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A Novel Variable Exponential Discrete Time
Sliding Mode Reaching Law
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Abstract—A new variable exponential discrete-time sliding
mode control (DSMC) reaching law is proposed to suppress
the chattering phenomenon and accelerate the reaching speed
for the switching function. The variable exponential reaching
law consists of two-phase different exponential term. The main
effect of the first phase exponential reaching law is to reduce
reaching steps. The second phase exponential reaching law can
decrease the magnitude of quasi-sliding-mode domain (QSMD).
Otherwise, the disturbance term is restrained by second order
difference function which can also significantly diminish the
range of QSMD. The reaching steps of the reaching law to
converge to QSMD are derived from this new reaching law.
Meanwhile, the dynamic analysis of the DSMC system based
on new reaching law is presented. Finally, the mathematical
simulations are conducted to preliminarily verify the results of
theoretical analysis.

Index Terms—Sliding mode control (SMC), uncertain systems,
dynamic analysis, reaching law, quasi-sliding-mode domain.

I. INTRODUCTION

AS one kind of nonlinear control strategy, sliding mode
control (SMC) strategy has pretty good effectiveness for

uncertain or incompletely modelled system. There are some
advantages about SMC strategy compared with other feedback
control system such as good performance to stabilize the
complex nonlinear systems, robustness for the perturbation
or unmodeled components and fast response [1]–[4]. Hence,
SMC strategy has been widely applied into biomedical robot,
aerospace industry, power control system and high precision
motion control, etc [5], [6]. The sliding mode control can
be divided into two strategies: discrete-time SMC strategy
(DSMC) and continuous-time SMC strategy (CSMC). Com-
pared with CSMC, the most prominent feature of DSMC
is that its switching frequency is limited. According to this
characteristic, the DSMC which can achieve low sampling fre-
quencies has been the popular research fields as the industrial
computers’ applications in the practical control engineering
[7]–[9].
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The DSMC which reserves the switching term is usually
called the DSMC based reaching law. Obviously, the dynamics
of DSMC system based reaching law includes two stages: the
first stage is approaching the switching surface; the second
stage is to realize the sliding motion in the sliding manifold.
Due to the DSMC based reaching law still contains the switch-
ing function, the chattering phenomenon cannot be allayed.
As for the DSMC based equivalent control, the over large
control effort is inevitable for lack of the approaching process.
Both for the DSMC based reaching law and the DSMC based
equivalent control, the sliding mode state cannot stay on the
sliding surface and reach the origin. It will produce a quasi-
sliding-mode domain (QSMD) and a chattering motion around
the origin [10], [11]. These problems may lead to slow control
response and system instability. In order to figure out how to
solve these problems, different DSMC strategies have been
proposed by previous researchers all over the world [12]–
[14]. In literature [13], Qu, et al. proposed a modified reaching
law which can achieve the convergence of the system state.
Meanwhile, the time steps for switching function to reach the
QSMD and the range of sliding manifold for the closed-loop
control system were calculated and simulated.

However, the chattering problem of DSMC is the main
factor that restricts its performance. In order to alleviate the
chattering amplitude of the sliding manifold (the width of
QSMD) and further improve the approach speed, a new DSMC
reaching law is designed in this paper. In second section, the
objective model is considered as the combination of linear
dynamic system and bounded nonlinear disturbance. In third
section, the design procedure of the related DSMC reaching
law is given. Then, the accurate quasi sliding mode domain
width and reaching steps of this method are obtained through
theoretical analysis. In fourth section, numerical simulations
are conducted to verify the effect of this new DSMC strategy
compared with cutting-edge research results in [13]. Finally,
conclusion is presented to summarize this paper.

II. PRELIMINARIES

The state-space representations of a physical system can be
derived as

ḋ = Ad + Bv + P. (1)

We apply zero-order-holder and set T as sample time. For
example, v(t) = v(n) in the interval time [nT, (n+ 1)T ).
Then, the state-space equation of the second-order discrete
time system can be derived as

dn+1 = fdn + Γvn + Pn (2)
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where

f = eAT ,Γ =
∫ T

0
eAτdτB

Pn =
∫ T

0
eAτP ((n+ 1)T − τ) dτ.

