

commerce logistics for improving product quality and customer satisfaction? 

b. How can the delivery planning and systems address the dynamicity due to 

unexpected incidents during the delivery process?  

 

To address the above research problems, an Internet of Things (IoT)-based multi-

temperature delivery planning system (IoT-MTDPS) is proposed for improving delivery 

planning and scheduling in managing the perishable food e-commerce businesses 

effectively. To capture real-time information on traffic situations and environmental 

conditions, IoT technologies are applied to develop a cloud platform for data acquisition 

and an optimization engine. In the optimization process, a two-phase multi-objective 

genetic algorithm optimizer (2PMGAO) is developed to search for a set of pareto-optimal 

solutions by integrating optimization of static and dynamic delivery schedules. For 

formulating dynamic routing, when unexpected incidents are detected by IoT 

technologies, 2PMGAO can optimize membership functions in fuzzy logic for assisting 

removal and reinsertion to formulate dynamic re-routing. With the adoption of IoT-

MTDPS, delivery route planning can consider numerous objectives simultaneously, 

together with dynamic incident management functionality, and therefore customer 

satisfaction can be improved and company competitiveness can be strengthened in e-

commerce logistics.  

 

 
Figure 2. Illustration of two scenarios in perishable food e-commerce logistics 

 

This paper is organized as follows. Section 1 is the introduction. In Section 2, the 

related work and literature in the aspects of perishable food e-commerce logistics, the 

vehicle routing problem, and artificial intelligence (AI) techniques are reviewed. Section 

3 presents the system architecture of IoT-MTDPS. A case study in implementing the 

proposed system is illustrated in Section 4. Section 5 gives the results and analysis related 

to performance and comparison of the proposed system. Discussion and conclusions are 

presented in Sections 6 and 7, respectively.  

 

2. Literature Review 

The perishable food supply chain, as a branch of supply chain management, was 

developed to ensure the desired level of food quality and safety throughout the supply 
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chain (Macheka et al., 2017). Differing from delivering bulk cargo to retailers in the 

traditional food chain as the final stage, last-mile delivery in the perishable food e-

commerce business has become more complicated with regard to the number of customer 

locations, product sizes, environmental monitoring, and requirements of food quality 

(Cherrett et al., 2017). Without effective quality assurance during the delivery process, 

scandals about the food supply may occur, damaging society’s trust and the ecosystem of 

e-commerce businesses. In view of perishable food e-commerce logistics, IoT, which is 

defined as an interconnection between physical objects and the digital world, plays an 

important role in facilitation of data acquisition, monitoring product freshness, logistics 

management, and payment effectiveness (Ruan and Shi, 2016). Also, the demand on 

perishable food e-commerce and delivery is rapidly growing due to the outbreak of 

COVID-19 pandemic so that effective delivery planning has drawn considerable attention 

recently (Singh et al., 2020). Some research studies proposed an IoT-based framework in 

logistics and supply chain management embedding cloud computing, sensor technologies, 

and decision-support algorithms as a whole (Zdravković et al., 2018). IoT systems are 

recently regarded as one of the promising technological aspects for the establishment of 

Logistics 4.0 on improving the intelligence, adaptability and resilience of the logistics 

and supply chain management (Winkelhaus and Grosse, 2020). Also, Pournader et al. 

(2020) reported that IoT could be further integrated with emerging technologies, such as 

blockchain, to facilitate the trust, trade, traceability and transparency for all supply chain 

stakeholders. Real-time information provided by IoT can be effectively applied to shorten 

logistics time, reduce vehicle no-load rate, and control the relevant cost. Also, Wang et al. 

(2019) indicated that time-precise delivery, elasticity of delivery capability, and cost 

efficiency were three present challenges in the last-mile parcel delivery, and thus 

advanced driver-based approaches and unmanned driving by means of IoT should be 

sought. However, the area of research into integrating IoT and perishable food e-

commerce logistics is limited to formulating appropriate delivery planning systems for 

handling perishable food parcel shipments. 

The vehicle routing problem (VRP) has been well defined as an optimization 

problem for formulating optimal delivery or collection routes from one or multiple depots 

to several geographically scattered customer locations (Rahmani et al., 2016). The main 

objectives in the VRP are to minimize the travelling distance and costs involved in the 

delivery route. Table 1 summarizes the major considerations and factors in VRPs 

particular to the handling of perishable food. The table shows that the considerations in 

the VRP formulation for the perishable food supply chain consists of cost, flow 

conservation, time window, food quality, customer satisfaction, and multi-temperature 

characteristics. Apart from the essential considerations, most modern VRPs involve 

integration with additional considerations to enrich the models and improve feasibility 

and adaptability. However, limited research has been conducted with particular focus on 

food quality and multi-temperature characteristics, and thus the food quality cannot be 

fully controlled during last-mile delivery for perishable food e-commerce logistics. 

Therefore, the consideration of product-dependent multi-temperature characteristics and 

dynamic routing mechanism is important to enrich the research of perishable food e-

commerce logistics. To deal with a number of factors in the optimization model, multi-

objective optimization is considered to obtain the best solution, striking the balance 

between numerous factors, which can be solved to obtain the pareto-solution set (Guo et 

al., 2017; Chan et al., 2020; Kumar et al., 2020).   

Apart from formulating an optimal delivery route before leaving the depot, dynamic 

and real-time updating of the delivery route, thus accounting for undesired incidents, is 

essential (Ritzinger et al., 2016). Liu et al. (2019) proposed an approach by integrating 
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IoT and optimization to provide dynamic routing capability, in which the real-time data, 

including loading volume, weight, and distance, are considered. However, this research 

omitted the impacts of the delivery schedule on other customers and the food quality 

during the transportation process. Fuzzy set theory was proven to be feasible to combine 

such uncertain information in the VRP, and was widely applied in formulation of the VRP 

in a number of aspects, such as the fuzzy logic guided genetic algorithm for solving VRPs 

(Mohammed and Wang, 2017). Beyond that, the fuzzy logic approach should be able to 

fine tune the factors in the VRP mathematics such that the fuzzy set theory is adopted in 

the heuristic optimisation methods, such as genetic algorithm, to handle data uncertainty 

and fuzziness (Xu et al., 2019). Furthermore, the delivery planning can respond to real-

time information in the IoT environment to achieve a holistic and practical application 

system in real-life situations (Ben-Daya et al., 2019). The consideration of food handling 

requirements and real-time traffic situations, along with the essential factors in VRPs, can 

then be integrated in the delivery planning system.  

To summarize, this study explores the new paradigm of perishable food e-commerce 

logistics from the basis of MTJD, in which last-mile delivery is deemed to be the most 

critical and challenging stage among other logistics activities. Subsequently, the multi-

temperature characteristics, customer satisfaction, and food quality assurance are 

considered to formulate an intelligent delivery planning system by means of IoT, fuzzy 

logic, and multi-objective optimization. As shown in Table 1, the proposed work in this 

study attempts to include all essential factors for managing perishable food e-commerce 

logistics, namely cost, flow conservation, time window, food quality, customer 

satisfaction, and multi-temperature characteristics. Thus, customer satisfaction and food 

quality can be maintained effectively in the perishable food e-commerce logistics. A 

systematic approach is therefore developed to address the aforementioned concerns to 

enrich the area of research into food supply chain and e-commerce logistics.
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Table 1. Comparison of existing models for managing perishable food and e-commerce logistics 

  Major factors for VRP formulation in handling perishable food 

Publications Model Names Cost Flow 

conservation 

Time 

window 

Food quality Customer 

satisfaction 

Multi-

temperature 

characteristics  

Proposed work 

Hsiao et al. (2018) 

Padilla et al. (2018) 

IoT-MTDPS 

VRPTW 

N/A 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ ✓ 

✓, zone-based 

Hiassat et al. (2017) N/A ✓ ✓ ✓    

Ma et al. (2017) COSTDVRPT ✓ ✓ ✓ ✓   

Bortolini et al. (2016) FDP ✓  ✓    

Mancini (2016) MDMPVRPHF ✓ ✓   ✓  

Song and Ko (2016) N/A ✓ ✓ ✓  ✓ ✓, vehicle level 

Wang et al. (2016) MO-VRPTW-P ✓  ✓ ✓ ✓  

Amorim et al. (2014) HF-SD-VRPMTW ✓ ✓ ✓  ✓  

Govindan et al. 

