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Abstract: Sustainability of industrial processes has been a hot spot and draws the 

attentions of more and more stakeholders, because determining the synthetic 

sustainability index can help the decision-makers/stakeholders to make informed 

decisions towards sustainable industrial processes, especially for selecting the most 

sustainable industrial process among multiple alternatives. This study aims to develop 

an interval reference point technique for the prioritization of industrial processes under 

uncertainties. The hierarchy best-worst method which can determine the weights of the 

criteria, the local weights of the sub-criteria and the global weights of the sub-criteria 

simultaneously was employed for weights determination. An interval reference point 

technique which allows the users to set the aspiration point (the level of acceptance) 

and the reservation point (the level of desirable expectation) was developed to 

determine the dual synthetic sustainability indexes, and both the weak synthetic 
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sustainability index (compensatory sustainability index ) and the strong synthetic 

sustainability index (non- compensatory sustainability index) were used to prioritize 

the industrial processes. A case study with five alternative energy storage technologies 

has been studied to illustrate the developed framework, and the results reveal that the 

developed framework is feasible and efficient for sustainability assessment and 

prioritization of industrial processes. 

Keywords: Sustainability; sustainability assessment; synthetic sustainability index; 

reference point technique; multi-criteria decision making 

1. Introduction 

Industrial processes which can transform the raw materials and energy into the desirable 

products or services for people play a significant important role in sustaining the high 

quality of life, the economic growth and the modernization of the world. The decision-

makers/stakeholders are aware of the importance of investigating the sustainability of 

industrial processes for selecting the most sustainable process with effective tools and 

techniques (Yi et al., 2014). The modern concept of sustainability usually consists of 

three building blocks including economy, environment and society, and the 

indicators/criteria in economic, environmental, and social pillars are usually used for 

sustainability assessment (Olinto, 2014). These are the triple bottom‐line (TBL) 

elements. Traditionally, corporations focused on only one bottom line – the economic 

profits. However, corporations should emphasize on not only the economic profits, but 

also the influences of their actions on all the stakeholders (e.g., the customers, the 

investors and the suppliers) for pursuing the development in a sustainable approach, 



and the influences include both the social acceptability and the environmental 

impacts (Lombardi Netto et al., 2020). Accordingly, the indicators/criteria in economic, 

environmental, and social dimensions are usually used for sustainability assessment or 

sustainability measurement. However, the indicators/criteria in these three main 

dimensions are usually influenced by (or can influence) the indicators/criteria in other 

dimensions such as technological, political, and cultural dimensions. Therefore, 

sustainability assessment requires a set of criteria/indicators in multiple dimensions 

including not only the economic, environmental, and social dimensions, but also other 

dimensions (e.g., the technological, political, and cultural dimensions).  

After sustainability assessment of industrial processes and obtaining the data of the 

industrial processes with respect to the indicators/criteria in different dimensions, a 

question arises: how to determine the sustainability sequence or rank these alternative 

industrial processes (sustainability-oriented decision-making)? Sustainability-oriented 

decision-making based on the considerations of  multiple criteria in multiple 

dimensions for the prioritization of alternative industrial systems is a typical multi-

criteria decision analysis problem, and the selection of the indicators for sustainability 

assessment and the determination of the weights of these indicators are critical for 

making informed decisions, and they will have significantly important effects on the 

final result (Bell and Morse, 2008). In addition, Munda (2005) pointed out that the 

improvement of the alternatives with respect to some criteria/indicators would lead to 

the deterioration with respect to other criteria/indicators, and it is of vital importance to 

answer the question – “how could the criteria/indicators for sustainability assessment 



be aggregated into a unique sustainability index to represent the overall sustainability?” 

(Munda, 2005). In this context, the synthetic sustainability index which can aggregate 

the criteria/indicators in multiple dimensions into an aggregated sustainability index 

and represent the overall sustainability of each alternative has been increasingly 

recognized as a useful tool for policy making and public communication by providing 

information on sustainability performance (Ruiz et al., 2020). With the synthetic 

sustainability index after aggregation, the decision-makers/stakeholders can make 

informed decision towards sustainability industrial process selection.  

  Besides the introduction section, the remaining parts of this paper has been organized 

as follows: the literature review was firstly carried out in section 2; subsequently, the 

methods including the hierarchy best-worst method and the interval reference point 

technique were presented in section 3; then, the case study with five energy storage 

technologies, the results and sensitivity analysis were presented in section 4; and finally, 

this study has been concluded in section 5. 

 

2. Literature review  

There are various methods for constructing the synthetic sustainability indices (also 

called composite or aggregated indices), and they were summarized in Table 1. Multi-

criteria decision making or multi-criteria decision analysis methods (including AHP, 

TOPSIS, ELECTRE, DEA and SAW, etc) are the most commonly used methods. 

Besides these multi-criteria decision making (MCDM) methods, principal component 

analysis (PCA), factor analysis, benchmarking, statistical additive aggregation, goal 



programming, binary extended goal programming, distance-principal component and 

reference point technique were also employed in many studies. Normalization, 

weighting, and aggregation are the basic procedures for aggregating multiple indicators 

into an integrated index. MCDM methods are usually combined with life cycle tools 

for determining the aggregated/composite sustainability index (Soltani et al., 2016). For 

instance, life cycle sustainability assessment (LCSA) which usually consists of life 

cycle costing (LCC), life cycle assessment (LCA) and social life cycle assessment 

(SLCA) was usually employed to determine the data of the alternative industrial 

processes with respect to the criteria in economic, environmental and social dimension, 

respectively. After determining the decision-making matrix with the data of the 

alternative industrial processes with respect to the criteria in LCSA, MCDM methods 

can be used to determine the aggregated/composite sustainability index of each 

alternative.  

These methods for determining the composite or synthetic sustainability indexes are 

usually based on the aggregation of the normalized data with respect to multiple 

indicators in the decision-making matrix into an aggregated index, and the aggregated 

sustainability index determined by most of these methods are the so-called “weak 

synthetic index” in which the bad environmental sustainability can be compensated by 

good sustainability performances in economic, social or other dimensions. However, 

the users of these methods can only determine the aggregated sustainability index of 

each alternative, but they do not know how to take appropriate actions and draft 

effective policies for sustainability improvement. Differently, the reference point 



technique employs both the weak synthetic sustainability index and the strong synthetic 

sustainability index to measure the sustainability of different alternatives, and the strong 

synthetic sustainability index is a measure of sustainability without the compensation 

of bad environmental performances by economic or social sustainability, and it can 

measure the worst status (sustainability performance) of the alternatives with respect to 

these indicators (Cabello et al., 2014). In addition, the reference point technique allows 

the users to set double reference points for each sustainability indicator as the aspiration 

level which can satisfy the desirable expectation of the decision-makers/stakeholders 

on each indicator and the reservation level which is the threshold value of each indicator 

for making the decision-makers/stakeholders feel acceptable (Ruiz et al., 2018). 

However, the applications of the reference point technique in the previous studies lack 

the integration of any smart weighting methods for the users to determine the weights 

of the indicators accurately. In addition, these methods cannot address uncertainties 

when the data of the alternatives with respect to some indicators are interval numbers 

or fuzzy numbers rather than the crisp numbers.  

