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Abstract 

The increased system complexity in electronic products brings challenges in a system level reliability assessment and 

lifetime estimation. Traditionally, the graph model-based reliability block diagrams (RBD) and fault tree analysis 

(FTA) have been used to assess the reliability of products and systems. However, these methods are based on 

deterministic relationships between components that introduce prediction inaccuracy. To fill the gap, a Bayesian 

Network (BN) method is introduced that considers the intricacies of the high-power light-emitting diode (LED) lamp 

system and the functional interaction among components for reliability assessment and lifetime prediction. An 

accelerated degradation test was conducted to analyze the evolution of the degradation and failure of components that 

influence the system level lifetime and performance of LED lamps. The Gamma process and Weibull distribution are 

used for component level lifetime prediction. The junction tree algorithm was deployed in the BN structure to estimate 

the joint probability distributions of the lifetime states. The degradation and prediction results showed that LED 

modules contribute a major part for lumen degradation of LED lamps followed by drivers and the least effect is from 

diffuser and reflector. The BN based lifetime estimation results also exhibited an accurate prediction as validated with 

the Gamma process and such improved reliability assessment outcomes are beneficial to LED manufacturers and 

customers. Thus, the proposed approach is effective to evaluate and address the long-term reliability assessment 

concerns of high-reliability LED lamps and fulfill the guarantee of high prediction accuracy in less time and cost-

effective manner.  
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1. Introduction 

The introduction of Light-emitting diodes (LEDs)-based solid state lighting (SSL) marked the third revolution in the 

lighting industry after traditional incandescent and fluorescent light sources. They are emerging as the future sources 

of lighting, with multiple benefits, and have attracted a wide range of applications. Nowadays, LEDs are widely used 

in different sectors including street lighting, traffic lighting, advertising display backlights, aviation lighting, indoor 

lighting, communication devices, automotive lighting, and medical equipment [1, 2]. LED-based SSL is known for its 

benefit in providing lower energy consumption, higher reliability, longer lifetime, compactness in size, and eco-

friendliness compared to their traditional counterparts [3]. Low energy consumption, which ultimately helps in energy-

saving programs, is one of the benefits of high-power white LEDs. The world electrical energy consumption for 

lighting was estimated to be about 20% of the global energy production as of 2014. The replacement of traditional 

lighting sources with LED-based SSL is anticipated to reduce the electrical energy usage for lighting applications by 

15% in 2020, by 40% in 2030, and up to 75% in 2035 in the U.S according to forecast by the United States Department 

of Energy (US-DOE)  [4]. 

The high-power LED lamp is a complex optoelectronic system assembled from several components (such as LED 

chips, electrical drivers, substrate materials, packaging material including bonding wires/die attaches, encapsulant 

materials such as silicon, phosphor, optical parts, thermal heat-sink components and so on) [5]. Because of the 

interaction of the different components, a high-power LED lamp is also known to have a large number of failure 

modes and failure mechanisms. Besides, there are also technological and technical gaps for describing the different 

failure mechanisms in a high-power LED lamp system. This makes the system level reliability assessment and lifetime 

prediction of high-power LED lamp challenging [6]. A failure in electronic systems, such as high-power white LEDs, 

could be either a catastrophic or degradation failure. A catastrophic failure is usually caused by overstressing where 

single stress exceeds a certain threshold and can be attributed to improper operation or external factors. It is often the 

case that a catastrophic failure is fatal to the whole system or product. With proper operation and close follow-up, 

catastrophic failures can be reduced if not avoided. On the other hand, degradation failure which occurs as a result of 

cumulative stresses (loads) over time, is inevitable and results in a gradual degradation of the performance 

characteristics [7]. 
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Traditionally, accelerated lifetime tests (ALT) are widely used to estimate the lifetime of highly reliable, expensive as 

well as safety-critical products, such as aircraft parts, batteries, and LEDs. However, ALT is found to be expensive 

for estimating the lifetime of such products in a short time as it needs a longer time to collect sufficient time-to-failure 

data [8]. Nowadays, accelerated degradation tests (ADT) have become a promising alternative in capturing the 

degradation paths for the performance characteristics of products [9]. Thus, ADT based on high-stress conditions 

enables the gathering of appropriate lumen degradation, color shift, and catastrophic failure results efficiently and in 

a relatively short time for LEDs [10]. Using degradation data, many research studies have been conducted to address 

lifetime estimation and reliability assessment issues of LED light sources. Fan et al. [11] proposed a degradation data-

driven method to predict the lumen maintenance lifetime of high-power white LEDs using degradation data. Similarly, 

other degradation modelling approaches proposed to assess the reliability of LED light sources include Wiener process 

[12, 13], Gamma process [14-16], Kalman filter (KF), extended KF [17-19], unscented KF [17] [20] Particle filter 

[21], Lévy process [22] and Recurrent Neural Network [23]. Ibrahim et al. [13] applied the Wiener Process to predict 

the lumen maintenance lifetime of LEDs and Bayesian inference based on Gibbs sampling used to estimate unknown 

model parameters. Huang et al. [12] applied a modified Wiener process method to model the lumen maintenance and 

color shift of mid-power white LEDs. Most of these studies focus on lifetime prediction based on degradation data 

obtained from a component, mainly an LED package/module. However, the lifetime of a LED lamp is not only affected 

by the lifetime status of a single component but all its components, including the LED driver, LED module, diffuser, 

and reflector and interconnects. That is why the system and/or product level reliability prediction approaches need to 

consider the failure modes and mechanisms at the component levels.  