(2014) 

2E-LRPTW ✓ ✓     

Nahum (2013) N/A ✓ ✓ ✓  ✓  
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3. Design of an Internet of Things–Based Multi-Temperature Delivery Planning 

System  

In this section, an Internet of Things (IoT)-based multi-temperature delivery planning 

system (IoT-MTDPS) is proposed to (i) formulate a predetermined optimized delivery 

route, and (ii) provide dynamic incident management functionality. Figure 3 shows the 

system architecture of the IoT-MTDPS with two separate modules to support the delivery 

planning process in perishable food e-commerce logistics.  

 

 
Figure 3. System architecture of IoT-MTDPS 

 

3.1 Internet of Things Data Acquisition Module (IDAM) 

This module provides a structural process for IoT data acquisition to facilitate the 

proposed system. According to the work of Ng et al. (2018), service-oriented architecture 

(SOA) is an applicable approach in IoT implementation, which provides a significant 

level of dynamicity and flexibility to IoT middleware. Subsequently, the IoT solutions 

can be included in a concept of Everything as a Service in the cloud computing 

environment. In the SOA, a number of layers, including object, network, service, and 
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application, are organized as the bridge between physical objects and the digital world of 

IoT (Sosa-Reyna et al., 2018). The core concepts and IoT services are included in the 

following to formulate the SOA for the IoT functionalities in the proposed system. At first, 

in the device layer, two types of data are collected, namely (i) static data from the TMS, 

and (ii) real-time data from wireless sensor networks. On one hand, the static data from 

existing TMS are extracted as an important data source for structuring the customers’ 

locations and the goods to be delivered, which are referred to delivery notes for the 

customer order fulfilment. It includes but not limited to customer data (e.g., customer 

names, contact numbers, and delivery addresses), fleet data (e.g., truck capacity, and 

transportation restrictions), order data (e.g., requested delivery time and list of order 

goods), and contractor data (e.g., trucker information, and price quote per delivery). On 

the other hand, two sets of real-time data, namely environmental and traffic conditions, 

are collected for monitoring delivery processes and achieving incident management. To 

collect data of environmental conditions, sensing devices (such as Texas Instruments’ 

SensorTag CC3200) are attached in each truck to measure ambient temperature (°C) and 

relative humidity (%), conforming to product handling protocols. In the network layer, 

the entire data payload is then transmitted to designated IoT development platforms (such 

as IBM Cloud and IoTweet) via the edge router which enables 3G/4G/LTE connection, in 

which the sensing devices are need to be paired with the edge router in advance by using 

the wireless communication technologies under 2.4GHz ISM band wireless protocol, for 

example Bluetooth Low Energy and Wi-Fi. With the defined transmission interval, the 

data payloads can be sent to the IoT development platforms which are the Platform as a 

Services (PaaS) solutions for the system development, where the lightweight and publish-

subscribe-enabled IoT transmission protocols, such as IBM Watson IoT platform 

registered services and message queuing telemetry transport (MQTT), are used to 

transport device data as the role of brokers. The protocols run over TCP/IP to support the 

end-to-end data transmission for server connection, server disconnection and message 

publication, which is depended on the network bandwidth. To collect data of traffic 

conditions, external connection to Google Maps APIs is established so as to enable several 

web services for supporting transportation management, including the traffic layer in the 

map, real-time geographic location, and distance matrix among geographic locations. 

Moreover, the travelling time between two customer locations can be evaluated by 

considering their locations in a real-time manner, which can be adjusted by the real-time 

traffic situations to be a partial travelling cost in the vehicle routing problem. In the 

service layer, the above IoT and external API services are managed as a whole, while the 

IoT development platform supports the functions of cloud storage management and the 

system development environment. The collected data can be stored, managed, and 

queried in the data format of JavaScript Object Notation (JSON). For handling such a 

large volume of real-time data, NoSQL database services, for example Cloudant, are used 

so that the data can be stored in a JSON document store without the conversion to SQL 

tables. It provides a flexible and scalable database schema for managing either structured, 

semi-structured, or unstructured IoT data. After building the service layer, the designated 

application for the IoT-MTDPS can be designed and developed. Regarding the system 

development, front-end web development (HTML5, JavaScript, CSS3), algorithm 

deployment (Python), and back-end development (PHP) are applied to construct the 

proposed system. Regarding the novelty of the IDAM, this module provides a structural 

formulation of the automated data collection for the system development in accordance 

with the SOA so as to facilitate business-driven solutions, end-to-end automation, 

integration of operational technology and information technology (Pflaum and Gölzer, 

2018; Zhao et al., 2020). Subsequently, it is the essential foundation about the data 
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acquisition to the whole proposed system, without which the contributions from the 

proposed system in the context of perishable food e-commerce logistics could not be fully 

realized. 

  

3.2 Two-Phase Multi-Objective Genetic Algorithm Optimizer (2PMGAO) 

In this section, a two-phase multi-objective GA optimizer (2PMGAO) is described to 

formulate the static and dynamic routing solutions for handling perishable food e-

commerce orders. Since the delivery routing formulation is classified as the NP-hard 

problem (Amous et al., 2017), the adoption of heuristics algorithms to search for nearly 

optimal solutions is relatively cost effective and time saving. Among a number of 

heuristics algorithms, GA is promising as an iterative search, optimization, and adaptive 

machine learning technique for solving transportation problems in accordance with the 

principles of natural selection (Panchal and Panchal, 2015). In recent years, a GA-based 

approach to address the transporting and routing problem are still actively discussed and 

adopted for solving NP-hard models (Ardjmand et al., 2016; Fazayeli et al., 2018). 

Consequently, to cope with multiple objectives, GA within multi-objective optimization 

is selected in this study.  

