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Unlocking the power of big data analytics in new product 

development: an intelligent product design framework in the 

furniture industry 

Abstract: New product development to enhance companies’ competitiveness and 

reputation is one of the leading activities in manufacturing. At present, achieving 

successful product design has become more difficult, even for companies with 

extensive capabilities in the market, because of disorganisation in the fuzzy front end 

(FFE) of the innovation process. Tremendous amounts of information, such as data on 

customers, manufacturing capability, and market trend, are considered in the FFE phase 

to avoid common flaws in product design. Because of the high degree of uncertainties 

in the FFE, multidimensional and high-volume data are added from time to time at the 

beginning of the formal product development process. To address the above concerns, 

deploying big data analytics to establish industrial intelligence is an active but still 

under-researched area. In this paper, an intelligent product design framework is 

proposed to incorporate fuzzy association rule mining (FARM) and a genetic algorithm 

(GA) into a recursive association-rule-based fuzzy inference system to bridge the gap 

between customer attributes and design parameters. Considering the current incidence 

of epidemics, such as the COVID-19 pandemic, communication of information in the 

FFE stage may be hindered. Through this study, a recursive learning scheme is 

established, therefore, to strengthen market performance, design performance, and 

sustainability on product design. It is found that the industrial big data analytics in the 

FFE process achieve greater flexibility and self-improvement mechanism on the 

evolution of product design.  

Keywords— Product design; Fuzzy front end; Fuzzy inference system; Big data analytics; 

Industrial intelligence 
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1. Introduction 

The current business environment, in which many companies are struggling to 

strengthen their competitiveness, is filled with numerous uncertainties and changes. 

Ways to approach the design of cyber-physical systems in Industry 4.0 are under 

development [1]. Shorter development lead times and the uncertainty of increasingly 

complex markets require intelligent product design in manufacturing systems [2]. 

Under these turbulent circumstances, merely offering fundamental functions without 

considering customer needs in the product design is no longer appropriate to facilitate 

trade and order fulfilment along the entire supply chain. Apart from production cost 

and capability, market and customer perspectives are major considerations for 

companies to gain extraordinary competitive advantages among peer competitors [3]. 

However, the focal inertia in production process design and modularization makes 

manufacturing sectors performing disappointingly in customization and customer 

satisfaction [4]. Also, manufacturing of ready-made products brings boundaries and 

expectation discrepancies, and thus the ability to capture customer needs is lacking. 

Therefore, research for new product development (NPD) has garnered considerable 

attention to introduce new products to the demanding market successfully.  

Schneider and Hall [5] stated that the most critical problem in NPD is that 

companies are too focused on product design and manufacturing, but lack consideration 

and preparation in the market. For example, the Facebook Phone launched in 2013 was 

a failure of NPD because of the failure to investigate market and customer perspectives, 

and thus it was classified as merely an Android-skinned device manufactured by HTC. 

Moreover, Google Glass was launched in 2013 as a revolutionary and innovative 

product in the market but encountered many challenging issues, such as privacy, lack 

of consensus, and questionable value to customers [6]. In view of such examples of the 
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failure of NPD, business organisations are striving to design products that best suit 

customer needs at the stage of the fuzzy front end (FFE) of product innovation, as 

shown in Figure 1. The FFE is regarded as the initial phase in the entire NPD process, 

which requires substantial investigation to increase the likelihood of success of the 

product innovation [7]. However, numerous sources of data and information, such as 

business cases, market research, and customer preference, are involved in the FFE, 

while the study of big data in the FFE is lacking to customise the product design through 

examining data patterns and relationship.   

 

 
Fig.1 Illustration of fuzzy front end in the new product development process 

 

In addition, traditional product design is concerned mainly with the world of 

innovation and up-to-date manufacturing technologies, without much integration of 

customer needs [8]. As a result, designed products are not always needed by end 

customers, and thus imbalances exist between created and perceived value in product 

innovation. In recent years, more and more research has focused on the integration of 

customer perspectives and requirements in the NPD process [9-10]. Moreover, 
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considering the current COVID-19 pandemic, data collection at the FFE stage has 

become extraordinarily difficult as the exchange of ideas, work arrangements, and 

business communication are changing continuously. Self-adaptive methodologies 

utilising big data analytics on factors of the FFE are more appropriate for digesting the 

available data to determine core feature parameters on product design. Once additional 

data are available, the methodologies can be effectively fine-tuned to improve the 

product design in a recursive manner. With consideration of FFE data, companies can 

better match the product design process with customer requirements and launch the 

“right” products for maximising the value delivered.  

To address these issues, an intelligent fuzzy product design framework (I-FPDF) 

is proposed in this study, which incorporates fuzzy association rule mining (FARM) 

and a genetic algorithm (GA) into the optimal Mamdani’s fuzzy inference system. 

Implicit fuzzy rules between FFE data and product design can be revealed through the 

use of FARM, such that a comprehensive knowledge repository is established. 

Considering the extracted fuzzy knowledge from the big data in FFE, system 

parameters, including types, partitions, and ranges of membership functions, can be 

fine-tuned. Until the convergence of minimising the system error is reached, the optimal 

Mamdani’s inference system for the fuzzy logic can be formulated to customise the 

product design in the NPD process. To verify the proposed framework, a case study 

was conducted of a furniture manufacturer in China that produces various kinds of 

furniture products. The case study looked at curtain rods with suspended curtains, 

which are relatively mature products in the market, with limited breakthroughs. The 

main challenges in this industry are related to increasing customer satisfaction, 

expanding market share, and differentiating from other competitors by introducing new 
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products. Therefore, successful NPD and effective product design are essential for 

enriching manufacturing systems in the curtain rod manufacturing industry.  

This paper is organised as follows. Section 2 reviews the recent literature on 

NPD, big data analytics, and machine learning for fuzzy inference systems. Section 3 

introduces the proposed framework of intelligent fuzzy product design. A case study of 

a furniture manufacturer in China is presented in Section 4. Results and discussion are 

provided in Section 5. Finally, conclusions are drawn in Section 6. 

2. Literature Review 

In today’s competitive business world, it is more difficult and challenging for 

companies to survive as there is no single solution to win customer loyalty and market 

share. Recently, researchers have concluded that customer satisfaction and loyalty, 

driven by product performance and customer perceived value, are positively correlated 

and reflected in profitability performance [11-12]. To achieve better customer 

satisfaction, a recent study [13] proposed analysing market demand and customers’ 

needs by using quality function deployment to establish a win-win situation between 

business organisations and customers. It has also been suggested that customer 

engagement can be fostered through enhancing the customisation and personalisation 

of products and services along the customer lifecycle [14]. Customer-oriented products 

resulting from comprehensive studies during NPD fit customers’ needs and earn their 

loyalty [15]. In addition, developing new products is crucial to improve competitive 

advantages, long-term firm performance, and viability [16].  

The importance of NPD is widely recognised, and recent research has actively 

investigated key success factors to mitigate the risks and failures of NPD. New products 

account for about 50% of the total sales of a company, yet only half of them can succeed 
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in the market. Apart from the novel features of new products, various non-product-

related factors, such as support from top management, external collaboration, and 

market analysis, can influence the success of new product designs in the market [17]. 

Florén et al. [18] summarised the phases of evaluating, defining, and formalising as 

success factors at the front end of new product development to enrich the stage-gate 

product development model. It was found that the front end of the NPD process is 

critical to successfully introducing new products, but the complexity and uncertainties 

lead to the occurrence of FFE. The stage-gate model is regarded as the pioneer to 

manage NPD-related activities and smooth the process, which can be classified into a 

set of discrete tasks and events [19].  

Recently, the agile-stage-gate hybrid model was proposed to further improve 

flexibility, speed, and communication in the NPD process [20]. The exploratory product 

development model (ExPD) is another promising approach to reduce uncertainties and 

risks for adapting to the ever-changing business environment due to changes in the 

market, technology, regulations, and so on [21]. However, exploring the use of big data 

analytics and intelligent methods in managing the FFE for the NPD process is relatively 

rare in recent studies. Using these can contribute to formulating a self-adaptive learning 

mechanism for decision support in the NPD process.  