In a high power LED lamp system, the LED driver serves as the constant current source and optimizes the power to 

drive high-power LEDs [24]. Usually, LED drivers are considered the weakest part among all the components in an 

LED lighting product. A report from the US DOE [25] claimed that the LED driver (power supply) is the weakest part 

among an LED outdoor luminaire, constituting 52% failure, LED package (10%), housing (31%) and control circuit 

- driver (7%). On the other hand, van Driel et al. [26] reported that solder interconnects account for dominant failures 

followed by LED emitters and drivers. The results among the few studies based on subsystems and components for 

system level lifetime studies are inconsistent. The Illuminating Engineering Society of North America (IESNA) used 

IES-TM-21 [27] standard to rate lifetime are mainly based on the LED packages, and recently the IES-TM-28-14 

standard was introduced to project the lifetime for LED-based SSL lamps and luminaires [28].  
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Although the rapid growth in the engineering design and manufacturing technology enabled the advancement of 

engineering systems, it also introduced challenges in the system level reliability assessment. This is because of the 

increased complexity of products/systems that leads to unexpected failures with interdependent behavior [29]. 

Traditionally, graph model-based reliability block diagrams (RBD) and fault tree analysis (FTA) have been used to 

assess the reliability of products and systems. The FTA is a deductive approach that helps mainly to identify critical 

failure causes of a product/system. Furthermore, these methods are based on deterministic relationships between 

components/subsystems that make it difficult to model systems with uncertainties and dependent events. In this study, 

we make use of inputs from FTA results and expert knowledge for LED structural and functional analysis. Despite 

the shortcoming of traditional approaches, Bayesian Network (BN) is found to be a suitable method for complex 

system reliability analysis [30-32], due to its advantages in handling uncertainties, correlations, and the conditional 

relationship between components/subsystems [31]. As one of the popular modelling and reasoning tools, the BN 

model has been employed in the fields of machine learning, artificial intelligence, and uncertainty management [33]. 

The BN model has also been applied in the field of reliability engineering including software reliability [34], modelling 

maintenance [35], and fault diagnosis in systems [36, 37]. Recently, the BN model was found to be effective in 

estimating the system/product reliability of complex systems, such as high-speed trains [37], solar-powered unmanned 

aerial vehicles [38] and pitting degradation structural steel in marine systems [39]. Zheng et al. [40] presented an 

improved compression inference algorithm in multilevel BN to analyze the reliability of complex multistate satellite 

systems. A dynamic BN was also proposed to assess and update the reliability of timber structures exposed to 

deterioration processes based on inspection data [41]. Therefore, system level lifetime prediction based on a BN is 

very important to achieve a reasonable integration of performance data from constituting components for a complex 

system/product. 

In order to address the long-term reliability assessment concerns of highly reliable products and fulfill the guarantee 

of increased prediction accuracy in less time and cost-effective manner, developing a system level lifetime prediction 

method based on the BN model is highly demanded. In this study, an accelerated degradation test based on thermal 

stress was designed, conducted, and analyzed the evolution of degradation and failures from components that influence 

the lifetime and performance of the LED-based lighting products. This paper proposed a BN method that considers 

the intricacy of a high-power LED lamp system and functional interaction among components for a novel application 

on system level reliability assessment and lifetime prediction. 
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The remaining parts of this paper are organized as follows: Section 2 describes the methodology and theoretical 

analysis of the research. Section 3 presents the experimental design and setup for gathering the required data. In 

Section 4, the results and detailed discussions based on the experimental results and proposed methodology are 

presented. Finally, concluding remarks are drawn in Section 5. 

2. Theory and methodology 

In this section, the proposed models and algorithms for modelling the degradation of high-power LED lamps and the 

system level reliability assessment and lifetime prediction are introduced. The Gamma process, Weibull distribution 

and IES-TM-28 exponential based empirical models for performance degradation of component/ subsystem and the 

BN model applied to integrate the reliability information at the system level are presented. 

2.1 Degradation Analysis based on Empirical Models 

Compared to traditional lighting sources (i.e., incandescent and fluorescent), a high-power LED lamp is a more 

complex product and possesses additional components that enable it to provide the required light output. The main 

components in the high-power LED lamp used in this study include a LED module (light engine), the LED driver, 

diffuser and reflector, and so on. Similarly, the light output degradation of the LED lamp can be due to the LED 

module, the driver, the diffuser, and reflector components depreciation as well as degradation due to geometric or 

form factors. Equation (1) expresses the luminous flux degradation of a high-power LED lamp. 

Φ𝐿𝑎𝑚𝑝 = Φ0 − Φ𝑡 =  Φ𝑚𝑑 +  Φ𝑑𝑣 + Φ𝑑𝑓 + Φ𝑒𝑟  (1) 

where Φ0 is the initial luminous flux, Φ𝑡 is the luminous flux after operating time t and Φ𝑚𝑑  ,  Φ𝑑𝑣 , Φ𝑑𝑓 and Φ𝑒𝑟are 

the lumen degradation caused by the LED module, LED driver and diffuser and reflector, and form factor respectively 

in the process of the thermal stress ageing process. 

The degradation of each component/subsystem is designed based on the ageing of one component while keeping the 

complementary parts unaged (fresh). The degradation of each component/subsystem is evaluated based on the 

variation in the lumen degradation of each component, namely the LED driver, LED module, and diffuser and reflector. 