(3)

It is clearly that f and Γ are constant systems matrices. And we
assume the overall perturbation of the system is bounded and
continuous, thus Pn =

∫ T
0
eAτP ((n+ 1)T − τ) dτ . Then,

the switching function is

s (n) = cTdn. (4)

III. NOVEL VARIABLE EXPONENTIAL REACHING LAW

In this part, a novel variable exponential reaching law
is proposed and the control system is designed to achieve
working objectives. The new variable exponential reaching
law is composed of self-adaptive exponential term, variable
coefficient switching term and disturbance compensator.

The new DSMC reaching law called variable exponential
reaching law SMC (VSMC) is proposed as

s (n+ 1) = $Λ (n) s (n)− chf (s (n))µ

Λ (n)
sign (s (n)) + ε (n) ,

(5)

Λ (n) = κ+ (1− κ) e−ϕ|s(n)|γ , (6)

ε (n) = cT (Pn − 2 ∗Pn−1 + Pn−2) , (7)

chf (s (n)) =

{
1, |s (n)| > σ

|s(n)|
σ , |s (n)| ≤ σ, (8)

where

µ > 0, 0 < $ < 1, 0 < κ < 1, 0 < σ < 1, γ > 0, ϕ > 0. (9)

As learned from [15], the bound of the gradient for disturbance
Pn can be written as

|ε (n)| ≤ δ ≤ µ. (10)

Solving(2)(4)(5), the control signal v (n) can be generated
as

v (n) = −
(
cTΓ

)−1

[
cT fdn −$Λ (n) s (n) + 2cTPn−1

−cTPn−2 + chf(s(n))µ
Λ(n) sign (s (n))

]
.

(11)
The value of Pn−1 and Pn−2 have to be solved in order

to solute (11). According to (2), the Pn−1 and Pn−2 can be
derived as

Pn−1 = dn − fdn−1 − Γvn−1

Pn−2 = dn−1 − fdn−2 − Γvn−2
. (12)

IV. STABILITY ANALYSIS OF THE PROPOSED REACHING
LAW

There are two theorems proved in this section about the pro-
posed reaching law. These theorems demonstrate the designed
sliding mode control systems is stable.

Theorem 1: For the DSMC system (2) with condition (10).
a) If the coefficients of proposed reaching law $,µ, σ

satisfy condition
√

µ
σ$ ≤ κ, the system trajectories s (n)

from any initial state value will enter this region which
defined by VSMC as

∆ =
δ

1−$Λ (n) + µ
σΛ(n)

. (13)

b) Once the s (n) enter the region ∆ , it cannot be escaped.
In other words, the function s (n) is convergent function.

Proof: a) Firstly, according to Lyapunov function,
[s (n+ 1)− s (n)] × [s (n+ 1) + s (n)] < 0 can be the con-
vergent condition. In order to prove Theorem 1, four cases
about s (n) must be considered. The detailed process of proof
is expounded as follows:

Case 1: If s (n) > σ, applying (8) and because of 0 < $ <
1, µ > 0, so

s (n+ 1)−s (n) = ($ − 1) Λ (n) s (n)− µ

Λ (n)
+ε (n) . (14)

Due to (6)(9)(10), it can be known ($ − 1) Λ (n) s (n) < 0.
Also, − µ

Λ(n) +ε (n) < 0. Therefore, s (n+ 1)−s (n) < 0. Ob-
viously, s (n+1) is monotone decreasing function in interval
(σ,+∞).

Case 2: If 0 < s (n) ≤ σ, applying (8) and because of
0 < $ < 1, µ > 0, so

s (n+ 1) =

[
$Λ (n)− µ

σΛ (n)

]
s (n) + ε (n) . (15)

In order to guarantee s (n) is monotone decreasing function in
interval (0, σ], the coefficient $Λ (n)− µ

σΛ(n) needs to satisfy

0 <

[
$Λ (n)− µ

σΛ (n)

]
< 1. (16)

Assuming [
$Λ (n)− µ

σΛ (n)

]
< 1, (17)

because
0 < $Λ (n) < 1, µ

σΛ(n) > 0, (18)

so (17) is true.
Similarly, assuming[

$Λ (n)− µ

σΛ (n)

]
> 0, (19)

thus
$Λ(n)

2 − µ

σ
> 0. (20)

Solving (20) leads to

Λ (n) >
√

µ
σ$ or Λ (n) < −

√
µ
σ$ . (21)

Due to κ < Λ (n) < 1, it can be obtained√
µ

σ$
≤ κ. (22)

Hence, under the conditions (10)(22) and reaching law (15),
the following deduction of system state can be derived

s (n+ 1)− s (n) =
[
$Λ (n)− µ

σΛ(n) − 1
]
s (n) + ε (n)

≤
[
$Λ (n)− µ

σΛ(n) − 1
]
s (n) + δ.