Among all the phases in the NPD, the FFE, that is, phase zero, is the most 

complicated, which involves the processes of (i) scoping and generation of ideas, (ii) 

evaluation of ideas, and (iii) early prototyping for iteration [22]. Numerous 

opportunities and barriers, for example, information technology, market situation, and 

customer perspectives, must be evaluated, in which large quantities of data from 

multiple dimensions are considered. Referring to industrial big data, the features of 3V-

3M (namely, volume, velocity, variety, multisource, multinoise, and multidimension) 
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should be further applied in the FFE stage to generate a new synergy in the NPD process 

[23-24]. Table 1 summarises the features of industrial big data for the FFE stage of 

NPD. It shows that the data considered in the FFE stage are matched to industrial big 

data, and therefore corresponding big data analytics should be explored to support the 

decision-making process in the FEE and entire NPD process.    

Machine learning in a big data environment is promising for achieving 

industrial intelligence in the manufacturing industry to facilitate the FFE in product 

design [25]. When the fuzziness is considered, particularly FFE, fuzzy inference 

systems are deemed feasible to provide fuzzy decision support through analysing both 

crisp and linguistic variables. Regarding the self-adaptive and automatic learning in the 

fuzzy inference systems, adaptive neuro-fuzzy inference system (ANFIS) is the most 

common model to solve nonlinear problems by integrating acritical neural network and 

Takagi-Sugeno-type fuzzy logic [26]. Although ANFIS has high generalisability to 

handle nonlinear and complex control problems, the computational cost is relatively 

high due to its complex structure and gradient learning process. Also, it is not 

compatible with Mamdani’s fuzzy inference system for supporting the product design 

process. To optimise the Mamdani’s fuzzy inference system for consideration in the 

FFE, some recent research studies have proposed the self-adaptive mechanism to obtain 

Mamdani fuzzy rules [27]. However, there is a lack of an integrated systematic 

approach with self-adaptive and automatic learning capability in obtaining Mamdani 

fuzzy rules and membership functions. Consequently, an integrated approach with 

combining big data analytics and optimisation methods to achieve optimised Mamdani 

fuzzy inference system should be further studied.  
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Table 1. Deployment of industrial big data in the FFE stage 

Aspect of 3V-3M Description(s) 

Volume A large quantity of analytical datasets can be obtained in the FFE 
stage, where some of the data are recorded in a real-time and 
time-series manner, for example, historical sales volume of 
similar products and marketing [29]. Advanced tools, including 
internet of things, are used to facilitate the online and offline data 
collection and management.  

Velocity Short data processing time is required to provide an accurate and 
real-time decision to support go and no-go decisions in the FFE, 
for example, the crowd and screening new product ideas in real 
time [30]. 

Variety Data types and structures can be varied, in which the data can be 
generated by computer systems or supply chain stakeholders. 
The data can be presented in numerical, text, and even video 
manner [31].   

Multisource Data considered in the FFE can be generated from various 
sources, such as customer, supply chain parties, and enterprise 
information systems [32]. A number of internal and external 
sources are considered to explore the opportunities in the FFE 
stage.  

Multinoise Data collected in the FFE contain a certain level of random 
noises. For example, the sales volume and customer satisfaction 
levels can fluctuate due to seasonal effects [33]. This causes 
random errors in the collected data so that the decision-making 
process in FFE becomes more complicated.  

Multidimension Dimensions of data are varied, in which the data are measured by 
different scales, such as monetary value for sales, Likert scales 
for customer satisfaction. Data with different scales should be 
aggregated together to support the decision on product design in 
the FEE.  

 

A review of recent studies in NPD found that the FFE stage is the most 

challenging and uncertain part of the entire NPD process. Vast quantities of industrial 

data have to be considered the selection of ideas and confirming designs for new 

products. Applying big data analytics to NPD is deemed to be promising. Big data–

driven new product development is a systematic process of formulating new products 

for the marketplace by analysing fuzziness and big data and applying 3V-3M features. 

A new synergy is therefore generated to establish new products in an intelligent and 

optimal approach through synthesising these studies [22-24]. The contributions of this 

study are the integration of industrial big data and FFE in the NPD for the establishment 

of better product design, where fuzziness related to market, engineering, product, and 
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customers is addressed. Because of the uncertainties and difficulties in data collection, 

a recursive learning approach to suggest the most appropriate product design is needed, 

which is investigated through combining the fuzzy-based data mining technique, 

namely, FARM, and a heuristics method, namely, GA. The aim of this study is to 

achieve continuous improvements in new product design before entering the formal 

product development process.  

To sum up, the success of NPD has always been an active and challenging 

research area in the manufacturing industry, in which the complexity and dynamicity 

in the FFE should be addressed to increase the success rate. Fuzzy inference systems 

are deemed to be promising tools for analysing fuzziness in the FFE. Building an 

effective product design is regarded as a Mamdani’s fuzzy problem [28]. To our best 

knowledge, an integrated and closed-loop approach for optimising Mamdani’s fuzzy 

rules and membership functions is lacking, which is the core focus in this study to 

facilitate and smooth the product design process. In addition, the formulation of an 

effective product design framework is particularly important to maintain manufacturing 

companies’ competitiveness in the current circumstances.  

3. Framework for Intelligent Fuzzy Product Design  

In this section, an intelligent fuzzy product design framework is proposed to 

structure the essential factors and considerations in the FFE for customising product 

designs in the NPD process. This framework consists of three tiers, namely (i) big data 

in FFE, (ii) a recursive association-rule-based fuzzy inference system (RAFIS), and (iii) 

Mamdani’s fuzzy logic for product design customisation, as shown in Figure 2.  
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Figure 2. Three-tier structure of the I-FPDF 
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The data collection and management in the FFE stage are organised. The 

collected datasets are then inputted to FARM and GA for obtaining the optimal fuzzy 

rules and membership functions. Subsequently, by making use of the above results, the 

Mamdani’s fuzzy inference system for suggesting customised product design features 

can be established. With the design of the proposed system, the closed-loop business 

process for NPD can be established to integrate data in both customer and product 

perspectives to enhance product competitiveness and company capability in NPD 

activities.  

3.1 Tier 1: Big Data in FFE 

The framework starts with the structural formulation of the big data in the FFE, 

in which four aspects, customer fuzziness, engineering fuzziness, market fuzziness, and 

product fuzziness, are summarised [34-36]. It has been reported that useful data and 

information at the FFE stage have to be extracted from a large number of databases, 

and a high level of uncertainties is involved in making decisions for NPD, such as idea 

selection and product design features. To make use of the power of big data analytics, 

it is necessary to quantify the above four aspects of fuzziness into a set of measurable 

values.  

For the customer fuzziness, the uncertainties from customer responses and 

behaviour are summarised, including time-series demand of similar products, 

aggregated market demand, customer satisfaction, and length of product life cycles. For 

the engineering fuzziness, the uncertainties of the production process may affect the 

success of NPD, which may consider material quality, design and manufacturing 

capability, process uncertainty, and productivity. For the market fuzziness, successful 

new product design in an ever-changing business environment becomes challenging, 
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such that the factors, including competitor product development, market share, supplier 

involvement, and time to market, can be considered. For the product fuzziness, the 

uncertainties with respect to the success of NPD include technology utilisation, design 

integrity, product characteristics for customisation, and return on investment. By 

quantifying the fuzziness in the FFE stage, the uncertainties in the NPD process can be 

further analysed by intelligent and data-driven approaches to support the product 

design. In view of the need to handle the large amount of data in the big data 

environment, the data pipeline consists of two major steps, data processing and data 

access, where the collected data can be evaluated through the 3V-3M principle for the 

establishment of industrial intelligence [37].  

Data processing includes extraction, transformation, and loading (ETL), such 

that the data are effectively organised for entry into the structured evaluation process. 