 

Φ𝑚𝑑 = Φ0𝑚𝑑   −  Φ𝑡𝑚𝑑 ; Φ𝑑𝑣 =   Φ0𝑑𝑣 −  Φ𝑡𝑑𝑣  

Φ𝑑𝑓 =  Φ0𝑑𝑓 −  Φ𝑡𝑑𝑓 
(2) 
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Here Φ0𝑚𝑑 and Φ𝑡𝑚𝑑, Φ0𝑑𝑣 and Φ𝑡𝑑𝑣, Φ0𝑑𝑓 and Φ𝑡𝑑𝑓 are the luminous fluxes of the LED module, LED driver and 

diffuser and reflector under the rated power supply, before and after operating time t. In this study, the degradation 

modelling is employed based on the Gamma process model and the exponential model along with the Weibull lifetime 

distribution after extrapolation of degradation path. For LED light sources, lumen degradation is considered as the 

main failure mode according to IESNA [42], and the lumen maintenance lifetime is defined as the operating time that 

70% of the luminous flux maintained L70 from its initial light output for general applications and 50% (L50) for 

decorative lighting. The luminous flux degradation for high power LED lamp can be modeled using the widely applied 

empirical model based on the exponential decay equation [43, 44] given as equation (3).  

 Φ𝑡 =  𝛽 ∗ exp (−𝛼𝑡) (3) 

where Φ𝑡 is the luminous flux after ageing for t hours,  𝛽 is the projected initial constant (i.e. initial luminous flux) of 

the test samples, 𝛼 is the lumen degradation rate or decay rate, t is operation time in the ageing process. Here, 

parameters 𝛼 and 𝛽 are estimated from historical (or experimental data) using the least-squares regression method.  

In addition, the Weibull distribution is a flexible lifetime distribution that can go through the choice of two or three of 

the parameters, known as scale (characteristic life) 𝜂, shape (slope) 𝜅 and location 𝛾 parameter [45, 46]. The Weibull 

distribution is the most widely used lifetime distribution due to its versatile nature, taking the characteristics of other 

types of distributions based on a value of the shape parameter 𝜅. For the common two-parameter Weibull lifetime 

distribution, the reliability function 𝑅(𝑡), probability density function f(𝑡), cumulative density function 𝐹(𝑡), and 

failure rate function 𝜆(𝑡) are given as: 

 

 

𝑅(𝑡) = 𝑒−(𝑡
𝜂⁄ )

𝜅

  ;  𝑓(𝑡) =
𝜅

𝜂
(

𝑡

𝜂
)

𝜅−1

∗  𝑒−(𝑡
𝜂⁄ )

𝜅

 

𝐹(𝑡) =   1 −   𝑒−(𝑡
𝜂⁄ )

𝜅

  ;    𝜆(𝑡) =
𝜅

𝜂
(

𝑡

𝜂
)

𝜅−1

   ;   𝑀𝑇𝑇𝐹 =  𝑇 = 𝜂. Γ (
1

𝜅
+ 1) 

(4) 

For a lifetime analysis based on degradation data with a defined level of failure threshold, basic mathematical models 

are implemented for parameter estimation and reliability assessment. Accordingly, the procedure includes: (i) model 

parameters were estimated for each sample from recorded degradation data based on the exponential model and least 

squares method; (ii) degradation data was extrapolated to predict time to failure; (iii) estimated failure data were fitted 

to the Weibull probability distribution to estimate the shape 𝜅 and scale 𝜂 parameters and assess the reliability. 
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As discussed in the previous section, the performance characteristics of a high-power LED lamp can also be modeled 

based on a stochastic degradation model, the Gamma Process [14], where the degradation has a monotonic pattern 

and the probability density function and the reliability function for the failure distribution function are given as:  

 

𝑓𝑋(𝑡)(𝑥|𝜇(𝑡), 𝜆) =  {

1

Γ(μ(t))𝜆𝜇(𝑡)
𝑥𝜇(𝑡)−1 exp(−x/λ)𝐼(0,∞)(𝑥) , x ≥ 0

0,                                                                      𝑥 < 0

 (5) 

 

 
𝑅(𝑡) = 1 − 𝐹𝑇(𝑡) =  1 − 𝑃(𝑋(𝑡) ≥ 𝐷 ) = 1 −  𝐹𝑇(𝑡) =

Γ(𝜇𝑡, 𝐷 𝜆⁄ )

Γ(𝜇𝑡)
 (6) 

where 𝜆 is the scale parameter, 𝜇 is the shape parameter and D is the failure threshold. Details of the Gamma process 

degradation model on LEDs are given in our previous study by Ibrahim et al. [14].  

2.2 An overview on Bayesian Network Model 

Bayesian Networks (BNs), also known as belief networks or simply Bayes nets, provide a compact graphical 

representation of multivariate statistical distribution functions [47]. A typical BN has a set of nodes that represent 

random variables 𝑋 = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛}  and the nodes are connected by directional arcs/edges that specify 

conditional dependence and independence relations of the nodes. A directional cycle is not permitted among nodes in 

a BN based DAG. The complete structure of the nodes and arcs is called a directed acyclic graph (DAG) and it 

illustrates the qualitative relations among the variables.  

On the other hand, the quantitative relationship among variables in BN models is determined by the conditional 

probability table (CPT). These conditional probabilities are used to define the joint probability function of all the 

nodes in the BN model graph. The joint probability density function is given as the product of all the conditional 

probability density functions of all nodes, given its predecessors or parent nodes [30]. 

 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑟𝑒(𝑋𝑖))
𝑛

𝑖
 (7) 

where 𝑃𝑟𝑒(𝑋𝑖)  denotes predecessor variables of node 𝑋𝑖  and 𝑃(𝑋𝑖|𝑃𝑟𝑒(𝑋𝑖))denotes the conditional probability 

function of variables 𝑋𝑖 given its predecessors. 