Table 1: The summary of the composite, synthetic and aggregated sustainability 

indexes 

  Name of index Method 
Filed of 

application 
References 

1 

Synthetic index 

Analytic Hierarchy 

Process (AHP) 

Urban 

ecosystem 
Zhang et al., 2006 

Composite sustainability 

performance index 
Steel industry Singh et al. 2007 

Composite indicator 
Waste water 

treatment 

Molinos-Senante et 

al., 2014 

Synthetic index Water supply 
Molinos-Senante et 

al., 2019 



Synthetic competitiveness 

index 

Geothermal 

resources  
Kurek et al., 2020 

2 

Overall sustainability 

performance  

Principal Component 

Analysis (PCA) 

Manufacturing 

companies 
Li et al., 2012 

 Aggregated SD (sustainable 

development) index 
EU 27 

Bolcárová and 

Kološta, 2015 

Energy technology 

sustainability index 

rural 

electrification 

Mainali and 

Silveira, 2015 

Syntetic sustainability index 
Tourism 

destinations 

Lorenzo Linares et 

al., 2019 

3 

Composite indicator of 

sustainability Data envelopment 

analysis (DEA) 

and multicriteria 

decision making 

Farm 
Rei‐Martínez et al., 

2011 

Synthetic index 
Waste water 

treatment 
Gomez et al., 2017 

Eco-(in) Efficiency Index Agricultural  Vlontzos et al., 2017 

4 

Complex Performance 

Indicator 

Benchmarking 

Corporate 
Dočekalová and 

Kocmanová, 2016 

Composite sustainability index 
Farming 

systems 

Stylianou et al., 

2020  

Performance indicator Corporate 
Tasdemir et al., 

2020 

5 

Synthetic sustainability index 

Simple additive 

weighting (SAW) 

Low impact 

infrastructure 

development 

Maiolo et al., 2017 

Composite sustainability index 
Real estate 

projects 

Dobrovolskienė et 

al., 2019 

Sustainability index 
City 

sustainability 
Yi et al., 2018 

6 

Composite indicators 

PCA, AHP 

Agricultural 

systems 

Gómez-Limón and 

Riesgo, 2009 

Composite index 
Territorial 

growth 
Lee and Chou, 2018 

7 

Composite indicator 

PCA, DEA 

Tourism 

destinations. 
Perez et al., 2013 

Composite sustainability index Agriculture Dong. et al., 2016 

8 

Composite environmental 

impact index 

Statistical aggregation  

Agriculture Sabiha et al., 2016 

Synthetic index Corporate 
Escrig-Olmedo et 

al., 2017 

National Corporate Social 

Responsibility Practices Index 
Corporate 

Amor-Esteban et 

al., 2019 

https://www.sciencedirect.com/topics/social-sciences/human-activities-effects
https://www.sciencedirect.com/topics/social-sciences/human-activities-effects


9 

Goal programming synthetic 

indicators 

Goal programming 

technicques 

Tourism Blancas et al., 2010 

Vectorial Dynamic Composite 

Indicator (VDCI) 
Tourism Blancas et al., 2018 

Differential Dynamic Index Tourism 
Lozano-Oyola et al., 

(2019) 

Synthetic indicator 

Distance-principal 

component and goal 

programming synthetic 

indicator 

Waste water 

companies 

Molinos-Senante et 

al., 2016 

Regional composite indicator 
Binary extended goal 

programming 
Agriculture Xavier et al., 2018 

Life cycle aggregated 

sustainability index 

Interval preference 

relation based goal 

programming model and 

projection-based 

aggregated sustainability 

index 

Electricity Ren, 2018 

10 

Composite transport 

sustainability index 
PCA, factor analysis 

Transport Reisi et al., 2014 

Transportation sustainability 

index 
Transport 

Mandinia et al., 

2018 

11 

Aggregated sustainability 

indices ELECTRE I and 

TOPSIS 

Residential 

modular 

buildings 

Kamali et al., 2018 

Sustainability indices Urban areas 
Zinatizadeh et al., 

2017 

12 

Composite sustainability index 

Reference point 

tecnique 

Industry Zhou et al., 2012 

Multidimensional index Automotive  Sikdar et al., 2012 

Synthetic sustainability 

indicator  
Territorial unit  Ruiz et al., 2011 

 

Based on the above-mentioned literature reviews, it is apparent that there are two main 

research gaps:  

(1) Some of the studies in literature for determining the aggregated sustainability 

indexes based on different MCDM methods (such as AHP, TOPSIS, ELECTRE, DEA 

and SAW, PCA, factor analysis, benchmarking, statistical additive aggregation, goal 



programming, binary extended goal programming and distance-principal component) 

cannot determine the weak synthetic sustainability index and the strong synthetic 

sustainability index simultaneously. Although some of these methods can address 

uncertainties in decision-making process but they can only be used to determine the 

weak synthetic sustainability index in which the bad environmental performances can 

be compensated by other dimensions, without considering the strong synthetic 

sustainability index; and 

(2) Some of the studies in literature can determine both the weak synthetic sustainability 

index and the strong synthetic sustainability index. However, these methods cannot 

address uncertainty in decision-making process.  

In order to fill in the above-mentioned two research gaps, this study aims to develop an 

integrated multi-criteria decision making method for determining the weak synthetic 

sustainability performance and the strong synthetic sustainability performance under 

data uncertainties. In other words, this study aims to propose a new approach with the 

intent of determining both the weak synthetic sustainability index (compensatory 

sustainability index) and the strong synthetic sustainability index (non-compensatory 

sustainability index) under data uncertainties for the decision-makers to make informed 

decisions on the selection of alternative industrial systems. Hierarchy best-worst 

method which can help the users to determine the weights of the indicators accurately 

has been employed for weights determination, and the interval reference point 

technique has been developed to address data uncertainties by extending the traditional 

point technique to interval conditions. 



 

3. Methods 

Sustainability is a multi-dimensional concept which usually consists of multiple 

objectives/criteria. We can optimize the sustainability by n dimensional 

objectives/criteria, see the following for the multi-objective optimization problem (Ruzi 

et al., 2011): 

( ) ( ) ( ) ( )1 2, , , nf x f x f x fMa xximi

x X

ze =   


       (1) 

These n objective functions in different dimensions of sustainability usually conflict. 

We can assume that the stakeholders/decision-makers set a desirable value for each 

objective as the goal and the reference point, denoted by  1 2, , , ng g g g= . Then, the 

reference point technique (Wierzbicki, 1980; Ruzi et al., 2011) can transform problem 

(1) into: 

( )( ) ( )  ( )
1,2, ,

1

, , min
n

i i i i i
i n

i

M s f x g f xaxi gm z fi e x g  
=

=

= − + −         (2) 

where ( )( ), ,s f x g  is the achievement-scalarizing function, 
i  represents the 

weight (relative importance) of the i-th objective ( )if x , and   represents a small 

positive number. 

  The first component of (2), namely ( ) 
1,2, ,
min i i i

i n
f x g

=
−    represents the greatest 

unachievement, and the second component of (2), namely ( )
1

n

i i

i

f x g
=

−    is an 

augmentation term which can guarantee the optimum solution of (2) and is an efficient 

solution of Problem (1).  

  Inspired by the reference point technique for multi-objective optimization models, it 



has also been used for multi-criteria decision making problems by developing two 

indexes (one is the strong synthetic index, and another is the weak synthetic index) as 

presented in Eq. 3 and Eq.4, respectively (Ruzi et al., 2011)).  

( ) 
1,2, ,
min , ,a r

S i i i i
i n

I s f x g g
=

 =  
            (3) 

( )
1

, ,
n

a r

W i i i

i

I s f x g g
=

 =                (4) 

where 
SI   represents the strong synthetic index, 

WI  represents the weak synthetic 

index, ( ), ,a r

i i is f x g g    represents the achievement-scalarizing function, 
i  

represents the weight (relative importance) of the i-th objective function, a

ig  

represents the aspiration point of the the i-th objective/criterion, and r

ig  represents 

the reservation point of the i-th objective/criterion. 

Double reference points were used in establishing the achievement-scalarizing function 

for determining the achievement of each alternative with respect to each 

objective/criterion. The reservation point is lower limit of acceptance for each 

objective/criterion, and the aspiration point represents the desirable expectation of the 

decision-makers/stakeholders on each objective/criterion. The reference point 

technique has been extended to interval condition for determining the weak synthetic 

sustainability index and the synthetic sustainability index under uncertainties in this 

study. The Hierarchical Best-Worst Method was employed to determine the weight of 

the objective/criteria, and the interval reference point technique has been developed for 

the weak synthetic sustainability index and the synthetic sustainability index under 

uncertainties. 

 



3.1 Hierarchical Best-Worst Method 

There are various weighting methods that can be used to determine the weights of the 

criteria and the sub-criteria for sustainability assessment, e.g., Entropy weighting 

method, Analytic Hierarchy Process (AHP), fuzzy AHP, and best-worst method (BWM). 