In real-life situations, big data processing engines, such as Spark and Hadoop, have 

been developed to provide high scalability in handling big data. Hard disks may be 

adequate for storage of large quantities of data but there may not be available 

computational memory to analyse the data, and therefore the big data processing 

engines are adopted to ensure the data pre-processing for supporting and providing 

decisions. With data processing engines, the structured data are then stored in data 

access platforms, for example, data warehousing and NoSQL storage, for future queries 

and retrieval to designated application platforms. In addition, utilising a cloud-based 

infrastructure for big data processing and access is preferred to leverage the power of 

big data process engines and enable dynamic allocation of computational resources.   
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3.2 Tier 2: Recursive Association-Rule-Based Fuzzy Inference System (RAFIS) 

To optimise the settings and system parameters for Mamdani’s fuzzy inference 

system, a new intelligent method through the integration of FARM and GA is designed 

to obtain the proper settings for Mamdani’s fuzzy logic. The new method is called a 

recursive association-rule-based fuzzy inference system (RAFIS). FARM integrates 

fuzzy set theory and a data mining technique, that is, association rule mining, to extract 

useful relationships between antecedents and consequences, where the fuzzification is 

improved iteratively by solving the optimisation problem of fuzzy membership 

functions. Before beginning RAFIS, product engineers extract historical input and 

output datasets, which are related to FFE characteristics and product design features, 

respectively. Also, predefined fuzzy rules based on the business logic are organised as 

the prerequisite for the entire system mechanism. The procedure for the proposed 

system is illustrated step by step in this section. The notations used to explain the 

mechanism of RAFIS are presented in Table 2. An example application of RAFIS in 

the furniture industry for product design customisation is presented in the next section.  

 

Step 1: Initialise triangular membership functions Fzi by evenly assigning base lengths 

bzi and ranges 𝑟𝑧 = [(𝑧𝑘) , 𝑚𝑎𝑥 (𝑧𝑘)] based on historical input and output datasets. 

 

Step 2: Define the threshold values of support count SCtz and confidence CFt for the 

rule mining process.  

 

Step 3: Convert the crisp values of parameters Z showing the relationship between FFE 

data and product design features into fuzzy sets by using the predefined membership 
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functions Fzi so that each parameter is represented as 
 𝜇𝐹𝑧𝑖(𝐹𝐶𝑧1)

𝐹𝐶𝑧1
+

𝜇𝐹𝑧𝑖(𝐹𝐶𝑧2)

𝐹𝐶𝑧2
+ ⋯ +

𝜇𝐹𝑧𝑖(𝐹𝐶𝑧𝑢)

𝐹𝐶𝑧𝑢
 based on each row of historical input and output datasets.  

 
Table 2. List of notations used in the RAFIS 

Variables/Sets Description(s) 

Z  A set of input and output parameters, where Zn = {zk} representing n 

data rows and m parameters for p input and m - p output 

X A set of input parameter which is a subset of Z, where X = {x1, x2, …, 

xp} 

Y A set of output parameter which is a subset of Z, where Y = {ym-p, ym-

p+1, …, ym} 

Fzi Triangular membership function for parameter z at fuzzy class i 

bzi Base length of the triangular membership function for parameter z at 

fuzzy class i 

rz Range of the parameter z 

SCtz Threshold value of support count in the rule mining process 

CFtz Threshold value of confidence in the rule mining process  

𝜇𝐹𝑧𝑖(𝐹𝐶𝑧𝑢) Values of fuzzy membership functions Fzi at specific fuzzy class 𝐹𝐶𝑧𝑢  

𝐹𝐶𝑧𝑢 Fuzzy class for parameter z at fuzzy class u  

SCzij Support count value for parameter z at fuzzy class i for the itemset j 

R A set of fuzzy rules considered in the RAFIS 

𝑏𝑞
𝑥𝑖 , 𝑏𝑞

𝑦𝑗  Base length for input and output parameters for the number of fuzzy 

classes q in each parameter 

 

Step 4: Sum the support count values SCzij with the same fuzzy class FCziu across 

different data row zk, that is, 𝑆𝐶𝑧𝑖𝑗 = ∑ 𝜇𝐹𝑧𝑖(𝐹𝐶𝑧𝑢)𝑧∈𝑁 , and select the fuzzy class with 

the largest support count value to represent the parameters as the 1-itemset in which 

𝑆𝐶𝑧𝑖𝑗 ≥ 𝑆𝐶𝑡𝑧.   

  

Step 5: Generate higher levels of feasible itemset until (m-1)-itemset in which possible 

combinations between input and output parameters are considered, and repeat the above 

step 4 to calculate support count values which have to be greater than 

𝑚𝑎𝑥 [𝑆𝐶𝑡𝑧1, 𝑆𝐶𝑡𝑧2, … , 𝑆𝐶𝑡𝑧(𝑚−1)].   
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Step 6: Compute the confidence values from 2-itemset to (m-1)-itemset, where support 

count values of the itemset are divided by support count values of the antecedent as 

(
𝑆𝐶𝑧𝑖𝑗

𝑖𝑡𝑒𝑚𝑠𝑒𝑡

𝑆𝐶𝑧𝑖𝑗
𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡), and sort out the rules that cannot meet the value of CFtz.  

Step 7: Obtain a list of fuzzy association rules, which are combined with the predefined 

fuzzy rules as a set of fuzzy rules R to be the prerequisite in the optimisation problem 

of fuzzy membership functions.  

 

Step 8: Optimise the base length of the triangular membership functions where the 

optimisation problem is formulated as follows: 

𝑀𝑖𝑛. ∑ (𝑦𝑗 − �̂�𝑗)2

𝑚

𝑗=𝑚−𝑝

 (1) 

Subject to: 

∑ 𝑏𝑞
𝑥𝑖

𝑞∈𝐹𝐶𝑧𝑢+1
= (𝑥𝑖) − 𝑚𝑖𝑛 (𝑥𝑖) , ∀𝑖 ∈ (1, … , 𝑝) 𝑎𝑛𝑑 𝑥𝑖 ∈ 𝑍 (2) 

∑ 𝑏𝑞

𝑦𝑗

𝑞∈𝐹𝐶𝑧𝑢+1
= (𝑦𝑗)  − (𝑦𝑗) , ∀𝑗 ∈ (𝑚 − 𝑝, … , 𝑚) 𝑎𝑛𝑑 𝑦𝑗 ∈ 𝑍 (3) 

𝑥𝑖 , 𝑦𝑗 , 𝑏𝑞
𝑥𝑖 , 𝑏𝑞

𝑦𝑗 ∈ 𝑅+ ∪ {0}  (4) 

 

Equation (1) is the objective function of the optimisation problem to minimise 

the error between actual and estimated output. It examines the appropriateness of fuzzy 

membership functions. The estimated 𝑦�̂� is calculated by applying Mamdani’s fuzzy 

inference engine based on input datasets, fuzzy rules, and membership functions [38]. 

Equations (2) and (3) show the constraints to the base lengths of input and output that 

are limited to the ranges of parameters, as shown in Figure 3. Equation (4) presents the 

non-negativity constraint to the input, output, and base lengths. 
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Figure 3. Graphical illustration of base length partitioning in triangular membership functions 

 

Step 9: Establish the phenotype chromosome for the population initialisation, where 

the base lengths are the dependent variables in the optimisation problem. The 

chromosome, or the individual representation of the population, is illustrated in Figure 

4. The base lengths stored in the double vector are optimised using genetic algorithms.  

 

 
Figure 4. Graphical illustration of the individual representation 

 

Step 10: Conduct genetic operations to search near-to-optimal solutions, including 

selection, crossover, and mutation, among chromosomes [39]. Subsequently, optimal 

settings of triangular membership functions are obtained.  

 

Step 11: If the termination criteria, for example, errors of the fuzzy inference engine 

and number of iterations, are met, obtain the optimal Mamdani’s fuzzy inference system. 

Otherwise, repeat Steps 3 to 9.  
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Step 12: Store the optimal settings of fuzzy membership functions and fuzzy rules in 

the knowledge repository for building the Mamdani’s fuzzy logic further. 

 

3.3 Tier 3: Mamdani’s Fuzzy Logic for Product Design Customisation 

After the operations in the RAFIS, the optimal settings in aspects of fuzzy 

membership functions and fuzzy IF-THEN rules (i.e., antecedent → consequence) are 

obtained to formulate the appropriate Mamdani’s fuzzy logic as an intelligent decision 

support system for facilitating product design customisation. In the Mamdani’s fuzzy 

logic, there are fuzzification, Mamdani-type fuzzy inference engine, and 

defuzzification to provide fuzzy decision support functionalities [38].  