The parameter estimation for the joint distribution from data is not computationally or statistically efficient as the 

number of model parameters grows exponentially with the number of random variables (nodes). In these cases, the 

conditional independence relationships help to reduce the number of distribution parameters [33]. In general, the BN 

models enable us to visually illustrate and work with conditional probabilistic dependencies among model variables 
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in a particular problem. A simple BN DAG is shown in Figure 1 to demonstrate conditional dependencies, 

independence, and joint distribution among random variables. According to Bayes conditional independence, “each 

variable is conditionally independent of its non-descendants in the graph given the value of its parents”. In this example, 

node C is conditionally independent of nodes D and E given node values A and B, and similarly node F is conditionally 

independent of A, B and D given its parent nodes C and E. Also, node C is independent of other variables (in this case 

node D) given its Markov blanket as shown in Figure 1 (a) to (c). 
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Figure 1. Simple BN Model for conditional independence and Markov Blanket 

BN uses the advantages of the Bayes theorem to update the prior failure probability given the observation of another 

set of variable evidence. Based on Bayes theorem, the different types of inference algorithms, such as junction tree 

[48] and variable elimination [49], are used to estimate the posterior probability distribution of a particular variable. 

While variable elimination inference is suitable for singly connected graphs, the junction tree algorithm is used to 

multiply connected graphs to perform exact inference by transforming multiply connected cases to single connected 

structures [48]. The conditional distribution of a node given its predecessors can be described, based on Bayes’ 

theorem.  

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
=  

𝑃(𝐴, 𝐵)

∑ 𝑃(𝐵, 𝐴)𝐴

 (8) 

where P(A|B) is the posterior, P(A) is the prior, P(B|A) is the likelihood function and P(B) is the scaling factor.   
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In this study, the junction tree algorithm is implemented due to the additional benefits of performing exact inferences 

efficiently, transforming the DAG to the appropriate data structure, and ensuring consistent marginal and joint 

probability estimates.  The joint tree inference structure of the BN model can be created based on a four-step process,  

(i) build initial DAG graph; (ii) construct the moral graph; (iii) triangulate the graph; and (iv) create a clique of the 

graph [31]. A simple demonstration of building a joint tree inference algorithm for a simple BN model with six random 

nodes A to F is shown in Figure 1(d). An overview of the proposed BN based methodology for the high-power LED 

lamp system level reliability assessment is shown in Figure 2.  
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Figure 2: An overview of the BN based methodology for reliability assessment 

2.3 Bayesian Networks modelling and reliability assessment for a LED lamp system 

In system level reliability assessment, the BN has a significant advantage over the traditional reliability analysis tools, 

such as fault tree analysis (FTA) and the reliability block diagram (RBD). While the RBD and FTA are based on a 
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deterministic relationship between the random variables, the BN model provides probabilistic relationships. Thus, the 

fault trees and corresponding failure probability relationships between components can be described through the BN 

model DAG, where each random variable is represented with circles/nodes, and connections are made through arcs.  

The construction of a fault tree system focuses on the interconnections between the LED lamp components, mainly 

including the LED module (set of packages/engine), LED driver, and optical parts (reflector and diffuser). This helps 

to analyze the impact of each component on the LED lamp (system level) failure or survival conditions. 

To construct a DAG for a BN model, the functional and structural relationship analysis between components and 

failure mode and effect analysis (FMEA) are considered [1]. In the BN model constructed in Figure 3 (left), the 

variables which have no parents, such as LED_CAT, LED_DEP, Driver_CAT, Driver_DEP, Solder_CAT, 

DifRef_DEP and DifRef_CAT, are referred as root nodes. On the other hand, the variable with no children is the leaf 

node (LED_Lamp), while the remaining variables are the intermediate nodes (LED_Module, LED_Diffuser, and 

LED_DifRef). Here, the abbreviations CAT and DEP represent catastrophic failure and performance depreciation 

respectively for corresponding components LED module (LED), Driver (Driver), Solder interconnect (Solder), as well 

as diffuser and reflector (DifRef). The root nodes have unconditional probabilities, represented here as a reliability 

state function of node Xi at time t 𝑅𝑋𝑖(𝑡), i=1,…,p, the intermediate nodes as 𝑅𝑀𝑗(𝑡), j=1,…,k, and the leaf node as 

𝑅𝐿(𝑡). The BN model DAG analysis is based on the construction of test sample as shown 3D model with an exploded 

and assembled view Figure 3 (right).  

LED 
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Driver
LED 
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Solder 

Interconnect

Diffuser & 
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LED 

CAT

LED 

DEP

Driver 

CAT

Driver 

DEP

Solder 

CAT

Diffuser 

DEP

Diffuser 

DEP

  

Figure 3.  DAG for product level LED light sources (left), 3D model exploded and assembly view (right) 

The reliability status of each root node or component is assessed based on the corresponding prediction model at a 

future time 𝑡𝑛and the reliability state prediction matrix can be represented as follows: 

Lamp 
Housing 

LED Diffuser 
and Reflector 

LED 
Diffuser 

LED 
Module 

LED 
Lamp 
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 𝑅𝑝𝑛 = [

𝑅11 𝑅12 … 𝑅1𝑛

𝑅21 𝑅22 … 𝑅2𝑛

⋮ ⋮ ⋱ ⋮
𝑅𝑝1 𝑅𝑝2 … 𝑅𝑝𝑛

] (9) 

The reliability state of the intermediate nodes can also be predicted based on the prediction models of the root nodes 

𝑈 = {𝑅1, 𝑅2, … , 𝑅𝑝} and the assumption of conditional independence: 

 𝑃 (𝑅𝑀𝑗(𝑡)) = ∑ 𝑃(𝑅𝑀𝑗(𝑡), 𝑅𝑋𝑖(𝑡))

𝑈

 (10) 

Similarly, the reliability state of the leaf node can be predicted based on the probability of the intermediate and root 

nodes as follows and the junction tree algorithm synchronizes the DAG of the BN model for product level lifetime 

prediction. 