Among these methods, BWM as an advanced weighting method developed by Rezaei 

(2015) has two significant advantages: (i) less comparisons comparing with other 

traditional weighting methods and (ii) easy for achieving relatively higher consistency 

comparing with other traditional weighting methods. Accordingly, it has been widely 

used in various fields recently, e.g., location selection (Kheybari et al., 2019), service 

quality evaluation (Gupta, 2018), supplier selection (Rezaei et al., 2016), technology 

selection (van de Kaa et al., 2017), risk management (Wang et al., 2019), and 

emergency facility planning (Nyimbili and Erden, 2020), etc. 

The Hierarchical Best-Worst Method (HBWM) was developed by Tabatabaie et al. 

(2019) based on the work of Rezaei (2015), it is an efficient tool for hierarchical 

decision-making which enables the users to determine the weights of the criteria as well 

as that of the sub-criteria in each criterion in one programming model simultaneously. 

The most significant advantage of this method is that it requires only one running to 

determine the global weights of the sub-criteria with high consistency. The four steps 

of HBWM have been summarized as follows based on the work of Tabatabaie et al. 

(2019): 

Step 1: Identifying the best criterion and the worst criterion among all the criteria, and 

identifying the best sub-criterion and the worst sub-criterion among all the sub-criteria 



in each criterion. 

  We can assume that there are N criteria (C1, C2,…, CN) and K sub-criteria (Cj1, Cj2,…, 

CiK) in the j-th criterion (Cj) which denote the best (i.e. the most important and the most 

preferable ) and the worst (i.e. the least important and the least preferable) criteria by 

CB and CW, respectively. Similarly, the best and the worst sub-criteria in each criterion 

can also be determined, denoted by CjB and CjW, respectively.  

Step 2: Determining the Best-to-Others (BO) and Others-to-Worst (OW) vectors. The 

BO vector can be determined by comparing CB with each of the N criteria. For instance, 

the preference or priority of CB over Cj (j=1,2,…,N) can be determined by the 

comparison of CB with Cj (j=1,2,…,N), denoted by aBj. In a similar way, the comparison 

of CjB as the best criterion in the j-th criterion (Cj) with each of the sub-criteria in the j-

th criterion can be used to determine the preference or priority of CBj over Cjt 

(t=1,2,…,K). Then, the BO vectors can be determined, see Eq. 5 and Eq. 6. The nine 

numbers (from 1 to 9) and their reciprocals can be used to determine the relative 

preference or priority of one criterion (sub-criterion) over another criterion (sub-

criterion), as presented in Table 2. 

Table 2: The pairwise comparison scales used in BWM (Saaty, 1980; 2008) 

Scale The comparison one criterion (sub-criterion) over another criterion 

(sub-criterion) 

1 Equal importance 

2 Between equal importance and moderate importance 

3 Moderate importance 



4 Between moderate importance and strong importance 

5 Strong importance 

6 Between strong importance and demonstrated importance 

7 Demonstrated importance 

8 Between demonstrated importance and absolute importance 

9 Absolute importance 

Reciprocals 

above 

The relative preference/priority of the i-th activity comparing with the 

j-th activity is denoted by one of the above-mentioned non-zero 

numbers, then its reciprocal will be used to describe the 

preference/priority of the j-th activity comparing with the i-th activity 

 

It is worth pointing out that =1Bja  when j B= . Similarly, =1j

Bta  when t B= . 

 1 2B B BNBO a a a=              (5) 

where BO  represents the Best-to-Others (BO) by comparing the best criterion with 

other criteria, and ( )1,2, ,Bja j N=  represents the relative importance/priority of 

the best criterion comparing with the j-th criterion. 

1 2

j j j j

B B BKBO a a a =                (6) 

where 
jBO  represents the Best-to-Others (BO) by comparing the best sub-criterion 

in the j-th criterion with other sub-criteria in the j-th criterion, and ( )1,2, ,j

Bta t K=

represents the relative importance/priority of the best sub-criterion in the j-th criterion 

comparing with each sub-criterion in the j-th criterion. 

OW vector can be determined by comparing each of the N criteria with the worst 



criterion (CW). For instance, the preference or priority of Cj (j=1,2,…,N) over CW can 

be determined by the comparison of Cj (j=1,2,…,N) with CW, denoted by ajW. In a 

similar way, the comparison of each of the sub-criteria in the j-th criterion with the 

worst sub-criterion (CjW) in the j-th criterion (Cj) can be used to determine the 

preference or priority of Cjt (t=1,2,…,K) over CjW. Then, the OW vectors can be 

determined, see Eq. 7 and Eq.8. 

 1 2W W NWOW a a a=              (7) 

where OW  represents the Others-to-Worst (OW) by comparing each criterion with 

the worst criterion, and ( )1,2, ,jWa j N=  represents the relative 

importance/priority of the j-th criterion comparing with the worst criterion (CW). 

1 2

j j j j

W W KWOW a a a =               (8) 

where 
jOW  represents the Others-to-Worst (OW) by comparing each sub-criterion 

in the j-th criterion with the worst sub-criterion (CjW) in the j-th criterion, and 

( )1,2, ,j

tWa t K=  represents the relative importance/priority of each sub-criterion in 

the j-th criterion comparing with the worst sub-criterion in the j-th criterion.  

Step 3: Determine the weights of the criteria, the local weights of the sub-criteria in 

each criterion and the global weights of the sub-criteria. A programming model was 

established in this step, see the programming model presented in (9). The objective 

function of this model is to minimize the total deviations of the comparisons for each 

pair of criteria or each pair of sub-criteria made by the users. Many constraints have 

also been incorporated in this programming model. For instance, the sum of the weights 

of the criteria and that of the local weights of the sub-criteria in each criterion equal to 



one, and the weights of the criteria and the local weights of the sub-criteria in each 

criterion should be non-negative. 

( )

( )

( )

( )

( )

( )

( )

1

1

in

1,2, ,

1,2, ,

1,2, ,

1,2, ,

1,2, , ; 1,2, ,

1 1,2, ,

0

1 1,2, , ; 1,2, ,

0

j

B Bj j

j jW W

j

jB Bt jt j

j

jt tW jW j

G

jt jt j

N

j

j

j

K

jt

t

jt

M

a j N

a j N

a t K

a t K

j N t K

j N

j N t K

 

  

  

  

  
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







=

=

+

−  =

−  =

−  =

−  =

= = =

= =

= = =





＞

＞

         (9) 

where 
B  represents the weight of the best criterion, 

j  represents the weight of the j-

th criterion, 
jB  represents the local weight of the best criterion in the j-th criterion, 

jt   represents the local weight of the t-th criterion in the j-th criterion, 
jW  

represents the local weight of the worst criterion in the j-th criterion, and G

jt  

represents the global weight of the t-th criterion in the j-th criterion. 

Step 4: Calculate the consistency ratio for consistency check. *  and 

( )* 1,2, ,j j N =  are the optimum values of   and 
j   under the optimum 

conditions ( )* 1,2, ,j j N =  , ( )* 1,2, , ; 1,2, ,jt j N t K = =  

( )* 1,2, , ; 1,2, ,G

jt j N t K = =  , and the consistency ratios for judging the 

consistency level of the comparisons can be determined by Eq.(10) and Eq.(11). The 

consistency index (CI) can be obtained according to the work of Rezaei (2015), as 

presented in Table 3. 



*

CR
CI


=                 (10) 

*

j

j
C

R
I

C


=                 (11) 

where CR represents the consistency ratio for the judgments in determining the BO and 

OW vectors, and CRj represents the consistency ratio for the judgments in determining 

the 
jBO  and 

jOW  vectors. 

Table 3: Consistency index in BWM (Rezaei, 2015) 

BWa , 

j

BWa  

1 2 3 4 5 6 7 8 9 

CI 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

If all the consistency ratios equal to zero, namely 0CR =  and 

( )0 1,2, ,jCR j N= =  , it represents that the judgments are absolutely consistent. 