 

(i) Vehicle routing model in perishable food e-commerce 

Referred to Nahum’s work (2013), the NP-hard problem is formulated for closed-loop 

delivery route planning in considering one depot and heuristic optimization under the 

perishable food e-commerce environment. Since merely considering optimizing a single 

objective is insufficient in the e-commerce business environment, the proposed model is 

extended to optimize the travelling time, number of vehicles, and customer satisfaction 

regarding food quality simultaneously. In addition, the factors of service time window, 

truck capacity, customer locations, and cooling duration for delivery without affecting the 

food quality are considered as a number of constraints in the model. Before illustrating 

the proposed multi-objective vehicle routing model, it is assumed that (i) the truck 

capacity and energy consumption are known and identical, and (ii) customers’ demand is 

known and confirmed before planning the delivery schedule. In this problem domain, due 

to integration with the e-commerce business characteristics in the VRP formulation, the 

service time and cooling duration should be modelled in soft constraints to provide the 

greatest flexibility in delivery route planning. The proposed vehicle routing problem is 

modelled in an undirected graph G = (V, E) to fulfil all customer orders through visiting 

customers’ nodes, that is, vertex set V, including the depot, by arranging the most efficient 

edge E between two vertices. Each edge from node i to node j is defined by two non-

negative properties, that is, travelling distance dij and travelling time tij. The conversion 

between travelling distance and travelling time is done by Google Maps API at planning 

time τ. The customers make the orders on the e-commerce platform to create a total 

number of delivery orders N every day. All the orders are then completed by a fleet of 

identical trucks Q with a certain capacity P in the next day. Each customer is assigned a 

service time window regarding delivery duration in [STsi, STei] with an acceptable 

tolerance φ, while soft time windows are considered to prevent the truck arrival, with 

travelling time cost 𝑐𝑖𝑗
𝜏 , being earlier than the earliest service time STsj at node j at time t, 

that is, TT𝑖𝑗 = max(𝑐𝑖𝑗
𝜏 , ST𝑠𝑗 − 𝑡). It is implied that the trucks must wait until the start of 

the service time window STsi if they arrive earlier than expected. The orders are 

completed on or before the latest service time window STei. According to a previous study, 

perishable food has its own specific handling requirements regarding ambient 

temperature, and thus the food is packed with appropriate cold chain packaging, which 

consists of a certain number of eutectic plates in a polyfoam box, before transportation 
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(Tsang et al., 2018). Thus, a new factor of maximum time allowed for transportation is 

added in the vehicle routing. Types of environmentally sensitive products M are defined 

with the maximum duration for delivery CTm and additional acceptable cooling duration 

for delivery θ, after being packed inside the cold boxes. Appendix A summarizes the 

notation used in the proposed mathematical model. In real-life situations, it is difficult to 

guarantee the fulfilment of the expected delivery schedule and the best cooling duration 

perfectly. Violation of the above parameters constitutes a negative impact on the customer 

satisfaction level. Therefore, the service time window and cooling duration are modelled 

as soft constraints by applying fuzzy set theory. As shown in Figure 4, the fuzzy 

membership functions are used to interpret the customer satisfaction level in the service 

time window and cooling duration. Depending on the service time and cooling duration, 

customer satisfaction ranges from 0 to 1, quantified by equations (1) and (2) as the soft 

constraints on the problem.   

 

 
Figure 4. Graphical illustration of fuzzy service time window 

 

𝑆𝑖(𝑆𝑇𝑖) =

{
 
 
 

 
 
 

0,𝑆𝑇𝑖 < 𝑆𝑇𝑠𝑖 − 𝜑


1

𝜑
∙ (𝑆𝑇𝑖 − 𝑆𝑇𝑠𝑖 + 𝜑),𝑆𝑇𝑠𝑖 − 𝜑 ≤ 𝑆𝑇𝑖 < 𝑆𝑇𝑠𝑖

1, 𝑆𝑇𝑠𝑖 ≤ 𝑆𝑇𝑖 ≤ 𝑆𝑇𝑒𝑖
1

𝜑
∙ (𝑆𝑇𝑒𝑖 − 𝑆𝑇𝑖 + 𝜑), 𝑆𝑇𝑒𝑖 < 𝑆𝑇𝑖 ≤ 𝑆𝑇𝑒𝑖 + 𝜑

0, 𝑆𝑇𝑖 > 𝑆𝑇𝑒𝑖 + 𝜑

 
(1) 

 

𝐶𝑚(𝐶𝑇𝑚𝑖) = {

1,0 ≤ 𝐶𝑇𝑚𝑖 ≤ 𝐶𝑇𝑚
1

𝜃
∙ (𝐶𝑇𝑚 − 𝐶𝑇𝑚𝑖 + 𝜃),

0, 𝐶𝑇𝑚𝑖 > 𝐶𝑇𝑚

𝐶𝑇𝑚 < 𝐶𝑇𝑚𝑖 ≤ 𝐶𝑇𝑚 + 𝜃 
(2) 

 
The proposed model aims at optimizing three objectives simultaneously, that is, (i) 

minimization of travelling time between the nodes, (ii) minimization of the number of 

vehicles used for the delivery, and (iii) maximization of customer satisfaction, as shown 

in equations (3), (4) and (5), respectively. First, the transportation cost between the nodes 

i and j consists of the consideration of TTij, required service time and waiting time in node 

j. Second, the number of trucks used in the delivery is defined as the number of trucks 

that leave the depot at any time. Third, customer satisfaction has the components of 

service time window and cooling duration, in which the importance factors αi and βi are 

used to convert Si(t) and Cm(t) into two computable formulas and to compare customer i 

among all other customers so as to calculate the weighted arithmetic mean of the customer 

satisfaction level among all customers. In other words, the consideration of multi-

temperature characteristics, that is, the cooling duration for each parcel, is designed for 

the perishable food e-commerce business in a novel manner, as in equation (5). The 

requirement of multi-temperature characteristics integrates with the service time window 

0

1

Cm(CTmi) 

CTmi

CTm CTm + θ   

Cm(CTmi) 

0

1

STsi STeiSTsi - φ STei + φ 

Si(STi) 

STi
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to formulate the objective for customer satisfaction.   

Objective functions:  

Min.F1 =∑∑∑∑[max(𝑐𝑖𝑗
𝜏 , 𝑆𝑇𝑠𝑗 − 𝑡) + 𝑆𝑇𝑗 +𝑊𝑇𝑗]𝑥𝑖𝑗

𝑞𝜏

𝑡∈𝑇𝑞∈𝑄𝑗∈𝑉𝑖∈𝑉

 (3) 

Min. F2 =∑∑∑𝑥0𝑗
𝑞𝜏

𝑡∈𝑇𝑞∈𝑄𝑗∈𝑉

, where𝑗𝜖𝑉\{0} (4) 

Max. F3 =
∑ 𝛼𝑖𝑆𝑖(∑ ∑ ∑ (𝑡 +𝑐𝑘𝑖

𝜏 )𝑡∈𝑇𝑞∈𝑄𝑘∈𝑉 𝑥𝑘𝑖
𝑞𝜏
)𝑖∈𝑉

∑ 𝛼𝑖𝑖∈𝑉

 

+
∑ 𝛽𝑖𝐶𝑚(∑ ∑ ∑ (𝑡 +𝑐𝑘𝑖

𝜏 )𝑡∈𝑇𝑞∈𝑄𝑘∈𝑉 𝑥𝑘𝑖
𝑞𝜏
)𝑖∈𝑉

∑ 𝛽𝑖𝑖∈𝑉

 

(5) 

 
Subject to: 

∑∑𝑥𝑖𝑗
𝑞𝜏
= 1

𝑞∈𝑄

, ∀𝑗 ∈ 𝑉\{0}, ∀𝜏 ∈ 𝑇

𝑖∈𝑉

 (6) 

∑∑∑𝑥𝑖𝑗
𝑞𝜏

𝑡∈𝑇𝑞∈𝑄𝑖∈𝑉

−∑∑∑𝑥𝑗𝑖
𝑞𝜏

𝑡∈𝑇

= 0,

𝑞∈𝑄𝑖∈𝑉

∀𝑗 ∈ 𝑉 (7) 

∑[(∑∑𝑥𝑖𝑗
𝑞𝜏

𝑡∈𝑇𝑗∈𝑉

) ∙ 𝑊𝑖]