 

𝑃(𝑅𝐿(𝑡)) = ∑ 𝑃( 𝑅𝑋1(𝑡), … , 𝑅𝑋𝑝(𝑡), 𝑅𝑀1(𝑡), … , 𝑅𝑀𝑘(𝑡), 𝑅𝐿(𝑡)) 

= ∑ 𝑃(𝑅𝐿(𝑡)| 𝑃𝑎(𝑅𝐿(𝑡)). ∑ 𝑃(𝑅𝑀1(𝑡)| 𝑃𝑎(𝑅𝑀1(𝑡)). …

𝑃𝑎(𝑀𝑗)𝑃𝑎(𝐿)

 

∑ 𝑃(𝑅𝑀𝑘(𝑡)| 𝑃𝑎(𝑅𝑀𝑘(𝑡)). … . 𝑃(𝑅𝑋1(𝑡)). 𝑃(𝑅𝑋𝑝(𝑡))

𝑃𝑎(𝑀𝑘)

 

(11) 

Here 𝑃𝑎(𝐿), 𝑃𝑎(𝑀𝑗) 𝑎𝑛𝑑 𝑃𝑎(𝑀𝑘) are the parent nodes for leaf node L, intermediate nodes Mj and Mk respectively. 

3. Experimental Setup and Data Collection 

3.1 Test Samples 

The test sample in this study was a 12W high power phosphor-converted white LED spot lamp. The LED package is 

a commonly used 2835 type which consists of an InGaN based blue chip covered with a yellow phosphor [50]. The 

LED module in a lamp consists of 54 LED packages with a minimum of 0.19W power, as well as an LED driver, 

diffuser, reflector, and housing. The test sample and its components are shown in Figure 4. 
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Figure 4: Test sample and main components 

The lumen efficacy of the high-power LED spot lamps (test samples) is >60 lm/W while the luminous flux is around 

730 lm. The technical description and specification of the test samples are shown in Table 1. 

Table 1: The basic parameters of test samples and components  

Items Description 

Test sample size 20 (5 lamps, 5 modules, 5 diffusers and reflectors and 5 drivers) 

Correlated Color 

Temperature (CCT) 
3000K (HDS 220/12-TD-54. RN.02.5.C Sub-model) 

Voltage (Vf) and 

Current (If) 
220V and 60 mA respectively 

Power rating 
12W (High Power White LED), 50-60 Hz, 54 LED arrays/lamp, 

0.19W/each. 

3.2 Accelerated degradation test for LEDs 

In this study, a high temperature accelerated degradation test was conducted on high power LED spot lamps, aimed 

at assessing the lifetime of LED lamps at the system level by investigating the impact of component degradation on 

product level performance degradation. In addition, the interconnections between subsystems, such as drivers, LED 

packages, diffusers, and other auxiliary components, were also analyzed. The experiment further enables exploration 

of additional reliability information, such as failure modes, mechanisms, mean time to failure (MTTF), and estimation 

of remaining useful life (RUL) of the LED lamp system at the accelerated test situation, as designed.  

Spot Lamp Diffuser and Reflector LED Package 

LED Driver 

LED Module 
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In this experiment, twenty test samples of LED spot lamps from the same batch were prepared in four groups. Each 

group consisted of five test samples, where the first group was for the product level degradation test, while the second, 

third, and fourth groups were for component level degradation tests, namely LED module, LED driver and LED 

diffuser, and reflector respectively. The test samples in all groups were aged under an elevated temperature of 55 °C 

for a total of 2160 hours. The colorimetric and photometric parameters were collected every 240 hours, for about ten 

cycles including the initial test. In general, the experiment had three phases; ageing, cooling, and testing, which 

continued until sufficient degradation data were obtained.  The overall experimental setup and data collection 

procedure are shown in Figure 5.  

 

Figure 5: Experimental setup and data collections 

3.2.1 System level ageing and data collection 

The LED lamp system level ageing test was conducted according to the experimental setup and procedure are shown 

in Figure 6 and described as follows: first, the test samples were placed inside a thermal chamber set at 55 °C and 

supplied with an AC power source. Then the samples were kept for 240 hours and cooled down for about 2 hours to 

prepare for colorimetric and photometric parameter measurement in an integrating sphere (EVERFiNE SPEKTRON 

Coating, Model YF1000 lamp complete analysis system). An Infrared (IR) camera (Model Fluke Ti55FT) was used 

to measure the temperature distribution of the lamps at the surface of each component, including the driver, LED 

module, reflector, diffuser, and housing. Thermocouples were connected to the samples to measure the case 
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temperature of the LED package, and driver while a multi-parameter electronic tester was used to in-situ detect the 

electrical parameters (such as current, voltage, input power) for each LED lamp test sample. After that, the samples 

were placed back in the thermal chamber and the tests were conducted repeatedly. After 240 hours of ageing, the 

samples were taken out to cool down for about 2 hours and continued optical tests one by one to gather direct 

performance data, including luminous flux, chromaticity coordinates, SPD, CRI, and CCT. The cycles continue until 

failure occurred or sufficient degradation data were obtained. 