3.3.1 Fuzzification 

Although conducting surveys and research does not make success certain, it is 

the only strategy to understand customer trends and behaviour, as no one can accurately 

predict whether new products will succeed or fail. However, the data analysed from 

FFE can be used as input to generate some readable outcomes through the adoption of 

RAFIS. As stated before, customer needs are now linked with product features so that 

rich customer information can be directly inputted into a fuzzy knowledge repository 

to support fuzzification. The FFE data, which are crisp variables, are then transformed 

from numbers into the degrees of membership by using optimal fuzzy membership 

functions within the range [0,1] for inferencing fuzzy sets and rules.  

3.3.2 Mamdani-Type Fuzzy Inference Engine 

The inference engine is regarded as the core element in performing a series of 

inference processes, including rule block formation, rule composition, rule firing, 
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implication, and aggregation. With the adoption of the RAFIS, an optimal number of 

fuzzy IF-THEN rules are generated, where the rules are composited and fired in a 

systematic manner. When new input datasets are entered, the IF part of the rules are 

considered to evaluate the composited degree of belongingness 𝜇𝑟
𝑐 in the membership 

functions to obtain composition weights for all the rules in the knowledge repository, 

as in equation (5). The implication operation is to select the minimum membership 

function values among all the weights as the composited weights for the rule R. 

Afterwards, with a set of composited weights and THEN rules, areas in the output 

membership functions can be aggregated.  

 

𝜇𝑟
𝑐 = min

𝑟
[𝜇𝑟(𝑥1), 𝜇𝑟(𝑥2), … , 𝜇𝑟(𝑥𝑝)] (5) 

 

3.3.3 Defuzzification 

Defuzzification is the process of determining crisp values from the aggregated 

areas in the inference engine. The fuzzy sets derived from FFE data are defuzzified into 

measurable values related to features in product design. Regarding recent fuzzy 

decision support systems, various defuzzification methods are available for evaluating 

the aggregated areas in the output membership functions, including centre of sums 

(CoS), centre of gravity (CoG), centre of area (CoA), and the weighted average method. 

The appropriate defuzzification method can be selected according to industrial 

specifications to convert the fuzzy sets back to crisp values to provide fuzzy reasoning.  

 

4. Case Study in the Furniture Industry to Examine I-FPDF 

In this section, the feasibility of the proposed framework is validated in a 

manufacturing company located in China. The company is eager to produce new 
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curtain-related products. The industrial motivations for adopting the proposed system 

is discussed first, and the I-FPDF is demonstrated in detail with the application case 

scenario in designing curtain rods.  

4.1 Industrial Motivations  

In light of capricious customer demands and significant entry barriers, those 

who fail to capture customer loyalty and offer high customer satisfaction find no place 

in the market. To introduce successful new products, the right decisions must be made 

at the FFE stage, and thus data-driven design innovation in the form of decision support 

systems is preferred in the NPD. Data-driven design innovation with decision support 

systems that address the above challenges would give the case company superior 

performance in NPD.  

Facing such a highly competitive market environment, the management of the 

company seeks to design new products that suit potential customers as a core strategy. 

Currently, customers are forced to select from three ready-made models, which cannot 

satisfy the requirements of the majority of customers. In addition, the information in 

the FFE stage is relatively unstructured, which makes it difficult to formulate an 

effective decision support system to facilitate customisation of the product design. 

Therefore, manufacturing companies that are actively engaged in NPD need an 

intelligent approach for analysing big data in the FFE stage to enhance the features in 

product design.  

In the case scenario, product design of curtain rods is considered. The design is 

subject to six functional parameters, including extendable length (EL in cm), rod 

perimeter (RP in cm), affordable loads (AL in kg), number of rings on rod (RR in units), 

ring diameter (RD in cm), and number of screws used (SU in units), as shown in Figure 
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5. To design the most appropriate curtain rods in the market, some significant and 

underlying relationships from the FFE data should be investigated for an understanding 

of market needs and trends.  

 

 
Figure 5. Six functional parameters of the design of curtain rods 

 

4.2 Demonstration of the I-FPDF 

According to the three-tier structure of the I-FPDF developed in Section 3, the 

implementation of the proposed framework is conducted to determine the appropriate 

design for the curtain rods, which are regarded as essential household appliances. To 

demonstrate the I-FPDF effectively, an implementation roadmap is established for the 

case company to walk through the steps in the proposed framework, as shown in Figure 

6. A recursive learning scheme can be formulated for the product design at the FFE 

stage. Regarding the implementation, there are three major stages to demonstrate the 

application of the I-FPDF, namely (i) formulation of input and output parameters, (ii) 

recursive learning in the RAFIS, and (iii) adoption of a fuzzy inference system for the 

product design.  
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Figure 6. Implementation steps of the I-FPDF for designing curtain rods 

 

4.2.1 Stage 1: Formulation of Input and Output Parameters 

First, product designers and engineers in the case company investigate the big 

data at the FFE stage, including customer fuzziness, engineering fuzziness, market 

fuzziness, and product fuzziness, as referenced in Section 3.1. To demonstrate the 

proposed framework, four input parameters are considered: (i) average age of 

customers (AC in years), (ii) product versatility (PV in units), (iii) price level (PL in 

HK$), and (iv) average size of property sold (SP in ft2), to fine-tune the six output 

parameters, as shown in Figure 4. AC is examined by the average age of active 

customers, PV is measured by the number of novel features and functions for the 

product design, PL is the target price of the curtain rods in HK$; SP is evaluated by the 

average size of property sold within one year. For training the RAFIS in the case 

company, 15 historical design records are retrieved, which contain the numerical values 

of input and output parameters, as shown in Table 3.  
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Table 3. Historical dataset of input and output parameters for curtain rod design 

 Input Parameters Output Parameters 

DN. AC PV PL SP EL RP AL RR RD SU 

D1 49.4 6 370 622 45 5 4 8 6 11 

D2 36.8 7 290 615 55 6.5 5 11 3.5 13 

D3 54.6 6 290 683 50 5.5 4.5 9 5.5 8 

D4 67.3 7 370 727 55 5 7.5 16 5 11 

D5 31.4 5 230 702 20 7.5 6 14 6 7 

D6 40.8 8 140 572 30 5 6 9 6 15 

D7 35 7 200 554 50 5 6 10 5.5 13 

D8 27.5 4 110 799 70 4.5 8 11 5 14 

D9 26.2 5 380 794 40 7 8 9 5.5 13 

D10 26.7 6 220 656 45 7 5 15 5 14 

D11 34.5 4 310 552 40 6.5 8 10 4.5 15 

D12 53.4 5 310 584 20 8 5 12 7 5 

D13 55.3 5 160 702 30 6 6.5 15 4.5 11 

D14 40.9 7 360 632 45 7.5 8 9 5 10 

D15 29.1 3 380 581 25 5 6 15 5 11 

 

According to the data table, the fuzzy classes and ranges for input and output 

parameters are initialised before entering the recursive learning process, as shown in 

Table 4. In addition, based on the expertise of product designers and engineers, 10 

explicit fuzzy IF-THEN rules are defined in this case study based on the business logic 

and experience in designing curtain rods.  
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Table 4. Ranges and initialised membership functions for input and output parameters 

Parameter Range Fuzzy class Membership function 

AC [26.2, 67.3] Young adult [26.2, 36.475, 46.75] 

   Adult [36.475, 46.75, 57.025] 

    Elder [46.75, 57.025, 67.3] 

PV [3, 8] Low [3, 4.25, 5.5] 

    Medium [4.25, 5.5, 6.75] 

    High [5.5, 6.75, 8] 

PL [110, 380] Low  [110, 177.5, 245] 

    Medium [177.5, 245, 312.5] 

    High [245, 312.5, 380] 

SP [552, 799] Small [552, 613.75, 675.5] 

    Average [613.75, 675.5, 737.25] 

    Huge [675.5, 737.25, 799] 

EL [20, 70] Short [20, 32.5, 45] 