However, it is difficult to achieve absolute consistency. Therefore, we set 0.10 as the 

threshold value. In other words, the judgments can be recognized as consistent if all the 

consistency ratios are less than 0.10, or the users need to revise the corresponding BO, 

OW, ( )1,2, ,jBO j N=  or ( )1,2, ,jOW j N=  vectors. 

  The global weights of the criteria/indicators determined by the HBWM will be used 

in the interval reference technique presented in section 2.2. 

3.2 Interval reference point technique 

An interval reference point technique was developed based on the work of Ruiz et al. 

(2011) to address the decision-making matrix with both crisp numbers and the interval 

numbers. Comparing with the traditional reference point technique as well as other 



multi-criteria decision making methods, the developed interval reference point 

technique can address various uncertainties expressed in the format of interval numbers. 

The interval reference point technique developed in this study consists of five steps 

based on the work of Ruiz et al. (2011): 

Step 1: Determining the decision-making matrix with both crisp numbers and interval 

numbers.  We can assume that there are M alternatives ( )1 2, , , MA A A   to be 

evaluated by N indicators ( )1 2, , , MC C C , and the decision-making matrix consists of 

both crisp numbers and interval numbers which can be firstly determined. It is worth 

pointing out that interval numbers are used to represent the data uncertainties. Among 

these N indicators, the data of the alternatives with respect to the first P indicators are 

depicted by using the crisp numbers, and those of the alternatives with respect to the 

last (N-P) indicators including the (P+1)-th indicator, the (P+2)-th indicator,…, and 

until the N-th indicator are depicted by using the interval numbers. 
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2 21 22 2 2( 1) 2( 1) 2 2

1 2 ( 1) ( 1)
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A x x x x x x x
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      

      

      

   (12) 

where ( )1,2,..., ; 1,2,...,ijx i M j P= =  which is a crisp number represents the data of 

the i-th alternative with respect to the j-th indicator, and 

( )1,2,..., ; 1, 2,...,ijx i M j P P N= = + +  which is an interval number represents the 

data of the i-th alternative with respect to the j-th indicator. 

Step 2: Determining the aspiration and the reservation level with respect to each 

indicator. The indicators for the evaluation of the alternatives can be divided into “more 



is better” and “less is better” types. As for the “more is better” criteria, it means that the 

increase of the data with respect to these criteria, the more superior the alternative will 

be. On the contrary, the increase of the data with respect to the “less is better” criteria, 

the more inferior the alternative will be. In this step, two goals are set for each 

objective/criterion as the reference points. One is reservation point which represents 

lower limit of acceptance for each objective/criterion, and another is aspiration point 

which represents the desirable expectation of the decision-makers/stakeholders on each 

objective/criterion. The double reference points (reservation point and aspiration point) 

will be established for each indicator. There are three commonly used way for 

determining the reservation point and the aspiration point, including the neutral scheme, 

the voting scheme and the statistical scheme (Wierzbicki et al., 2000; Ruiz et al., 2011). 

The statistical scheme was used to determine the reservation point and the aspiration 

point.  

As for the “more is better” criteria:   

 The aspiration point of each “more is better” criterion was set to be greater than or 

equal to the average value of the alternatives with respect to each “more is better” 

criterion, because it represents the desirable expectation of the decision-

makers/stakeholders on each objective/criterion, and it cannot satisfy the desirable 

expectation of the decision-makers/stakeholders if the value set for the aspiration point 

is too small. The reservation point of each “more is better” criterion was set to be greater 

than or equal to the minimum value of the alternatives with respect to each “more is 

better” criterion, because it represents the minimum acceptance of the decision-



makers/stakeholders on each objective/criterion. Similarly, it also cannot satisfy the 

lower limit of acceptance of the decision-makers/stakeholders if the value set for the 

aspiration point is too small. 

(1) If all the data of the alternatives with respect to the “more is better” criterion 

are all crisp numbers, then the reservation point and the aspiration point can be 

determined by Eq. 13 and Eq.14, respectively. 
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where a

jx  represents the aspiration point for the j-th indicator, and 
1 can take the 

value from 0 to 1.  

1  represents the aspiration of the decision-makers, and the higher the value of 1 , 

the higher the expectation of the decision-makers on the aspiration point. When 

1 0 = , 1
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where r

jx  represents the reservation point for the j-th indicator, and 1  an take the 

value from 0 to 1. 

1  represents the reservation of the decision-makers, and the smaller the value of 

1  , the higher the expectation of the decision-makers on the reservation point. 



When 1 0 = , 1
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j
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x
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(2) If the data of the alternatives with respect to the “more is better” criterion are 

interval numbers, then the reservation point and the aspiration point can be 

determined by Eq. 15 and Eq.16, respectively. 

( ) ( )
1 1

1
1,2,..,
max

2 2

M M
L U L U

ij ij ij ij
a Ui i
j ij

i M

x x x x

x x
M M

= =

=

 
+ + 

 = + −
 
 
 

 
       (15) 

where a

jx  represents the aspiration point for the j-th indicator, and  can take the 

value from 0 to 1.  
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where r

jx  represents the reservation point for the j-th indicator, and 1  an take the 

value from 0 to 1. 
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As for the “less is better” criteria: 



The aspiration point of each “less is better” criterion was defined to be less than or equal 

to the average value of the alternatives with respect to each “less is better” criterion, 

because only small value with respect to each “less is better” criterion can satisfy the 

desirable expectation of the decision-makers/stakeholders on each objective/criterion, 

and the smaller the aspiration point, the higher the desirable expectation. The 

reservation point of each “less is better” criterion was defined to be  between the 

average value and the maximum value of the alternatives with respect to each “more is 

better” criterion, and it cannot satisfy the lower limit of acceptance of the decision-

makers/stakeholders if the value is too high.  

(1) If all the data of the alternatives with respect to the “less is better” criterion are all 

crisp numbers, then the reservation point and the aspiration point can be determined 

by Eq. 17 and Eq.18, respectively. 
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where a

jx  represents the aspiration point for the j-th indicator, and   can take the 

value from 0 to 1. 

2  represents the aspiration of the decision-makers, and the smaller the value of 

2 , the higher the expectation of the decision-makers on the aspiration point. When 
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where r

jx  represents the aspiration point for the j-th indicator, and 2 can take the 

value from 0 to 1.  

2  represents the reservation of the decision-makers, and the smaller the value of 

2  , the higher the expectation of the decision-makers on the reservation point.  
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(2) If the data of the alternatives with respect to the “less is better” criterion are interval 

numbers, then the reservation point and the aspiration point can be determined by 

Eq. 19 and Eq.20, respectively. 
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where a

jx  represents the aspiration point for the j-th indicator, and 
2 can take the 

value from 0 to 1.  
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where r

jx  represents the aspiration point for the j-th indicator, and 2 can take the 

value from 0 to 1.  
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Step 3: Establishing the achievement scalarizing function for determining the 

achievement of each alternative with respect to the criteria. The achievement 

scalarizing functions under different conditions were established for measuring the 

positions of the alternatives with respect to the references points in terms of each 

indicator (Ruiz et al., 2011; Cabello et al., 2019).  

As for the “more is better” criteria: 

(1) If all the data of the alternatives with respect to the “more is better” criterion are all 

crisp numbers, the achievement of the i-th alternative with respect to the j-th 

criterion can be determined by the achievement scalarizing function ,as Eq.21 (Ruiz 

et al., 2011). 
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where ijs  which is a crisp number represents the achievement of the i-th alternative 

with respect to the j-th indicator, 0＞  which is a parameter represents the penalizing 

factor for the data under the reservation point, and 0＞  representing the rewarding 

factor for the data greater than the aspiration point. 

The crisp number ijs  can be rewritten in the format of interval number ij ij ijs s s =   . 

When =1  and =1 , ijs  takes the value within the interval [-1 0] when the data 

of the alternatives with respect to the criteria are below the reservation point, ijs  takes 

the value within the interval [0 1] when the data of the alternatives with respect to the 

criteria are between the reservation point and the aspiration point, and ijs  takes the 

value within the interval [1 2] when the data of the alternatives with respect to the 

criteria are greater than the aspiration point.  