3.2.2 Component level ageing and data collection 

The component level ageing test experimental setup and procedure is shown in Figure 6. Firstly, the accelerated 

degradation test procedure for the LED module is presented as depicted in Figure 6 (a). The electrical configuration 

of packages in the LED modules was as follows: 54 LEDs are arranged in six groups of LEDs connected in parallel 

and each group had nine LEDs connected in series. Each LED is rated with 40mA current and thus 240 mA is the 

rated current of the LED module (DC power) in a thermal chamber set at 55 °C.  

Thermal Chamber

LED Lamps under 

ageing test

Thermocouple for 

thermal data acquision

Multi-parameter 

electronic tester

Integrating Sphere

    

  

b) 

d) c) 

a) 
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Figure 6: Experimental setup for thermal ageing and optical measurement (a) system level (b) LED module 

component (c) LED driver component (d) LED diffuser and reflector  

Similarly, the samples were taken out of the thermal chamber after 240 hours and cooled for about 2 hours to room 

temperature for further optical testing in an integrating sphere. Secondly, the LED driver is a subsystem or component 

in the LED lamp comprised of resistors, MOSFET, and capacitors designed to supply and regulate the power to another 

component. In this study, the driver was treated as a black-box and supplied with an AC power loaded with an equal 

power LED module. Similarly, it underwent thermal ageing for the specified time and tested for optical performance 

after assembling with a fresh LED package, as shown in Figure 6 (b) and (c). Thirdly, the degradation test on diffusers 

and reflectors relies mainly on the material degradation test. The commonly used materials for a diffuser is Polymethyl 

Methacrylate (PMMA) also known as acrylic glass or simply acrylic and reflector materials are Microcellular PET 

[51]. The thermal ageing test of these components relatively easier as it doesn’t require a power supply or load to it 

while in the thermal chamber. After ageing at 55 oC for 240 hours, it was cooled down for about 2 hours to an ambient 

temperature of 25 oC and assembled with fresh LED driver and package subassembly for an optical test to gather 

lumen depreciation, chromaticity shift and SPD data as shown in Figure 6 (d). The test cycle continues until it was 

terminated when the component shows significant degradation or failure as per the experiment design. 

4. Results and Discussion 

4.1 Lumen Degradation Analysis for LED Lamp and Components 

First, the lumen degradation measured for the LED lamp test samples under thermal ageing is shown in Figure 7 (a). 

It can be noted that the total lumen maintenance (LM) at the termination of the experiment for the five samples was 

71.23%, 74.37%, 73.71%, 72.18%, and 71.85% respectively. Similarly, the color shift showed a significant 

degradation for the test samples with du’v’ 0.00877, 0.00769, 0.00763, 0.00885, and 0.00856 respectively. 



 

 

16 

 

    

   

Figure 7: (a) Lumen maintenance for LED lamps, (b) Lumen maintenance of LED lamp due to LED modules, (c) 

Lumen maintenance of LED lamp due to LED driver, (d) Lumen maintenance of LED lamp due to LED diffuser and 

reflector 

Secondly, the influence of LED module degradation Φ𝑚𝑑  on the LED lamp lifetime is described based on the 

experimental results, as shown in Figure 7 (b). The LED module lumen degradation caused lumen maintenance of 

respectively 70.7%, 77.7%, 70.9%, 67.7% and 73.6% for the five test sample LED lamps with a 28% average lumen 

depreciation. It can be noted from the results that the LED modules contribute significantly to the degradation of the 

LED lamp, and test sample 4 was below the lumen maintenance threshold (failed), while the other samples were close 

to the threshold.  

Thirdly, the influence of the LED driver degradation Φ𝑑𝑟  on the LED lamp lifetime is based on the experimental 

results shown in Figure 7 (c). The total lumen depreciation due to the LED driver caused an average of 6.97% lumen 

degradation to the LED lamp with each sample 2.8%, 8.2%, 7.3%, 5.5%, and 11.1% respectively. Finally, the influence 

of the diffuser and reflector degradation Φ𝑑𝑓 on the LED lamp lifetime is shown in Figure 7(d). The total lumen 
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depreciation due to the LED diffuser and reflector degradation, caused 2.58% lumen degradation to the LED lamp 

after 2160 hours of ageing time. The lumen maintenance degradation of the test samples due to optical part ageing 

was not significant according to the experimental results. 

Under the designed ageing condition, the overall influence of LED components/subsystems on the LED lamp level 

degradation is summarized in Table 2. The main cause of degradation for the LED lamp was due to the degradation 

of the LED module, secondly, driver degradation and the least degradation was due to diffuser and reflector. 

Table 2: Lumen maintenance due to LED Lamp and subsystem ageing 

Test samples LMLamp LM𝑚𝑑 LM𝑑𝑟 LM𝑑𝑓 

1 71.23% 70.67% 97.25% 97.78% 

2 74.37% 77.15% 91.79% 97.62% 

3 73.71% 70.90% 92.70% 97.63% 

4 72.18% 67.69% 94.49% 97.70% 

5 71.85% 73.56% 88.94% 96.55% 

Average Φ𝐿𝐸𝐷=27.33% Φ𝑀𝐷=28% Φ𝐷𝑅 = 6.97%. Φ𝐷𝐹 = 2.54% 

4.2 BN based lifetime prediction at component and product level 

According to the experimental design and setup, degradation ageing tests at the system level and component level 

were conducted. The experimental results for both component and system levels degradation were presented in the 

previous section. Here, the reliability state prediction based on the degradation models proposed is presented in Table 

3. All the prediction models at the component and product level used 45% (960 hours) of the degradation data. The 

degradation model for the root nodes (i.e. component level) used in this study, along with the model parameters and 

descriptions, is presented here:   