    Medium [32.5, 45, 57.5] 

    Long [45, 57.5, 70] 

RP [4.5, 8] Short [4.5, 5.375, 6.25] 

    Medium [5.375, 6.25, 7.125] 

    Long [6.25, 7.125, 8] 

AL [4, 8] Low [4, 5, 6] 

    Medium [5, 6, 7] 

    High [6, 7, 8] 

RR [8, 16] Few [8, 10, 12] 

    Medium [10, 12, 14] 

    Many [12, 14, 16] 

RD [3.5, 7] Short [3.5, 4.375, 5.25] 

    Medium [4.375, 5.25, 6.125] 

    Long [5.25, 6.125, 7] 

SU [5, 15] Few [5, 7.5, 10] 

    Medium [7.5, 10, 12.5] 

    Many [10, 12.5, 15] 

 

4.2.2 Stage 2: Recursive Learning in the RAFIS 

To mine the additional fuzzy IF-THEN rules from the historical dataset, the 

threshold value of support count for all input and output parameters is set at 1.5, and 

the threshold value of confidence is set at 0.5. To start the FARM process, the crisp 

values in the historical dataset are converted into fuzzy sets based on the specified 
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membership functions. An example for the first data row of design record D1 is shown 

in Table 5. All the data on the 15 design records can be converted into fuzzy sets, where 

FC1, FC2, and FC3 represent the fuzzy classes of the parameters.  

 
Table 5. Converted fuzzy membership function values for the design record D1 

 Input and Output Parameters 

 AC PV PL SP EL RP AL RR RD SU 

FC1 0.00 0.00 0.00 0.87 0.00 0.57 0.00 0.00 0.00 0.00 

FC2 0.74 0.60 0.00 0.13 1.00 0.00 0.00 0.00 0.14 0.60 

FC3 0.26 0.40 0.15 0.00 0.00 0.00 0.00 0.00 0.86 0.40 

 

 

By combining all 15 fuzzy sets converted from the design records, the 1-itemset 

can be established through measuring the support counts of each parameter for every 

fuzzy class, as shown in Table 6, and the maximum support count for every parameter 

can be identified. After checking the support count threshold (i.e., 1.5), all the items in 

the 1-itemset have passed and can be used for the formulation of the 2-itemset.  

 
Table 6. Extraction of 1st itemset from the historical data 

 FC1 FC2 FC3 

AC 4.744526* 2.381995 2.501217 

PV 4.16837 4.23163* 3.6 

PL 3.412814* 2.179778 3.185185 

SP 4.199139* 3.331225 1.894737 

EL 3.76837 5.63163* 1.6 

RP 4.96837* 1.888773 3.142857 

AL 3.46837 4.53163* 1 

RR 5.46837* 1.53163 2.5 

RD 4.111227 6.460202* 3.428571 

SU 2.56837 3.63163 4* 

Remark: Values with the sign (*) represent the highest support count value for the 

parameters. 

 

Based on the results, the co-occurrence of the members in the 1-itemset are 

examined to formulate the 2-itemset. The support count thresholds for the 2-itemset are 

compiled. Repeatedly, the higher level of itemset can be investigated until no 
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outstanding co-occurrence itemset can be generated. According to the historical dataset, 

the mining process of fuzzy rules stops at the 3-itemset, and no 4-itemset can fulfil the 

requirement of the support count thresholds. The results of the fuzzy IF-THEN rules 

are summarised in Table 7.  The confidence values for the rules are measured to 

determine the useful rules to be entered into the knowledge repository in the Mamdani’s 

fuzzy inference system. For the fuzzy rules generated, the antecedent part contains the 

input parameters, while the consequence part contains only the output parameters. 

Therefore, five additional fuzzy rules are obtained by using the FARM, and the rules 

are handled in the knowledge repository to optimise the membership functions.  

 
Table 7. Mined fuzzy rules using FARM for the Mamdani’s fuzzy inference system 

Generated fuzzy rules Rule confidence 

IF {AC is young adult} THEN {EL is medium} 0.4253 

IF {AC is young adult} THEN {AL is medium} 0.4687 

IF {AC is young adult} THEN {RR is few} 0.6936# 

IF {AC is young adult} THEN {RD is medium} 0.4573 

IF {AC is young adult} THEN {SU is many} 0.4336 

IF {PV is medium} THEN {EL is medium} 0.5672# 

IF {PV is medium} THEN {RD is medium} 0.5266# 

IF {PV is medium} THEN {SU is many} 0.4254 

IF {PL is low} THEN {AL is medium} 0.5372# 

IF {SP is small} THEN {EL is medium} 0.5046# 

IF {SP is small} THEN {RD is medium} 0.4306 

IF {SP is small} THEN {SU is many} 0.4639 

IF {AC is young adult} THEN {EL is medium and RR is few} 0.4005 

IF {AC is young adult} THEN {RR is few and RD is medium} 0.3428 

IF {PV is medium} THEN {EL is medium and RD is medium} 0.4591 

Remark: the rule confidence values with the sign (#) denote that the threshold in rule 

confidence value is met.  

 

By storing the mined fuzzy rules in the knowledge repository, the optimisation 

of fuzzy membership can be conducted using the historical dataset, shown in Table 3. 

The optimisation model defined in Steps 8 and 9 of Section 3 is built in the MATLAB 

environment to determine the 40 optimal base lengths for 10 input and output 

parameters. To optimise the double vector of the base lengths in a GA, the population 
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size is 200; the selection function is tournament; the mutation rate is 0.01; the crossover 

function is single point; the maximum number of generations is 4,000. Table 8 shows 

the optimised base length through the GA, and therefore the fuzzy membership 

functions for input and output parameters can be updated accordingly, as shown in 

Figure 7. The fitness value is 2541.76, which is acceptable to the case company. 

Otherwise, the recursive learning process can be continued with additional historical 

datasets to locate the optimal settings for building the fuzzy inference system. With the 

finalised set of fuzzy rules and membership functions, the optimal design for the 

Mamdani’s fuzzy inference system for design curtain rods can be formulated.   

 
Table 8. Optimised base lengths for the membership functions by the GA 

 Base Length 

  b1 b2 b3 b4 

AC 30.5968 1.5626 1.5460 7.3936 

PV 3.8225 0.3844 0.3690 0.4241 

PL 81.9697 54.7144 54.8093 78.5066 

SP 173.5293 21.1613 21.1444 31.1650 

EL 0.6381 16.4340 16.4366 16.4913 

RP 1.2165 0.5912 1.1060 0.5863 

AL 1.6509 0.7989 0.8911 0.6573 

RR 3.8666 1.3695 1.2226 1.5413 

RD 2.4021 0.3546 0.3975 0.3458 

SU 4.1767 1.9746 2.0189 1.9368 

 

4.2.3 Stage 3: Adoption of Fuzzy Inference System for the Product Design 

Based on the results from the RAFIS, the corresponding Mamdani’s fuzzy 

inference system for suggesting product design features can be established. In this case 

study, the company is attempting to adopt the generated fuzzy inference system to 

determine a set of features of new curtain rods to be sold in the next year. For the new 

product, the configurations of the input parameters are AC is 45, PV is 4, PL is 199, 

and SP is 600.  
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Figure 7. Optimised fuzzy membership functions from the recursive learning 
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By applying the optimised fuzzy inference engine, the product design features 

are EL is 37.1 (~38 cm), RP is 7.8 (~8 cm), AL is 6 kg, RR is 11.3 (~12 units), RD is 

5.3 (~6 cm), and SU is 8.2 (~9 units). Consequently, the product designers and 

engineers can modify the product design based on the estimated model to further ensure 

its practicality and productivity in the production lines. Among numerous new ideas 

and market opportunities in the FFE stage of the NPD process, the proposed framework 

provides an intelligent and autonomous approach to formulate the appropriate product 

design to enter the formal product development stage.   

5. Results and Discussion 

This section presents the results and a discussion of the research. The design 

performance before and after applying the I-FPDF is measured to evaluate the 

performance of the proposed model. A comparison of the RAFIS with existing 

approaches is presented, and industrial implications are discussed. 