𝑖∈𝑉

≤ 𝑊𝑝 , ∀𝑞 ∈ 𝑄, ∀𝑝 ∈ 𝑃 (8) 

∑[(∑∑𝑥𝑖𝑗
𝑞𝜏

𝑡∈𝑇𝑗∈𝑉

) ∙ 𝐶𝐵𝑀𝑖]

𝑖∈𝑉

≤ 𝐶𝐵𝑀𝑝, ∀𝑞 ∈ 𝑄, ∀𝑝 ∈ 𝑃 (9) 

min[𝑆𝑖
−1(𝜇𝑖)] ≤ TT𝑖 + ST𝑖 +WT𝑖 ≤ max[𝑆𝑖

−1(𝜇𝑖)] (10) 
min[C𝑚

−1(𝜇𝑖)] ≤ TT𝑖 + ST𝑖 +WT𝑖 ≤ max[𝐶𝑚
−1(𝜇𝑖)] (11) 

  
𝑥𝑖𝑗
𝑞𝜏
∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑇 (12) 

 

Regarding the constraints, constraint (6) is set to ensure that exactly one truck must 

visit each customer to fulfil their orders. Constraint (7) makes sure that the total number 

of trucks that arrive and depart at the nodes, including the depot and customers’ locations, 

are the same. Constraints (8) and (9) guarantee that the total volume and weights of the 

customers’ orders delivered by a truck do not exceed the truck capacity. Constraints (10) 

and (11) are to ensure that the sum of the time in reaching the customers, required service 

time, and waiting time for the customers is limited to the soft service time window and 

product cooling duration, respectively, according to a customized satisfaction level. The 

service time window and cooling duration could be more flexible than simply applying 

standardized restriction on service time and cooling time, such that the proposed model 

is given a higher flexibility and adaptability. Last, constraint (12) is the binary integrality 

to the decision variable that expresses whether the truck is required to visit the customer’s 

location at a specific time.  

 
(ii) Fuzzy logic for incident management 

Static delivery routes are formulated above, but the formulation lacks the flexibility to 

handle sudden unexpected incidents during the delivery. A fuzzy logic approach is then 

proposed to re-optimize the delivery routing model in an efficient manner. According to 

the IDAM, the environmental and traffic conditions of trucks can be monitored in a real-

time manner. To activate the fuzzy logic, there are three conditions: (i) violation of 

handling conditions, (ii) serious delays in delivery, and (iii) order changes requested by 

customers. The fuzzy logic approach consists of three major components, that is, 

fuzzification, inference engine, and defuzzification, in which the computational process 

can be referred to the previous studies (Castillo et al., 2016; Rustum et al., 2020). During 

the transportation process, there is a certain likelihood of facing incidents of violation of 
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environmental conditions, road traffic delay, and order cancellation. The fuzzy logic 

approach gives a flexibility for re-optimizing the delivery schedule. In this proposed 

approach, the fuzzy relationship is constructed between four inputs, (i) severity of 

violation of temperature (VT), (ii) severity of violation of humidity (VH), (iii) average 

traffic delay time (TD), and (iv) frequency of order cancellation for customer I (OC), and 

two outputs, (i) importance factors αi and βi of fulfilling service time window (ST) and 

(ii) importance factor of fulfilling cooling duration (CD).  

 

(iii) Mechanism of 2PMGAO 

To effectively solve the above complex and large-scale model, the multi-objective genetic 

algorithm (MOGA) is selected as an effective method for solving the problem. When 

handling such a multi-objective optimization problem, the MOGA is able to search for a 

pareto-optimum set instead of an exact solution. 2PMGAO plays the role of integrating 

multi-objective optimization in vehicle routing and fuzzy logic approach. Regarding the 

use of MOGA, the individual representations, i.e. chromosomes, are formulated with two 

phases for optimizing membership functions in fuzzy logic and the vehicle routing 

problem, as shown in Figure 5. In phase one, when unexpected incidents are detected, the 

chromosomes are then activated so as to optimize the membership functions for obtaining 

better accuracy in the proposed fuzzy logic approach.  

 

 
Figure 1. Genotype chromosome of 2PMGAO 

 
It is assumed that triangular membership functions for inputs and outputs are 

considered in this optimizer. The training data set, including (i) a set of input Xi and 

desired output Yi data and (ii) a set of linguistic rules, is required to adjust the base lengths 

of the triangular membership functions. The ranges of the variables Xi and Yi are defined 

as [X(min,i), X(max,i)] and [Y(min,i), Y(max,i)], respectively. The objective in the optimization of 

the membership functions is to minimize the error between the actual output values and 

the output values obtained by the genetic algorithm, as shown in equation (13). The 

constraint for this optimization is that the base lengths are limited between the 

corresponding ranges of the variables. To optimize this objective, the chromosomes are 

set as 7-bit where the maximum value of each base length is 27 − 1 = 127, while each base 

length Zi is encoded in a 7-bit chromosome with using binary numbers for the conversion 

from phenotype to genotype chromosomes. By making use of equation (14), the decimal 

values a, which are converted from the binary numbers of the genotype chromosomes, 

are used to calculate the actual base lengths for triangular membership functions. After 

completing the optimization process, as mentioned previously, the optimal values of the 

base lengths can be determined by combining with the ranges of inputs and outputs.  
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Min.FMF =∑ (𝑌𝑖 − 𝑌𝑖
𝐺𝐴)2

𝑛

𝑖=1
 (13) 

Z𝑖 = 𝑍(min,i) +
𝑎

(27 − 1)
∙ [𝑍(max,i) − 𝑍(min,i)] (14) 

 

In phase two, there is a sequence of binary numbers assigning a group of customers 

to the trucks so that the routes can be formulated. In addition, the total number of trucks 

used in the delivery can be calculated by summing all the values in the binary sequence, 

where “1” represents that a new truck is considered to handle the customers’ orders. At 

each customer node, the corresponding average satisfaction level from the service time 

window and cooling duration can be evaluated by the arrival time. Referred to the MOGA 

study (Padhi et al., 2016), the aforementioned three objective functions are combined by 

using the weighted sum method to obtain the optimal solution. A weighting ωi is assigned 

to the objective functions to indicate its own importance among all the functions, where 

ωi ∈ [0,1] and ∑ 𝜔𝑖 = 13
𝑖=1 , as shown in equation (15). The genetic operations, including 

selection, crossover and mutation, have been structured when using MOGA, where the 

population size, crossover rate, mutation rate, and maximum number of iterations are 

defined. By repeating the MOGA process until the stopping criteria are reached, the set 

of pareto-optimal solutions can be obtained. Therefore, the optimal delivery route 

schedule can be formulated by considering various objectives and constraints in the 

perishable e-commerce logistics. 