Table 3: Degradation models and parameter estimation for root nodes 

Nodes 

Estimated model parameters 

Gamma Process / Exponential decay Weibull distribution 

A 𝜇 = 0.006159;  𝜆 = 1/45.355156 η = 2549  and 𝜅 =  12.46 

B N/A Not observed in our experiment 

D 𝛼 = 2.08𝐸 − 05 ;  𝛽 = 0.9652367 η = 19845  and 𝜅 =  3.044 

E N/A Not observed in our experiment 
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G 𝛼 = 1.16𝐸 − 05 ;  𝛽 = 1.0000265 η = 38139 and 𝜅 =  2.803 

H N/A not observed in our experiment 

J 

𝜇 = 0.0062;    𝜆 = 1/46.2486 

𝛼 = 1.52𝐸 − 04 ;  𝛽 = 1.023328 

η = 2566  ; 𝜅 =  20.69 

Based on the product architecture and functionality of the high-power LED lamp, the BN was constructed and the 

reliability assessment of the components and LED lamps was accomplished. In the experiment, no catastrophic failures 

were observed which allows us to consider the degradation of the LED lamp and its components, mainly the LED 

Module, LED Driver and LED diffuser and reflector. Based on the degradation models and parameters estimated (in 

Table 3), the reliability curves are shown Figure 8.  

 

Figure 8. Lumen maintenance reliability prediction of LED module, LED driver, LED diffuser and reflector 

For ease of algebraic representation, let A = LED_DEP, B = LED_CAT, C = LED_Module, D = Driver_DEP, E = 

Driver_CAT, F = LED_Driver, G = DifRef_DEP, H = DifRef_CAT, I = LED_DifRef and J = LED_Lamp. The 
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reliability state probability of the LED lamp (node J) and intermediate nodes LED module (node C), LED driver (node 

F) and diffuser and reflector (node I) can be expressed as follows: 

  

𝑃 (𝑅𝐽(𝑡)) = ∑ 𝑃( 𝑅𝐴(𝑡), 𝑅𝐵(𝑡), 𝑅𝐶(𝑡), 𝑅𝐷(𝑡), 𝑅𝐸(𝑡), 𝑅𝐹(𝑡), 𝑅𝐺(𝑡), 𝑅𝐻(𝑡), 𝑅𝐼(𝑡), 𝑅𝐽(𝑡))  

= ∑ 𝑃(𝑅𝐶(𝑡)|𝑅𝐴(𝑡), 𝑅𝐵(𝑡)). ∑ 𝑃(𝑅𝐹(𝑡)|𝑅𝐷(𝑡), 𝑅𝐸(𝑡)).

𝐷,𝐸𝐴,𝐵

∑ 𝑃(𝑅𝐹(𝑡)|𝑅𝐶(𝑡), 𝑅𝐷(𝑡), 𝑅𝐸(𝑡)).

𝐶𝐷𝐸

 

∑ 𝑃(𝑅𝐼(𝑡)| 𝑃(𝑅𝐺(𝑡), 𝑅𝐻(𝑡)). ∑ 𝑃(𝑅𝐼(𝑡)|𝑅𝐹(𝑡), 𝑅𝐺(𝑡), 𝑅𝐻(𝑡)) 

𝐹,𝐺,𝐻𝐺,𝐻

 

𝑃(𝑅𝐴(𝑡))𝑃(𝑅𝐵(𝑡))(𝑅𝐷(𝑡)) 𝑃(𝑅𝐸(𝑡))(𝑅𝐺(𝑡)) 𝑃(𝑅𝐻(𝑡)) 

(12) 

This BN model can be solved by using the Junction tree algorithm based on the Bayes Net Toolbox (BNT) for 

MATLAB developed by Murphy [52], and the results are plotted in Figure 9. This equation (12), can be further 

simplified by setting 𝑃(𝑅𝐵(𝑡)) = 𝑃(𝑅𝐸(𝑡)) = 𝑃(𝑅𝐻(𝑡)) =  1, when catastrophic failures are not observed in the 

experimental results and given as:  

 

𝑃 (𝑅𝐽(𝑡)) = ∑ 𝑃(𝑅𝐶(𝑡)|𝑅𝐴(𝑡)). ∑ 𝑃(𝑅𝐹(𝑡)|𝑅𝐷(𝑡)).

𝐷𝐴

∑ 𝑃(𝑅𝐹(𝑡)|𝑅𝐶(𝑡), 𝑅𝐷(𝑡)).

𝐶𝐷

 

∑ 𝑃(𝑅𝐼(𝑡)| 𝑃(𝑅𝐺(𝑡)). ∑ 𝑃(𝑅𝐼(𝑡)|𝑅𝐹(𝑡), 𝑅𝐺(𝑡)) 

𝐹,𝐺

.