(2) If the data of the alternatives with respect to the “more is better” criterion are 

interval numbers, the achievement of the i-th alternative with respect to the j-th 

criterion can be determined by Eq.22.  
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(22) 

where 
L U

ij ij ijs s s  =    which is an interval number represents the achievement of the 

i-th alternative with respect to the j-th indicator, 0＞  which is a parameter represents 

the penalizing factor for the data under the reservation point, and 0＞  representing 

the rewarding factor for the data greater than the aspiration point. 

As for the “less is better” criteria: 

(1) If all the data of the alternatives with respect to the “less is better” criterion are all 

crisp numbers, the achievement of the i-th alternative with respect to the j-th 

criterion can be determined by Eq.23. 
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where ijs  which is a crisp number represents the achievement of the i-th alternative 

with respect to the j-th indicator, 0＞  which is a parameter represents the penalizing 

factor for the data above the reservation point, and 0＞  representing the rewarding 

factor for the data less than the aspiration point. 

When =1  and =1 , ijs  takes the value within the interval [1 2] when the data 

of the alternatives with respect to the criteria are below the aspiration point, ijs  takes 

the value within the interval [0 1] when the data of the alternatives with respect to the 

criteria are between the aspiration point and the reservation point, and ijs  takes the 

value within the interval [-1 0] when the data of the alternatives with respect to the 



criteria are above the reservation point.  

(2) If the data of the alternatives with respect to the “less is better” criterion are 

interval numbers, the achievement of the i-th alternative with respect to the j-th 

criterion can be determined by Eq.24.  
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where 
L U

ij ij ijs s s  =    which is a crisp number represents the achievement of the i-th 

alternative with respect to the j-th indicator, 0＞  which is a parameter represents the 

penalizing factor for the data above the reservation point, and 0＞  representing the 

rewarding factor for the data less than the aspiration point. 

Step 4: Determining the weak synthetic sustainability index and the strong synthetic 

sustainability index. The weak synthetic sustainability index and the strong synthetic 

index can be determined by Eq. 25 and Eq.26, respectively. 
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where , , ,

L U

i SS i SS i SSI I I  =    which is an interval number represents the strong 

synthetic sustainability index of the i-th alternative, and , , ,

L U

i WS i WS i WSI I I  =    which 

is an interval number represents the weak synthetic sustainability index of the i-th 

alternative.  

The weak synthetic sustainability index means that the good performances in economic 

aspects or other aspects can compensate the bad performances in environmental aspect, 

it is an overall measure of the integrated sustainability, but the strong synthetic 

sustainability index means that the environmental performances cannot be compensated 

by economic or other dimensional indictors, and it can provide the decision-makers the 

alarm signs in some sustainability indicators (Cabello et al., 2019).  The higher the 

weak synthetic sustainability index or the strong synthetic sustainability index, the 

better the alternative will be. The negative values existing in the strong synthetic 

sustainability index, namely the interval , , ,

L U

i SS i SS i SSI I I  =    , represents that the 

alternative performs under the reservation point for at least one indicator, and if 

, , ,

L U

i SS i SS i SSI I I  =    is greater than 1, it means that the performances of this alternative 

on all the indicators are greater than the aspiration points. The weak synthetic 

sustainability index represents the overall sustainability performance of a alternative by 

incorporating the performances with respect to all the indicators into one index. 

Step 5: Determining the overall picture of sustainability in a graphical way. 

   Both the weak synthetic sustainability indicator and the strong synthetic 

sustainability indicator are interval numbers, and it is usually difficult to rank the 

interval numbers. Therefore, the interval number ranking method developed by Xu and 



Da (2003) was employed in this study. According to Step 4, the strong synthetic 

sustainability index , , ,

L U

i SS i SS i SSI I I  =    for all the M alternatives can be determined, 

and the probability of the strong synthetic sustainability index of the i-th alternative be 

greater than that of the k-th alternative can be determined by Eq. 23 based on the work 

of Xu and Da (2003). This method for the ranking of interval numbers has been widely 

used in many studies (Ren and Toniolo, 2018). 

( ) ( ), , , , , ,

, ,

, , , ,

max 1 max ,0 ,0

SS L U L U

ik i SS k SS i SS i SS k SS k SS

U L

k SS i SS

U L U L

i SS i SS k SS k SS

p p I I p I I I I

I I

I I I I

     =  =    

  − 
= −   

− + −    

      (27) 

where SS

ikp  represents the probability of the strong synthetic sustainability index of 

the i-th alternative be greater than that of the k-th alternative 

It is apparent that when , , , , , ,

L U L U

i SS i SS i SS k SS k SS k SSI I I I I I    = = =    , 0.50.SS

ikp =  It is 

worth pointing out that Eq.23 cannot be used for if ,i SSI    and ,k SSI   are both crisp 

numbers, because when , ,

U L

i SS i SSI I=  and , ,

U L

k SS k SSI I= , the denominator is zero. As for 

the comparison of two crisp numbers, the probability of one crisp number being greater 

than another has been defined based on the following two rules: 

(1) If , , , ,

U L U L

i SS i SS k SS k SSI I I I=  =  , then , , , ,( ) 1L U L U

i SS i SS k SS k SSp I I I I    =     and 

, , , ,( ) 0L U L U

k SS k SS i SS i SSp I I I I    =    ; 

(2) , , , ,( ) 0.50L U L U

i SS i SS i SS i SSp I I I I    =    . 

In a similar way, the probability matrix for the strong synthetic sustainability can be 

determined by comparing the strong synthetic sustainability indexes with respect to 

each pair of alternatives, as presented in Eq.28 (Ren and Toniolo, 2018). 



1, 2, ,

1, 12 1

2, 21 22 2

, 1 2
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SS SS SS SS
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M SS M M

I I I

I p p

P I p p p

I p p

  







=           (28) 

where SSP  represents the probability matrix for the strong synthetic sustainability, 

and SS

ikp  represents the probability of the strong synthetic sustainability index of the 

i-th alternative be greater than that of the k-th alternative. 

  Then, the integrated strong synthetic sustainability (SSS) performance of the i-th 

alternative can be determined according to the work of Xu and Da (2003) 

1

2 1

( 1)

M
SS

ij

j

i

p M

SSS
M M

=

+ −

=
−


           (29) 

where iSSS  which is a crisp number represents the integrated strong synthetic 

sustainability performance of the i-th alternative. 

  In the similar way, the probability matrix for the weak synthetic sustainability can 

also be determined by comparing the weak synthetic sustainability indexes with 

respect to each pair of alternatives, as presented in Eq.30. 

1, 2, ,

1, 12 1

2, 21 22 2

, 1 2

0.50

0.50

WS WS M WS

WS WS

WS M

WS WS WS WS

WS M

WS WS

M WS M M

I I I

I p p

P I p p p

I p p

  







=           (30) 

where WSP  represents the probability matrix for the weak synthetic sustainability, 

and 
WS

ikp  represents the probability of the weak synthetic sustainability index of the i-

th alternative be greater than that of the k-th alternative. 

Then, the integrated weak synthetic sustainability (WSS) performance of the i-th 



alternative can also be determined, as presented in Eq.31. 

1

2 1

( 1)

M
WS

ij

j

i

p M

WSS
M M

=

+ −

=
−


           (31) 

where iWSS  which is a crisp number represents the integrated weak synthetic 

sustainability performance of the i-th alternative. 

The overall picture of sustainability of all the alternatives can be represented in a 

graphical way, as illustrated in Figure 1, and it is a two-dimensional representation, and 

the overall sustainability of each alternative can be represented by a point in which its 

value in the vertical axis represents its integrated weak synthetic sustainability 

performance and its value in the horizontal axis represents its integrated strong 

synthetic sustainability performance. Accordingly, the most sustainable alternatives 

should be in the top right corner of this two-dimensional representation. 