(23)
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When [
$Λ (n)− µ

σΛ (n)
− 1

]
s (n) + δ < 0, (24)

s (n+ 1)−s (n) < 0 holds. Since (16) and s (n) > 0, solving
(24), the solution is

s (n) > ∆1 =
δ

1−$Λ (n) + µ
σΛ(n)

. (25)

Also, by deriving summation formula, we get

s (n+ 1) + s (n) =
[
$Λ (n)− µ

σΛ(n) + 1
]
s (n) + ε (n)

≥
[
$Λ (n)− µ

σΛ(n) + 1
]
s (n)− δ.

(26)
When [

$Λ (n)− µ

σΛ (n)
+ 1

]
s (n)− δ > 0, (27)

s (n+ 1)+s (n) > 0 holds. Since (16) and s (n) > 0, solving
(27), the solution is

s (n) > ∆2 =
δ

1 +$Λ (n)− µ
σΛ(n)

. (28)

In order to guarantee s (n+ 1) − s (n) < 0 and s (n+ 1) +
s (n) > 0, the switching state s (n) must satisfies

|s (n)| > ∆ = max {∆1,∆2} . (29)

As 0 < $Λ (n)− µ
σΛ(n) < 1, it can be obtained

∆1 > ∆2,∆1 > δ. (30)

Therefore, the s (n) is monotone decreasing function in inter-
val (∆1, σ].

Case 3: If s (n) < −σ, applying (8) and because of 0 <
$ < 1, µ > 0, so

s (n+ 1)−s (n) = ($ − 1) Λ (n) s (n)+
µ

Λ (n)
+ε (n) . (31)

Similarly, in view of (6)(9)(10), we can get
($ − 1) Λ (n) s (n) > 0. At the same time, µ

Λ(n) + ε (n) > 0.
Hence, s (n+ 1) − s (n) > 0 is obtained. Thus, s (n+1)is
monotone increasing function in interval (−∞,−σ).

Case 4: If −σ ≤ s (n) < 0, applying (8) and because of
0 < $ < 1, µ > 0, so

s (n+ 1) =

[
$Λ (n)− µ

σΛ (n)

]
s (n) + ε (n) . (32)

Similarly, the following results can be derived using the same
analytical method as mentioned in case 2:

If the switching state s (n) satisfies

|s (n)| > ∆ = max {∆11,∆22} , (33)

where

∆11 =
−δ

1−$Λ (n) + µ
σΛ(n)

, (34)

∆22 =
−δ

1 +$Λ (n)− µ
σΛ(n)

. (35)

both s (n+ 1)−s (n) > 0 and s (n+ 1)+s (n) < 0 can hold.
Due to

∆1 = ∆11,∆2 = ∆22, (36)

and in view of (30), we can obtain s (n) is monotone increas-
ing function in interval [−σ,−∆1).

Combined with the above conclusions (29)(30)(33)(36), it
can be summarized that the QSMD of the new reaching law
is ∆ = ∆1 = ∆11.

b) According to proof (a), the switching function s (n) is
convergent when |s (n)| > ∆.Therefore, once s (n+1) enters
the QSMD, it cannot escape.

Theorem 2: The steps of the system trajectory reaching
QSMD are no more than constant values k∗ when the initial
states are different. The values of convergent steps k∗ can be
represented as follows:

k∗ = k∗1 + k∗2 = log$
ψ2

∗
[

µ
ψ3

∗−δ
]
+σ(1−$)

|s(0)|ψ1
∗(1−$)+ψ2

∗
[

µ
ψ3

∗−δ
]

+log$
δ

δ−(1−$)σθ(0) , |s(0)| > σ

k∗ = k∗2 = log$
δ

δ−(1−$)|s(0)|θ(0) , |s(0)| ≤ σ.

(37)

Proof: Case 1: If s(n) > σ, n = 0, 1, · · · , k, the value
expression of s(k) can be derived from (5). In order to save
page layout, here’s main derivation process as follows:

s(k) =$ks(0)
k−1∏
n=0

Λ(n)

−
k−2∑
i=0

$k−1−i [Λ(k − 1)× · · · × Λ(i+ 1)]︸ ︷︷ ︸
k−1−i

×
[
µ

Λ(i)
− ε(i)

]
−
[

µ

Λ(k − 1)
− ε(k − 1)

]
.