𝐺

 𝑃(𝑅𝐴(𝑡))(𝑅𝐷(𝑡)) (𝑅𝐺(𝑡)) 

(13) 

The reliability prediction plot exhibits the impact of component’s degradation (intermediate nodes LED_DEP, 

Driver_DEP, and DifRef_DEP) on the lifetime of the high power white LED lamp (leaf node LED_Lamp), as shown 

in Figure 9. It is also worth noting that the degradation of the LED module has more influence than the LED driver, 

diffuser, and reflector for the product level lifetime status. The absence of a catastrophic failure mode for the 

components, as well as the product, is displayed as a straight line in all the reliability function plots. Furthermore, the 

reliability plot trace for LED module due to depreciation and predicted values coincide, and this applies to the case of 

LED drivers and optical parts (diffuser and reflector). 
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Figure 9. Lumen maintenance based lifetime prediction for LED module, driver and diffuser and LED lamp based 

on BN method 

On the otherhand, the lifetime estimation of LED lamp based on the BN model (shown in Figure 9) is validated by a 

counterpart system level (LED lamp) degradation analysis. The Gamma process model is employed to model the 

lumen degradation of LED lamp test samples. The Gamma process is selected due to a monotonic degradation 

pattern recorded in the experiment. The lifetime prediction of LED lamp is shown by the reliability trace plot and 

CDF in Figure 10.  
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Figure 10. Lifetime prediction based on lumen maintenance data for LED lamp using the Gamma Process 

In this BN model, the reliability prediction result indicated that the LED module has a significant impact on the 

degradation of the LED lamp followed by LED drivers and optical components (diffuser and reflector). In fact, the 

BN based model results also illustrated that the system level reliability estimation highly depends on the component 

level reliability prediction methods. In our study, the Gamma process and exponential decay were chosen to model 

components degradation path due to its suitability for the nature of the data observed. Therefore, appropriate use of 

lifetime prediction methods at the component level, with proper experimental setup and data acquisition provides a 

better capability for lifetime assessment of more complex products and systems. As can be seen from the analysis 

results, the BN model integrated the lifetime data from components based on the specified prediction model to estimate 

the degradation status at the LED lamp (i.e. system) level. 

4.3 Discussion Based on Analysis Results 

The degradation data from LED components were analyzed using the BN model while system level lumen degradation 

data was examined using the Gamma process model. Based on the analysis of the component level and system level 

degradation data, a comparison of lifetime prediction using lumen maintenance data is shown in Figure 11.  
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Figure 11. Comparison of reliability prediction for LED Lamp (system level) based on BN and GP 

It can be verified from the reliability trace plots that the BN enables to achieve integration of LED component 

degradation data to reasonably predict the system level lifetime of a LED lamp.  The expected lumen maintenance 

lifetime L70 for the LED lamp based on the BN method is estimated as 2360 hours, while the Gamma process gives 

a more conservative result of about 2000 hours. Using the exponential decay model, the lifetime prediction for the 

LED lamps showed 2492.6 hours with model parameters estimated using the nonlinear least-squares (NLS) regression 

approach, as 𝛼 = 1.52E-04, 𝛽 = 1.023328. When the prediction results are compared with the experimental findings, 

it had shown good compatibility, even though the experimental failure times exceeding the threshold were not obtained 

to estimate prediction error.  

The prediction results for LED lamps based on the BN model showed steady nature compared to the Gamma process 

model. This can be seen from the reliability plots that the BN curve was slower in the first 2000 hours while the GP 

trace was slowed in the first 1500 hours and both curves started to drop faster thereafter. This is because the BN model 

was influenced by the slow degradation of the LED module until it reaches a certain threshold and the degradation 

process was quicker in the later degradation phases. 

In general, the BN method with a systematically designed ADT enables to achieve the long term lifetime estimation 

of LED lamps based on component degradation data. The prediction models at component and system level used 45% 

(960 hours)  of overall degradation data, which benefits in shortening longer testing time for highly reliable high-

power LED products. The lifetime prediction for the LED lamps based on the BN model was also validated with the 
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analysis of LED lamp reliability using the Gamma process method. Thus, it can be concluded that the BN model offers 

a comprehensive and effective approach for lifetime prediction and reliability assessment of LED lamp 

products/systems and can be beneficial for LED manufacturers and customers as well as this method could be 

employed to assess the reliability of other complex products. 

5. Conclusions  

In this study, an accelerated degradation test based on thermal stress was implemented to evaluate the reliability of a 

high-power LED lamp system. A Bayesian Network (BN) method was proposed to predict the lifetime of a high-

power LED lamp system by considering its intricacy, functional interaction among components, and degradation of 

subsystems on system level reliability. The component level lifetime prediction was carried out based on the Gamma 

process model and the Weibull distribution method. The junction tree algorithm was used in the BN structure to 

estimate the joint probability distributions of system level lifetime states. This was validated based on system level 

LED lamp degradation tests and system level reliability predictions based on the Gamma process and exponential 

LSR methods. The proposed BN model shows highly accurate lifetime prediction results and improves the reliability 

assessment outcomes for LED manufacturers and end-users. The BN prediction results were also compared with the 

experimental findings and showed good compatibility even though the failure times were not obtained for numerical 

quantification. Many of the SSL manufacturers obtain components from different suppliers and they have to test the 

product for a long time after the components are assembled. As many of the component supplier companies test their 

products before releasing to the market or supply to customers, the assembly companies can use the BN to get a close 

estimation of the system reliability based on the data from their suppliers. This reduces much of the cost and long 

testing time with a proper understanding of the physics of failure scenarios. Thus, it can be concluded that the BN 

model offers a promising approach for lifetime prediction and reliability assessment based on component failure 

modes and mechanisms for LED lamp systems/systems and could be employed to other complex systems. 
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Appendix A 

A1 – Abbreviations  

ADT Accelerated Degradation Test 

BN Bayesian Networks 

CCT Correlated Color Temperature 

CRI Color Rendering Index 

DAG Directed Acyclic Graph 

FMECA Failure Mode Effects and Criticality Analysis 

FTA Failure Tree Analysis 

IESNA Illuminating Engineering Society of North America 

LEDs Light-emitting Diodes 

RBD Reliability Block Diagrams 

SPD Spectral Power Distribution 

SSL Solid State Lighting 
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