 

Figure 1: The overall picture of sustainability 

 

4. Results and discussion 

  Energy storage is the critical technology for addressing the problem of intermittency 

in the use of renewable energy, and there are various technologies with different 



sustainability performances. In order to illustrate the developed synthetic sustainability 

index under uncertainties, five energy storage technologies including pumped hydro 

(PH), compress air (CA), Lead-Acid (LA), Lithium-ion (Li), and flywheel (F) derived 

from Ren and Ren (2018) were studied in this study. There are two main reasons of 

choosing energy storage technologies to illustrate the developed interval reference point 

technique developed in this study: (i) the selection of energy storage technologies is a 

typical problem in which we need to consider both the weak synthetic sustainability 

index (compensatory sustainability index ) and the strong synthetic sustainability index 

(non-compensatory sustainability index) , because the aggregated/composite 

sustainability index of an energy storage technology determined by other non-

reference-point-techniques are usually determined with the compensation of the bad 

environmental performances by the economic or social sustainability performances. 

Thus, the alternative with a high aggregated/composite sustainability index may 

perform very bad in environmental sustainability because of the good performances in 

other sustainability dimensions; and (ii) there are data uncertainties in the selection of 

the most sustainable energy storage technology-the data of some energy storage 

technologies with respect to some criteria for sustainability assessment are usually 

interval numbers rather than crisp numbers. The study on the typical problem (the 

sustainability-oriented selection of energy storage technologies) has a good 

demonstration and dissemination effect on the interval reference point technique 

developed in this study. 

There are usually three dimensions in sustainability, and they are economy, 



environment, and society (the three pillars of sustainability). Just like what we have 

mentioned in the Introduction section, the criteria in these three dimensions are not 

enough to measure sustainability because the criteria in other dimensions (e.g., 

technological, political, cultural and psychological dimensions) usually have significant 

influences on the criteria in the three pillars of sustainability. For instance, subsidization 

scheme belonging to the policy dimension has significant influence on the net present 

value (NPV) which is an important criterion to measure economic performance, and 

technology maturity belonging to the technological dimension influences energy 

consumption and energy consumption dominates greenhouse gases (GHG ) emissions 

(GHG potential is a critical criterion in environmental dimension). Accordingly, the 

criteria for sustainability assessment should be determined from a multi-dimensional 

perspective. Moreover, different stakeholders have different preferences/concerns 

when selecting the most sustainable option along multiple alternatives, and the selection 

of the criteria for sustainability assessment should also incorporate the preferences of 

the stakeholders. Based on the literature reviews of the current works on energy storage 

technologies, it is apparent that almost all the stakeholders (e.g., scientists, researchers, 

engineers, investors and governments) have more concerns on the economic (e.g., 

capital cost and operating cost), performance (e.g., materials intensity and energy 

intensity), technological (e.g., maturity) and environmental (CO2 intensity and 

environmental impact) aspects. Therefore, four dimensional criteria including 

economic, performance, technological and environmental criteria were employed to 

determine the synthetic sustainability index of each energy storage technology. There 



are three sub-criteria in economic criterion, and they are capital cost, life and operating 

cost. There are four sub-criteria in performance criterion, and they are energy efficiency, 

materials intensity, energy intensity and energy density. Maturity is the only sub-

criterion in technological criterion. And CO2 and environmental impact are the two sub-

criteria used to measure the environmental criterion.  The data of the five energy 

storage technologies with respect to each sub-criterion were presented in Table 4. 

Table 4: The data of the five energy storage technologies with respect to each sub-

criterion  

Criteria Sub-criteria Unit Pumpe

d 

hydro 

Compress

ed Air 

Lead-

Acid 

Lithiu

m-ion 

Flywhe

el 

 

 Capital cost 

(EC1) 

€/kWh 22.5-

45 

6.5-37.5 148.3

3-185 

900-

1300 

400-

800 

Díaz-

González

, 2012 

Economic 

(EC) 

Life (EC2) years 40-50 35-35 5-15 14-16 20-20 Díaz-

González

, 2012 

 Operating 

cost (EC3) 

$/MJ 0.0006

-

0.0014 

0.0001-

0.0019 

0.000

8-

0.002

8 

0.0019-

0.0047 

0.0008-

0.0017 

Ashby 

and 

Polyblan

k, 2012 

 

 Energy 

efficiency 

(P1) 

% 69-74 38-39.25 72.5-

80 

83-83 85-85 Díaz-

González

, 2012 

Performance 

(P) 

Materials 

intensity (P2) 

kg/MJ 60-120 2-12 4.5-12 1.5-2.7 17-500 Ashby 

and 

Polyblan

k, 2012 

 

 Energy 

intensity (P3) 

MJembodied/

MJ 

100-

200 

74-74 110-

980 

330-

580 

750-

760 

Ashby 

and 

Polyblan

k, 2012 

 

 Energy Wh/kg 0.5-1.5 30-60 30-50 75-200 10-30 Chen et 



density (P4) al., 2009 

Technologic

al (T) 

Maturity 

(T1) 

/ 0.5008 0.1971 0.077

5 

0.1123 0.1123 Calculate

d by Ren 

and Ren 

(2018) 

based on 

the work 

of 

Beaudin 

et al., 

2010 

Environment

al (EN) 

CO2 

intensity 

(EN1) 

kg/MJ 8-16 5.3-5.3 5-130 19-50 90-100 Ashby 

and 

Polyblan

k, 2012 

 

 Environment

al impact 

(EN2) 

/ 0.0941 0.1525 0.058

3 

0.2660 0.4291 Calculate

d by Ren 

and Ren 

(2018) 

based on 

the work 

of Evans 

et al., 

2012 

Sources: adapted from Ren and Ren (2018). 

 

The HBWM was firstly employed to determine the weights of the four criteria, the 

local weights of the sub-criteria in each criterion and the global weights of the sub-

criteria, and the procedures were specified as follows: 

Step 1: As for the four criteria, economic (EC) criterion and environmental (EN) 

criterion have been recognized as the most important criterion and the least important 

criterion, respectively. Among the three sub-criteria in the economic criterion, capital 

cost (EC1) has been resigned as the most important and operating cost (EC3) has been 

recognized as the least important. Among these four sub-criteria in performance 



criterion, energy efficiency (P1) and materials intensity (P2) have been recognized as 

the most important and the least important, respectively. As for the two sub-criteria in 

environmental criterion, environmental impact (EN1) has been recognized as more 

important than CO2 intensity (EN2). 

Step 2: The BO and OW vectors can be determined by the comparison of each pair of 

criteria and of each pair of sub-criteria in each criterion, as presented in Table 5.  

Table 5: The BO and OW vectors 

Goal The most important: EC The lease important: EN 

 EC P T EN 

BO 1 2 3 6 

OW 6 3 2 1 

Economic The most important: EC1 The lease important: EC3 

 EC1 EC2 EC3  

BO 1 3 5  

OW 5 2 1  

Performance The most important: P1 The most important: P2 

 P1 P2 P3 P4 

BO 1 7 3 4 

OW 7 1 3 2 

Environmental The most important: EN1 The most important: EN2 

 EN1 EN2   

BO 4 1   



OW 1 4   

Step 3: After determining the BO and OW vectors, the following programming model 

has been established: 
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Table 6: The weights of the four criteria, the local weights of the sub-criteria in 

each criterion and the global weights of the ten sub-criteria determined by HBWM 

Criteria Weights 

by 

HBWM 

Weights 

by 

NLFP 

(Ren 

and 

Ren, 

2018) 

Sub-criteria Local 

weights 

by 

HBWM 

Local 

weights 

by 

NLFP 

(Ren 

and 

Ren, 

2018 

Global 

weights 

by 

HBWM    

Global 

weights 

by 

NLFP 

(Ren 

and 

Ren, 

2018 

 

Economic 

 

 

0.5000 

 

 

0.4592 

Capital cost 
0.6500 0.5000 0.3250 0.2296 

 Life  
0.2250 0.3333 0.1125 0.1531 

 Operating cost 
0.1250 0.1667 0.0625 0.0765 

 

 

Performance 

 

 

 

0.2500 

 

 

 

0.2656 

Energy 

efficiency 
0.5714 0.5595 0.1429 0.1486 

 Materials 

intensity 
0.0772 0.0872 0.0193 0.0232 

 Energy 

intensity 
0.2008 0.2165 0.0502 0.0575 

 Energy density 
0.1506 0.1367 0.0376 0.0363 

Technological 0.1667 0.1936 Maturity 1 1 0.1667 0.1936 

Environmental 
 

0.0833 

 

0.0816 

CO2 intensity 
0.2000 0.2000 0.01667 0.0163 

 Environmental 

impact 
0.8000 0.8000 0.0667 0.0653 

 



After solving programming (32), the weights of the four criteria, the local weights of 

the sub-criteria in each criterion and the global weights of the ten sub-criteria can be 

determined, and the results were presented in Table 6. The consistency check results 

reveal that all the judgments for determining the BO and the OW vectors can be 

recognized as consistent, and the consistency check results were presented in Table 7. 