5.1 Performance measurements of the I-FPDF 

The design and market performance of the proposed framework are measured 

quantitatively before and after the use of I-FPDF. The specific key performance 

indicators (KPIs) were defined. The number of prototypes accepted for mass production 

(in units) and time to market (in months) were taken as the KPIs for design. Market 

performance was measured as the monthly recurring revenue (in HK$). It included 

customer retention rate (in %), average net promoter score (on a scale of 0–10), and 

average customer satisfaction (on a scale of 0–10), where the customer retention rate 

was calculated by (number of customers at the end of the period – number of new 

customers)/(number of customers at the start of the period). To measure the 
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performance of the I-FPDF, the data were collected in a 3-month timeframe during the 

product design process in the case company. A simple survey was conducted to evaluate 

the net promoter score (i.e., to what extent customers were willing to recommend the 

products to others) and customer satisfaction (i.e., the level of customer satisfaction 

with the products). The measurement results are summarised in Table 9. It was found 

that the positive effects in the aspects of design and market performance can be obtained 

with 16.7% and 17.15% on average, respectively. It shows that the adoption of the 

proposed framework can effectively facilitate new product design, with a higher 

number of prototypes accepted and shorter time to market. Also, since the new product 

design is generated with consideration of customer preferences and requirements, the 

market performance of new products is improved, with higher monthly recurring 

revenue and customer retention rate. More customers were satisfied with new products 

in the case company and willing to recommend them to others, such as friends and 

relatives. Consequently, the proposed framework has a positive influence on the FFE 

stage to foster the data-driven product design process with the use of a recursive 

learning approach.  

 

Table 9. Performance measurement before and after the use of I-FPDF 

Area Before After  % change 

Design performance:  

-Number of prototypes accepted 8 10 25.0% 

-Time to market 

 

~12 ~11 8.33% 

Market performance: 

-Monthly recurring revenue (HK$’000) ~280.8 ~345.1 22.9% 

-Customer retention rate 55.8% 63.5% 13.8% 

-Average net promoter score 6.1 6.9 13.1% 

-Average customer satisfaction 6.4 7.6 18.8% 
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5.2 Comparison between the RAFIS and existing approaches 

Regarding recursive learning for handling fuzziness at the FFE stage, the RAFIS 

was established to create adequate reasoning on the product design features. A 

qualitative comparison between the proposed fuzzy inference system, ANFIS, and 

typical fuzzy inference systems was conducted to elucidate the value of the RAFIS. 

Table 10 summarises the results of the comparison for the three fuzzy inference systems.  

The typical fuzzy logic can be designed for the Mamdani-type and Sugeno-type 

fuzzy inference engines in a multiple-input multiple-output (MIMO) manner, but the 

training and learning mechanism is lacking. Its effectiveness relies heavily on the 

domain knowledge of experts to define sufficient membership functions and fuzzy rules. 

The ANFIS is designated to cater to the needs of a Sugeno-type fuzzy inference engine 

by making use of an artificial neural network (ANN) to optimise the membership 

functions and Sugeno-type fuzzy rules. However, it merely supports a multiple-input 

single-output (MISO) system design such that multiple ANFISs must be operated 

concurrently if more than one output parameter is considered. Regarding the proposed 

RAFIS, it is targeted to build an optimal MIMO-based Mamdani-type fuzzy inference 

system abandoning high complexity in ANN to mine the fuzzy rules and to adjust 

membership. Instead, a recursive loop integrating FARM and GA is established, and 

thus the most appropriate fuzzy inference engine can be located.  

Implementing such a recursive loop for the proposed system can reduce the time 

to locate the appropriate settings in fuzzy inference systems. Also, the recursion is an 

efficient method to develop and debug the systems by decluttering the codes. The above 

advantages from the proposed fuzzy inference system align with the directions of eco-

innovation in the system development. Recursive learning-based approaches, as 

environmentally friendly technological advancements, have positive effects on 
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sustainable NPD, particularly in the FFE stage. In future, additional modules or 

advanced methods to strengthen the functionalities in mining fuzzy rules and optimise 

membership functions can be easily integrated into the current decluttered system 

environment to fulfil the need for eco-design of the systems for sustainability in the 

manufacturing industry.  

 

 
Table 10. Qualitative comparison between typical fuzzy logic, ANFIS, and RAFIS 

Aspect Typical fuzzy logic ANFIS RAFIS 

Type of fuzzy 

inference 

Mamdani-type & 

Sugeno-type 

Sugeno-type Mamdani-type 

Training data 

required 

No Yes Yes 

Self-adaptive 

training 

No Yes Yes 

Learning 

method 

N/A ANN Recursive loop in 

FARM & GA 

System I/O MIMO MISO MIMO 

Eco-innovation Low Medium High 

Remarks: MIMO stands for multiple-input multiple-output; MISO stands for 

multiple-input single-output; ANN stands for artificial neural network; FARM stands 

for fuzzy association rule mining; GA stands for genetic algorithm.  

 

5.3 Managerial implications 

It has been challenging to make adequate decisions at the FFE stage for product 

and service innovation before beginning the formal product development process. 

Contributing factors are high level of uncertainties and unstructured data that is high 

volume, high velocity, high variety, multisource, multinoise, and multidimensional. 

Under the proposed framework, namely I-FPDF, adopting industrial big data aids in the 

evaluation of four sources of fuzziness at the FFE stage, namely customer, engineering, 

market, and product fuzziness. The Mamdani’s fuzzy inference engine optimised by the 

recursive learning-based RAFIS can provide adequate reasoning on features of product 



32 

 

and service design. Such a recursive-learning approach offers the advantages of 

improving product design continuously such that ultimate product design can be 

effectively generated when the companies are ready to produce the prototypes and to 

develop market positioning. Compared with the traditional approach to determine the 

finalised product design in one step, the proposed framework provides greater 

flexibility to investigate the evolution of product design, which is subject to four 

defined sources of fuzziness for the FFE stage.  

Recursive learning for artificial intelligence provides a self-improvement 

mechanism to capture ever-changing market needs for fine-tuning product design 

features. Because epidemics such as COVID-19 pandemic create extraordinary 

uncertainties in the market, the proposed framework can effectively adapt to the 

changes by itself to maintain a competitive edge and to understand changing market 

positions. Subsequently, the impact from such occurrences, which may increase the 

complexity and uncertainties at the FFE stage, can be reduced. 

6. Concluding Remarks 

This study develops a generic methodology, the intelligent fuzzy product design 

framework (I-FPDF), for supporting the decision-making process at the FFE stage of 

product design. The recursive association-rule-based fuzzy inference system (RAFIS) 

is established by integrating fuzzy association rule mining and a genetic algorithm for 

identifying fuzzy rules and optimising membership functions, respectively. 

Subsequently, an optimal design of Mamdani’s fuzzy inference engine is formulated to 

provide adequate reasoning in the product design process, based on the designated input 

parameters.  
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The proposed framework was demonstrated in a case study that showed the 

functions serving to identify hidden and useful patterns among historical product design 

records and consideration of user preferences and requirements. Also, using the RAFIS, 

in which customer knowledge and industrial big data were effectively transformed into 

information for decision making concerning product features, is applicable to the 

development of new functional products or modification of existing ones. The 

methodology provides a way for firms to better understand the evolution of the business 

landscape and facilitate strategic decision making. The main objective is to assist 

companies in achieving a greater success rate, higher customer satisfaction, and, most 

importantly, improved overall firm performance. After the feasibility of the proposed 

system was verified through the case study, the main results are summarised as follows:  

(i) Industrial big data, in terms of volume, velocity, variety, multi-source, multi-

noise, and multi-dimensional (3V-3M), contributes to the innovation process in 

the FFE stage, which provides solid foundation to customise product design.  

(ii) A recursive learning scheme is proposed and demonstrated to bridge the gap 

between customer attributes and design parameters such that the design of 

curtain rods is successfully determined by average age of customers, product 

versatility, price level, and average size of property sold.  

(iii) The implementation of the proposed system for the product design can bring the 

positive influence to design performance and market performance so as to 

strengthen the capability on the evolution of product design, which further 

enhances customer value in the market.  