(38)

When s (n) reaches the boundary s (k) = σ, an algebra yields

s(k) ≤ $ks(0)ψ1 − ψ2

[
µ
ψ3
− δ
]

1−$k
(1−$)=σ

⇒
$ks(0)ψ1(1−$)−ψ2

[
µ
ψ3
−δ

]
[1−$k]−σ(1−$)

(1−$) = 0

⇒
$k

{
s(0)ψ1(1−$)+ψ2

[
µ
ψ3
−δ

]}
−ψ2

[
µ
ψ3
−δ

]
−σ(1−$)

(1−$) = 0.

(39)

In Theorem 1, we know s (n) is convergent. Thus, a real
number k∗1 can be yielded as

k∗1 = log$

[
µ
ψ3

∗ − δ
]

+ σ(1−$)
ψ2

∗

s(0)Λ(0) (1−$) +
[
µ
ψ3

∗ − δ
] , (40)

where

ψ1
∗ =

k∗−1∏
n=0

Λ(n), ψ2
∗ =

k∗−1∏
n=1

Λ(n) (41)

ψ3
∗ =

[
$k∗−1 +$k∗−2 + · · ·+ 1

]
$k∗−1

Λ(0) + $k∗−2

Λ(1) + · · ·+ 1
Λ(k∗−1)

. (42)
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Case 2: If s(n) < −σ, n = 0, 1, · · · , k, in a similar way
as in the derivation of (39), when s (n) reaches the boundary
s (k) = −σ, an algebra yields

s(k) ≥ $ks(0)ψ1+ψ2

[
µ
ψ3
− δ
]

1−$k
(1−$)=− σ

⇒
$k

{
s(0)ψ1(1−$)−ψ2

[
µ
ψ3
−δ

]}
+ψ2

[
µ
ψ3
−δ

]
+σ(1−$)

(1−$) = 0.

(43)

Then, we can find the same real number k∗1 , it yields that

k∗1 = log$

[
µ
ψ3

∗ − δ
]

+ σ(1−$)
ψ2

∗

|s(0)|Λ(0) (1−$) +
[
µ
ψ3

∗ − δ
] . (44)

Case 3: If 0 ≤ s(n) ≤ σ, n = 0, 1, · · · , k, in view of (5)-
(8), then

s (n+ 1) = $Λ (n) s (n)− |s(n)|µ
σΛ(n) + ε (n)

= $
[
Λ (n)− µ

$σΛ(n)

]
s (n) + ε (n) .

(45)

Assuming

Λ (n)− µ

$σΛ (n)
= θ(n), (46)

thus, it follows from (45) that

s(k) = $θ (k − 1) + ε (k − 1)

= $ks(0)
k−1∏
n=0

θ(n)

−
k−2∑
i=0

$k−1−i [θ(k − 1)× · · · × θ(i+ 1)]︸ ︷︷ ︸
k−1−i

×ε(i) + ε(k − 1),

(47)

where s(0) is the initial state of s(n). Since |ε(n)| ≤ δ, so

s(k) ≤ $ks(0)
k−1∏
n=0

θ(n)

+
k−2∑
i=0

$k−1−i [θ(k − 1)× · · · × θ(i+ 1)]︸ ︷︷ ︸
k−1−i

× δ + δ.
(48)

Setting

ϕ1 =
k−1∏
n=0

θ(n), ϕ2 =
k−1∏
n=1

θ(n), (49)

then

s(k) ≤ $ks(0)ϕ1 +
k−2∑
i=0

$k−1−iϕ2 × δ + δ

≤ $ks(0)ϕ1 + δϕ2

k−1∑
i=0

$k−1−i

≤ $ks(0)ϕ1 + δϕ2
1−$k
1−$ .