  

min. Ffitness = ω1𝐹1 +ω2𝐹2 −ω3𝐹3 (15) 

 

 
4. Case Study 

To validate the proposed system, IoT-MTDPS, a pilot study was conducted in ABC 

Holdings Limited (alias) which is a logistics service provider located in Hong Kong, in 

which one of the key services is to handle, plan, and deliver e-commerce orders involving 

perishable food. The company has a 3,000 m2 e-commerce fulfilment centre for 

processing online orders, with the centre partitioned into three sections, namely, (i) 

freezing section, (ii) chilling section, and (iii) air-conditioned section, for catering to the 

storage conditions of various products. The company plays an important role in collecting 

all the online orders together with the customer information, and in confirming with 

customers a specific range of delivery time, such as from 10:00 to 14:00, one day in 

advance. Afterwards, the delivery route can be manually determined by the experience 

and knowledge of the transportation managers for next-day delivery. However, when 

handling tens of thousands of orders in a day, it is found that the transportation managers 

are required to spend a great deal of time on planning the delivery route for a number of 

trucks, considering both the cost and customer satisfaction simultaneously. Moreover, the 

truckers, in practice, will follow the planned delivery schedule to distribute the e-

commerce orders to customers, but there is a chance of occurrence of violation of 

handling requirements, serious road traffic jams, and sudden order changes. On the one 

hand, customer satisfaction can be affected if there is no contingency plan for unexpected 

incidents, resulting in the company’s reputation being greatly damaged. On the other hand, 

if the truckers still follow the predetermined delivery route, it wastes time and fuel costs 

in the whole transportation process. Worse, the quality of the perishable food may be 

affected, thus generating a certain level of capital loss. Currently, the company has no 

measures to address the above challenges in the existing transportation management 

systems. Therefore, the proposed system, IoT-MTDPS, was trialled in the case company 

for overcoming the above challenges so that the delivery schedule can be automatically 
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determined and dynamically adjusted according to the severity of the unexpected 

incidents. Thus, the delivery schedule and number of trucks can be optimized, while 

customer satisfaction can be enhanced. The implementation roadmap of IoT-MTDPS is 

divided into three phases in the following. 

4.1. Phase One: Setup of IoT Wireless Sensor Network 

In the proposed IoT wireless sensor network, three independent layers, that is, a device 

layer, connectivity layer, and IoT cloud layer, are used to develop the proposed application 

following the concept of SOA for IoT implementation, as shown in Figure 6.  

 

 
Figure 6. IoT application framework of IoT-MTDPS 

 

 At the device layer, the sensor nodes, that is, the SensorTag CC3200, are installed in 

the container area of the trucks to collect data on the ambient temperature (°C) and relative 

humidity (%). The sensor nodes are then connected to an edge router, i.e. TP-Link M7310 

– 4G/LTE Mobile Wi-Fi, via the 4G connection for recording the real-time data for the 

trucks and uploading the data to the designated IBM Cloud in this case study. The IBM 

device registered services are used to connect the sensor nodes to the IBM Watson IoT 

Dashboard, where organization ID, device type, device ID, and authentication token 

should be configured into the sensor nodes. On the other hand, the GPS location data from 

the smart device is also collected regarding the real-time outdoor locations of the trucks. 

Together with the delivery notes, the Google Maps API is adopted to build a distance 

matrix with the most updated travelling time between customer locations. All the sensor 

and API data are managed in the centralized IoT dashboard for supporting the 

functionalities of the proposed system. Before reaching the IoT cloud layer, the 
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connectivity layer is required to standardize the data and to connect to the IoT 

development platform. The SensorTag CC3200 is registered by IBM Bluemix IoTF 

services, while the GPS data is directly streamed into the cloud database, that is, Cloudant, 

via a 4G/LTE network. All the collected data are stored in the JSON format under the 

NoSQL environment, and therefore the data can be effectively accessed to measure the 

situation of the delivery processes. Concurrently, the data related to the orders and 

customer information are imported from an external database for supporting optimization. 

In the IoT development platform, that is, IBM Cloud, the data payload from the sensor 

nodes is collected for developing front-end and back-end applications of the proposed 

system. The algorithms and computations can be deployed in the back-end development 

to obtain the static delivery schedule and to achieve incident management during the 

delivery process.  

  
4.2. Phase Two: Formulation of Static Delivery Schedule 

In phase two, the next day, or n + 1, delivery schedule is determined for confirmed 

delivery orders from the e-commerce platform. The customer service team in the 

company is responsible for confirming the delivery time and creating a table containing 

all the next-day delivery orders, and a summary of the delivery orders is then passed to 

the transportation team for arranging the delivery schedule. Figure 7 shows the 

mechanism of converting the delivery address into the travelling distance and time 

between customer locations for further optimization. The summary contains the data on 

the shipment order ID (SO), customer ID (CID), delivery address, expected delivery time 

interval, and ordered items. By making use of Google Maps Geocoding API and 

Directions API, the delivery locations can be converted to a set of geo-coordinates, and 

the cost matrix can be established to show the travelling time between the delivery 

locations at this stage. The expected delivery time interval can be used to define the 

constraints of the service time window, with a tolerance of ±15 mins. The information on 

ordered items can determine the maximum delivery time interval for the products, and 

thus the customer satisfaction can be quantified.   

As shown in figure 7, there are 14 customers with different delivery locations, 

delivery times, and ordered items in the pilot study, and two cargo vans are assigned to 

complete the delivery orders. To formulate the optimal predetermined delivery schedule, 

the proposed 2PMGAO is developed in the Python programming environment, using the 

module DEAP 1.2.2 to formulate the multi-objective optimization. Appendix B shows the 

pseudo-code of the multi-objective optimization solved using the MOGA. As mentioned 

in Section 3, several parameters are required in the multi-objective optimization and 

genetic algorithm, such that population size is 500, crossover rate is 0.6, mutation rate is 

0.1, and number of chromosome replacements is 5. In addition, the three fitness functions 

conform to equations (3), (4), and (5), while the combined fitness value is evaluated using 

the weighted sum method, with w1 = 0.05; w2 = 0.05; w3 = 0.9. Before reaching the 

stopping criteria, that is, 5,000 iterations and a percentage change of the best combined 

fitness value less than 0.01, the genetic operations are conducted to create off-spring 

chromosomes and to formulate the improved near-optimal solutions. Consequently, the 

optimal chromosome can be obtained to formulate the optimal static delivery schedule by 

using two cargo vans, as shown in figure 8.  
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4.3. Phase Three: Activation of Fuzzy Logic for Dynamic Routing 

During the delivery, there is a certain likelihood that the truckers will receive information 

that may affect the delivery routing, such as violation of environmental requirements, 

suddenly serious traffic jams, and customer order changes. Sometimes, the truckers have 

to modify the predetermined delivery schedule by their own experience and knowledge, 

which is time consuming and dangerous when driving, and ensuring the efficiency of such 

modifications is dangerous. Therefore, the fuzzy logic approach is used to address the 

difficulties and challenges faced by the truckers. Before using this approach, a supervised 

learning process is conducted to train the membership functions in 2PMGAO with the 

given set of training data. It is collected by the company from 10 active customers out of 

210 customers by conducting a survey of customers regarding their perspectives on 

changes in the importance factors and the effect on their satisfaction level due to the 

occurrence of the unexpected incidents. Table 2 shows the example of training data for 

tuning the membership functions in the fuzzy logic approach. Thus, the base lengths of 

membership functions are optimized in 2PMGAO. To bound the solutions of the above 

optimization, the fuzzy classes and ranges of the four input and two output parameters 

are also defined: VT = {Low, Medium, High} with [0, 1], VH = {Low, Medium, High} 

with [0, 1], TD = {Short, Medium, Long} with [0, 120], OC = {Infrequent, Slightly 

frequent, Frequent} with [0, 20], ST/CD = {Significantly decreased, Slightly decreased, 

No change, Slightly increased, Significantly increased} with [-1, 1].  