(iv) The proposed RAFIS introduces the self-adaptive and automatic capabilities in 

the fuzzy inference process by means of fuzzy association rule mining and 

genetic algorithm, which drives the eco-innovation of the system development.  
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Although the proposed system contributing to the context of product innovation 

of the FFE stage from the perspective of industrial big data has been verified and 

evaluated, the investigation is limited in the furniture industry with limited dataset for 

training and verification. For future study, the proposed framework can be applied to 

other industries that require an intelligent NPD process to deliver new products and 

services, using large amounts of historical data. With the consideration of industrial big 

data, the customisation of product and service innovation can be further explored in 

other manufacturing and service businesses. Moreover, due to the eco-innovation of the 

RAFIS design, other optimisation algorithms, such as particle swarm optimisation, 

pattern search, and simulated annealing algorithm, can be plugged and replaced to 

achieve automatic rule learning and parameter tuning in Mamdani’s fuzzy inference 

systems.  
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Appendices  

In this appendix, the numerical illustration of the case study is provided to better 

understand the whole computation process of the RAFIS. Given that the historical 

dataset and initial fuzzy membership functions are shown in Tables 3 and 4, the 

processes of deriving the results in Tables 5, 6, and 7 are presented in Appendix A. 
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Moreover, the computation to optimise the base length of the membership functions is 

presented in Appendix B.  

Appendix A. Deployment of FARM for Rule Extraction 

According to the historical dataset of D1 to D15 in Table 3, the corresponding 

membership function values are evaluated through substituting to the membership 

functions stated in Table 4. For example, the value of AC at D1 is 49.4, which are 

between the fuzzy classes “Adult” (FC2) and “Elder” (FC3). Thus, its FC2’s 

membership function value is (49.4 − 57.025) (46.75 − 57.025) = 0.74⁄ , while its 

FC3’s membership function value is  (49.4 − 46.75) (57.025 − 46.75) = 0.26⁄ . Also, 

its FC1’s membership function value (i.e., “Young adult”) is zero. By repeating the 

above calculation, Table 5 for the design record D1 is established, while Table A.1 

summarises the converted membership function values for the design records D2 to 

D15. Subsequently, by combining all 15 design records, the results shown in Table 6 

presents the 1st itemset between the input and output parameters. Based on the results 

in Table 6, the evaluation of the 2nd itemset to consider all the pair combination between 

input and output parameters with the selected fuzzy classes which have the largest 

support count in the 1st itemset. For example, considering the pair combination between 

AC.YoungAdult and EL.Medium, its combined support count is calculated by 

min(0, 1) + min(0.97, 0.2) + min(0, 0.6) + min(0, 0.2) + min(0.51, 0) +

min(0.58, 0) + min(0.86, 0.6) + min(0.13, 0) + min(0, 0.6) + min(0.05, 1) +

min(0.81. 0.6) + min(0, 0) + min(0, 0) + min(0.57, 1) + min(0.28, 0) = 2.02.  
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Table A.1. Converted fuzzy membership function values for the design records D2 to D15 

    AC PV PL SP EL RP AL RR RD SU 

D2 

FC1 0.97 0.00 0.00 0.98 0.00 0.00 1.00 0.50 0.00 0.00 

FC2 0.03 0.00 0.33 0.02 0.20 0.71 0.00 0.50 0.00 0.00 

FC3 0.00 0.80 0.67 0.00 0.80 0.29 0.00 0.00 0.00 0.80 

D3 

FC1 0.00 0.00 0.00 0.00 0.00 0.86 0.50 0.50 0.00 0.80 

FC2 0.24 0.60 0.33 0.88 0.60 0.14 0.00 0.00 0.71 0.20 

FC3 0.76 0.40 0.67 0.12 0.40 0.00 0.00 0.00 0.29 0.00 

D4 

FC1 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.29 0.00 

FC2 0.00 0.00 0.00 0.17 0.20 0.00 0.00 0.00 0.71 0.60 

FC3 0.00 0.80 0.15 0.83 0.80 0.00 0.50 0.00 0.00 0.40 

D5 

FC1 0.51 0.40 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.80 

FC2 0.00 0.60 0.78 0.57 0.00 0.00 1.00 0.00 0.14 0.00 

FC3 0.00 0.00 0.00 0.43 0.00 0.57 0.00 1.00 0.86 0.00 

D6 

FC1 0.58 0.00 0.44 0.32 0.80 0.57 0.00 0.50 0.00 0.00 

FC2 0.42 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.14 0.00 

FC3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 

D7 

FC1 0.86 0.00 0.67 0.03 0.00 0.57 0.00 1.00 0.00 0.00 

FC2 0.00 0.00 0.33 0.00 0.60 0.00 1.00 0.00 0.71 0.00 

FC3 0.00 0.80 0.00 0.00 0.40 0.00 0.00 0.00 0.29 0.80 

D8 

FC1 0.13 0.80 0.00 0.00 0.00 0.00 0.00 0.50 0.29 0.00 

FC2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.71 0.00 

FC3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 

D9 

FC1 0.00 0.40 0.00 0.00 0.40 0.00 0.00 0.50 0.00 0.00 

FC2 0.00 0.60 0.00 0.00 0.60 0.14 0.00 0.00 0.71 0.00 

FC3 0.00 0.00 0.00 0.08 0.00 0.86 0.00 0.00 0.29 0.80 

D10 

FC1 0.05 0.00 0.37 0.32 0.00 0.00 1.00 0.00 0.29 0.00 

FC2 0.00 0.60 0.63 0.68 1.00 0.14 0.00 0.00 0.71 0.00 

FC3 0.00 0.40 0.00 0.00 0.00 0.86 0.00 0.50 0.00 0.40 

D11 

FC1 0.81 0.80 0.00 0.00 0.40 0.00 0.00 1.00 0.86 0.00 

FC2 0.00 0.00 0.04 0.00 0.60 0.71 0.00 0.00 0.14 0.00 

FC3 0.00 0.00 0.96 0.00 0.00 0.29 0.00 0.00 0.00 0.00 

D12 

FC1 0.00 0.40 0.00 0.52 0.00 0.00 1.00 0.00 0.00 0.00 

FC2 0.35 0.60 0.04 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

FC3 0.65 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D13 

FC1 0.00 0.40 0.74 0.00 0.80 0.29 0.00 0.00 0.86 0.00 

FC2 0.17 0.60 0.00 0.57 0.00 0.71 0.50 0.00 0.14 0.60 

FC3 0.83 0.00 0.00 0.43 0.00 0.00 0.50 0.50 0.00 0.40 

D14 

FC1 0.57 0.00 0.00 0.70 0.00 0.00 0.00 0.50 0.29 0.00 

FC2 0.43 0.00 0.00 0.30 1.00 0.00 0.00 0.00 0.71 1.00 

FC3 0.00 0.80 0.30 0.00 0.00 0.57 0.00 0.00 0.00 0.00 

D15 

FC1 0.28 0.00 0.00 0.47 0.40 0.57 0.00 0.00 0.29 0.00 

FC2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.71 0.60 

FC3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.40 
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By doing so, the item-sets at higher levels, such as 3rd itemset and 4th itemset, can be 

generated until no valid pair combinations can be obtained, as shown in Table A.3. For 

the valid pair combinations which pass the threshold of the support count, the rule 

confidence between antecedent and consequence is calculated, and the results are 

summarised in Table 7. For example. The confidence of “IF {AC is young adult} THEN 

{EL is medium}” is calculated by 2.018 4.744526 = 0.4253⁄ . 

 
Table A.2. Extraction of 2nd itemset from the historical data 

Pair Combination SC Valid? Pair Combination SC Valid? 