Therefore, the global weights of the ten sub-criteria determined by HBWM can be used 

for determining the synthetic sustainability index of each alternative energy storage 

technology.  

Table 7: Consistency Check results 

Goal The most important: EC The lease important: EN 

 EC P T EN 

BO 1 2 3 6 

OW 6 3 2 1 

*
*=0 1.63, 0 0.10CI CR

CI


 = = = ，  

Economic The most important: EC1 The lease important: EC3 

 EC1 EC2 EC3  

BO 1 3 5  

OW 5 2 1  

*

=0.0250 1.00, 0.0250 0.10EC CI CR
CI


  = = = ，  

Performance The most important: P1 The most important: P2 

 P1 P2 P3 P4 



BO 1 7 3 4 

OW 7 1 3 2 

*

=0.0309 1.63, 0.0190 0.10EC CI CR
CI


  = = = ，  

Environmental The most important: EN1 The most important: EN2 

 EN1 EN2   

BO 4 1   

OW 1 4   

*

=0 0.44, 0 0.10EC CI CR
CI


  = = = ，  

 

The results determined by HBWM are similar and consistent to that determined by 

Ren and Ren (2018), and they employed the Non-Linear Fuzzy Prioritization (NLFP) 

method developed by Mikhailov (2003) to determine the global weights of the sub-

criteria.  

Among these ten sub-criteria for determining the synthetic sustainability index, five 

sub-criteria are the “more is better” criteria including life, energy efficiency, energy 

density, maturity and environmental impact (the data with respect to this criterion 

represents the relative performances on environmental impact). The data of these five 

energy storage technologies with respect to maturity and environmental impact are crisp 

numbers, but the data with respect to other three sub-criteria (life, energy efficiency and 

energy density) are interval numbers. The other five are “less are better” sub-criteria, 

including capital cost, operating cost, materials intensity, energy intensity and CO2 



intensity. The data of these five energy storage technologies with respect to these five 

“less are better” sub-criteria are all interval numbers. Let’s set 0.50 =  and 0.50 =  

for determining the aspiration point and the reservation point, and the aspiration point 

and the reservation point with respect to each sub-criterion have been presented in Table 

8. 

Table 8: The aspiration point and the reservation point with respect to each sub-

criterion 

 T1 EN2 EC2 P1 P4 EC1 EC3 P2 P3 EN1 

Aspiration 

point 

0.3504 0.3145 37.5000 77.9375 124.3500 195.4915 0.0009 37.3350 234.9000 23.9300 

Reservation 

point 

0.1388 0.1291 15.0000 54.4375 24.6000 842.2415 0.0032 286.5850 687.9000 86.4300 

 

After determining the aspiration point and the reservation point with respect to each 

sub-criterion, we set =1   and =1   in the achievement scalarizing function for 

determining the achievement of each energy storage technology with respect to each 

sub-criterion. Taking the data of flywheel (F) with respect to capital cost ([400 800] 

€/kWh) as an example, capital cost (EC1) is an “less is better” criterion and its data is 

an interval number, therefore, Eq.24 can be used to determine the achievement of CA 

with respect to EC1. The aspiration point and the reservation point with respect to EC1 

are 195.4915 and 842.2415 €/kWh, respectively. According to Eq.24, the achievement 



of flywheel (F) with respect to capital cost can be determined: 

 

,

842.2415 800 842.2415 400
=

842.2415 195.4915 842.2415 195.4915

= 0.0653 0.6838

r U r L

j ij j ijL U a L U r

ij ij ij j ij ij jr a r a

j j j j

x x x x
s s s x x x x

x x x x


 − −

 = =      − −  

− − 
 − − 

    (33) 

In a similar way, the achievements of these five energy storage technologies with 

respect to each sub-criterion can be determined, as presented in Table 9. 

Table 9: The achievements of these five energy storage technologies with respect 

to each sub-criterion 

 Pumped 

hydro 

Compressed 

Air 

Lead-Acid Lithium-ion Flywheel 

T1 2.0000 0.2757 -1.0000 -0.4318 -0.4318 

EN2 -0.4947 0.1259 -1.0000 0.7381 2.0000 

EC2 [1.2000 

2.0000] 

0.889 [-1.0000 0] [-0.1000 

0.0444] 

0.2222 

P1 [0.6197 

0.8324] 

[-1.0000 -

0.9240] 

[0.7686 

1.2920] 

1.7168 2.0000 

P4 [-1.0000 -

0.9585] 

[0.0541 

0.3549] 

[0.0541 

0.2546] 

[0.5053 

2.0000] 

[-0.6058 

0.0541] 

EC1 [1.7963 

1.9153] 

[1.8360 

2.0000] 

[1.0555 

1.2495] 

[-1.0000 -

0.1262] 

[0.0653 

0.6838] 

EC3 [0.7761 [0.5587 [0.1674 [-1.0000 [0.6457 



1.3631] 2.0000] 1.1083] 0.5587] 1.1083] 

P2 [0.7806 

1.0617] 

[1.7070 

1.9860] 

[1.7070 

1.9163] 

1.9665 

2.0000[] 

[-1.0000 

1.2632] 

P3 [1.2169 

1.8384] 

2.0000 [-1.0000 

1.9784] 

[0.2382 

0.7901] 

[-0.2468 -

0.2126] 

EN1 [1.4189 

1.8415] 

1.9842 [-1.0000 

1.8689] 

[0.5829 

1.2604] 

[-0.3115 -

0.0819] 

 

According to the global weights of the sub-criteria in Table 5 and the achievements 

of the energy storage technologies with respect to the sub-criteria in Table 8, both the 

weak synthetic sustainability index and the strong synthetic sustainability index can be 

determined, and the results were presented in Figure 2 and Figure 3, respectively.  

 

Figure 2: The weak sustainability index of each energy storage technology 

 



 

Figure 3: The strong sustainability index of each energy storage technology 

 

The weak sustainability index of each energy storage technology is an interval 

number and thus Eq.27 can be used to determine the probability degree of the weak 

sustainability index of one energy storage technology be greater than that of another. 

Taking the probability degree of the weak sustainability index of Lithium-ion and that 

of Flywheel as an example,  

( ) ( ), , , , , ,

, ,

, , , ,

max 1 max ,0 ,0

0.6629 0.4744
max 1 max ,0 ,0

0.6747 0.4744 0.6629 0.2086
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= 0.2880

    (34) 

In a similar way, other elements in the probability matrix for the weak synthetic 

sustainability can also be determined, and the results were presented in Eq.35. 



0.5000 1.0000 1.0000 1.0000 1.0000

0 0.5000 1.0000 0.7122 0.8586

0 0 0.5000 0 0.1363

0 0.2878 1.0000 0.5000 0.7120

0 0.1414 0.8637 0.2880 0.5000

PH CA LA Li F

PH

CA

LA

Li

F

      (35) 

Then, the integrated weak synthetic sustainability performance of each energy 

storage technology can be determined according to Eq.31. Taking the integrated weak 

synthetic sustainability performance of CA as an example: 

(0+0.5000+1.0000+0.7122+0.8586 5 2 1
=0.2285

5(5 1)
CAWSS

+ −
=

−

）
    (36) 

where CAWSS  represents the integrated weak synthetic sustainability performance of 

CA. 

  The integrated weak synthetic sustainability performance of other energy storages 

can also be determined, as presented in Table 10. 