 

 
Figure 7. Mechanism of obtaining travelling distance and time between nodes 

 

"formatted_address" : "Unit E, 9th Floor, 

Block B, Hollywood House, 268 Queen's 

Road Central, Sheung Wan",

         "geometry" : {

            "location" : {

               "lat" : 22.28656,

               "lng" : 114.147117

            },
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Google Maps Directions API

"legs" : [{

               "distance" : {

                  "text" : "15.6 km",

                  "value" : 15614},

               "duration" : {

                  "text" : "23 mins",

                  "value" : 1397

               },
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Figure. 8. Delivery planning using 2PMGAO 

 
Table 2. Example of training data set for fine tuning membership functions 

 
Once the membership functions are optimized, the fuzzy logic approach can be applied 

to adjust the two importance factors, that is, αi and βi, for re-optimizing the delivery routes. 

To computerize the process of the fuzzy logic approach, skfuzzy 0.2, a fuzzy logic library 

in the Python programming environment, is used to customise the proposed fuzzy logic 

application, covering fuzzification, Mamdani’s inference engine, and defuzzification. 

After aggregating the above elements, the fuzzy logic approach can generate the two 

output values by analysing the inputs, which are measured in real time during the delivery. 

Appendix C shows the pseudo code of the fuzzy logic approach for processing the real-

time information. The optimal result with the finalized chromosome is then partitioned 

and decoded from genotype to phenotype, according to the predefined fuzzy classes and 

range of input and output parameters. Each triangular membership function can be 

defined as [x1, x2, x3], the three vertexes of the triangular function, that is, 

fuzz.trimf(parameter, [x1, x2, x3]). In addition, the fuzzy rules, which are defined by the 

domain experts to express the relationship between inputs and outputs, are managed by 

ctrl.Rule(), while all the rules can be controlled by ctrl.ControlSystem() to aggregate the 

results by entering the specific input values. Therefore, the adjustments on the assigned 

customer satisfaction level, importance factors αi and βi for a customer compared to all 

other customers can be obtained, while the delivery routes can be re-optimized by 

considering the adjusted parameters in the delivery planning, as shown in Figure 8. By 

combining the above results, multi-temperature delivery planning can be established. On 

 Input Parameter Output Parameter 
No. VT VH TD OC ST CD 
1 0.50 0.50 5 0 -0.10 0.52 
2 0.10 0 10 1 0.1 0 
3 0.25 0.15 30 0 0.51 0.13 
4 0.05 0.13 5 8 -0.24 0.05 
5 0.18 0.22 45 10 -0.38 -0.42 
6 0.32 0.10 15 2 0.15 0.26 
7 0.69 0.23 0 1 0.38 0.62 
8 0.16 0.05 60 4 0.38 0.06 
9 0.11 0.15 10 15 0.06 0 
10 0.21 0.09 5 3 0.03 0.14 

 



18 

 

the one hand, the delivery routes are predetermined according to the shipment pre-alerts, 

and thus the truckers can view their optimized delivery route, which is identified by the 

vehicle registration number. On the other hand, if unexpected incidents occur, the fuzzy 

logic approach is then activated for the transportation team to update the delivery routes 

automatically. Consequently, the truckers can check the updated delivery route by using 

their vehicle registration number.  

 To examine the data volume and network size of the proposed system, the entire trail 

run is lasted for 3 months to fulfil the e-commerce orders of perishable goods. Also, the 

case company offers up to five cargo vans to complete the orders in the daily operations, 

and thus five corresponding wireless sensor networks are built to connect sensor nodes 

and IBM Cloud via the 4G network, which provides an extensive geographical coverage 

of Internet. Although the environmental conditions are collected in real-time, the data 

storage in Cloudant is conducted in a specific time interval, namely 1 minute, for 12-hour 

daily transportation operations. Each data payload contains identity, firmware version, 

timestamp, a series of environmental condition. Subsequently, approximately 14.68GB 

and 250.57MB data are handled in the IBM Cloud for real-time monitoring and data 

management in Cloudant, respectively. On the other hand, enabling GPS functions in the 

mobile devices may consume approximately 5MB per hour for driving, and therefore 

about 26.37GB data regarding traffic conditions are used for the operations within this 3-

month period. On average, each truck for the perishable food e-fulfilment needs about 

0.98GB per month and 1.758GB per month for the data collection on environment and 

traffic conditions, respectively. The extent of the data consumption for implementing the 

proposed system in the real-life situation is relatively reasonable and applicable, while 

the long-term implementation is considered in the case company in future.    
 

5. Results and Analysis 

The system performance resulting from implementing the proposed system in the case 

company is analysed in this section. The core functions of IoT-MTDPS include (i) multi-

objective optimization in delivery route planning, and (ii) dynamic re-routing by fuzzy 

logic using IoT technologies. In addition, the performance of the proposed delivery 

planning system is compared to the traditional VRP model. Also, the sensitivity analysis 

for parameter configurations of 2PMGAO is conducted through experimental design. 

Finally, the managerial implications of using the proposed system are also described.  

 

5.1 Performance for IoT-MTDPS 

To validate the performance of IoT-MTDPS, there are three scenarios set to investigate 

the average and the best results by means of multi-objective optimization in IoT-MTDPS, 

the traditional VRP and the manual approach. The details of three scenarios are (i) 10 

customers, (ii) 25 customers, and (iii) 50 customers, where the data for the scenarios are 

collected from the case company. The traditional multi-temperature VRP model 

(MTVRP), which is a single objective optimization, is referred to the previous study on 

delivery route planning for multi-temperature food distribution (Tsang et al., 2018). The 

maximum number of iterations in the genetic algorithm is defined in three cases, namely 

(i) 5,000 times, (ii) 10,000 times, and (iii) 20,000 times. Table 3 shows the performance 

comparison among IoT-MTDPS and the MTVRP regarding the travelling distance which 

is standardised by Google Maps Distance Matrix API. It is found that the results from 

IoT-MTDPS and traditional VRP are obviously better than the traditional approach 

regarding the travelling distance, with 13% to 27% improvement. For the larger size of 

the customer pool, a higher number of iterations is required to obtain the better solutions 

for the delivery route planning. Merely maintaining 5,000 iterations cannot fulfil the 



19 

 

requirements in scenarios 2 and 3 and search for the optimal solutions. On the other hand, 

the proposed system is not only optimizing the travelling time between depot and nodes, 

but also minimizing the number of vehicles used and maximizing the customer 

satisfaction in the aspects of service time window and product cooling time window. Thus, 

although the proposed system considers three objectives simultaneously to search for 

optimal solutions, the deviations of the results are less than 10%.  

In addition, the pareto-optimal set of the weighted sum approach for the multi-

objective optimization can be obtained from a priori articulation of user preferences 

(Marler and Arora, 2010). This method has advantages of simplicity and flexibility of the 

optimization process, which can be fully under the control of end users. In this study, 25 

sets of preference in weight assignment are collected to formulate the pareto-optimal 

solution set in the three scenarios defined above, as shown in Figure 9. It is found that a 

convex-like shape of the pareto-optimal front is formulated such that the relationship and 

tendency between three objectives can be revealed. In this study, the customer satisfaction 

is proportional to the number of trucks, and inversely proportional to the transportation 

cost, that is, the time required for completion of the delivery.  