{AC.YoungAdult, 

PV.Medium} 
0.5547 No {SP.Small, EL.Medium} 2.1190 Yes 

{AC.YoungAdult, PL.Low} 1.3820 No {SP.Small, RP.Short} 1.3973 No 

{AC.YoungAdult, 

SP.Small} 
2.2249 Yes {SP.Small, AL.Medium} 0.8259 No 

{AC.YoungAdult, 

EL.Medium} 
2.0180 Yes {SP.Small, RR.Few} 1.3563 No 

{AC.YoungAdult, 

RP.Short} 
1.4251 No {SP.Small, RD.Medium} 1.8080 Yes 

{AC.YoungAdult, 

AL.Medium} 
2.2238 Yes {SP.Small, SU.Many} 1.9482 Yes 

{AC.YoungAdult, RR.Few} 3.2908 Yes {EL.Medium, RP.Short} 1.9429 Yes 

{AC.YoungAdult, 

RD.Medium} 
2.1696 Yes 

{EL.Medium, 

AL.Medium} 
0.6000 No 

{AC.YoungAdult, 

SU.Many} 
2.0574 Yes {EL.Medium, RR.Few} 2.9000 Yes 

{PV.Medium, PL.Low} 1.1926 No 
{EL.Medium, 

RD.Medium} 
3.7143 Yes 

{PV.Medium, SP.Small} 1.4340 No {EL.Medium, SU.Many} 2.4000 Yes 

{PV.Medium, EL.Medium} 2.4000 Yes {RP.Short, AL.Medium} 2.0000 Yes 

{PV.Medium, RP.Short} 1.4571 No {RP.Short, RR.Few} 1.5714 Yes 

{PV.Medium, AL.Medium} 1.1000 No {RP.Short, RD.Medium} 2.8571 Yes 

{PV.Medium, RR.Few} 1.0000 No {RP.Short, SU.Many} 2.0571 Yes 

{PV.Medium, RD.Medium} 2.2286 Yes {AL.Medium, RR.Few} 1.5000 Yes 

{PV.Medium, SU.Many} 1.8000 Yes 
{AL.Medium, 

RD.Medium} 
1.8571 Yes 

{PL.Low, SP.Small} 0.6721 No {AL.Medium, SU.Many} 1.6000 Yes 

{PL.Low, EL.Medium} 0.9704 No {RR.Few, RD.Medium} 3.0000 Yes 

{PL.Low, RP.Short} 1.3016 No {RR.Few, SU.Many} 2.2000 Yes 

{PL.Low, AL.Medium} 1.8333 Yes {RD.Medium, SU.Many} 3.3143 Yes 

{PL.Low, RR.Few} 1.1111 No       

{PL.Low, RD.Medium} 1.4656 No       

{PL.Low, SU.Many} 1.4370 No       
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Table A.3. Extraction of 3rd and higher-level item-sets from the historical data 

Pair Combination SC Valid? Pair Combination SC Valid? 

{AC.YoungAdult, SP.Small, 

EL.Medium} 
0.8504 No 

{EL.Medium, RP.Short, 

RR.Few} 
1.0714 No 

{AC.YoungAdult, SP.Small, 

RD.Medium} 
1.0755 No 

{EL.Medium, RP.Short, 

RD.Medium} 
1.5143 Yes 

{AC.YoungAdult, SP.Small, 

SU.Many} 
1.1633 No 

{EL.Medium, RP.Short, 

SU.Many} 
1.1714 No 

{AC.YoungAdult, 

EL.Medium, RR.Few} 
1.9000 Yes 

{EL.Medium, RR.Few, 

RD.Medium} 
2.2429 Yes 

{AC.YoungAdult, 

EL.Medium, RD.Medium} 
1.3609 No 

{EL.Medium, RR.Few, 

SU.Many} 
1.3000 No 

{AC.YoungAdult, 

EL.Medium, SU.Many} 
0.8487 No 

{EL.Medium, RD.Medium, 

SU.Many} 
1.9429 Yes 

{AC.YoungAdult, 

AL.Medium, RR.Few} 
1.3564 No 

{RP.Short, AL.Medium, 

RR.Few} 
1.0714 No 

{AC.YoungAdult, 

AL.Medium, RD.Medium} 
1.2822 No 

{RP.Short, AL.Medium, 

RD.Medium} 
1.4286 No 

{AC.YoungAdult, 

AL.Medium, SU.Many} 
1.0822 No 

{RP.Short, AL.Medium, 

SU.Many} 
1.2571 No 

{AC.YoungAdult, RR.Few, 

RD.Medium} 
1.6265 Yes 

{RP.Short, RR.Few, 

RD.Medium} 
1.2143 No 

{AC.YoungAdult, RR.Few, 

SU.Many} 
1.4265 No 

{RP.Short, RR.Few, 

SU.Many} 
0.5714 No 

{AC.YoungAdult, 

RD.Medium, SU.Many} 
1.1717 No 

{RP.Short, RD.Medium, 

SU.Many} 
1.6571 Yes 

{PV.Medium, EL.Medium, 

RD.Medium} 
1.9429 Yes 

{AL.Medium, RR.Few, 

RD.Medium} 
0.8571 No 

{PV.Medium, EL.Medium, 

SU.Many} 
1.4000 No 

{AL.Medium, RR.Few, 

SU.Many} 
0.8000 No 

{PV.Medium, RD.Medium, 

SU.Many} 
1.2857 No 

{AL.Medium, RD.Medium, 

SU.Many} 
1.2571 No 

{SP.Small, EL.Medium, 

RD.Medium} 
1.1955 No 

{RR.Few, RD.Medium, 

SU.Many} 
1.6143 Yes 

{SP.Small, EL.Medium, 

SU.Many} 
0.9482 No 

{AC.YoungAdult, 

EL.Medium, RR.Few, 

RD.Medium} 

1.2429 No 

{SP.Small, RD.Medium, 

SU.Many} 
0.8910 No 

{PV.Medium, EL.Medium, 

RP.Short, RD.Medium} 
0.7429 No 

   
{PV.Medium, EL.Medium, 

RD.Medium, SU.Many} 
1.1429 No 

 

Appendix B. Membership Function’s Base Length Optimisation by GA 

The optimisation of the base lengths of the membership functions regarding the 

proposed Mamdani’s fuzzy inference system is conducted in MATLAB®  environment.  

Based on the extracted fuzzy rules from the FARM and the existing fuzzy rules built 

by domain expert intuitively, a Mamdani’s fuzzy inference system for the I-FPDF can 

be initiated, and thus the objective function to minimise the errors between actual and 
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estimated output. In this study, a MATLAB function y = gaInMF(x) is formulated 

where the formulation of Mamdani’s fuzzy inference system is used to build the 

objective function, and its pseudo code is illustrated as follows:  

 

Pseudo Code 1: function y = gaInMF(x) 

Load the historical dataset hData, and initial membership function mf 

 

Initiate a Mamdani’s fuzzy inference system (mamfis) 

mamfis.Name ← “I-FPDF” 

range ← [min(hData), min(hData)] 

 

mamfis.addInput.Name ← AC/PV/PL/SP 

mamfis.addInput.dataRange ← range of AC/PV/PL/SP 

mamfis.addOutput.Name ← EL/RP/AL/RR/RD/SU 

mamfis.addOutput.dataRange ← range of EL/RP/AL/RR/RD/SU 

 

Add the initial membership functions for AC/PV/PL/SP/EL/RP/AL/RR/RD/SU 

Declare the type of membership function ← “trimf” 

Define the membership function values [l, l+xi, l+xi+xj] with specific fuzzy class from mf, where l is 

the lower bound of the membership function of specific parameters, l+xi is the mid-point of the 

membership function with the distance xi to the lower bound, and l+xi+xj is the upper bound of the 

membership function with the distance xj to the mid-point.  

 

Build a matrix of fuzzy rules ruleList, with designated weight and operator of the rules 

Add the ruleList to the mamfis 

 

Obtain the estimated output by entering the set of input parameters from hData 

Evaluate the sum of square error between actual and estimated output as y 

 

For each parameter illustrated in Figure 3, it has three corresponding fuzzy classes, and 

therefore four base lengths can be adjusted to achieve the optimal settings of fuzzy 

membership functions. Since there are ten input and output parameters, the number of 

variables in the optimisation problem of @gaInMF is forty in total. The optimisation 

problem is subject to constraints presented in Figure 4. First, the sum of base lengths in 

each parameter is less than or equal to the designated parameter’s range. Second, the 

non-negativity restriction is required for all the variables considered in the optimisation 

problem. When using the default settings in GA, the results presented in Table 8 are 

obtained to determine the optimal base lengths of the triangular membership functions.  
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