Table 10: The integrated weak and strong synthetic sustainability performances of 

these five energy storage technologies 

 Pumped 

hydro 

Compressed 

Air 

Lead-Acid Lithium-

ion 

Flywheel 

Integrated 

weak 

synthetic 

sustainability 

performance 

0.3000 0.2285 0.1068 0.2000 0.1647 

Ranking  1 2 5 3 4 



Integrated 

strong 

synthetic 

sustainability 

performance 

0.3000 0.2261 0.1000 0.1869 0.1869 

Ranking 1 2 4 3 3 

 

According to Figure 2, the strong sustainability index of each energy storage 

technology is less than zero, and it means that each energy storage technology performs 

worse than the reservation point for at least one sub-criterion. The data representing the 

weak sustainability index of PH, LA, Li and F are crisp numbers, but the data 

representing the weak sustainability index of CA is an interval number. The elements 

in the probability matrix for the weak synthetic sustainability can also be determined, 

as presented in Eq.37. 

0.5000 1.0000 1.0000 1.0000 1.0000

0 0.5000 1.0000 0.7615 0.7615

0 0 0.5000 0 0

0 0.2385 1.0000 0.5000 0.5000

0 0.2385 1.0000 0.5000 0.5000

PH CA LA Li F

PH

CA

LA

Li

F

      (37) 

 

The integrated strong synthetic sustainability performance of each energy storage 

technology can then be determined, and the results were also presented in Table 10. 

Pumped hydro and compressed air have been ranked as the most sustainable two energy 

storage technologies. Pumped hydro has been recognized as the most sustainable 



followed by the compressed air by both the integrated weak synthetic sustainability 

performance and the integrated strong synthetic sustainability performance. However, 

the sustainability rankings of Lead-Acid, Lithium-ion and Flywheel determined by 

these two methods are different (see Table 10). The overall picture of sustainability of 

these five energy storage technologies was presented in Figure 4. The alternatives 

located in the top right corner are more sustainable than that located in the bottom left 

corner. Therefore, the priority sequence of these five energy storage technologies from 

the most sustainable to the least is pumped hydro, compressed air, Lithium-ion, 

flywheel, and Lead-Acid.  

 

Figure 4: The overall picture of sustainability 

In order to validate the effectiveness of the developed method in this study, the results 

were compared with those determined by the interval multi-attribute decision analysis 

method（Ren & Ren, 2018. The results especially the rankings of pumped hydro and 

compressed air (as presented in Table 11) are comparable to those determined by Ren 

and Ren (2018). To some extent, it reveals that the developed synthetic sustainability 



index is a valid method for ranking the alternatives according to their sustainability 

performances.   

 

Table 11: Sustainability rankings  

 Pumped 

hydro 

Compressed 

Air 

Lead-Acid Lithium-ion Flywheel 

Ranking by 

both the 

WSS and 

SSS 

1 2 5 3 4 

Ranking by 

Ren and 

Ren (2018) 

1 2 4 5 3 

 

In order to investigate the effects of the weights of the sub-criteria on the rankings of 

these five energy storage technologies, the following scenarios have been studied by 

assigning different weights for the criteria or sub-criteria in different scenarios: 

(1) Equal weights to the sub-criteria (Scenario 1): an equal weight was assigned to all 

these ten sub-criteria; 

(2) Equal weight to the four criteria (Scenario 2): the global weights of the ten sub-

criteria were determined according to the ratios of their local weights; and 

(3) A dominant weight was assigned to one criterion and an equal weight was assigned 



to other three criteria (Scenarios 3-6): a dominant weight (0.40) was assigned to 

each of the four criteria (economic, performance, technological and environmental 

criteria) and an equal weight (0.20) was assigned to all other criteria. The global 

weights of the ten sub-criteria were determined according to the ratios of their local 

weights. 

The results of sensitivity analysis were presented in Figure 5, and it is apparent that 

the sustainability sequence of these energy storage technologies highly depends on the 

weights of the criteria/sub-criteria. In Scenario 1, it is impossible to determine the most 

sustainable energy storage technology, PH and CA have been ranked as the most 

sustainable alternatives according to their integrated weak synthetic sustainability 

performances, but they both perform worse than Li and F according to their integrated 

strong synthetic sustainability performances. In Scenario 2, PH has been recognized as 

the most sustainable, followed by F, and CA and Li that are also more sustainable than 

LA. In Scenario 3, PH has been ranked as the most sustainable, followed by CA and F, 

Li has been ranked in the fourth position, and LA has been ranked in the last position. 

In Scenario 4, the sustainability sequence from the most sustainable to the least is PA, 

F, Li, LA, and CA, respectively. In Scenario 5, the sustainability sequence from the 

most sustainable to the least is PH, CA, F, Li, and LA, respectively. In Scenario 6, it is 

impossible to determine the sustainability sequence of these energy storage 

technologies, PH and F have been ranked in the first and the second position according 

to their integrated weak synthetic sustainability performances, and F and Li have been 

ranked in the first and the second position according to their integrated strong synthetic 



sustainability performance, but it is no doubt that LA has been recognized as the least 

sustainable comparing with other four energy storage technologies. 

 

Figure 5 (a): The results of Scenario 1 in sensitivity analysis 

 

Figure 5 (b): The results of Scenario 2 in sensitivity analysis 



 

Figure 5 (c): The results of Scenario 3 in sensitivity analysis 

 

Figure 5 (d): The results of Scenario 4 in sensitivity analysis 



 

Figure 5 (e): The results of Scenario 5 in sensitivity analysis 

 

 

Figure 5 (f): The results of Scenario 6 in sensitivity analysis 

Figure 5: The results of Sensitivity analysis 

5. Conclusion  

This study developed a dual synthetic sustainability index under uncertainties by 

using the reservation-aspiration reference point scheme, and the users can determine 



the aspiration point and the reservation point of each criterion/sub-criterion for 

sustainability assessment. The hierarchy best-worst method was employed to determine 

the weights of the criteria/sub-criteria for sustainability assessment. Comparing with 

the NLFP method, the HBMW method employed in this study has the following 

advantages: 

(1) It requires less comparisons comparing with AHP or the methods belonging to some 

other methods belonging to AHP family; 

(2) The weights of the criteria, the local weights of the sub-criteria and the global 

weights of the sub-criteria can be determined in a programming model 

simultaneously; and 

(3) It is easy for the users to ensure that the judgments for determining the BO and the 

OW vectors are consistent. 

The interval reference point technique which can address the decision-making matrix 

with both crisp numbers and interval numbers was developed for determining the 

integrated weak sustainability performance and the integrated strong sustainability 

performance of each alternative. The users of the interval reference point technique are 

allowed to set the aspiration point and the reservation point for each sub-criterion for 

sustainability assessment, and both the strong synthetic sustainability index and the 

weak synthetic sustainability index can be used to measure the sustainability of each 

alternative. Comparing with other synthetic or composite sustainability indexes, the 

developed interval reference point technique has the following advantages: 

(1) It can address data uncertainties by using interval numbers. In other words, the data 



of the alternatives with respect to the criteria for sustainability assessment can be 

not only crisp numbers, but also interval numbers. 

(2) Both the strong synthetic sustainability performance and the weak synthetic 

sustainability performance are used for comparing the sustainability of different 

alternatives, and the synthetic or composite sustainability indexes determined by 

most of the methods in the previously published works are the weak synthetic 

sustainability indexes, and they lack the consideration of the strong synthetic 

sustainability performance. 

Besides these advantages, there is also a weak point - the lack of considering the conflict 

preferences of different stakeholders. The selection of the most sustainable industrial 

process usually involves different stakeholders (e.g., investors, engineers, governments, 

and non-governmental organizations), and different stakeholders usually have different 

preferences, and their preferences and concerns are usually conflict rather than 

consistent. However, the method developed in this study for determining the dual 

synthetic sustainability indexes under uncertainties still cannot incorporate the conflict 

preferences of different stakeholders. In over to overcome this, a game theoretic interval 

reference point technique which can consider the conflict preferences of different 

stakeholders will be developed in future by combining the developed interval reference 

point technique and game theory. 
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