 
Table 3. Performance comparison among IoT-MTDPS and traditional VRP 

 

  IoT-MTDPS  MTVRP 

  N Average Best  N Average Best 

S1 5,000 4137 179.13 163.45  3892 179.61 171.12 

 10,000 4877 181.33 165.14  3995 173.32 162.74 

 20,000 4635 168.45 164.39  3761 176.28 165.82 

Average:  176.30 164.33   176.403 166.56 

S2 5,000 5000 325.13 316.84  4885 301.21 291.63 

 10,000 9327 298.67 283.15  6339 299.14 294.11 

 20,000 10102 298.61 292.48  7005 302.62 293.68 

Average:  307.47 297.49   300.99 293.14 

S3 5,000 5000 432.18 412.32  5000 410.36 396.5 

 10,000 10000 400.48 386.72  9764 383.68 352.43 

 20,000 15634 356.83 341.63  10568 360.18 343.32 

Average:  396.50 380.22   394.74 364.08 

Remark: S1: Scenario 1 with 10 customers; S2: Scenario 2 with 25 customers; S3: Scenario 3 with 

50 customers 
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Figure 9. Pareto-optimal solution set by the articulation of user preferences 

 

5.2 Sensitivity Analysis for 2PMGAO 

To validate the parameter configuration of 2PMGAO, a sensitivity analysis is conducted 

to investigate its performance and effectiveness using the Taguchi experimental design. 

The analysis is performed for different values of crossover rate (Rc = 0.4/0.6/0.8), 

mutation rate (Rm = 0.05/0.1/0.15), and population size (Sp = 100/250/500). By using a 

traditional experimental design (Srinivas et al., 2014), the entire analysis requires 33 = 27 

experiments to fully investigate the differences and changes, and it is not easy to compare 

the findings. To conduct the sensitivity analysis in a systemic manner, the Taguchi method 

is applied, which requires only nine experiments (L9 Taguchi array), to select the best 

parameter configuration. Conforming to the optimization process, the ‘smaller-is-better’ 

quality characteristics are selected to measure the iteration for the optimal results obtained 

from 2PMGAO. Table 4 shows the Taguchi experimental design and findings for 

parameter configuration of 2PMGAO in the case study scenario. After conducting the 

Taguchi analysis, the signal-to-noise ratio (S/N) between parameters and their levels are 

obtained, as shown in Figure 10. The best parameter configuration of 2PMGAO is 

crossover rate of 0.6 (S/N: −72.59), mutation rate of 0.10 (S/N: −66.12), and population 

size of 500 (S/N: −73.28). Therefore, the parameter configuration in the case study 

outperforms the other configurations, in which the solution quality and efficiency of 

optimization process can be guaranteed.  
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Table 4. Taguchi experimental design for parameter configuration 

 
 

 
Figure 10. Signal-to-noise ratios of sensitivity analysis 

 

5.3 Comparison with the Existing Studies 

In this section, the proposed system is compared with other existing work to demonstrate 

its advantages for multi-temperature last-mile delivery in perishable food e-commerce 

logistics. Existing work that applies the approaches of IoT and multi-objective 

optimization are chosen for comparison and are summarized in Table 5.  

 

(i) Comparing IoT-MTDPS with IoT approaches 

IoT is a promising method in the collection of real-time information from physical objects 

to the digital world, and more and more research studies have revealed the framework 

and deployment of IoT technologies. To compare the proposed system, the studies of 

Ruan and Shi (2016) and Liu et al. (2019) are selected in which IoT approaches in 

assisting e-commerce delivery and logistics management were developed. The recent 

research studies lack sufficient consideration of the multi-temperature characteristics of 

food products during the distribution process, and the data collection processes are not 

structured by the modern IoT frameworks. Therefore, the proposed work in this study 

explores the multi-temperature characteristics at a product-dependent parcel level, which 

Crossover rate (Rc) Mutation rate (Rm) Population size (Sp) Iteration for optimal results 

0.4 0.05 100 13862 

0.4 0.10 250 3546 

0.4 0.15 500 26705 

0.6 0.05 250 5137 

0.6 0.10 500 980 

0.6 0.15 100 15375 

0.8 0.05 500 3756 

0.8 0.10 100 2380 

0.8 0.15 250 13558 
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matches operational concerns in the business-to-customer (B2C) e-order fulfilment 

process. Also, the IoT implementation in this study follows the modern structure of SOA 

showing the data transmission, selection of IoT devices, and PaaS platform in a systematic 

manner. Liu et al. (2019) also stressed that the use of IoT technologies can facilitate route 

planning with additional dynamic capability. Such a consideration is also included in the 

proposed work, covering unexpected incidents during the delivery process additionally. 

This study, with an in-depth case study, brings the academic and practical values from the 

existing approaches to benefit the research and operations of perishable food e-commerce 

logistics in the data collection and acquisition of using IoT technologies.   

 

(ii) Comparing IoT-MTDPS with multi-objective optimization approaches 

To control multiple essential factors in the route planning, multi-objective optimization is 

needed to consider a number of objective functions in the optimization process. The 

studies of Guo et al. (2017) and Chan et al. (2020), which provide robust route planning 

for handling perishable food, are selected for the comparison. Several existing routing 

models for multi-objective optimization consider cost, food quality, sustainability, but the 

multi-temperature characteristics are still under-researched in recent years. To cope with 

the nature of perishable food e-commerce logistics, the multi-temperature characteristics 

using cold chain packaging are embedded in the delivery planning to assure the process 

of meeting environmental requirements. Also, the importance of effective data collection 

and case study to examine the model performance is illustrated, and this is regarded as 

the trend in the modern research studies to be theoretically and practically feasible. 

Moreover, this study proposes the 2PMGAO to determine static and dynamic routing to 

enhance the practicality and adaptability in the complex scenarios. Therefore, the 

proposed work on multi-objective optimization is not only catching up with the modern 

trends, but also including the novel elements to enrich the delivery planning.  
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Table 5. Comparison of IoT-MTDPS with other existing work 

   

IoT approaches 

 Multi-objective optimization 

approaches 

 
IoT-MTDPS 

 
Ruan and Shi (2016) Liu et al. (2019) 

 
Guo et al. (2017) Chan et al. (2020) 

Objectives To formulate a 

systematic approach 

to facilitate multi-

temperature last-mile 

delivery in e-

commerce logistics 

 To monitor and 

assess fruit freshness 

in e-commerce 

delivery 

To enable dynamic 

optimization strategy 

by considering real-

time information for 

smart vehicles and 

logistics tasks 

 To formulate a 

route planning 

model for fresh 

food e-commerce 

logistics 

To develop a 

production 

inventory routing 

planning for 

perishable food 

logistics 

Methods IoT, GA for multi-

objective 

optimization, fuzzy 

logic 

 IoT, scenario 

analysis 

IoT, single objective 

optimization 

 GA and PSO for 

multi-objective 

optimization 

Modified PSO for 

multi-objective 

optimization 

Multi-

temperature 

feature 

Product-dependent 

parcel-level 

 Fruit-dependent  No  No No 

Routing support 

and dynamicity 

Yes, static and 

dynamic routing 

 No Yes, static and 

dynamic 

 Yes, static Yes, static 

Structured data 

collection 

SOA for IoT 

implementation 

 General IoT 

framework 

Self-proposing data 

collection model 

 No Provision from the 

case company 

Case study  Yes  No Yes  No Yes 
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6. Discussion  

To summarize the value and implications from this study, this section includes discussion 

on (i) academic implications, (ii) managerial and operational implications, (iii) 

contribution and novelty, (iv) limitation of this study, and (v) future work. 