(50)

Due to s(n) is convergent which has been proven in Theorem
1, there must exist a real number k∗2 which denotes the system
trajectory will firstly cross zero in the k∗2 + 1 steps. Solving

$k∗2 s(0)ϕ1 + δϕ2
1−$k∗2

1−$
= 0 (51)

leads to

−δϕ2

[
1−$k∗2

]
= (1−$)$k∗2 s(0)ϕ1

⇒ [δϕ2 − (1−$) s(0)ϕ1]$k∗2 = δϕ2.
(52)

Then, we can get

k∗2 = log$
δϕ2

δϕ2 − (1−$) s(0)ϕ1
. (53)

Case 4: If −σ ≤ s(n) < 0, n = 0, 1, · · · , k, with the
condition (5)-(8), similar to the process of (45)-(50), the
following derivation can be obtained

$k∗2 |s(0)|ϕ1+δϕ2
1−$k∗2

1−$
= 0. (54)

Solving (54) leads to

k∗2 = log$
δϕ2

δϕ2−(1−$)|s(0)|ϕ1

= log$
δ

δ−(1−$)|s(0)|θ(0) .
(55)

If |s(0)| = σ,thus

k∗2 = log$
δ

δ − (1−$)σθ(0)
. (56)

According to the aforementioned four cases, the system state
trajectory can firstly cross the sliding surface within k∗1 + k∗2
steps when the initial state |s(0)| > σ; If the initial state
|s(0)| ≤ σ, the system state trajectory need at least k∗2 steps
to firstly cross the sliding surface. Therefore, the Theorem 2
holds.

V. NUMERICAL EXAMPLES

Assuming the discrete time second-order system with time-
varying uncertainties in (2) can be written as

f =

[
1.2 0.1
0 0.6

]
,Γ =

[
0
1

]
,

Pn = a×
[

0
2 sin(2nTπ) + 0.5

]
,

d0 =

[
2
−6

]
, cT=

[
5 1

]
(57)

to implement the mathematical simulation. Two simulation
cases are implemented for the analysis of the system dynamics.
According to condition (7) and [13, eq.(7)(12)], the magnitude
of disturbances can be calculated using MATLAB software.
After calculation, we know the magnitude of disturbances of
proposed algorithm δ = 0.0079 is much smaller than that
in the paper [13] which the upper bound of disturbance is
δ13 = 0.1255.

Case 1: In this example, the same parameters are adopted
for the new reaching law and proposed reaching law in [13].
The parameters are settled as a = 1, $ = 0.85, µ = 0.07,
κ = 0.7, ϕ = 20, γ = 10, sampling frequency T=0.01s,σ =
0.5 which satisfy the condition (10)(22), and the switching
states of the two reaching laws are shown in Fig. 1. According
to (13), the calculational QSMD result of proposed method
is ∆ = 0.0275. The simulation result can demonstrate the
derivation of the proposed method. As compared with the
QSMD ∆13 = 0.3641 in [13], the magnitude of new method’s
QSMD is significantly diminished. Taking (37) into account,
the convergent steps of the proposed reaching law are k∗ = 4
that is accord with the result shown in Fig. 1. Obviously, the
reaching performance of new method is better than that in
[13].
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Fig. 1. Changes of switching state in Case 1.
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Fig. 3. Changes of switching state with the proposed VSMC in Case 2.

Case 2: The objective is to find the minimum QSMD in
this example. The parameters need to be carefully tuned to
get the best QSMD and convergence rate in the numerical
example. After implementing different parameters, the optimal
coefficients are obtained. Choosing a = 1, $ = 0.9, µ = 0.36,
κ = 0.9, ϕ = 20, γ = 10 , sampling frequency T=0.01s,σ=0.8,
the simulation is conducted under this condition. Fig. 2 shows
the switching state of reaching law in paper [13, eq.(23)].
Fig. 3 shows the switching state of this proposed VSMC. Ac-
cording to (13), the width of QSMD in Fig. 3 is ∆ = 0.0146.
By comparison, it is found that the control performance of the
VSMC is obviously better than that of the literature [13].

VI. CONCLUSION

A novel DSMC reaching law is described in this article
which can significantly improve the performance of the switch-
ing function for reaching speed and chattering suppression.

The new reaching law contains a variable exponential term
and second order difference error term. The convergence
and effectiveness of this new reaching law were proved by
mathematical analysis. Meanwhile, the width of QSMD and
the reaching steps of the DSMC system were theoretically
analysed. Finally, the numerical simulation was established
to verify the theoretical analysis of this new reaching law.
The advantages of this novel VSMC are reflected in these
simulations by comparing with recently cutting-edge study
results in literature [13]. In practical engineering, the proposed
controller can significantly reduce control error and increase
control speed. In the future, the proposed new sliding mode
control will be applied in practical industrial fields such as
high precision motion control, robot control and biomechanical
control. Some practical applications of this novel VSMC will
be further investigated.
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