 

6.1 Academic Implications 

This study proposes a new paradigm of MTJD-based perishable food e-commerce 

logistics to address the research gap in e-commerce logistics. In the past, a number of 

research studies were conducted on distribution planning in the perishable food supply 

chain, using cold chain equipment, such as refrigerated trucks and temperature 

monitoring. However, orders in the perishable food e-commerce are fragmented, small in 

order volume, and high in SKU variety, so that adoption of typical refrigeration systems 

during delivery is ineffective to meet all food products’ requirements. Subsequently, the 

MTJD was proposed to manage product-dependent monitoring requirements during the 

distribution, which can be further extended to the business of perishable food e-commerce 

in this manuscript. Therefore, the product-dependent multi-temperature characteristics 

should be explored to support the formulation of delivery routes, in order to fulfil 

customers’ requirements on food quality. Through this study, the research gap in 

perishable food e-commerce logistics has been filled by integrating the MJTD to consider 

the product-dependent multi-temperature characteristics. Research on the distribution and 

delivery planning of the perishable food supply chain in e-commerce logistics can be 

completed with the addition of this study, and thus the food quality and temperature 

requirements can be considered throughout the entire supply chain. The consideration of 

using general trucks, active containers, refrigerated trucks, multi-temperature trucks, and 

multi-temperature last-mile delivery can be integrated as a whole in perishable food e-

commerce logistics. Moreover, the MTJD-empowered perishable food e-commerce 

logistics opens a novel research domain to satisfy environmental requirements for food, 

such as temperature, relative humidity, level of carbon dioxide, in various logistics and 

supply chain models. The synergy of adopting different cold chain equipment in supply 

chain management can be obtained, which can derive the corresponding logistics and 

supply chain models. The studies on the enhancement of storage and transportation 

effectiveness in the food supply chain can be further established. Last, but not least, the 

study provides a case study of MTJD-based perishable food e-commerce, which is a 

valuable reference for system deployment and implementation by means of emerging 

technologies.   

 

6.2 Managerial and Operational Implications 

With the help of IoT-MTDPS, it is found that the delivery route planning process can be 

done automatically by considering not only travelling time or distance, but also truck 

utilization and customer satisfaction. Customer satisfaction is measured through two 

components, namely service time window and maximum transportation duration of the 

cold chain packaging. This is particularly important and meaningful in managing 

perishable food e-commerce logistics due to the high transaction volume, fragmented 

orders, and high environmental sensitivity. Differing from the traditional logistics process, 

the companies need to pay more attention to handling the occurrence of unexpected events, 

such as food spoilage, order cancelations, and urgent order creation. The proposed system 

provides flexibility for re-optimizing the delivery routes once unexpected incidents occur. 

Therefore, the effectiveness and efficiency of handling the e-commerce orders can be 

enhanced. Since the numbers of customers for e-commerce logistics have been rapidly 

growing in recent years, maintaining good service quality on transportation and product 
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quality assurance during delivery are two major challenging tasks for most LSPs. Poor 

transportation performance may cause damage to a company’s reputation, or even loss of 

the customers’ confidence in the logistics services. In LSPs, the most time-consuming 

task is to determine the delivery routes based on the pre-alert information. Therefore, 

most companies are willing to invest in transportation management systems with delivery 

route planning, but existing systems are designed for handling general road transportation 

in the freight forwarding industry, rather than handling e-commerce logistics and 

perishable food. By using IoT-MTDPS, companies can take advantage of automatically 

determining the delivery routes, real-time updating of the delivery routes for special cases, 

and the total monitoring of the trucks. On the other hand, end consumers can also enjoy 

the benefits of order management and a high transparency in the delivery process. They 

can not only check the logistics information, which is a milestone in showing the real-

time delivery status, but also can visualize the real-time truck location and their delivery 

sequence. Therefore, material and information flow in perishable food e-commerce can 

be effectively managed and smoothed, while customer satisfaction can also be enhanced.  

 

6.3 Contribution and Novelty 

The contribution and novelty of this study have three facets. First and foremost, this paper 

addresses an important research and industrial problem of last-mile delivery in the 

perishable food e-commerce logistics environment. A new paradigm of MTJD-based 

perishable food e-commerce logistics is introduced, which is shifted from the generic 

food supply chain. In the e-commerce logistics environment, the B2C order fulfilment for 

food products must handle time-critical and temperature-sensitive delivery. The effective 

systematic approach by integrating IoT, artificial intelligence, and multi-objective 

optimization is therefore formulated in this study to address the needs in the industry and 

fulfil the need for further research in this area.  

Second, the delivery planning in this study simultaneously considers multi-

temperature characteristics, food quality, and customer satisfaction, together with 

essential factors in VRP, including travelling cost, time window, and flow conversion. 

Specific to the multi-temperature characteristics, the parcel-level temperature control 

through the use of passive cold chain packaging is explored for the formulation of 

delivery planning in the area of perishable food e-commerce logistics.  

Third, this paper proposes an IoT-based system architecture and 2PMGAO to 

integrate IoT technology and optimization of distribution paths in a systematic manner. 

The real-time information collected by IoT technology, including location and 

environmental monitoring, can be effectively managed and adopted for the formulation 

of delivery routes. The GA-based multi-objective optimization with MTJD embedded is 

used to determine the nearly optimal solutions for vehicle routing. For the sake of coping 

with unexpected incidents during delivery, a dynamic routing mechanism is also 

presented in this study to reduce the negative impact from the incidents and to maintain 

the desired level of customer satisfaction. 

Other than the case presented in this study, the proposed work can potentially 

contribute to other application areas for handling temperature-sensitive and perishable 

products, for example, pharmaceuticals, life science items, and floral products. The above 

application areas require consideration not only of fulfilment of time-critical orders, but 

also assurance of product quality and satisfaction of handling requirements during storage 

and transportation.  

 

7. Conclusions 

This study combines the ontology of multi-temperature joint distribution and e-commerce 
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logistics to design and develop an adaptive approach for managing perishable food e-

commerce logistics effectively. In this paper, a dynamic multi-temperature transportation 

management system (IoT-MTDPS), which integrates Internet of Things (IoT) 

technologies, multi-objective optimization, and fuzzy logic, is presented. The use of IoT 

technologies enables the real-time tracking of the trucks and automatic data acquisition 

for optimizing the delivery schedule. In addition, it is also an important source of 

information in identifying the occurrence of unexpected incidents. To address the needs 

in perishable food e-commerce, a novel factor, namely product-dependent multi-

temperature characteristics, is included in the delivery planning. The 2PMGAO is then 

developed to solve the multi-objective optimization problem in both a static and dynamic 

manner. The static routing can be formulated for the transportation team before delivery, 

while the dynamic routing can be established when unexpected incidents are reported and 

the fuzzy logic is activated. Generally, the transportation team will follow the 

predetermined delivery schedule to distribute the e-commerce orders. When meeting 

unexpected incidents, the proposed system also has a mechanism to re-optimize the 

delivery schedule by automatically adjusting the parameters in multi-objective 

optimization by using the fuzzy logic approach. Therefore, the proposed system can 

alleviate the workload for the routine operation of the transportation team and increase 

the visibility of the delivery process to the end customers. The formulation of the delivery 

schedule and transportation management are more efficient and flexible so as to cater to 

the demands in e-commerce logistics. As this study is confined to the perishable food e-

commerce logistics, it is further recommended that the proposed methodology can be 

utilized in future research in the supply chain of managing temperature-sensitive and 

perishable products. Using the methodology in this manner would be a crucial step 

towards the development of a theory for designing a multi-temperature joint supply chain 

in the aspects of storage and transportation.  

 

(Word count of paper content: 9602 words) 
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